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ABSTRACT Despite development efforts toward autonomous vehicle technologies, the number of collisions

and driver interventions of autonomous vehicles tested in California seems to be reaching a plateau. One of

the main reasons for this is the lack of defensive driving functionality; i.e. emergency collision avoidance

when other human drivers make mistakes. In this paper, a collision avoidance/mitigation system (CAMS) is

proposed to rapidly evaluate risks associated with all surrounding vehicles and to maneuver the vehicle into

a safer region when faced with critically dangerous situations. First, a risk assessment module, namely,

predictive occupancy map (POM), is proposed to compute potential risks associated with surrounding

vehicles based on relative position, velocity, and acceleration. Then, the safest trajectory with the lowest

risk level is selected among the 12 local trajectories through the POM. To ensure stable and successful

collision avoidance of the ego-vehicle, the lateral and longitudinal acceleration profiles are planned while

considering the vehicle stability limit. The performance of the proposed algorithm is validated based on side

and rear-end collision scenarios, which are difficult to predict and to monitor. The simulation results show

that the proposed CAMS via POM detect a collision risk 1.4 s before the crash, and avoids the collision

successfully.

INDEX TERMS Autonomous vehicle, advanced driver assist system (ADAS), collision avoidance, risk

assessment, motion planning.

I. INTRODUCTION

Autonomous vehicles have been one of the most active

research topics in an automotive industry hoping to maxi-

mize safety and user convenience. In terms of safety, many

researchers argue that autonomous vehicle technologies will

substantially reduce the number of collisions, because 90%

of collisions are caused by human error [1]. Although auto-

mated and autonomous vehicles will eliminate simple human

errors such as those resulting from texting and drowsiness,

automated vehicles will lead to other collisions that human

drivers would have been able to avoid, e.g. through defensive

driving [2], [3]. For instance, Waymo’s autonomous vehicles
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(a.k.a. Google cars) often experience collisions caused by

other vehicles at fault [2], [3]. In a September 2016 accident,

Waymo’s autonomous vehicle was hit by a van running a

red light at an intersection in California. In another case, the

Waymo van in autonomous mode collided with an onrushing

vehicle that drove over the centerline in Arizona inMay 2018.

In these scenarios, if human drivers had been driving the

vehicles, collisions would not have occurred as drivers would

have made defensive maneuvers. Unfortunately, the most

advanced autonomous vehicles today, such as Google cars,

still cannot make such decisions to avoid collisions initi-

ated by other vehicles [3]. In fact, many prior autonomous

vehicle technologies focused on improving intelligence of

risk predictions and path planning during normal conditions.

In order to resolve these limitations, a collision avoidance/
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mitigation system (CAMS) is proposed, in which the CAMS

can override the normal driving algorithm when a collision is

imminent.

In the literature, in order to avoid collisions from unexpect-

edly approaching vehicles, many researchers plan collision

avoidance trajectories by focusing on single obstacles. When

a target obstacle is detected, the system plans the path to

avoid the obstacle based on the location and size of the obsta-

cle [4]. Guo et al. proposed a steering and braking control

algorithm for vision-based emergency obstacle avoidance [5].

Isermann et al. proposed a tracking method that developed a

velocity profile based on optimal trajectory and obstacle size

and position [6]. Hesse and Sattel based on potential field and

elastic band theory, developed a path and velocity profile that

avoids obstacles at the front of the vehicle while reaching

target position [7]. However, in actual collision avoidance

situations, considering one obstacle is very limited.

When a vehicle steers to avoid an obstacle, it will go out of

its current lane. Thus, it is essential to check all surroundings

of the ego vehicle and ensure that the planned trajectory is

safe for the vehicle to follow. Otherwise, when avoiding target

obstacles, vehicle will collide with other nearby obstacles. To

resolve such limitations, there have been studies that have

considered all risks of the vehicle surrounding environment

based on the potential field [8]–[12]. Kim et al. proposed a

method using a potential risk concept that identifies potential

risk of surroundings and finds the safest optimal path [13].

The multi-vehicle problem may have been resolved, but the

risk to the surrounding vehicles is determined based on the

current position. However, since surrounding vehicles are

moving fast, it is dangerous to plan collision avoidance paths

based on current position. For safe collision avoidance, it is

necessary to predict trajectories of surrounding vehicles.

