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Collision Avoidance in Human-Robot Interaction Using Kinect Vision

System Combined With Robot’s Model and Data

Hugo Nascimento1,2, Martin Mujica2 and Mourad Benoussaad2

Abstract— Human-Robot Interaction (HRI) is a largely ad-
dressed subject today. Collision avoidance is one of main
strategies that allow space sharing and interaction without
contact between human and robot. It is thus usual to use a
3D depth camera sensor which may involves issues related to
occluded robot in camera view. While several works overcame
this issue by applying infinite depth principle or increasing the
number of cameras, we developed in the current work a new
and an original approach based on the combination of a 3D
depth sensor (Microsoft R© Kinect V2) and the proprioceptive
robot position sensors. This method uses a principle of limited
safety contour around the obstacle to dynamically estimate the
robot-obstacle distance, and then generate the repulsive force
that controls the robot. For validation, our approach is applied
in real time to avoid collision between dynamical obstacles
(humans or objects) and the end-effector of a real 7-dof Kuka
LBR iiwa collaborative robot.

Several strategies based on distancing and its combination
with dodging were tested. Results have shown a reactive and
efficient collision avoidance, by ensuring a minimum obstacle-
robot distance (of ≈ 240mm), even when the robot is in an
occluded zone in the Kinect camera view.

I. INTRODUCTION

Humans and robots working together or sharing the same

space could reach an extraordinary level of performance if

they combine the human decision-making capabilities and

the robot’s efficiency [1], [2], however, this collaboration has

to be safe for humans beings.

Human-Robot Interaction (HRI) is a novel and promising

trend in robotics research, since an increasing number of

works were addressed in this field [3], [4]. One aspect of HRI

is physical Human-Robot Interaction (pHRI), which deals

with the collision detection [5] and a continuous physical

interaction [6]. Another aspect of HRI is collision avoidance,

where the robot adapts its predefined trajectory to avoid

collision with dynamic obstacles (humans or objects) [7], [8],

[9], [10]. Collision Avoidance using human wearable sen-

sors were explored in [10]. However, this solution presents

the equipment complexity and thus limits the interacting

people number. Furthermore, collision avoidance based on

3D depth camera (Microsoft Kinect) were explored [7], [8],

[9]. In these works, it is usual to retract the robot from

the scene to detect and track only obstacles. Authors in

[7] explored the depth space to compute distances between

the robot and dynamic obstacles in real-time and then, the
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robot was controlled using virtual repulsive forces principle.

The obstacle-robot distance estimation methods were more

deeply explored in [11] by developing an improved and faster

method for a real time application.

However, using Kinect implies robot occlusion issues

when the obstacle is between the robot and the camera.

To overcome these issues, different approaches were ex-

plored. One approach used multiple Kinects to increase

the workspace representation. Authors of [8], [9] used two

Kinects in a similar way, however authors in [9] applied

a collision avoidance of a 6-dof robot manipulator, while

keeping its task by including Cartesian constraints. Further-

more, the use of multiple Kinects, increases the calibration

complexity between them and the computational cost.

Other approach using one Kinect only, considered the

obstacle with an infinite depth, called a gray area [6], [7],

[11]. Although this approach highlighted efficient results and

prioritized the human safety, it presents a too conservative

behavior. For instance, when the obstacle is placed between

the robot and the camera, it will be considered close to the

robot even when it is far from it in the depth axis, and

thus it can not deal with the case of obstacles that hide

completely the robot from the camera’s view. Moreover, all

these previous works that used Kinect to extract the robot

pose had to manage the unavoidable noise that comes from

the vision system.

In the current work, we explore a new approach for col-

lision avoidance between dynamic obstacles and the robot’s

End-Effector (E-E), which can be completely hidden by ob-

stacles. Our method differs from previous works, for dealing

with this case, by merging the robot kinematic model and its

proprioceptive data in the 3D depth data of the environment.

Moreover, as an alternative to infinite depth strategy [7],

[11] and its above-mentioned issues, we applied a limited

safety contour around the obstacle to avoid unnecessary robot

movement and deal with the case of hidden robot’s E-E.

In the next Section an overview of the system and the

description of the materials are presented. Then our collision

avoidance approach is described in Section III. Results are

presented and discussed in Section IV, then a conclusion and

the perspectives of this work are summarized in Section V.

II. MATERIALS AND SYSTEM OVERVIEW

This section describes the whole system overview (hard-

ware/software) and introduces the Kinect’s depth principle

and the collaborative robot used.
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Fig. 1: Collision avoidance system overview.

