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Abstract—Unmanned Arial Vehicles (UAVS) require the
development of some on-board safety equipments before
inheriting the sky. An on-board collision avoidance system is
being built by our team. Due to the strict size, weight, power, and
costs constraints, visual intruder airplane detection is the only
option. This paper introduces our visual airplane detector
algorithm, which is designed to be operational in clear and in
cloudy situations under regular daylight visual conditions. To be
able to implement the algorithm on-board, we have carefully
selected topographic operators, which can be efficiently solved on
cellular processor arrays.

Index Terms— image processing, aircraft detection and
tracking, UAV, vision-based control, topographic operators,
cellular processor arrays

|I. INTRODUCTION

OWADAYS the use of Unmanned Aerial Systems (UAS)

in military operations is quite common but not in civil

tasks. There are many civil tasks where the UAS could be
very useful (surveillance tasks, fire-fighting, meteorological
observation, telecommunications etc.). One of the key issues
that must be resolved to open up the skies for UAS is to be
able to coexist safely and effectively with current manned
operations in the national and inter-national airspace [1]. This
includes the ability to perform Sense and Avoid (SAA)
functions at an “equivalent level of safety” (ELOS) to manned
aircraft while not negatively impacting the existing
infrastructure and manned Traffic Alert and Collision
Avoidance System (TCAS) that create today’s safe airspace
[2], [3]. The UAS collision avoidance system, or SAA system,
needs to detect a hazard, determine if a maneuver is required,
communicate and execute that maneuver in time to achieve a
specified miss distance. A purely camera based SAA system
would provide cost and weight advantages against radar based
solutions currently under research [4], [5]. Feasibility and
technical characteristics of such system are unknown, since
solely electro-optical sensor based approach has not yet been
demonstrated.

Il. SEE AND AVOID SYSTEM

The goal of our research is to develop a complete
autonomous flight control system for Unmanned Aerial
Vehicles (UAV). This is a closed loop flight control system
with the collision avoidance capability based on visual
detection of the approaching object (Fig. 1). The organization
of the system is as follows. The input images are recorded by

the Camera. The recorded pictures are transmitted by Image
Acquisition to Preprocessing block by which the pictures are
filtered. The next step of the processing is Detection. The
images are processed by image processing algorithms to detect
the approaching objects. Data Association & Tracking is
responsible for the combination of the orientation and angle of
attack data of the approaching object calculated by Detection
and the own position and inertial data measured by onboard

INS/GPS (Inertial Navigation System/Global Positioning
System).
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Fig. 1. Diagram of the control system

The second part is the flight control. According to the
combined data the relative motion of the approaching object is
predicted by Motion Prediction. If a risky situation is
identified by Collision Risk Estimation & Decision a modified
trajectory is generated by Trajectory generation and the
avoiding maneuver is controlled by Flight Control. In this
paper mainly the image processing part of the currently
developed complete autonomous "sense and avoid" flight
control system is presented.

A. Coordinate systems

The following three coordinate systems are used in the
paper: North-East-Down (NED) - Fixed in one (latitude,
longitude) point. We assume flat Earth and the flying distance
is short, where axes are defined according in the conventional
way [7]. Body - fixed to the c.g. of the aircraft [7]. Camera - a
pan, tilt camera is assumed onboard, which is directed in one
fixed direction throughout the flight, the camera has offset
from the c.g.7’, and in the current paper the axes are X,
positive in the direction of West, Y, positive towards North,
and Z, positive downwards towards the center of the Earth,
perpendicular to the X, —Y, plane. The rotation matrices
between the coordinate systems Body-NED, Body- Camera,
Camera-NED are denoted by Ly, (t), Lpc(t), Len (8).

B. Measured and estimated variables
We assume there is only one intruder to be detected, so the



case of multiple threats is not considered in the paper. The
detection of the intruder is formulated as a state estimation
problem, where the dynamics are the relative motion of the
intruder to our aircraft. The measured output contains all
information that can be extracted from the camera images.
Since the camera projects the 3D view onto a 2D plane, which
is a nonlinear mapping, the measured outputs are nonlinear
functions of the states. Even if the motion of the aircrafts are
modeled by a linear system, the nonlinearity of the output
equation makes it necessary to apply Extended (EKF) or
Unscented Kalman Filters (UKF) to estimate the intruder's
data [8].

To simplify the filter design the vehicles (intruder and own
aircrafts) are modeled in the NED frame by a simple point
mass dynamics.
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Fig. 2. Subtended Angle Relative State Estimation (SARSE) methods

The relative position of the target, p.(t), can be expressed in
the camera frame as follows:

T
pc(t) = L¢p (t)p(t) = [pc,x(t) pc,y(t) pc,z(t)] (1)
Assuming pinhole camera model the location of the target on
the image plane can be computed as follows:

_ f pc,y(t) _ pm,y(t)

ZC(t) Pex(t) [pc,z(t)] [pm,z (t) (2)
where f is the focal length of the camera. The details can be
seen in Fig. 2. By locating and tracking the intruder on the
image plane the image processing unit can determine the
direction vector d(t) = p(t)/|lp(¢t)|| and the subtended angle
¢(t) = 2tan™" (5;) under which the target is seen. (The

constant b in the formula is the unknown wingspan of the
target, which is also to be estimated by the filters). These
parameters are the inputs of the estimation.

