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Abstract. Automatic obstacle detection and avoidance is a key component for

the success of micro-aerial vehicles (MAVs) in the future. As the payload of

MAVs is highly constrained, cameras are attractive sensors because they are both

lightweight and provide rich information about the environment. In this paper, we

present an approach that allows a quadrotor with a single monocular camera to

locally generate collision-free waypoints. We acquire a small set of images while

the quadrotor is hovering from which we compute a dense depth map. Based on

this depth map, we render a 2D scan and generate a suitable waypoint for nav-

igation. In our experiments, we found that the pose variation during hovering is

already sufficient to obtain suitable depth maps. The computation takes less than

one second which renders our approach applicable for obstacle avoidance in real-

time. We demonstrate the validity of our approach in challenging environments

where we navigate a Parrot Ardrone quadrotor successfully through narrow pas-

sages including doors, boxes, and people.

Keywords: collision avoidance, monocular depth-maps, micro-aerial vehicles.

1 Introduction

Micro-aerial vehicles (MAVs) have enormously gained in popularity over the past years.

They are envisioned as versatile helpers for many different applications such as aerial

surveillance, visual inspection, remote farming and filming.

All of these applications require that the quadrotors do not collide with the envi-

ronment. While this can be achieved by a human pilot, it requires much training and

puts a significant cognitive load onto the human operator. Therefore, it is desirable to

enable the quadrotor to detect and avoid obstacles automatically. This can be achieved
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by adding distance sensors to the quadrotor, such as ultrasound sensors, laser-scanners

[1,2], stereo cameras [3,4], Kinect [5], or combinations of multiple sensors [6,7]. How-

ever, adding such sensors comes at the price of an increased weight and power con-

sumption, so that they are not applicable to small-scale or nano-quadrotors. For exam-

ple, platforms such as the Parrot Ardrone or the Bitcraze Crazyflie can only support a

single monocular camera in terms of payload. Therefore, we are interested in methods

for range mapping and obstacle avoidance for mobile robots that only have access to a

single monocular camera.

Most structure-from-motion approaches (SfM) based on visual features such as

PTAM [8] produce sparse maps that are not suited for collision-free navigation [9]: Typ-

ically the resulting point cloud of 3D features is highly noisy and, more importantly, the

absence of visual features in regions with low texture does not necessarily imply free

space. For example, although a cabinet might generate visual features around the edges

or at the corners, its unicolored surface might not. In contrast, dense stereo methods

[10,11] are able to propagate depth information from the corners to texture-less regions

through regularization, but are computationally intensive and difficult to apply on noisy

quadrotor data. Other approaches implement reactive obstacle avoidance for quadrotors

using optical flow [12], relative size change [13] or reinforcement learning [14].

The goal of this paper is to combine the advantages of dense mapping [11] with the

robustness of feature-based SfM methods [8]. This enables collision-free navigation

of a quadrotor during forward flight. Our approach consists of two steps: First, we

compute a dense depth map from a small set of images (typically 30). Subsequently,

we use this depth map to generate the next obstacle-free waypoint in forward direction

(see Fig. 1). In contrast to previous work [9], this approach yields a dense depth map at

approximately 1 Hz, so that we obtain absolute distance estimates for every pixel in the

image in near real-time. In our experiments, we demonstrate that by using our approach,

a quadrotor can safely navigate through and around obstacles such as boxes, doors,

and persons. Furthermore, and not expected before experimentation, we found that no

additional quadrotor motion is required during image acquisition: Small movements of

the quadrotor during hovering are already sufficient to generate satisfactory depth maps.

As a consequence, we expect that our approach applies to a large range of micro aerial

vehicles.

In a series of experiments with a real quadrotor, we demonstrate the validity of our

approach. The accompanying video collision avoidance.m4v provide additional

examples and more details. For all of our experiments, we used a Parrot Ardrone 2

quadrotor, but the proposed approach equally transfers to any mobile platform equipped

with a monocular camera. Due to the limited computational resources on the quadrotor,

we currently perform all computations on an external base station that communicates

over wireless network with the quadrotor.

