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ABSTRACT It is challenging for a mobile robot to avoid moving obstacles in dynamic environments.

Traditional velocity obstacle methods do not fully consider the obstacles moving with the speeds larger

than the maximum speed of the robot. In this article, a new obstacle avoidance method, named the

maximum-speed aware velocity obstacle (MVO) algorithm, is proposed for a mobile robot to avoid one or

multiple high-speed obstacles. The proposed algorithm expands the velocity obstacle region into two parts,

where one of the parts foresees collisions beyond the time horizon to ensure the feasible solutions of the

current and the next control step. In practical applications, the perception capability of the robot is generally

limited, and a non-holonomic robot can’t move into any direction due to its kinematic constraints. In this

article, the limited sensing field of view and non-holonomic kinematic constraints of the mobile robot are

incorporated into the proposed MVO method. Moreover, continuity, safety, and computational complexity

of the MVO approach are analyzed and presented. Extensive simulations and physical experiments are

conducted to verify the efficacy of the MVO method, where a quadrotor and a differential-drive robot are

used to perform dynamic obstacle avoidance.

INDEX TERMS Motion planning, collision avoidance, high-speed obstacles, limited field of view, kinematic

constraints.

I. INTRODUCTION

Mobile robots are increasingly popular in tasks like trans-

portation, inspection, and surveillance. In these applications,

the robot should autonomously avoid obstacles when navi-

gating to the destination, and path planning algorithms have

been developed to perform obstacle avoidance.

Generally, path planning algorithms are divided into global

path planning and local path planning according to environ-

mental perception information. Global path planning requires

comprehensive perception and high computational capacities.

In the presence of dynamic obstacles, replanning may cause

stops and reduce the maneuverability of the robot. Moreover,

The associate editor coordinating the review of this manuscript and
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as the field of view of the robot is limited, local planning

algorithms will observe and avoid obstacles only when the

obstacles are within the perception range of the robot. There-

fore, for mobile robots with limited perception, it is necessary

to take account of high-speed obstacles avoidance into the

path planning.

Considering the speed of the robot to be the perceived

range as well as its limited field of view, [1] proposes a

velocity obstacle (VO) based method to guarantee a smooth

and collision-free action. On the contrary, a relaxed constraint

Model Predictive Control (MPC) framework is constructed

in [2] that guarantees path safety by allowing motions outside

the limited field of view. The core of the method is the

ability to choose motion primitive at the past time step. In [3],

a deep neural network is trained to map uncertain sensor
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measurements to the velocity increment of the robot. A prob-

abilistic variant of the Reciprocal Velocity Obstacle (RVO)

method [4] is proposed, which takes account of uncertain

state estimation and actuation of the robots.

In realistic scenarios, there are many applications where

the speed of the robot is much lower than the speed of the

obstacles, for example mobile service robots and sweeping

robots usually move much slower than human beings or some

pets (e.g. dogs, cats), while these robots are expected to avoid

collision with a careless human.

When there exists high-speedmoving obstacle, the velocity

feasible region may be almost in the velocity obstacle region.

Since the maximum speed of a robot is generally limited,

it may have no ability to flee away from the velocity obstacle

region. In this article, considering the limited field of view

of the robot, we aim to study the robotic navigation prob-

lem in the presence of multiple dynamic obstacles including

high-speed ones.

The mobile robots can be classified as holonomic and

non-holonomic ones according to the kinematic constraints.

Holonomic robots can move in any direction from any state

while non-holonomic robots can’t. Typical holonomic robots

include quadrotors and omnidirectional unmanned ground

vehicles. On the other hand, typical non-holonomic robots

include differential-drive and car-like models. A differential-

drive model can be treated as one type of unicycle kinematic

model, where the body orientation with angular velocity con-

straints is considered. The car-like model is often known as a

bicycle kinematic model, with a steerable front wheel and a

fixed rear wheel for simplification [5]. Usually, the commer-

cial car in daily life can be regarded as a bicycle model, whose

two steerable wheels can be simplified as a whole. Ignoring

the angular speed of the steerable wheel, the turning rate of

the car-likemodel is related to the robot speed and the steering

curvature. The car-like model thus needs high-order planning

and complex control schemes in certain environments.