I1l. IMAGE PROCESSING

A. Getting images

To analyze and demonstrate the functionality of a vision
based system it is important to have real or at least realistic
camera images available. Three types of videos are used to test
the developed image processing algorithm:

1) Series of images are generated by an appropriate
simulator, which is able to provide realistic 3D views from the
flight scenarios. Here we know the exact 3D positions and the
size of the intruder and from these we can calculate the
expected d(t) and ¢(t) at every t time instant.

2) Shared videos from real UAV flights, where the impact of
the real environment can be observed but the position and size
data of the intruder are unknown.

3) Videos from real flight scenarios, where the videos are
recorded by real cameras and the position and size data of the
intruder aircraft is known.

B. Images from flight simulator

The FlightGear flight simulator [6] was chosen to generate
the realistic 3D environment for the indoor tests purpose, since
it has a flexible interface with SIMULINK via the Aerospace
blockset and the software is open source, hence the interface
with the image processing algorithm can be customized as
well.

The FlightGear software is adapted to get the rendered
pictures into the main memory of the PC first. These pictures
are then sent to MATLAB Engine. The image processing
algorithm is done by this module. For the sake of calculating
precise input data for the estimation algorithm the FlightGear
program has to be calibrated. First the Field of View (FoV)
and the aspect ratio settings are measured. For the
measurements Cessna 172P aircraft model was used because
this is a very popular light weight airplane. UAV share
airspace with this type of aircrafts and most of them have no
radar and use visual sensing for collision avoidance.

The wingspan of Cessna 172P is 11m. The FoV of the
rendered image from the following model is calculated:

2tan~1(5.5/d)
T Y )

where FoV is in degree, d is the distance of the two aircrafts
in meters, w;, is the measured width of the aircraft in pixels, w
is the width of the rendered image in pixels.

From the measurements it turned out, that two regions can
be defined from rendering point of view: a far region
(d >20m), where this model can be used and a close region
(d <20m), where distortions of this model are observed. The
images can be used without additional compensation, since the
far region is of interest in our case, because we are not dealing
with the emergency situation yet. We have to detect the other
aircraft in far enough to do the avoiding maneuver.

It also turned out that the FlightGear does not take care
about the aspect ratio parameter. If geometry is not 1:1, the
FoV is set to the bigger size and the image is cropped by
FlightGear. According to the measurements that are not
detailed here, it can be asserted that the geometry used by
FlightGear is linear perspective.

Fov

C. Image processing algorithm

In this paper an image processing algorithm is presented
which was designed to operate in daylight with clear or cloudy
sky, when the contrast of the clouds is small or medium. When
the contrast of the cloud is high (sunrise, sunset or storms), the
vision algorithm cannot detect the intruder airplane robustly,
however these situations can be predicted very well in
advance. In our experimental environment the camera is fixed
to the NED co-ordinate system.

From the very beginning of the algorithm design, we kept in
mind the strict power, volume and other c of an air-born UAV



application. To be able to fulfill these constraints, we decided
to use many-core cellular array processor, implemented in
ASIC or FPGA. Therefore we selected topographic operators,
which well fit in this environment.

Fig. 3. Input image (2200x1100 pixel) from simulator; the square shows the
location of the intruder, on the right side the enlarged image of the intruder
On Fig. 4 the flowchart of the image processing algorithm
is shown. The input images of the algorithm are at least 1
megapixel (Fig. 3).
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Fig. 4. Diagram of the image processing algorithm

As shown in Fig. 4 the first step is a space variant adaptive
thresholding [10] to filter out the slow transitions in an image
(Fig. 5). This can be the applied to the entire raw image if the
position of the intruder is not known. If the location is already
known, we track the intruder in a smaller window to reduce
the data size and speed up the computation. The adaptive
threshold results a binary image containing some of the points
of the aircraft.

Fig. 5. Result of the first adaptive threshold on raw 2200x1100 input image;
on the right side the enlarged image of the intruder aircraft

On this binary image a centroid calculation [10] is applied,
which leads to the co-ordinates of the central pixel of the
object. This co-ordinate will be the central pixel of the Region
of Interest (ROI). The size of the ROI is determined by the
previously calculated wing size plus 20 pixels in each
direction. In that way two images are cut: one from the
original picture (colored ROI image: Fig. 6a) and one from the
result of the adaptive threshold (binary ROI image: Fig. 6b).
The aircraft is composed of darker and brighter pixels than the
intensity mean value of the original picture (background) (Fig.
3). On the colored ROI image two adaptive thresholding

operators are calculated. The first one is calculated on the
inverse picture of the grayscale image created from colored
ROI image. With this threshold the pixels brighter than the
intensity mean value of the original picture are found (Fig.
6¢). The result is a binary image with the brighter pixels.