In vehicle research groups, trajectory prediction algo-

rithms have been studied [14]–[16]. However, it is diffi-

cult to use these advanced algorithms to derive predictions

results quickly in situations of impending collision. The

physics based motion model can produce sufficiently high

prediction accuracy 1 to 2 seconds before the moment of

collision [17]–[21]. This method is also well suited for colli-

sion avoidance algorithms with fast computation speeds. The

trajectory prediction result is described as vehicle’s future

position or time-series OGM. However, these results do not

indicate the risk to surrounding vehicles.

Based on the trajectory prediction results, a risk assessment

algorithm is needed. Risk assessment determines the danger

of trajectories planned for the ego vehicle based on future

prediction. Themost commonly used risk indicator is time-to-

collision (TTC), which will predict the time at which the ego

vehicle will collide with an obstacle [22]–[24]. To overcome

the limitations in using deterministic properties for the risk

indicator, probability-based collision probabilistic methods

have been researched as well [25]–[28]. However, the risk

index can only be determined under the condition that ego-

vehicle and target vehicle paths are known. Furthermore,

the risk index is suitable for two-vehicle collisions, but cannot

be applied in multi-vehicle collision situations [29]. For col-

lision avoidance maneuvers, a multi-vehicle risk assessment

algorithm in necessary.

In this paper, a collision avoidance/mitigation algorithm

has been proposed that is based on POM. The risk of each

candidate trajectory can be evaluated and selected quickly

in multi-vehicle situations using POM, which represents the

risk for each space based on the predicted surrounding vehi-

cle trajectories. This algorithm can overcome the limitations

mentioned from previous studies and safely mitigate the

potential risks caused by sudden maneuvers of surrounding

vehicles. The main ideas proposed in this paper is 1) the Pre-

dictive Occupancy Map (POM), which can simultaneously

identify potential risks in spatial and temporal space. POM

is able to solve the problem of all-around risk assessment

and multi-vehicle risk assessment based on future trajectory

prediction results. 2) A trajectory risk assessment algorithm

that determines the risks of trajectories selected through the

POM. An omnidirectional pre-determined trajectory can be

compared fairly based only on the surrounding risk. 3) A local

motion planning algorithm that generates an acceleration

profile while simultaneously considering trajectory and

velocity.

The remainder of this paper is organized as follows:

In Section II, an overview of the proposed collision

avoidance/mitigation system and algorithm is provided.

In section III, a predictive occupancy map design method is

proposed. In section IV, a trajectory candidate risk assessment

based on POM and motion planning study is carried out.

In section V, an algorithm is investigated using simulation

with representative collision scenarios. Finally, Section VI

provides the concluding remarks.

II. PROPOSED COLLISION AVOIDANCE/

MITIGATION SYSTEM

In this section, the operating concept of the proposed colli-

sion avoidance/mitigation system (CAMS) is discussed. The

activation conditions, based on ego vehicle collision risk and

sequence of CAMS algorithm, are described.

A. ACTIVATION OF COLLISION AVOIDANCE/

MITIGATION SYSTEM

Previous algorithms were developed with a focus on reducing

errors caused by the ego vehicle. CAMS estimates the future

based on the surroundings of the ego vehicle and determines

its collision risk accordingly. Figure 1 illustrates the proposed

drive mode decision process of the autonomous vehicle. The

vehicle will constantly monitor its surroundings and, if ego

vehicle collision risk (Riskego) exceeds a pre-determined

threshold (Riskthreshold), the Collision avoidance/mitigation

algorithm will override the currently active algorithm and

will plan the vehicle’s future trajectory and track accordingly.

Once CAMS is executed it will remain active for a certain

period, which is described as follows

tCAMS = k · 1t (t0 ≤ tCAMS < tf ) (1)
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FIGURE 1. Flow chart of driving mode (general autonomous driving mode
and collision avoidance/mitigation driving mode) decision process.

where tCAMS is the collision avoidance/mitigation system

active time, t0 is the collision avoidance/mitigation system

start time, tf is the collision avoidance/mitigation systemfinal

time, k is the iteration number, and 1t is the time interval of

each step.

When tCAMS reaches tf, the CAMS terminates, and then

the general autonomous driving algorithm executes driving

again. When CAMS is on, but there is no safe trajectory

because the risks of all trajectories are larger than the trajec-

tory risk threshold (Trajthreshold), it indicates that the current

driving space is a relatively safe space. In this case, the vehicle

drives with a general autonomous driving algorithm andwaits

for a safe avoidance space to evade collision.