The VO methods have been applied to non-holonomic

robots. Van’s work [6] and Javier’s work [7], [8] employ

different methods to apply the optimal reciprocal collision

avoidance (ORCA) [9], [10] to the non-holonomic robots

and show the feasibility of the VO methods to handle the

non-holonomic kinematic constraints. In [11] and [12], VO is

redefined to apply to a Dubins-like mobile robot, which is a

non-holonomic system and can only move forward. In this

article, differential-driving and car-like kinematic constraints

are incorporated into the proposed MVO algorithm.

A. RELATED WORK

In this section, a brief introduction of prior works of col-

lision avoidance algorithms is presented, where the robots

are navigated in dynamic scenarios. The obstacle avoidance

algorithms include global and local path planning algorithms

according to environmental perception information

When the knowledge of the environment has been known

in prior, off-line global path planning can be employed to

navigate robots through cluttered environments. Global path

planning is a well-studied research area [13]. Rapidly explor-

ing random trees (RRT) [14] algorithm is efficient to solve

the global path planning problem. The RRT algorithm creates

a tree constructed by the possible actions from the initial

point to the target point. In [15], the RRT-Connect method

is proposed to search the feasible paths, with smaller cal-

culations. The presence of unknown obstacles in a dynamic

environment requires path replanning. In [16], a sampling-

based path optimization method and the positive percep-

tion criterion are combined to minimize the reprogramming

risk by predicting the future uncertainty of the map. This

method ensures a faster and safer path. The graph search-

ing method [17] is a heuristic searching method aiming to

minimize the cumulative cost from the first step to the last

step. A coordination mechanism is proposed in [18] to avoid

the collision among the robots, which solves the problem of

robot path overlap, and the robot’s journey is much less than

the heuristic searching method.

However, in most cases, the whole map information

could not be fully obtained in prior except for the target

direction. Robots can obtain local map information using

onboard sensing. Real-time local path planning to generate

a collision-free path using local map information is desir-

able for mobile robots with limited computational capac-

ities. However, in practical applications, the sensing field

of view (FOV) is usually limited. In [19], the maximum

dispersion algorithm uses a local map in a limited field of

view and backtracking maneuvers. In [20] and [21], motion

primitives are generated to guide a quadrotor through a forest

and evaluated using a local map. Local path planning is

also called on-line path planning. An artificial field (APF)

method [22] and its variants [23] are usually employed to

generate collision-free trajectories. In the APF-based meth-

ods, repulsive forces are computed to push the robot far away

from the obstacles, while attractive forces are computed to

draw the robot to the target positions. In [24], a UAV group

mobility model based on the APF principle is proposed,

where the UAVs cooperate by sharing obstacle data within the

observation range. In this way, the UAV can not only avoid

obstacles within the perceived range but also avoid obstacles

outside the perceived range.

Model predictive control (MPC) [25] is efficient to solve

control problems on dynamic systems with input constraints

or other constraints. For example, the boundary of obsta-

cles can be considered as position constraints. With the

kinematic and dynamic constraints of the robot, the MPC

method can obtain the control values of the next several steps

meanwhile minimizing the objective function. It can also be

combined with other collision avoidance methods, such as

optimal reciprocal collision avoidance (ORCA) method [26].

Yet, the MPC-based method may meet unsolvable situations

because of too many constraints. Considering the uncertainty

of the quadrotor model and the external disturbance, a new

nonlinear model predictive control (NMPC) optimization

technique is proposed in [27], which incorporates the model

parameter and initial state uncertainties into path planning.
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When calculating the quadrotor’s path, the specified safety

margin should be reached to avoid obstacles. This method is

combined with online model identification to ensure robust

obstacle avoidance behavior.

Another flexible method is based on the velocity region.

To solve the multi-agent navigation in cluttered scenarios,

the robot needs to replan local paths and actions in real-time.

Velocity obstacle-based methods are suitable to generate a

series of collision-free actions and also popular in solving

multi-agent navigation.