2 Related Work

Existing approaches to obstacle avoidance range from purely reactive approaches to

full planning-based approaches [15,16]. Reactive approaches aim at directly generat-

ing motion commands from sensor readings. As no intermediate representation has to
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Fig. 1: Our goal is to enable a quadrotor with a monocular camera to avoid frontal obstacles

and to navigate through narrow spaces. Left: Quadrotor hovering in front of several obstacles,

including persons. Left middle: Camera view from the quadrotor. Right middle: Estimated dense

depth image. Right: Top view of extracted 2D range scan and visualization of generated path.

be formed, reactive approaches are typically computationally lightweight and have low

latency with well defined performance guarantees. Therefore, reactive approaches are

well suited as safety mechanisms. Next to distance sensors, reactive approaches can

also be applied to visual cues. For example, optical flow [12] can be used to determine

the relative distance of an object to the quadrotor if the absolute speed of the quadro-

tor is known. However, optical flow can only be used with side-view cameras, as the

optical flow of frontal obstacles is zero or close to zero. As an alternative, Mori and

Scherer [13] recently proposed to detect relative size change in the image, which in-

dicates approaching objects. Ross et al. [14] proposed an approach based on imitation

learning, where multiple cues including optical flow and visual features are used for

motion prediction.

When two frontal cameras are available, stereo methods can be used to generate

a depth map [17]. If only a single camera is available (or, as in our case, affordable

in terms of payload), stereo can also be computed between two or more consecutive

images when the camera is moving. This is also called motion parallax. As images are

inexpensive to acquire, Newcombe et al. [11] proposed in their DTAM approach to first

accumulate a cost volume of 10’s to 100’s of images before generating a depth map. In

contrast to classical two-view stereo methods, much more data from the environment

is available in the cost volume which leads to more accurate depth maps. On the cost

volume, regularization can be applied to infer missing values in the depth map and to

reduce noise. Graber et al. [18] similarly compute a depth map from multiple images

using the computationally and memory-wise less expensive plane sweep algorithm, but

perform a more complex regularization during subsequent 3D reconstruction.

Both methods need accurate camera poses to construct the cost volume. While

DTAM employs direct tracking on the currently estimated depth map, it implicitly as-

sumes that the camera moves only slowly and with sufficient translational motion. On a

quadrotor as the Ardrone, this is difficult to guarantee, as all flying maneuvers induce a

change in attitude which presumably would often lead to a loss of tracking. Therefore,

we decided to use the feature-based structure-from-motion approach of Klein and Mur-

ray [8], which contains an automatic recovery procedure and provides in our experience

highly accurate camera poses. To integrate the visual information with the IMU data and

to generate the control commands for the quadrotor, we make use of the tum ardrone

package of Engel et. al [9].
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Fig. 2: Top: Sparse feature maps, as for example generated by PTAM, cannot represent

regions without texture (e.g., the upper kitchen cabinets). Therefore, they are generally

not suitable for path planning or obstacle avoidance. Bottom: A dense depth map using

regularization provides distance estimates for every pixel.

In this paper, we demonstrate that a single forward-facing camera on a low-cost

quadrotor is enough to generate dense depth maps that are suitable for obstacle avoid-

ance. We incrementally generate the next way point based on the current depth map. It

should be noted that in this work, we do explicitly not deal with the problem of global

path planning [15], as this requires a global (obstacle) map which is typically not avail-

able beforehand. Yet, it would be interesting in future work to integrate the individual

depth maps into a global 3D map that could then be used for global path planning.

3 Dense Depth Map Estimation

The main challenge for our application is that although a sparse, feature-based repre-

sentation provided by popular monocular SLAM/SfM approaches is sufficient for local-

ization, it is generally not sufficient for autonomous path-planning. The reasons for this

are that (1) large sparely-textured obstacles typically have no visual features on them

and (2) outliers introduce unwanted obstacles in free space.

In Fig. 2, we illustrate this difficulty using the example of the PTAM system. The

images in the top show the sparse keypoints (visualized as points) and the key frames

(visualized with small axes in the top right image). Although PTAM detects many fea-

tures in various parts of the scene, it does not contain any visual features for the upper

cabinets, and therefore, a path planning system might generate a path that leads straight

through the cabinet. In contrast, the dense depth map visualized in the bottom right
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image provides distance information for every pixel in the scene, in particular on the

cabinet in the background as well as on the boxes in front.