This study does not focus on sensing technology; it is

assumed that accurate information of ego vehicle surround-

ings is sent as input. Future prediction and risk assessment of

the proposed algorithm is conducted in areas where sensing

is available, and areas that are not sensed are ignored.

B. OVERVIEW OF COLLISION AVOIDANCE/

MITIGATION ALGORITHM

Figure 2 shows the overall control architecture of the

proposed collision avoidance/mitigation system. CAMS

algorithm operates, in order, starting with prediction, risk

assessment, andmotion planning. Prediction of future vehicle

position is conducted with the constant acceleration (CA)

model. There are various prediction models that have already

been developed. However, in unexpected situations close

to collision, there are not enough data to predict vehicle

behavior and method provides inaccurate results. The

CAmodel can provide accurate prediction within a short term

of 2 seconds, and is suitable for vehicle future prediction in

unexpected situations.

Much research on risk assessment algorithms has been

conducted. However, risk has been assessed with a focus on

a single vehicle, and risks for pedestrian, other vehicles, and

surrounding environment were done separately. To overcome

this problem, this study proposes a POM that can integrate all

the surrounding risks, including time and space information.

Through the risk assessment stage, the risk of the ego vehi-

cle (Riskego) and a riskmap of its surroundings are calculated.

When the vehicle is involved in an emergency in which it

nearly reaches vehicle friction/stability limit, the trajectory

and velocity must be simultaneously planned; as well, it is

necessary to determine that the planned route is physically

viable for vehicle to drive. In the motion planning section

of the proposed method, the route and vehicle velocity can

be simultaneously considered through the g-g diagram and

local trajectory candidate. The CAMS is activated when the

longitudinal velocity is set above 5m/s due to vehicle’s non-

holonomic dynamic characteristics. The system will be deac-

tivated at velocity under 5m/s.

III. PREDICTIVE OCCUPANCY MAP (POM)

In this section, the design procedure allowing the POM to

observe the surrounding risks is discussed. When vehicle is

operating on a freeway, ‘dangerous’ objects are categorized

into two parts: surrounding vehicles and the driving envi-

ronment. Surrounding vehicles consist of obstacles near the

road, static vehicles, and dynamic vehicles, while driving

environment consists of drivable regions and traffic lanes.

Setting the ego vehicle as the base coordinate, and deter-

mining surrounding vehicles and their relative positions,

velocity, and acceleration, the POM can predict future posi-

tions with respect to time. The POM will designate the most

dangerous space and least dangerous space with ratings of

5 and 0, respectively. To achieve exact risk assessment and

provide the most suitable trajectory for vehicle to drive,

the ego vehicle’s driving information is needed; it can be

acquired through sensors equipped on the vehicle as shown

below

Xego = [pego,x , pego,y,Vego,x ,Vego,y,Aego,x ,Aego,y] (2)

where Xego is the set of ego vehicle driving information,

pego is the ego vehicle local position, Vego is the ego vehicle

velocity, Aego is the ego vehicle acceleration, and subscripts

x and y are the x-axis and y-axis, respectively. Since the

coordinates are relative to the ego vehicle, the value of pego is

zero.

A. RISK MAP GENERATION FOR

SURROUNDING VEHICLES

When evaluating the level of risk for the vehicle, the position,

velocity, and acceleration of the obstacle and the surrounding

vehicles are assessed and its future position is predicted.
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FIGURE 2. Collision avoidance/mitigation system architecture diagram.

FIGURE 3. Ego vehicle fixed coordinates and surrounding vehicle
information.

1) OCCUPANCY PREDICTION MODEL FOR

SURROUNDING VEHICLES

To predict the future positions of surrounding vehicles, Fig. 3

shows the corresponding position, velocity, and accelera-

tion of surrounding vehicles relative to the ego vehicle. The

information for surrounding vehicles is expressed in Eq. (3),

while the relative information between the ego vehicle and

surrounding vehicles is expressed in Eq. (4)

Xon = [pon,x , pon,y,Von,x ,Von,y,Aon,x ,Aon,y]

for n ∈ [1, · · · ,Obstacle number] (3)

Xrn = Xon − Xego

= [pon,x , pon,y,Vrn,x ,Vrn,y,Arn,x ,Arn,y] (4)

where Xo is the set of surrounding vehicle driving informa-

tion, po is the surrounding vehicle relative position, Vo is the

surrounding vehicle velocity, ao is the surrounding vehicle

acceleration, Vego is the ego vehicle velocity, aego is the ego

vehicle acceleration, Xr is the set of surrounding vehicle rela-

tive driving information,Vr is the surrounding vehicle relative

velocity, Ar is the surrounding vehicle relative acceleration,

subscripts x and y are the x-axis and y-axis, respectively, and

subscript n is the obstacle index.