The VO method and its variants, especially ORCA, are

widely used in real-world tasks. In the work of [28], a method

modified from ORCA has been adopted in the video games

to lead the virtual humans performing collision avoidance

in clustered scenarios. The work by [29] presents a decen-

tralized method for group-based coherent and reciprocal

multi-agent navigation applying ORCA. ORCA is also used

in the field of aerial robots. In [30], ORCA sets a sce-

nario with the AR-Drones which estimates the other UAVs’

positions and velocities by the on-board cameras. Another

work [31] designs a system with the ability to let multiple

UAVs cooperate and track the preset paths under unreliable

velocity estimates. In [32], an exhibit of multiple holonomic

robots system is presented in the National Museum of Math-

ematics, which uses a hybrid ORCA method and improves

the ability of noise tolerance. In [33], a new idea is pro-

posed using discrete motion planning and optimal Finite-time

Velocity Obstacle. In [34], a pedestrian is regarded as an

agent, and the ORCA is applied for the motion planning

process.

The first idea of the VO method is proposed in [35]. After

that, many variants of the VO method are presented, such

as the reciprocal velocity obstacle (RVO) [36], ORCA and

the extended velocity obstacle (EVO) [32], etc. The RVO and

ORCA simplify the velocity obstacle in the VO and avoid the

problem of oscillations. These two methods come up with a

concept of half responsibility in the navigation of multiple

cooperative agents. The VO algorithm and its variants gener-

ate collision-free paths by setting a time window. If the time

window is shorter, it leads to a higher probability of collision;

while the time window is longer, the prediction accuracy of

the obstacle position will be lower. Therefore, setting the

time window of the path planning method is not desirable.

A framework for dynamic risk assessment is proposed in [37],

in which the forward random reachable set is used to predict

the distribution of obstacles in the time window and bal-

ance the risks caused by the near and far obstacles. In [38],

a VO-based algorithm is presented to handle the high-speed

obstacle in dynamic scenarios. In this article, the work [38]

is systematically and thoroughly investigated considering the

limited sensing field of view and kinematic constraints.

B. CONTRIBUTION

In this article, a novel method derived from the traditional

velocity-based method is proposed to avoid collision with

high-speed obstacles. The motion planning of a mobile robot

is investigated considering its limited field of view in the

presence of multiple dynamic obstacles including high-speed

ones. The main contributions of the paper are summarized as

follows.

• A novel algorithm called maximum speed aware VO

(MVO) is presented for a mobile robot to avoid

high-speed obstacles, where the velocity of one or mul-

tiple dynamic obstacles is larger than the maximum

velocity of the robot. Comparedwith the ORCAmethod,

the proposed MVO algorithm expands the velocity

obstacle region into two parts, where the newly intro-

duced region foresees collisions beyond the time horizon

to ensure feasible solutions at the next control step.

Hence, the MVO algorithm achieves better performance

to avoid collision with high-speed obstacles.

• In practical applications, the field of view of the robot

is usually limited, and the local planner can only

avoid obstacles within its perception range. In addition,

non-holonomic robots unable to move into any direction

are much more common due to their lower cost. In this

article, the limited field of view and non-holonomic

kinematic constraints are incorporated into the MVO

framework. The mathematical expressions of kinematic

constraints of car-like and differential-drive robots are

presented, which are employed as kinematic constraints

of the MVO algorithm. Hence, the MVO method can

handle different non-holonomic kinematic models.

• The smoothness of the generated path is examined via

analyzing the continuity of the MVO approach. In addi-

tion, safety related to the limited sensing distance as well

as the computational complexity of the MVO method

are analyzed and presented. Extensive simulations and

physical experiments are conducted to verify the effi-

ciency of the MVO method. In physical experiments,

robotic platforms including a holonomic quadrotor and

a differential-drive robot are used to perform dynamic

obstacle avoidance.

C. PAPER STRUCTURE

The paper is organized as follows. Sect. II states the problem

concerned in this article. The main method is presented in

Sect. III, in which the usage of our method is fully discussed.