In the following, we introduce our algorithm to estimate a regularized depth map

from multiple input images. We assume that we obtain from a quadrotor a sequence of n

gray-scale images I1, . . . , In : Ω ⊂R
2 7→R with corresponding camera poses T1, . . . ,Tn ∈

SE(3) that were gathered during hovering. In practice, we obtain the camera poses from

PTAM as used by [9]. The geometry of our setup is visualized schematically in Fig. 3,

where the quadrotor (left column) is looking at a simple scene (right column).

Analogous to DTAM [11], we follow a multi-view stereo approach based on energy

minimization that consists of two stages: The first stage involves the calculation of a

cost volume that accumulates the photo-consistency errors of the overlapping images

for different inverse depths. In the second stage, we minimize an energy functional com-

prising the cost volume as data term and a regularization term that penalizes deviation

from a spatially smooth inverse depth map.

In the following, we explain in more detail how we apply this approach to generate

a dense depth map from live images acquired during quadrotor flight.

3.1 Cost volume creation and update

Our algorithm starts by creating a cost volume C : R3 7→R that reflects our belief about

the depth of every pixel. The cost volume is always located in front of the first camera

pose T1, which we also call the reference pose. Every cell C(u,v,ξ ) in this volume

indicates the cost (or negative loglikelihood) that the pixel u = (u,v) in the reference

image I1 has an inverse depth of ξ . We use a uniform discretization in the inverse depth

range [ξmin,ξmax] to assure an uniform sampling of the projected epipolar lines in the

reference image space.

For every image k = 2, . . . ,n other than the reference image, we now update the

cost volume depending on how well the k image Ik matches the reference image I1 at a

certain inverse depth. This is done as follows: For every pixel u in the reference image

and each hypothesized inverse depth ξi we update the accumulated average cost at cube

voxel C(u,ξi) with the photometric error ρ(Ik,u,ξi) defined by

ρ(Ik,u,ξi) = I1(u)− Ik(π(Tkπ−1(u,ξi)) (1)

where π(p) describes a perspective projection of a 3D point p and π−1(u,ξi) refers to

the back-projection of a pixel u with inverse depth ξi.

We adopt the camera model of [19], where the intrinsic calibration of the camera

is given by the intrinsic parameters ( fu, fv,cu,cv) and a single radial distortion param-

eter w. Since the images captured by the camera are of low resolution (in our case

640×360) and are transmitted to the ground-based desktop with lossy compression, we

decided to not pre-rectify the images in order to not loose any more valuable informa-

tion. Instead, we explicitly take the distortion model into account during projection and

back-projection. The perspective projection u = π(p) is given by

[

u

v

]

=

[

cu

cv

]

+

[

fu 0

0 cv

]

rd

r

[

px/pz

py/pz

]

(2)
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where r =

√

p2
x+p2

y

p2
z

and rd =
1
w

arctan(2r tan w
2
). On the contrary, to back-project π−1(u,ξi)

a pixel u with inverse depth ξi we use:

p =
1

ξi

[

r
rd

un

1

]

(3)

un =

[

u−cu
fu

v−cv
fv

]

(4)

where un is a normalized pixel, rd =
√

u2
n + v2

n and r = tan(wrd)
2tan(w/2) .

After all images have been integrated, the average photometric error C(u,ξi) stored

in the cost volume for pixel u at inverse depth ξi is

C(u,ξi) =
1

n

n

∑
k=2

||ρ(Ik,u,ξi)||1. (5)

Once the cost volume has been computed, an initial inverse depth map ξr can be ex-

tracted by searching for the inverse depth associated with the minimum cost for each

pixel:

ξk(u) = argmin
ξi

Ck(u,ξi) (6)

This solution is also called the winner-takes-all method. It should be noted that this

initial inverse depth map will be very noisy, as so far no regularization has been applied.

Moreover, it might happen that multiple disparities have equal cost, for example due to

surfaces with little texture.

3.2 Primal-Dual optimization of the cost volume

In order to find a better inverse depth map, the simple approach of (6) is used as a

starting solution of a spatially regularized formulation based on total variation (TV).