In this study, short term prediction is carried out in immi-

nent collision situations using the CA prediction model. The

CA model predicts vehicle’s future position while assum-

ing that the current vehicle’s velocity and acceleration are

maintained. Therefore, the CA model can provide accurate

prediction results in a short period, which is appropriate in

unexpected driving situations such as near-collisions. The

equation of motion of the simple CA model is expressed as

1D =
1

2
· Ar · 1t2 + Vr · 1t (5)

where 1D is the driving distance within time interval of each

step.

In order to acquire time (t) to arrival at a certain posi-

tion (Don ) through Eq. (5), the time-to-occupancy (TTO) can

be calculated.

TTOn(Don ) =
−Vr −

√

V 2
r − 2 · Ar · Don

Ar
(6)

Under normal driving circumstances, the TTO can pro-

vide accurate short-term prediction. However, for sudden

unexpected situations, acceleration/deceleration surge may

occur and can degrade prediction performance. Therefore,

in Eq. (7), the idea of Advanced Time-to-occupancy (ATTO)

is proposed; similar to a PD controller, ATTO can separate

and adjust the effectiveness of the acceleration.

ATTOn(Don ) =
Don

Vr + d · Ar
(7)

where d is the gain of the relative acceleration effect.
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FIGURE 4. Example of single vehicle risk.

2) RISK ASSESSMENT OF SURROUNDING VEHICLES

In transportation and vehicle research groups, the ‘collision

risk’ has had various meanings, but the definition of risk has

not been precisely defined. In this research, the ATTO is used

as the risk. Using the ATTO based on the CAmodel proposed

in the previous subsection, the arrival time of vehicles at

specific positions can be predicted. In order to represent the

risk by considering both current and future situations, it is

necessary to define the risk by considering the concept of

position relative to time. Therefore, the POM represents risk

as a reciprocal of time taken for vehicle to be located at a

certain point in space. This is expressed as ‘Risk[D]’, and it

also the inverse of ATTO, as shown below.

Riskn(Don ) = ATTO−1
n (Don ) (8)

During ATTO = 0 condition, when the vehicle collides,

the ATTO−1 value becomes infinity. Therefore, the maxi-

mum risk (Riskmax) was set at 4 (ATTO = 0.25 seconds).

In addition, the current vehicle position was assigned a risk

factor of 5, the highest risk value. In this case, the acceleration

gain (d) is tuned with 0.1. Through Eq. (8), the risk for a

single vehicle can be observed, as shown in Fig. 4.

Finally, the risk within two-dimensional space based on

the center of an obstacle and surrounding vehicle considering

vehicle size is given by Eq. (9) - (11) below and described

in Fig. 5.

Riskn(Don,x ,Don,y)=
Vr,x+d · Ar,x

Don,x−ll/2
(
∣

∣Don,y
∣

∣ ≤ lw/2) (9)

Riskn(Don,x ,Don,y)=
Vr,y+d · Ar,y

Don,y−lw/2
(
∣

∣Don,x
∣

∣ ≤ ll/2) (10)

Riskn(Don,x ,Don,y) =

(

Don,x−ll/2

Vr,x+d · Ar,x
+

Don,y−lw/2

Vr,y+d · Ar,y

)−1

(
∣

∣Don,x
∣

∣ > ll/2,
∣

∣Don,y
∣

∣ > lw/2)

(11)

where ll and lw are the length and width of the vehicle,

respectively, and subscripts x and y are the x-axis and y-axis,

respectively.

3) INTEGRATION OF SURROUNDING VEHICLE RISK MAPS

By calculating the risk of all surrounding vehicles that are

sensed around the ego vehicle, it is possible to integrate all

FIGURE 5. Two-dimensional collision risk assessment of surrounding
vehicles.

FIGURE 6. Placement of surrounding vehicle risk based on ego vehicle
local coordinates.

surrounding risks. The risk of surrounding vehicles is deter-

mined relative to the position of the ego vehicle. The relative

position of the surrounding vehicle risk is expressed as

Riskintn (Dx ,Dy) = Riskn(Don,x − pon,x ,Don,y − pon,y) (12)

After placing the risk of each obstacle relative to the

position of the ego vehicle, the maximum risk values at

each space are used to determine the overall risk (Risko&v),

which considers obstacles and surrounding vehicles. Risko&v
is calculated using Eq. (13) and described in Fig. 6.