In Sect. IV, we discuss the efficacy of the algorithm on the

practical usage scenarios in the multi-obstacle scenarios and

combine this method with the holonomic and non-holonomic

kinematicmodels. In Sect. V, we present the continuity analy-

sis, safety analysis and computational complexity analysis on

the MVOmethod. Sect. VI presents the results of simulations

and experiments, in which the UAV and Jackal differential

drive platforms are used to perform collision avoidance in the

clustered scenarios. In Sect. VII we conclude the work in this

article and present the future expectation.

II. PROBLEM FORMULATION

In this section, the navigation problem concerned in this

article is defined. In order to make the problem definition
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FIGURE 1. Configurations of a robot A and a dynamic obstacle O.

more understandable, we describe the entire scene in a global

framework. The robot often has a perception distance and a

limited field of view. For velocity-based method, the veloc-

ity estimation should be within the perception range. Ref-

erence [1] proposes a method which focus on the limited

sensing velocity obstacle method. They provide sufficient

proof for guaranteeing collision avoidance motion. Here is

the problem formulation of a single robot and multi obstacles

situation for example. There is a 2D scenario where a robot

A moves to its target point and may run into the obstacles

Oi (i = 1, 2, . . .) with high velocity moving in any probable

direction.

For simplicity, the shapes of robot and obstacles are

regarded as discs, which center at pA and pOi with radii rA
and rOi (Fig.2(a)). Suppose that the speed remains fixed for

a short time, and can be observed by external or on-board

sensors. The robot A also has a heading angle θA, and a

heading direction dA = [cos(θA), sin(θA)]
T . The allowed

velocity set is defined as the:

UA = D(0, vmax
A ) ∩ SA, (1)

where vmax
A is themaximum speed of robotA. SA is the sensing

constraint for the robot, which is shown later. The limited

field of view of the robot is defined as:

FA = {p | ‖p − pA‖ < rsA, |
6 (dA,p − pA)| ≤ αs

A}, (2)

where rsA is the sensor distance range and αs
A is the sensor

angle range within (π
2
, π). p is the position of robot or obsta-

cle. Therefore, to keep the obstacle within the robot’s sensing

range and to control the robot Amove away from the obstacle

O, we define the sensing constraint set for the robot’s velocity

as follows when the obstacle is detected by the robot:

SA = {v | |6 (v,dA)| ≤ αsA −
π

2
}. (3)

As shown in Fig. 2, here define a line L⊥ (pO − pA)

with the distance of
|pO−pA|

2
between robot A and obstacle

O, respectively. With the velocity in the set SA, a robot tends

to choose a velocity near the detection direction to make the

angle of velocity change smoothly.

FIGURE 2. The limited field of view of the robot.

FIGURE 3. Flowchart of proposed algorithm.

The preferred speed v
pref
A is used to guide the robot to

move in the direction of the target point. The robot gen-

erates the new optimal velocity as input in every control

period, by considering these following factors: the position

and velocity information of the robot and obstacles, the pre-

ferred velocity v
pref
A , the radii, the time horizon τ , and sensor

constraints SA.

vnewA = F(vA,pA,
{

vOi
}

,
{

pOi
}

, rA,
{

rOi
}

,

v
pref
A , vmax

A , τ, SA). (4)

Here Maximum-speed Aware Velocity Obstacle Method

framework which is presented in Sect. III generates a velocity

obstacle and chooses a new robot velocity which is nearest to

the preferred velocity v
pref
A .

The whole process can be briefly summarized in three

parts(Fig. 3):

• In the section III, we discuss how to build the velocity

obstacle setCτ
A = MVOτ

A∩VO
τ
A, which contains our new

method MVO. The velocity obstacle set means the set

of velocities where a robot cannot choose a new desired

velocity therein.

• In the section IV, we discuss how to use the

MVO method on different kinematic robot models by

adding a kinematic constrains UNH. Here we take the

differential-drive robot and car-like robot for example.
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FIGURE 4. (a) When vO is higher than the robot’s maximum velocity,
the relatively feasible cycle does not contain the original point. (b) When
vO gets higher, the relatively feasible velocity cycle may be fully
contained by the velocity obstacle.