A. Whole system overview

The whole system overview is illustrated by Fig. 1. It

includes a Perception system and a Control system which

works in a real-time closed-loop. The perception combines

vision acquisition through Kinect {1} and the robot pose

using joint angles {2} along with its kinematic model {3}.

This robot pose is projected in the depth space using data

fusion {4}, which allow removing the robot from the image.

Then the obstacle’s nearest point to the robot in a supervised

zone is detected {5} and its coordinates are filtered using a

Kalman filter {6} to handle the noise related to the depth

image. The distance between the obstacle’s nearest point and

the robot’s E-E is used in the control part, by generating a

repulsive vector {7} to control and adapt the robot posture

{8} in order to avoid collisions with dynamic obstacles.

B. Kinect and depth space representation

The used Kinect V2 is placed in the range between 0.5m
and 4.5m from robot, where the maximum data rate is about

30Hz. From depth image (grayscale image of 512 × 424
resolution) [12], (1) is used to get a point in the Kinect’s

frame from its pixel address on the depth image.






xr = (xi − cx)dp/fx
yr = (cy − yi)dp/fy

zr = dp

(1)

Where cx and cy are the coordinates of a so-called generic

Cartesian point in X and Y axis, fx and fy are the focal

lengths along X and Y axis and dp is the depth of the

pixel. (xi, yi) are coordinates of the pixel on the image and

(xr, yr, zr) represents real point coordinates in the Kinect

frame.

C. Collaborative robot and practical aspects

A 7-dof redundant manipulator (Kuka LBR Iiwa R820

collaborative robot) has been used. To control the robot

and get its proprioceptive data using an external system in

real time, Fast Robot Interface (FRI) software option was

adapted and used [13]. The FRI control is based on an

overlay principle which consists of superposing a control

input, derived from the external system (with our method),

and a local robot control law.

Fig. 2: Robot depth image with its skeleton (left) and after

the its extraction from image (right).

III. COLLISION AVOIDANCE STRATEGIES

This section describes the used methodology. It starts from

the perception of the robot and environment until the control

law, following steps presented in Fig. 1.

A. Robot Kinematic model

Kinematic model of our robot was established from [14].

It is used to describe and update the robot’s pose (a skeleton

of Fig. 2-left) from the measured robot’s joint angles (FRI

§II-C). Hence, the robot pose is updated in real-time, even

when the Kinect camera does not see it (robot in occluded

zone).

B. Depth image and robot intrinsic data fusion

To handle the obstacle-robot collision, it is necessary to

know what points correspond to the robot in order to consider

all the other points as corresponding to the environment

(possible obstacles). Indeed, if a point of the robot is not

identified and removed from image, it can be considered

as a possible obstacle, particularly if it is in a supervised

zone. Therefore, with the kinematic model and joint angles, a

robot skeleton was implemented and updated, as a real robot,

on the 3D depth image, which makes possible the robot

identification. This skeleton augmented with a predefined

3D robot form is then used to remove it from the image

and obtaining a depth image without the robot. These steps

are illustrated by Fig. 2, where the left side shows the robot

skeleton added to the depth image, and the right side shows

the depth image with the robot removed. However, these

steps are possible if a robot data fusion is done between a

depth image space and its intrinsic data. This data fusion

consists of linking the robot skeleton, updated from its

intrinsic data and model, with points of robot (or a visible

part) in the image. Hence, a precise representation between

Kinect frame and the robot frame is required. For that,

an offline calibration procedure was implemented using the

three known points technique [15].

C. Nearest point: searching and filtering

A supervised zone, where an obstacle is searched, was

chosen and implemented as a spherical shape, which center

is the robot’s E-E, as illustrated by Fig. 3. The method

searches in the depth image inside this sphere for the obstacle

nearest point from the sphere center (Fig. 3). The collision



Fig. 3: Supervised zone and its nearest point.

avoidance strategy is based on the position of this point with

respect to (w.r.t.) the robot’s E-E, which makes its estimation

quality very important for robot control and smooth motion.

Therefore, to ensure this estimation quality, this point’s

position was filtered with a Kalman filter since it is known

to be fast, optimal and lite [16]. To apply this Kalman filter,

a constant velocity model [9] of point motion was adopted

and implemented.