TV-regularization is known for its ability to preserve edges while smoothing homoge-

neous regions. The solution ξ (u) is given by the minimization of the energy functional

Eξ =
∫

Ω
w(u)||∇ξ (u)||ε +λC(u,ξ (u))du, (7)

where Ω is the signal domain (in this case the image dimensions), w(u) is a per pixel

weight based on the image gradient that reduces the regularization across image edges,

|| ||ε is the Huber norm and λ is a parameter used to define the tradeoff between the

convex regularizer w(u)||∇ξ (u)||ε and the non-convex data term Cr(u,ξ (u)). Since the

data term is non-convex the energy functional is approximated by decoupling the data

and regularization terms through an intermediate function α(u):

Eξ ,α =
∫

Ω
w(u)||∇ξ (u)||ε +

1

2θ
(ξ (u)−α(u))2

+λC(u,α(u))du, (8)
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such that Eξ ,α → Eξ as θ → 0.

The new energy functional allows us to split the minimization into two different

problems that are alternatively solved untill convergence:

– First, for a fixed α(u) solve:

min
ξ

∫

Ω
w(u)||∇ξ (u)||ε +

1

2θ
(ξ (u)−α(u))2du (9)

which corresponds to the well known Huber-ROF denoising problem that can be

solved using a primal-dual algorithm [20]. In this case α(u) represents the noisy

image whereas ξ (u) is the searched denoised result.

– Second, for a fixed ξ (u) solve:

min
α

∫

Ω

1

2θ
(ξ (u)−α(u))2 +λC(u,α(u))du (10)

.

This optimization is performed by a point-wise exhaustive search for each α in C.

In practice, the update steps for ξ (u) and α(u) can be performed efficiently and in

parallel on modern GPU hardware for each independent pixel u. In addition for the

second step we implemented the accelerated and the improved sub-sample accuracy

methods recommended in [11]. Finally, we convert the inverse depth map into a depth

map D using

D(u) := (ξ (u))−1. (11)

In sum, this algorithm takes a sequence of n input images and camera poses, gener-

ates a cost volume, and then finds a regularized inverse depth map ξ (u) with minimum

total variation.

4 Obstacle Avoidance and Waypoint Selection

When a new depth map D becomes available, we use it to generate the next waypoint in

forward direction. Our goal is to select the point where the quadrotor can fly the furthest

at the current flying height. To this end, we calculate the most distant point in 3D space

reachable by the quadrotor without collisions.

This selection process is illustrated in Fig. 3: The quadrotor at first considers m

distant candidate waypoints p1, . . . ,pm ∈ R
3 along a horizontal line defined in world

coordinates in front of its current position. We convert these points into the frame of the

current reference camera T1 and project them into the depth map. Fig. 3 right, shows two

different depth maps with an overlay of the projected line. Note that in both cases, the

quadrotor was tilted manually while it was recording the reference image to demonstrate

that the projected line is in fact horizontal in world coordinates but not necessarily

horizontal in the image.

The corresponding pixel coordinates ui and depths di of these points are

ui := π(pi) (12)

di := D(ui). (13)
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Using these virtual depth measurements, we generate a new set of points

qi := π−1(ui,d
−1
i ), (14)

which are now located on the estimated surface. The resulting points are visualized

from a top-down view in the right column of Fig. 3, and resemble a 2D laser scan.

In order to find the farthest admissible waypoint, we first maximize the minimum

convolution given by

i∗ = arg max
i=1,...,m

min
j∈Fi

D(u j), (15)

where Fi ⊂ {1, . . . ,m} refers to the footprint of the quadrotor on its way to point pi. We

define the footprint of the quadrotor as all 3D points that the quadrotor would touch

on its way from its current position to the respective point, under consideration of the

quadrotor’s shape. Subsequently, we determine the maximum distance the quadrotor

can safely move forward as

d∗ = min
j∈Fi∗

D(u j). (16)

To generate the actual waypoint, we subtract a small safety boundary b (e.g., 1 m or

1.5 m) from this depth to prevent the quadrotor from crashing into the next obstacle.

The selected waypoint thus becomes

p∗ := π−1(ui∗ ,(d
∗−b)−1). (17)

While it is in principle possible to evaluate the footprint for arbitrary trajectories,

we found that the actual flying behavior of the quadrotor along two axes was some-

what undeterministic. Therefore, we decided to split the motion into two orthogonal

segments (which we correctly consider during footprint generation): In the first seg-

ment, the quadrotor positions itself at the desired X position (left/right, see Fig. 5). In

the second part, it then approaches the waypoint by a forward motion along the Y axis.