• At last, a new velocity vnewA ∈ V
permit
A which should be

the closest to the preferred velocity v
pref
A is chosen for

robot A.

III. MAXIMUM-SPEED AWARE VELOCITY OBSTACLE

METHOD

Due to the limited field of view of a robot, the obstacles can

only be observed and avoided when they are close enough

to the robot. This also means that the robot only has a short

reaction time when avoiding obstacles, especially high-speed

obstacles, and the collision probability increases. Hence,

for robots with a limited perception, it is necessary to take

account of the ability to avoid obstacles at high speed into

path planning. In this section, the maximum-speed aware

velocity obstacle (MVO) method is proposed. MVO com-

plements the velocity obstacle region in optimal reciprocal

collision avoidance (ORCA). Therefore, a brief review of the

ORCA and its velocity obstacle region is necessary.

A. OPTIMAL RECIPROCAL COLLISION AVOIDANCE

METHOD

For robot A and obstacle O, VOτ
A|O is defined as the velocity

obstacle of A for obstacle O. It means that if the relative

velocity is chosen in theVOτ
A|O, the collisionwill occur within

the time interval τ . The set of relative velocities which will

cause collision within τ can be represented as follow:

VOτ
A|O

(

pO|A

)

= {v
∣

∣∃t ∈ [0, τ ] , tv ∈ D
(

pO|A, rAO
)

}, (5)

whereD (p, r) is a disc of radius r centered at p, rAO is the sum

of rA and rO. If a robot keepsmovingwith a velocity out of the

velocity obstacle, the collision will occur (Fig. 4(b)). In the

ORCA method, the collision-free velocity set is formulated

as

ORCAτ
A|O =

{

v|
(

v −
(

vnewA + λu
))

· n ≥ 0
}

, (6)

where the vnewA is the current velocity of the robot. u denotes

the minimum velocity change which leads the relative veloc-

ity out of VOτ
A|O and n is the outward normal (Fig. 1(b)).

Coefficient λ is the responsibility coefficient, which deter-

mines how much responsibility the robot should undertake.

For robot A, the control input vnewA of next step is a velocity

nearest to the preferred velocity v
pref
A ,

vnewA = argmin
v∈ORCAτ

∥

∥

∥
v − v

pref
A

∥

∥

∥
. (7)

The ORCA method has been popularly used in many

multi-agent scenarios. It solves the oscillation between the

multiple agents and enlarges the feasible velocity set. In most

situations, the feasible velocity set of robot D
(

-vO, vmax
A

)

must be considered in the navigation task. When vO gets

higher, the D
(

-vO, vmax
A

)

becomes more distant from the

ordinate origins, like Fig. 4(a). For even higher velocity vO,

the feasible velocity set of robot A would have a higher

probability of being fully contained in the velocity obstacle

region (in Fig. 4(b)), which makes the robot cannot escape

the velocity obstacle region. It should keep awareness of

unsolvable situations. The following sections bring a new

conception to solve this kind of problem.

B. AVOIDING HIGH-SPEED OBSTACLE METHOD

The ORCA method proposes an idea to address the problem

of avoiding multi-agents collision and oscillations. But when

τ is set at the beginning, the ORCA method has not taken the

high-speed obstacles and the limited maximum robot’s veloc-

ity into account. In this section, we give a concise description

of our method to handle this kind of problem, by increasing

the additional velocity obstacle.

Since the limited field of view of the robot is independent

of the analysis of avoiding high-speed obstacles problems,

the analysis of MVO algorithm in this section assumes that

the robot only has the maximum speed limit, i.e.:

UA = D(0, vmax
A ). (8)

1) BASIC INTRODUCTION

To avoid the situation unsolvable, here we consider the choice

of optimal velocity at the current step. Suppose that there

is a feasible velocity set when we choose a new velocity,

meanwhile, we want to have a solution at the next control

step. Here we denote the new velocity obstacle region as

MVOτ
A|O

(

pO|A

)

, which is a set of relative velocity bringing

collision in the next time horizon.