D. Distance evaluation

Our approach of collision avoidance is based on robot-

obstacle distance estimation. It is calculated using Euclidean

distance d1 between obstacle nearest point Po (see §III-

C) and a robot E-E point Pe (see §III-B). To consider the

occlusion risk of the robot by the obstacle, we distinguish

two use cases (Fig. 4):

Case 1: No occlusion risk. When the obstacle has a

greater depth than the robot E-E (z1 > ze) in the camera

point of view (Fig. 4-Case 1), the distance d1 is used in the

collision avoidance method.

Case 2: risk of occlusion. When the obstacle has a lower

depth than the robot E-E (ze > z1), there is a risk of

occlusion. In this case, we do not consider infinite depth

strategy for the obstacle as in [7]. Instead, we used a safety

contour around the point that we are dealing with (visible

nearest point), as shown by Fig. 4-Case 2. Hence, we limit

the influence of obstacle on the robot, even keeping a safety

distance:

d2 = d1 −R (2)

Where d1 is calculated as mentioned before and R is the

radius of the safety contour. The choice of its value is based

on the rough estimation of the obstacle (or the human hand)

size, by considering the longest distance between two points

of it. Hence, In case 2, it is the safety distance d2 which is

used in collision avoidance method.

E. Potential field

To ensure collision avoidance of the robot with dynamic

obstacles, the potential field method was applied [17]. In

this method, the dynamic obstacle creates a repulsive force

which is used here through two strategies: Distancing and

Dodging. These strategies are based on intuitive human

collision avoidance (example of bullfight).

Distancing strategy: It is an intuitive method that consists

of distancing the robot from the obstacle in the same line than

Kinect
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Fig. 4: Methods for distance evaluation (two cases). Case 1:

no risk of occlusion. Case 2: with risk of occlusion

Fig. 5: Distancing strategy principle.

vector
−→
d , which links the obstacle to robot E-E, by applying

a repulsive force as illustrated by Fig. 5.

The model of repulsive force is defined as in [7]:

−→
F1 =

−→
d

‖
−→
d ‖

V (3)

Where V is the force intensity defined as an inverted sigmoid

function of the distance between obstacle and robot’s E-E:

V =
Vmax

1 + e(‖
−→
d ‖ (2/ρ)−1)α

(4)

Vmax is the maximal force intensity, α a shape factor and ρ a

parameter related to the supervised zone size [7]. Therefore,

the repulsive force intensity V will be Vmax when robot-

obstacle distance vanish, and should approach zero when the

distance reaches supervised zone limits, since the force is not

defined beyond.

Dodging strategy: In this technique, instead of moving

like the obstacle and in the same direction, the end-effector

dodges the obstacle by moving in another direction thanks

to the Cartesian force
−→
F2 (see Fig. 6a). In the current work,

this direction is chosen to be on the plan (Xe, Ye) (in yellow)

of the robot’s E-E frame (Fig. 6a), where Ze is the axis of

the last joint robot. Therefore, the force
−→
F2 is given by the

equation:

−→
F2 =

−−−−−→
Proj(d)(Xe,Ye)

‖
−−−−−→
Proj(d)(Xe,Ye)‖

V (5)
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(a) Dodging vector (b) Dodging and distancing

Fig. 6: Dodging and distancing combination strategy.

Where
−−−−−→
Proj(d)(Xe,Ye) is the projection of vector

−→
d in the

plan (Xe, Ye) and V is the repulsive force intensity defined

by (4). A generalization of this dodging strategy is made

here in practice. In fact, a Cartesian force applied on the

robot’s E-E is actually
−→
F , which is a linear combination of

distancing vector
−→
F1 and dodging vector

−→
F2, as illustrated

by Fig. 6b and described by (6):

−→
F = β1

−→
F1 + β2

−→
F2 (6)

Where β1 and β2 are parameters to adjust to give the robot

more distancing or more dodging behavior, as required by

the application.

For both strategies, the calculated repulsive force was

applied as a wrench (Cartesian forces) at the robot E-E. In

Kuka LBR iiwa, this wrench is superposed to an existing

local control law, by using FRI software tool (§II-C).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, experimental tests and results of the

collision avoidance strategies are presented and discussed to

analyze and assess our proposed method. The experimental

setup includes a 7-dof Kuka LBR Iiwa with its controller,

a Kinect V2 and an external computer (Intel Core i7;

2.5Ghz × 8; 16 GiB Memory; NVIDIA Quadro K2100M

as graphics; Ubuntu 18.04 as OS). Kinect was placed on

a rigid support at 2.346m from the robot, precisely in the

robot coordinate (140mm, 431mm, 2302mm).