The other thresholding is calculated on the colored ROI
image and with this the darker pixels are extracted (Fig. 6d). A
logic OR is applied for the two thresholded images. The result
is a binary picture with the found pixels of the aircraft and
with some other pixels (Fig. 6e).
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Fig. 6. The steps of the segmentation; from left to the right: a) color ROI, b)
binary ROI, c) brighter pixels, d) darker pixels, €) OR operation and closing,

) segmented shape of the intruder aircraft

In some cases the parts of the airplane are not connected. A
closing operation [10] is applied to connect the components.
From the binary ROI picture we have an approximation for the
aircraft and from the previously calculated picture we have the
pixels of the whole airplane with some noise. As a last step, a
recall operator [11] is applied, because the two adaptive
thresholded (darker and brighter) may find other objects from
the clouds, which are not extracted when the first adaptive
threshold is applied.

The silhouette of the airplane is obtained in this way. On
this picture the centroid in pixels is determined. Based on the
co-ordinate of the center of the silhouette direction and
the subtended angle of the intruder aircraft in radians can
be determined accurately.

In the previous example, the intruder aircraft was in 1 km
distance (60° view angle, 1200 pixels horizontal resolution,
1,02m/pixel), hence the extracted silhouette was very coarse.
Here we show another example, where the intruder aircraft is
only 300m form us (Fig. 7). It is observable in this snapshot
that the first adaptive threshold does not find all of the pixels
of the intruder (Fig. 7c) and the whole algorithm is needed to
extract the entire aircraft.

(@ (b) (© (d) (®) ®
Fig. 7 Steps of the image processing: up the input image, down the outputs of
each step: a) color RO, b) adaptive threshold, c) darker pixels, d) brighter
pixels, €) OR operation and closing, f) segmented aircraft

D. Detection performance

In our experimental settings, the intruder can be detected
from 3.3km. In Fig. 8 the farthest detectable intruder is shown.
In this case the size of the intruder aircraft is 2 pixels only.



Fig. 8. Farthest detectable position of the intruder C172p aircraft
(wingspan=11m), the distance is 3.3 km; on the left is the input image from
FlightGear flight simulator, on the right the result of the segmentation

In Fig. 9 an example is shown with real image with cloudy
background, when the contrast of clouds is middle. In Fig. 9
on the upper right the result of the first adaptive threshold is
shown, from which the position of the intruder aircraft can be
calculated.
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Fig. 9. Example of the situation with middle contrast clouds: on the left the
original image with the enlarged aircraft; on the upper right the result of first
adaptive threshold, on bottom right from left to the right the darker pixels,
brighter pixels, OR operation and the segmented aircraft

In Fig. 10 we can see a typical situation during sunset, when
the contrast of the clouds is high. In this case the position of
the intruder can be determined only if we have prior
information about it. In Fig. 10 on the upper right not only the
points belonging to the intruder aircraft are detected by the
first adaptive threshold but some cloud points also. On the
bottom right the situation is shown when there is prior
information about the position. This prior information may
come from tracking or from a dispatcher. On the other hand,
high contrast cloudy situations are known in advance (hence
can be avoided), because it happens during sunrise, sunset,
and in case of an approaching storm.
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Fig. 10. Example of the situation with high contrast clouds: on the left the
original image with the enlarged aircraft, on the upper right the result of first
adaptive threshold, on bottom right from left to the right the darker pixels,
brighter pixels, OR operation and the segmented aircraft

IV. THE EXPERIMENTAL SETUP

In Fig. 11 the diagram of the simulation environment is
shown. The flight control is running on hardware in the loop
system, shown at the upper left corner. The aircrafts are
simulated by MATLAB/SIMULINK. For the own aircraft a
high fidelity mathematical model has been identified using the
measurement data collected from the Ultrastick unmanned
aircraft [12]. The intruder is modeled as a simple double
integrator. For the own aircraft a trajectory tracking controller
has been designed, which runs on an MPC5200 embedded
microprocessor. The flight simulator PC communicates with
the image processing computer via Ethernet. On the image
processing PC a modified FlightGear is running, which sends
the rendered pictures to the MATLAB Engine and the results

to an FPGA via USB. The FPGA realizes a Kalman filter and
calculates the Motion Prediction data required by the control
block. These data are forwarded to the control block by the
image processing PC via Ethernet. Our aim is to implement
the image processing algorithm on the FPGA in a later stage
of the project, to reduce the power consumption together with
the mass and volume of the system and to prepare it for
onboard implementation of a UAV.
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V. CONCLUSIONS

In this article an image processing algorithm was presented
for detecting intruder aircrafts in daylight situations with clear
or cloudy sky when the contrast of clouds are small or
medium. With this algorithm in the described environment,
the position of the intruder aircraft can be determined with
1.02 m accuracy from 1km, given 60° view angle and 1024
pixels per line. In case of high contrast clouds more
information is required for the accurate detection.
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