MVOτ
A|O(pO|A) = {v|D(−vO, vmax

A )

⊂ VOA|O(pO|A − v · τ )}. (9)

For robot A and obstacle O, the relative position is denoted

as pO|A = pO − pA. Thus, the new relative position at the

next control step would be pnewO|A = pnewO − pnewA and because

the velocity of the obstacle is supposed as a constant in a

single period, pnewO = pO + vO · τ . Thus, the new relative

position pnewO|A = pO|A − vnewA|O · τ . There, we can see the

relationship between the chosen velocity vnewA|O and the new

relative position pnewO|A is:

vnewA|O = (pO|A − pnewO|A)/τ, (10)
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FIGURE 5. The derivation of a new velocity obstacle.

where vnewA|O is nearest to its preferred velocity v
pref
A|O amongst

all velocities inside the feasible velocity region. According to

the concept of the VO method, the position of the velocity

obstacle depends on the relative position pnewO|A. To prevent

the whole feasible velocity set D
(

-vO, vmax
A

)

from being all

contained in theVOA|O

(

pnewO|A

)

, the new relative position pnewO|A

should be specially selected.

As is shown in Fig. 5(a) and Fig. 5(b), the D
(

-vO, vmax
A

)

is fixed and we can adjust the velocity obstacle by selecting

the pnewO|A. ll and lr are the upper and lower bound of the p
new
O|A,

which are also the boundary tangent to the discD
(

-vO, vmax
A

)

.

If pnewO|A falls between ll and lr , the robot will have no chance

to escape the new velocity obstacle region. The two half-lines

ll and lr together with the two segments 0 − pl and 0 − pr
encompass the largest set of points (Fig. 5(c)).

According to Eq.(10), we can get MVOτ
A|O

(

pO|A

)

in Fig. 5(d). l ′l and l ′r are the boundary of MVOτ
A|O

(

pO|A

)

which are mapped from lr and ll . p
′
c is the intersection of

l ′l and l
′
r . And the boundary of MVOτ

A|O

(

pO|A

)

is tangent to

the cycle D
(

pO|A/τ, r /τ
)

with p′
l and p

′
r.

It is more likely to occur when vmax
A is far smaller than vO,

as is shown in Fig. 4. From another perspective, if each step

the robot chooses a velocity that is outside MVOτ
A|O

(

pO|A

)

andVOτ
A|O

(

pO|A

)

, the robot will always have solutions. So the

set of velocity obstacle regions is the intersection of MVOτ
A

and VOτ
A.

V
permit
A|O = {v|v ∈ D

(

−vO, vmax
A

)

∩ SA,

v /∈
(

MVOτ
A|O∩VOτ

A|O

)

}. (11)

FIGURE 6. Two kinds of simplification.

The new velocity of robot A is given by the calculation in

following and the sensor constraints should also be consid-

ered.

vnewA|O = argmin

v∈V
permit
A|O

∥

∥

∥
v − v

pref
A|O

∥

∥

∥
,

vnewA = vnewA|O + vO. (12)

When enlarging τ , the velocity obstacle area will become

larger and the robot tends to be farsighted. But it will bring

the risk of getting no feasible velocity area when the number

of obstacles become larger. On the other side, when the

parameter τ gets smaller, the robot will react quickly to other

robots and obstacles in its path [9], [10].

However, a small τ may result in less smooth paths as well,

since the robot may have to frequently rotate to achieve its

target orientation. In practice, choosing τ as three times the

planning period can yield good results.

2) SIMPLIFICATION

To simplify the calculation and avoid the concave set, here we

do some simplification. See Fig. 6(a) and Fig. 6(b), these two

kinds of situations often happen when choosing an optimal

velocity. In Fig. 6(a), when the feasible velocity set makes

intersection with D
(

−vO, vmax
A

)

, it appears a concave region

constructed byORCAboundary lORCA, MVOboundary lMVO,

and the arcs. Here, we choose to prolong the lORCA or lMVO
to make a new velocity region, which is a convex set. And

in Fig. 6(a), the VO set intersects the circle D
(

−vO, vmax
A

)

at

two points p1 and p2. For convenience, we connect lp1p2 as a

new boundary of the VO region.