Risko&v = sup(Riskint1 ,Riskint2 , · · · ,Riskintn ) (13)

B. RISK MAP GENERATION FOR DRIVING ENVIRONMENT

Risks regarding driving environment are divided into two

categories: drivable regions and traffic lanes. Similar to

the risk considering surrounding obstacles and nearby vehi-

cles, the driving environment design, which considers both

drivable boundaries and risk involved from lane changes,

is needed.

1) DRIVABLE REGION

The drivable region is determined to indicate the extent to

which the vehicle can travel. In freeway conditions, the driv-

able region is determined based on barriers. Spaces inacces-

sible to vehicles were set at the highest risk value of 5. The

equation of drivable region (Riskbound ) is expressed as

Riskbound = 5{step
(

Dy − Bl
)

+ step
(

−Dy − Br
)

} (14)
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FIGURE 7. Concept of driving environment risk map.

where Bl and Br are the distance of the left and right bounds

to the vehicle center line, respectively; step means the step

function.

2) TRAFFIC LANE

Changing the lane to avoid collision can alter the vehicle’s

driving traffic lane, and so can be relatively more dangerous

than accelerating or decelerating the vehicle in the same lane.

In addition, if the level of risk for traveling in the longitudinal

direction or changing lanes to avoid collision are the same,

longitudinal direction is preferred. To reflect these road con-

ditions, traffic lane risk (Risk lane) was formulated as

Risk lane = −

∣

∣

∣

∣

laner · cos

(

π

lanew
· Dy

)∣

∣

∣

∣

+ laner (15)

where laner is the max risk value of lane, and lanew is the

width of the traffic lane.

3) INTEGRATION OF DRIVABLE REGION AND

TRAFFIC LANE RISKS

Traffic lane risk and drivable region risk are combined in

driving environment risk (Riskenv), as shown in Eq. (16),

while Fig. 7 shows the driving environment risk map based

on the freeway. The closer the lane, the greater the risk by

Eq. (15), and beyond the centerline, the risk indicate 5 by

Eq. (14).

Riskenv = sup(Risklane,Riskbound ) (16)

C. INTEGRATION OF SURROUNDING VEHICLES AND

DRIVING ENVIRONMENT RISKS

The POM can be obtained by integrating the surrounding

vehicle and driving environmental risks, as described in

Eq. (17). Ego vehicle risk is expressed as the risk value at the

(0, 0) point, which is the center of the vehicle in the POM.

POM = sup(Risko&v,Riskenv) (17)

D. SIMULATION RESULTS

The sample scenarios for the POM designed in the previous

subsection are shown in Fig. 8. The variables for the ego

vehicle, surrounding vehicles, and driving environment used

in the sample scenario are expressed in Table 1. Fig. 8(a)

illustrates the single vehicle risk based on obstacle vehicleO1,

FIGURE 8. Concept of predictive occupancy map (POM) with sample
scenario (a) Obstacle vehicle O1 risk, (b) Predictive occupancy map with
x-y axis view, and x-y-z view.

TABLE 1. Vehicle and driving environment sample scenario.

while Fig. 8(b) illustrates the POM for surrounding vehicles

O1 and O2 relative to the ego vehicle.

IV. MOTION PLANNING FOR COLLISION

AVOIDANCE/MITIGATION

In this section, the safest route is selected based on the POM

designed in the previous section. By utilizing the driving

information from the ego vehicle, the maximum acceleration
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FIGURE 9. Ego vehicle acceleration limit and reachable region limit
(a) Vehicle acceleration limit, (b) Reachable region limit under
acceleration limit.

is calculated. Then, the reachable region limit, which is the

maximum distance that can be reached within a limited time,

is obtained. The drivable trajectories based on calculated

reachable region limit are generated, and the risk of each

trajectory is determined through the POM. The trajectory

with the lowest risk value is selected and the longitudinal and

lateral acceleration is calculated.