Note that we keep the flying height fixed (Z axis) in all of our experiments, although it

would be straight-forward to use it as a third degree-of-freedom during obstacle avoid-

ance. Two examples of the selected waypoints as well as the corresponding footprint are

visualized with a yellow cross and red dots, respectively, in the right column of Fig. 3.

To summarize this section, our waypoint generation method takes a dense depth

map D as input and outputs a waypoint p∗ that is expected to lead to the largest forward

increment without collisions.

5 Experiments and Results

For all our experiments, we used a low-cost Parrot AR.Drone 2 quadrotor. It is equipped

with an inertial measurement unit (IMU) consisting of a 3-axis gyroscopes and ac-

celerometers operating at 200 Hz, an ultrasound altimeter with an update rate of 25 Hz

and a frontal monocular camera covering a field of view of 73.5◦ × 58.5◦, providing

an image resolution of 640× 360. The quadrotor communicates with a ground-based
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Fig. 3: Illustration of our approach and the involved coordinate systems: The quadrotor hovers

in front of several obstacles, while it takes a series of images at camera poses T1, . . . ,Tn. From

these images, it computes a depth map D and selects the next waypoint G. The quadrotor at first

considers m distant candidate waypoints along a horizontal line LW defined in world coordinates

in front of its current position. We convert these points into the frame of the current reference

camera, ui := π(pi) and project them into the depth map to find the furthest 3D point. The left

column shows two different depth maps with the projected horizontal lines (cyan dots), footprint

points (red), and the selected waypoint as a yelow cross. We also show a top view of the same

scene with the resemble 2D scan.

desktop over wireless LAN to perform the calculations of the all time demanding tasks.

The video of the frontal camera is streamed in real-time to the desktop at 30 fps us-

ing a lossy compression to reduce bandwidth. The open-source implementation of [9]

(tum ardrone 4) for quadrotor control and our path planning module run on the Intel

Core i3-2120 CPU ×4 at 3.36 GHz, while the dense depth map estimation is executed

on a NVIDIA GeForce GTX 560 TI graphic card with 384 CUDA cores and 1 GB of

device memory. The tum ardrone package continuously estimates the absolute scale of

the visual map. As a consequence, the computed depth maps provide absolute distances,

which is very useful for our purpose.

5.1 Dense Depth Map evaluation

We first evaluated the performance of our depth map estimation approach using a syn-

thetic dataset [21] which provides perfect camera poses and ground truth depth maps.

This allowed us to analyze the impact on the accuracy with respect to the number of

images integrated in the cost volume and to determine the required number of discrete

depth layers. We calculated the Mean Absolute Error (MAE) on both the initial depth

map and the final solution with respect to the ground truth. To the best of our knowledge,

we are the first to provide such a quantitative evaluation of dense mapping approaches.

Based on our findings, we then selected the parameters for the problem defined in Eq. 8

in terms of accuracy, computation time and convergence. The results are given in Fig. 4.

4 http//wiki.ros.org/tum ardrone

We would like to thank Jakob Engel for his support and advice on using the tum ardrone

package.
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Fig. 4: Performance evaluation for the dense depth map estimation approach. (a) Error w.r.t. the

number of images. Increasing the number of images within the same baseline significantly im-

proves the accuracy of the initial depth map (red curve). In contrast, the quality of the regularized

solution barely changes (blue curve). We selected 20 images to achieve the lower error. (b) Error

(green) and computation time (blue) w.r.t. the number of layers of the cost volume. Increasing

the number of depth layers improves the quality, but at the expense of increasing running time.

A good compromise is achieved for 64 depth layers. (c) Error w.r.t. elapsed regularization time

for different values of θ 0. Notice that for large values of θ 0, the regularization time increases

substantially. A value of θ 0 = 0.2 yields the least time for the same number of iterations without

impairing precision. (d) Error w.r.t. the number of iterations. In all cases approx. 900 iterations

are required to achieve convergence. (e) Time per iteration. Notice that the time per iteration

decreases until convergence as the search interval–induced by the Quadratic Penalty term, de-

creases. (f) Error w.r.t. ε and θ 0. A valley is yielded for ε = 0.003, and it is independent of

θ 0.