The MVO algorithm also has limitations, that is, the set of

feasible speeds of the robot is reduced due to the additional

velocity obstacle area in the second prediction period, which

may cause the absence of a feasible solution. This limitation

would become more apparent as the number of obstacles

increases.

IV. PRACTICAL USAGE OF MVO METHOD

To show the efficacy of the algorithm on the practical usage

scenarios, here we discuss the practical usage of this method

in the multi-obstacle scenarios and combine this method

with the holonomic and non-holonomic kinematic models,
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including differential-drive and car-likemodels. After consid-

ering the limited field of view of the robot, the whole method

shows efficacy in the practical usage scenario.

A. MULTIPLE OBSTACLES AVOIDANCE SCENARIO

The abilities of collision-free navigation and smooth action

planning in multiple obstacle scenarios are among the basic

requirements for every working robot. Therefore, our MVO

method should also consider the increase of robot density and

cooperative interaction, and avoid collision and oscillation.

A method similar to the case of a single robot can be applied

to the collision avoidance scenarios of multiple robots. As the

same to the single-obstacle scenario, the robot here is sup-

posed to have a continuous cycle of sensing and the time

horizon τ . In every control step, it can detect the information

of obstacles’ positions, velocities and radius. When the robot

encounters a collision, each obstacle makes the robot generat-

ing these two velocity obstacle regions,MVOτ
A|Oi

(

pOi|A
)

and

VOτ
A|Oi

(

pOi|A
)

.

Then calculate the velocity obstacle regions based on

MVOτ
A=
⋂

(MVOτ
A|Oi

(

pOi|A
)

⊕ VOi ) (i = 1, 2, . . .) and

VOτ
A =

⋂

(VOτ
A|Oi

(

pOi|A
)

⊕ VOi ) (i = 1, 2, . . .), where

suppose X ⊕ Y is the Minkowski sum of X and Y.

X ⊕ Y = {x + y|x ∈ X , y ∈ Y } . (13)

Let VOi =
{

vOi
}

. Every velocity region produces a feasible

velocity set. So the set of velocity obstacle regions is the

intersection ofMVOτ
A and VOτ

A.

V
permit
A = {v|v ∈ D

(

0, vmax
A

)

∩ SA, v /∈
(

MVOτ
A∩VO

τ
A

)

}.

(14)

B. SCENARIO WITH KINEMATIC CONSTRAINTS

Non-holonomic robots are much more common in practical

applications due to their lower cost. Typical non-holonomic

robots include differentially-driven and car-like vehicles.

As non-holonomic robots cannot move to any direction

from any state, differential-drive and car-like kinematic con-

straints are incorporated into the MVO method such that

the proposed method can be applied to different kinematic

models. In [7], an ORCA-based method is proposed con-

sidering differential-drive kinematic model. Motivated by

the work [7], the non-holonomic constraint formulas of

differential-drive and car-like vehicles are derived, which can

be easily used as the kinematic constraints of the MVO algo-

rithm. Hence, the MVO approach can be applied to different

kinematic models.

1) DIFFERENTIAL-DRIVE ROBOT

Since the non-holonomic constraint formula of the

differential-drive vehicle has been derived in [7], it is briefly

described here. For more details, it can be referred to [7].

As shown in Fig. 7(a), the differential-drive robot’s position

in the two-dimension space can be described by three state

parameters, including the position of center (x, y) and the

orientation θ .

FIGURE 7. Two kinds of non-holonomic robots.

FIGURE 8. Two kinds of kinematic model constraints.

The final motion constraint UNH which is derived by the

different kinematic constraint model is shown in Fig. 8(a),

the red line boundary reveals that it is not a linear calcu-

lation in the velocity obstacle. To simplify the calculation,

we choose the inscribed polygon to replace the non-linear

space. Because of rotational invariance, the constraint-

rectangle can be computed at zero orientation and rotated to

match the robot’s current orientation θ . After that, the black

box is the final motion constraintUNH . And then, we combine

this velocity constraint area into the feasible velocity region

calculated by MVO, which is shown in Fig. 9(a).