Parameters of our methods and strategies defined above

can be adjusted for each application purpose. However, they

were adjusted in the current experiment as follows. The

supervised zone diameter value is fixed to 1.1m and safety

contour radius R = 150mm (based on the obstacle’s size

knowledge); Parameters of force intensity function of (4) are

α = 5.0, ρ = 0.425 and V max = 45.0N ; Parameters of

forces linear combination of (6) are β1 = 1.8 and β2 = 1.0.

The way to adjust β1 and β2 can be explored in future

works, meanwhile it is experimentally adjusted and fixed in

the current work to test the method.

The background task (robot task when there is no obstacle)

is to keep its initial configuration with a compliant Cartesian

behavior in translation (i.e. with a virtual Cartesian mass-

spring-damper system) using an impedance controller of

Kuka LBR iiwa [18]. For the three axis, the stiffness was

fixed to 300N/m and the damping ratio to 1. Then, our

t = 1.445s t = 2.411s t = 5.278s

t = 7.178s t = 8.115s t = 10.00s

Fig. 7: Images sequence of collision avoidance test with the

robot in an occluded zone.

collision avoidance strategies and robot control overlay (i.e.
external control superposed to local robot control) were

applied at a wrench level through FRI command mode in

real time.

In the following experiments, distancing strategy is ap-

plied when robot is in an occluded zone to highlight our

method robustness. Then a test with multiple and repetitive

collision avoidance is proposed to show results reproducibil-

ity and finally, the dodging strategy is tested and analyzed.

Results are then discussed where dodging and distancing

strategies are compared.

A. Collision avoidance with the robot in an occluded zone

In the current test, a Cardboard box (dynamic obstacle)

was used to move toward the robot E-E, while keeping it

in an occluded zone. Hence, the robot’s E-E remains behind

the obstacle w.r.t. the Kinect viewpoint. Fig. 7 shows an

images sequence of this experiment, where a RGB image is

the main picture and a grayscale image (Kinect viewpoint)

with a robot skeleton is at the top-right. We can notice in

the grayscale images that the robot is hidden behind the

cardboard box w.r.t. Kinect. Results of this test, presented

in Fig. 8, show the evolution of the obstacle-robot’s E-E

distance while the robot is in an occluded zone. It highlights

that this distance never cross the limit of 150mm (red line),

which corresponds to safety contour radius (R).
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Fig. 8: Obstacle-Robot E-E distance evolution during the test

with the robot in an occluded zone and distance limit (red).

B. Multiple collision avoidance

As mentioned before, the current test purpose is to explore

reproducibility of our solution. It was realized in the same

conditions and with the same strategy (distancing) than the

previous test. Fig. 9 shows the evolution of the obstacle-

Robot’s E-E distance for multiple collision attempts between
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Fig. 9: Evolution of obstacle-Robot E-E distance during

multiple collision attempts and distance limit (red).

t = 2.889s t = 5.285s t = 8.819s

t = 12.751s t = 16,852s t = 20.719s

Fig. 10: Images sequence of dodging strategy test.

them. Results highlight that our collision avoidance strategy,

by controlling the robot, keep always enough distance from

the limit of 150mm (red line) even with multiple collision

attempts. The minimum distance was at time 7.2s and had

a value of 242mm.

C. Dodging Strategy

In the current test, the obstacle was moved vertically (Z
axis) from the bottom in direction of robot E-E in order

to analyze the dodging strategy, as illustrated by the images

sequence of Fig. 10. In the grayscale part of each image (top-

right), the blue line, representing the obstacle-robot’s E-E

distance, is firstly almost vertical (at t ≈ 2.89s), then it tends

to become horizontal (at t ≈ 16.85s), which shows that robot

dodges the obstacle movement by taking a different direction.

To analyze more deeply these results, Fig. 11 highlights the

evolution of Y and Z coordinates of the robot’s E-E and the

obstacle in the robot base frame {F0} (see Fig. 3). Obstacle

Z coordinate increases (vertical movement) until crossing

those of robot E-E (at t ≈ 16s), while Y coordinates of

both are close at the beginning and diverge thereafter, which

is typical of dodging behavior. We can also notice a small Z
coordinate variation of robot E-E, related to the distancing

vector
−→
F1 in the dodging and distancing combination strat-

egy (6). The X coordinates are not presented since they are

not very relevant for this movement which occurs basically

on the Y and Z directions. Despite crossing of the different

coordinates, a certain distance between obstacle and robot E-

E is respected, avoiding thus the collision, as illustrated by

Fig. 12. We can notice that the instant of minimum distance

corresponds almost to the one of Z-coordinates crossing

(between the robot’s E-E and the obstacle).