A. REACHABLE REGION

For stable operation of vehicle, it is necessary to determine

the stability limit. The vehicle generally cannot produce a

force equal to or greater than the frictional force limits of

the tires. If force exceeds this limit, slip will occur and result

in unstable and even uncontrollable vehicle operation. For

safe control, trajectory must be planned within the g-g dia-

gram, which is the maximum acceleration reachable within

the force limit [30]. In the case of forward acceleration,

the limit is assigned based on engine limit. Acceleration limit

is described as

(µg)2 = A2xlim + A2ylim (18)

Axlim =







Aelim , (Aelim ≤

√

(µg)2−A2ylim )
√

(µg)2−A2ylim , (Aelim >

√

(µg)2−A2ylim )
(19)

where µ is the road friction coefficient, g is the gravita-

tional acceleration,Alim is the acceleration limit, derived from

friction limit, and Aelim is the acceleration limit from engine

power. Equations (18) and (19) are also graphically illustrated

in Fig. 9(a).

Based on the time limit relative to the acceleration limit,

reachable vehicle positions are indicated. In the case of lateral

motion, it is imperative that lateral vehicle velocity be zero

after reaching the desired position. Therefore, the lateral posi-

tion limit is half of the longitudinal position limit. Reachable

regions are expressed as

Sxlim =
1

2
Axlim t

2
f (20)

Sylim =
1

4
Aylim t

2
f (21)

FIGURE 10. Trajectory candidate risk assessment with predictive
occupancy map (POM), (a) Concept of trajectory candidate on POM,
(b) Risk distribution of twelve trajectories, (c) Comparison of twelve
trajectory candidates risk values with max, mean, and min values.

where Slim is the reachable region limit within the CAMS

active time under acceleration limit. Equations (20) and (21)

are also graphically illustrated in Fig. 9 (b).

B. RISK ASSESSMENT OF TRAJECTORY CANDIDATES

Once a reachable region limit that guarantees the stability of

the vehicle in time is determined, trajectory candidates can be

set within the limit. A total of 12 pre-determined trajectories

that are 30 degrees apart are assigned and are expressed as

follows.

Trajectoryi =

√

S2ixl im
+ S2iylim

for i ∈ T [1, 2, · · · , 12] = T [0◦, 30◦, · · · , 330◦] (22)

Using the sum of risks from each trajectory until CAMS

algorithm is completed, the 12 trajectories can be combined

with the POM to indicate the risk of each trajectory. The

trajectory generated based on the sample scenario coupled

with POM is shown in Fig. 10 (a), while the risk values of

each of the 12 routes are shown in Fig. 10 (b). There is a

fast approaching obstacle vehicle O1 at the rear of the ego

vehicle, which generates a high risk. On the leftward route of

the ego vehicle, the POM predicts that vehicle could collide

with obstacle vehicle O2, thus also generating a high risk at

this trajectory. On the other hand, the rightward route of the

vehicle shows low risk.

Within the 12 pre-determined trajectories, it is important

to select the safest route through fair comparison. To select

the safest route, 10 points of each route are selected because
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each trajectory length is different, and the max, mean, and

min values are calculated as

RAtraimax = max

{

∑10

c=1
POM

( c

10
Six ,

c

10
Siy

)

}

(23)

RAtraimean = mean

{

∑10

c=1
POM

( c

10
Six ,

c

10
Siy

)

}

(24)

RAtraimin = min

{

∑10

c=1
POM

( c

10
Six ,

c

10
Siy

)

}

(25)

Through Eq. (23)-(25), comparison of the 12 trajectories

can be illustrated, as shown in Fig. 10(c). The blue bar of

Fig. 10(c) represents the mean value of the trajectory candi-

date risk. The red bars are the boundary of trajectory risk with

max and min values.

Conditions for safe trajectory are assigned as follows. The

trajectory risk with a max value that does not exceed the

threshold value (Trajthreshold ) as

RAtraimax ≤ Trajthreshold (26)

After satisfying the first condition in Eq. (26), the trajec-

tory risk with the lowest mean value is selected.

Trajectoryi = argmin
i∈T

(RAtraimean) (27)

When multiple trajectories that satisfy the condition in

Eq. (27) are present, the trajectory risk with the lowest min

value is selected; this is ultimately the safest route for the

vehicle.

Trajectoryi = argmin
i∈T

(RAtraimin) (28)

In the sample scenario based on Table 1, the safest tra-

jectory that satisfied condition Eq. (26)-(28) is trajectory

candidate number 10.

C. ACCELERATION PROFILE PLANNING

After selecting the safest trajectory from the previous sub-

section, acceleration planning is performed. The safest tra-

jectory is selected while considering that vehicle is in motion.