In the final experiments with the quadrotor we consider a depth range from 0.5 m

to 7 m, which we sampled into a cost volume of 64 inverse depth layers requiring ap-

proximately 84 MB (640× 360× 64× 6 bytes). In all experiments, we set θ = 0.2,

λ = 0.9 and 900 primal-dual iterations. Note that this process is carried out on the

GPU and hence does not affect visual tracking and position control of the quadrotor.

As expected, the energy optimization is the most expensive calculation, requiring ap-

proximately 500 ms in total to obtain the final depth map. However, integrating a single

image into the cost volume requires only around 5 ms per frame. This means depth

maps can be generated at 1.5 Hz.
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Fig. 5: Evaluation of the collision avoidance approach on four different environment configura-

tions. From top to bottom: people, boxes on the outside, door, boxes on the inside. From left to

right: External view, quadrotor view, depth map, top view of range scan and generated trajectory

(yellow lines, added manually for visualization purposes).

5.2 Collision Avoidance Evaluation

To evaluate the reliability of our approach, we set up increasingly challenging environ-

ments through which the quadrotor had to navigate. The goal of our experiments was to

measure the number of system successes and failures to pass the obstacle. Fig. 5 shows

the four different environments in which we tested our approach. In the “person” envi-

ronment, two persons were standing approximately 1.5 m away from each other. In the

“boxes on the outside” environment, we set up various boxes and a tool carriage in such

a way that the quadrotor had to pass through the middle. In the “door” environment,

the quadrotor had to navigate through an open door with a clearance of 90 cm. For the

“boxes on the inside” environment, we put a stack of boxes in the middle of the room

that the quadrotor had to circumvent, that is, either to the left or to the right.

In each environment, we carried out 10 trials with our collision avoidance approach.

In each trial, the quadrotor was hovering for a couple of seconds in front of an obstacle,

acquiring 30 images, computing the depth map, generating the waypoint and executing

it. The overall time between starting the image capture and the generation of the next

way point was less than 1.5 seconds. We deemed a trial successful when the quadrotor

reached its desired waypoint without collision. Any other case, i.e., a failure to compute



12 H. Alvarez, L.M. Paz, J. Sturm, and D. Cremers

Setting Successes Failures

People 10 0

Boxes on the outside 9 1

Boxes in the middle 9 1

Door 5 5

Sum 33 7

Overall performance 82.5% 17.5%

Table 1: Performance evaluation over 10 runs in each of the four experiments.

the depth map, to find a suitable waypoint, or a collision with the environment was

counted as a failure. After every trial, the quadrotor was returned manually to its initial

position, before it selected another random starting position for the next trial.

The results are summarized in Table 1. Over 40 trials, we achieved an overall suc-

cess rate of 82.5%, where the quadrotor reached the desired target position without

collision. In 17.5% of all trials, it failed. Most failures occurred in the “door” environ-

ment, where the quadrotor had to navigate through a very narrow space.

We consider our evaluation of the parameters a valuable contribution for future

work on dense mapping approaches. We also demonstrated that obstacle avoidance and

collision-free path planning is feasible from monocular images, which is in particular

useful for upcoming nano-quadrotors with minimal payload. Interestingly, and opposed

to our earlier assumption, we found that no additional quadrotor motion is required

during image acquisition: Small movements of the quadrotor during hovering generate

sufficient baselines leading to satisfactory depth maps.

6 Conclusion

In this paper, we presented a novel approach to obstacle avoidance for quadrotors that

have only a single monocular camera. From a small set of consecutive images, we

compute a regularized depth map that we subsequently use for waypoint generation. We

demonstrated the applicability of our approach in four challenging environments using

a Parrot Ardrone quadrotor. As our approach only requires an IMU and a monocular

camera, it can be applied easily to many other lightweight aerial vehicles.

It would be interesting to augment our approach to full autonomous exploration, and

to adapt it to CPU so that it becomes applicable to on-board computing. Furthermore,

we believe that a collision avoidance system would clearly benefit from semantic scene

understanding approaches (e.g., to recognize a door as a door), which we plan to look

into in the near future.
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