D. Discussions

Overall, results highlight robot’s capabilities to avoid

collisions with dynamic obstacles, even when it is in an
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Fig. 11: Y and Z coordinates of the obstacle and the robot

E-E.
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Fig. 12: Obstacle-Robot E-E distance evolution during the

dodging strategy test.

occluded zone w.r.t. Kinect. Indeed, the proprioceptive robot

data (joint angles), provided by FRI monitor mode in real

time, combined with the robot kinematic model allow robot

posture estimation with a small uncertainty even without

being seen by Kinect. In this case, a safety contour, based on

the nearest point detected, was defined (Fig. 4-Case 2) since

the real obstacle nearest point may not be visible for the

camera either. This allows a less conservative safety strategy

than in [7], by assuming roughly the obstacle size knowledge

and thus fixing the contour radius R. As a perspective, this

contour radius size can be adapted online by considering also

the obstacle speed estimation in the adaptive law. In addition,

the robot posture estimation is more stable and does not

suffer from the noise that can come from the vision system.

However, since the collision avoidance strategy is based on

the obstacle-robot distance, vision-based estimation of the

obstacle position still presents noise issues. Hence, filtering

of these data was required, and done in the current work.

Distancing strategy presented satisfactory and efficient

results, however the dodging strategy was conceived to

overcome robot space reachability problems, which would

appears using distancing strategy. Indeed, when only distanc-

ing strategy is applied, the robot E-E has a displacement limit

since its base is fixed, while dodging strategy takes another

direction than obstacle and does not present such an issue.

Despite good results of dodging strategy as well, this method

can present some limitations related to the dodging vector
−→
F2

(6) that vanishes if the vector
−→
d is perpendicular to the plan

(Xe, Ye), canceling thus any dodging action when it is needed

the most. Furthermore, if this vector changes direction when

obstacle is too close to E-E (i.e. high force intensity), it

can induce a discontinuity on the robot applied wrench.

However, it is an unlikely situation since the obstacle’s



natural movement should not lead to it. The two strategies

are not completely independent since in dodging strategy

there is a weighted vector related to distancing. Therefore,

switching between one method to another, can be smooth

by adapting vectors weights. In this case, the distance and

obstacle’s speed should be further considered to adapt the

contribution of each strategy (distancing or dodging) through

their vector weights. This adaptation and its strategy should

be explored in future works.

A limitation of the repulsive force model with safety

contour appears if the safety distance can not be maintained

(e.g. the obstacle’s speed is higher than the maximum speed

of the robot’s E-E). In this case the direction of the force (3)

still remains the same however, the intensity (4) decreases

once the robot’s E-E crosses the contour limits, while it

is supposed to keep increasing. In this context, the method

faces a dilemma when the robot should avoid collision with

fast obstacles while the robot has a limited speed for safety.

Therefore, the obstacle speed should be considered in future

works to adapt online the size of safety contour, but also

adapt online parameters and weights related to distancing or

dodging strategies.

Once repulsive forces are calculated, other robot control

strategies can be expected (torque control or position control)

and are planned in future works. Current work and results

present a first step for a different approach of collision

avoidance, in the context of hidden robot. This work is

already useful when the robot is handling an object or a

tool, therefore it is the E-E that should avoid the collisions.

However, an extension of this promising strategy to all the

robot’s links is planned for future work as well.

V. CONCLUSIONS AND FUTURE WORKS

In the current work, an original approach for human-

robot collision avoidance was proposed to deal with the

situation of the robot being hidden by obstacles. For that, the

estimation of the robot’s posture in real time, based on its

kinematic model and the proprioceptive data (joint angles),

is merged with the Kinect 3D depth data of the environ-

ment. This allowed the obstacle-robot distance evaluation

in depth space and generates a repulsive force to control

the robot at the wrench level. Two main collision avoidance

strategies (distancing and dodging) were implemented and

tested. Results of both strategies highlighted a good collision

avoidance for all tests, which is materialized by a minimum

distance of about 240mm between obstacle and robot E-E,

even when the robot is in an occluded zone (hidden by the

obstacle). In future works, other robot control law and the

online adaptation of parameters, vector weights and safety

contour size to make a robust behavior should be addressed.

The collision avoidance between dynamic obstacles and the

other robot links should be explored as well.
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