Therefore, the longitudinal and lateral acceleration and veloc-

ity are independently considered depending on direction of

trajectory. The vehicle’s acceleration is determined based on

the final trajectory the vehicle selects. The x-axis and y-axis

accelerations of the final trajectory are described as

Ax = 2Sx ·
1

t2f
(29)

Ay =















4Sy ·
1

t2f
(0 ≤ tCA <

1

2
tf )

−4Sy ·
1

t2f
(
1

2
tf ≤ tCA < tf )

(30)

where (Sx , Sy) is the collision avoidance/mitigation final

point when final time (tf ), and Ax ,Ay are the accelerations,

for reaching collision avoidance/mitigation final point.

FIGURE 11. Each acceleration-based trajectory (red dash line)
corresponds to global trajectory (blue solid line).

When planning acceleration trajectory based on a

reachable region, the vehicle’s movement path in global

coordinates is shown in Fig. 11. Each red dash acceleration

trajectory corresponds to a blue solid path after tCAMS sec-

onds. The trajectory candidate number 10 that selected at

sample scenario is highlighted purple dash line at Fig. 11.

V. PERFORMANCE EVALUATIONS

In this section, a multi-vehicle collision scenario simula-

tion was designed, and operation of proposed algorithm was

verified.

A. SIMULATION SETTINGS

The risk threshold (Riskthreshold) and CAMS final time (tf)

are tuning parameters for when to turn on CAMS in a risky

situation. In this simulation, reachable region limit (Slim) is

set to the distance of a change of one traffic lane (= 3.6 m)

in a collision situation. The CAMS final time (tf) is acquired

with Slim andµg through Eq. (21). The value tf is expressed as

tf =

√

4 · Sylim ·
1

µg
(31)

To safely escape during tf seconds, the CAMS must be

activated at least tf seconds before the predicted collision.

Therefore, the risk threshold is as follows

Riskthreshold = 1/tf (32)

The lane risk is a tuning parameter indicating the prefer-

ence for longitudinal and lateral avoidance motion. The lane

risk is 1/3, which is the condition for lateral avoidance only

in a situation in which longitudinal avoidance in inevitable.

The detailed simulation settings are expressed in Table 2.

B. COLLISION SCENARIOS FOR SIMULATION

The scenarios for simulation were designed for side colli-

sion and backward collision scenarios. The two scenarios are

collision threat situations due to the carelessness of nearby

vehicles, and are not caused by the ego vehicle. To simulate

the multi-vehicle collision scenario, vehicles were placed

in positions where it would be easy for the ego vehicle to

maneuver to avoid collision.

In the scenario that considers side collision, vehicle from

one side abruptly enters the lane where ego vehicle is located,
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TABLE 2. Simulation settings.

and another vehicle is also present in the opposite lane. The

ego vehicle is travelling at a velocity of 22.2m/s, and obstacle

vehicles O1 and O2 in both opposing lanes are travelling at

identical velocity. Obstacle vehicle O1 is approaching the ego

vehicle with a lateral velocity of 1.5m/s. Typically, the ego

vehicle can avoid collision by changing to the opposing lane,

away from O1. However, in this special case, obstacle vehicle

O2 is present in the opposing lane. Therefore, the CAMS

motion is observed another safe route.

In the second scenario, which considers backward col-

lision, a vehicle located at the rear of the ego vehicle is

approaching and it is also not decelerating. There have been

many incidents where vehicles collide with a lead vehicle

due to driver’s drowsiness or negligence about surroundings.

Similar to the first scenario, the ego vehicle is travelling at

a velocity of 22.2m/s, and vehicle O1, located 20m behind

the ego vehicle, is approaching at a velocity of 33.3m/s.

Also, vehicle O2 is 20m in front of the ego vehicle, which

is cruising at a velocity of 11.1m/s. This scenario has been

designed to observe that vehicle with proposed algorithm can

successfully detect fast approaching vehicle from the rear and

avoid collision by changing lanes. Each scenario is illustrated

in Fig. 12.

C. SIMULATION RESULTS

The simulation results for both ‘side collision’ and ‘backward

collision’ are presented at Fig. 13 and Fig. 14, respectively.

Figs. 13(a) and 14(a) illustrate the local position after CAMS

has been turned on for 0 seconds, 0.5 seconds, 1.0 sec-

ond, and 1.5 seconds. Figs. 13(b) and 14(b) show POM

for each situation. Figs. 13(c) and 14(c) show graphs that

compare the risk of each trajectory once CAMS is ON.

Finally, Figs. 13(d) and 14(d) show the calculated lateral and

longitudinal acceleration based on selected trajectory.

In first scenario result at the 0 second mark is shown

in Fig. 13 (b); the right vehiclemoves left, and risk of collision

increases. As ego vehicle notices the danger of collision,

it assesses the risk of 12 pre-determined trajectories as shown

in Fig. 13(c), and selects trajectory 7, which has the lowest

mean value. Trajectory 7 will only activate the brakes of

the vehicle, and thus it can be observed that longitudinal

acceleration decreases, as shown in Fig. 13(d). The vehicle

FIGURE 12. Collision simulation scenarios. (a) Side collision scenario,
(b) backward collision scenario.

decelerated to 7.2m/s2, and reduced velocity to 12.1m/s at

1.4 seconds, which is the time at which CAMS deactivated.

When observing each state at 0.5 seconds, 1.0 second, and

1.5 seconds, as shown in Fig. 13(a), it can be verified that the

vehicle successfully decelerated within the controllable limit

and avoided the right-side vehicle approaching the lane.

At the 0 second mark of the second scenario, shown

in Fig. 14(b), the POM for the front and rear positions of

the ego vehicle generate high risk of collision. The twelve

pre-determined trajectories are compared again, as shown

in Fig. 14(c), and trajectories 4 and 10, with the lowest mean

values, are selected. In this case, trajectory 10 is randomly

selected because of the mean values of risk of trajectories

4 and 10 are the same. Trajectory 10 maintains the ego

vehicle’s velocity while increasing the lateral acceleration

towards the right, as illustrated in Fig. 14(d). It can be

observed that maximum lateral acceleration to one side is

generated, and then lateral acceleration of the opposite side

is generated once reaching the halfway point. The vehicle

generated a maximum lateral velocity of 5.0m/s while mov-

ing 3.6m to the right and reached lateral velocity of 0 m/s

at 1.4 seconds, which is when CAMS deactivated. As ego

vehicle avoided collision, it can be observed that obsta-

cle vehicle O1 and O2 have collided. While this is not an

ideal case, it shows a worst-case scenario. When a similar

situation occurs in the real-world environment, the vehicle

located at the rear will have enough time to react with

the ego vehicle out of the way, and thus collision will be

avoided.

Through the two scenarios, the operation of the proposed

algorithm has been verified. By assessing collision risks
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FIGURE 13. Simulation results of side collision scenario. (a) Time series
vehicle position (0sec, 0.5sec, 1.0sec, 1.5sec), (b) POM of each time (0sec,
0.5sec, 1.0sec, 1.5sec), (c) Comparison of trajectory candidate risk when
CAMS starts, (d) Planned longitudinal and lateral acceleration profile
when CAMS starts.

FIGURE 14. Simulation results of backward collision scenario. (a) time
series vehicle position (0sec, 0.5sec, 1.0sec, 1.5sec), (b) POM of each time
(0sec, 0.5sec, 1.0sec, 1.5sec), (c) Comparison of trajectory candidate risk
when CAMS starts, (d) Planned longitudinal and lateral acceleration
profile when CAMS starts.
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within the vehicle’ surroundings and generating a time-

dependent map, the vehicle was able to perform evasive

maneuvers and avoid collision within the 1.4 second time

frame. Furthermore, the proposed algorithm generates its

trajectory by calculating acceleration based on the sensors

equipped on the ego vehicle. Thus, it can successfully gen-

erate avoidance trajectories without relying on global coor-

dinate way points provided through localization map or

accurate GPS.

VI. CONCLUSION

This paper proposes a novel algorithm that determines poten-

tial risks based another vehicle’s sudden unexpected maneu-

ver; it does not focus only on the ego vehicle. To observe

future potential risks of collision, a POM has been devel-

oped that identifies the surroundings in spatial and temporal

space. Through the POM, potential risks of collision with

multiple vehicles can be determined simultaneously, and risk

affiliated with each position based on time can be identified,

allowing intuitive identification of the safest space for the

ego vehicle. Through the POM, the safest avoidance trajec-

tory can be selected after analytically comparing multiple

trajectory candidates. The surrounding trajectory candidates

were generated based on vehicle acceleration limit, which

allowed simultaneous planning of the trajectory and velocity

profile. The operation feasibility of the proposed algorithm

was verified through two simulation scenarios as the ego

vehicle successfully avoided a potential collision.

Through this study, the safety of autonomous vehicles can

be further improved by providing an avoidance trajectory

focused on surrounding vehicles, rather than focusing on the

ego vehicle itself. The current scenarios used in the simula-

tion have only focused on straight roads, andwill be evaluated

for curved roads in future research.
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