2) CAR-LIKE ROBOT

The car-like robot, as the name implies, is similar to a car.

We often simplify the car model with a fixed rear wheel and

a steerable front wheel like a bicycle, as shown in Fig. 7(b).

Consider the car-like robot rotates at the midpoint between

steering and rear wheel.






ẋ

ẏ

θ̇






=







cos (θ) − tan (ϕ) sin (θ)

sin (θ) + tan (ϕ) cos (θ)

2 tan (ϕ) /l






v, (15)

where l is the distance between the steering wheel and rear

wheel. The car-like robot has three state variables [x, y, θ],

and the control inputs are [v, ϕ]. ϕ ∈ [-ϕmax, ϕmax] is

the steering wheel angle and v ∈ [−vmax, vmax] is the

rear wheel’s velocity. Because of the kinematic model,

angular velocity is depended on ϕ and v. Let ω=θ̇ ∈

[-2v tan (ϕmax) /l, 2v tan (ϕmax) /l]. When ϕ reaches ϕmax,

the maximum of angular velocity still changes along with
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v. Here we suppose that in the permitted range, the steer-

ing wheel can reach any angle immediately. Like the

differential-drive robot, it needs a curved path to reach the

needed angle, which will bring errors. The curved path brings

the tracking error and here are several constraints in these

variables as below. And we can find that the equation is

quadratic for the v or ω,

ε2 = v2d t
2 −

2vd t sin (θd )

ω
v+

2 (1 − cos (θd ))

ω2
v2. (16)

We control the error within a given ε and add the velocity

constraints into two-period velocity obstacle regions. Herewe

suppose that the desired speed has a higher priority.

v = min (vm, vmax) ,

ω = min

(

θd

T
,
2v tan (ϕmax)

l

)

. (17)

T is the maximum time in which the robot needs to reach

the desired velocity direction. Thus we can get the maximum

path tracking error for the following conditions [a, b, c, d].

vmax
d

=































































min

(

εmax

T

√

2 (1 − cos (θd ))

2 (1−cos (θd ))−sin2 (θd )
, vmax

)

, (a)

min

(

−β1 +
√

β1
2 − 4α1γ1

2γ1
, vmax

)

, (b)

min

(

−β2 +
√

β2
2 − 4α2γ2

2γ2
, vmax

)

, (c)

min

(

−β3 +
√

β3
2 − 4α3γ3

2γ3
, vmax

)

, (d)

(18)

where [αi, βi, γi] (i = 1, 2, 3) are the quadratic term,

linear term and coefficient term of the Eq.(18). Similarly,

the black box is the final motion constraint UNH , which

is shown in Fig. 8(b). The robot feasible velocity set UNH

should be combined with V
permit
A concerned above. As shown

in Fig. 9(b), the new permitted velocity set is:

V
permit
A = {v|v ∈ D

(

0, vmax
A

)

∩ SA ∩ UNH,

v /∈
(

MVOτ
A∩VO

τ
A

)

}. (19)

After getting the permitted velocity of the robot, it should

choose the new desired velocity which is closed to the pre-

ferred velocity. The preferred velocity is used to guide the

robot tomove in the direction of the target point to the greatest

extent.

vnewA = argmin

v∈V
permit
A

∥

∥

∥
v − v

pref
A

∥

∥

∥
. (20)

V. ANALYSIS

In this section, the continuity analysis of the MVO method

is presented, which ensures the smoothness of the generated

actions. Safety analysis of the MVO approach is also pre-

sented in the scenario with the limited sensing distance range.

Furthermore, by analyzing and comparing the computational

FIGURE 9. Combine a feasible velocity region with MVO. The green region
in the figures shows the intersection of kinematic constraints UNH and
velocity feasible region by generated by MVO. We can observe the shapes
of the differential-drive and the car-like model constraints.

complexity of ORCA and MVO algorithms, it is shown

that the MVO algorithm will not increase the computational

complexity.

A. CONTINUITY ANALYSIS OF MVO METHOD

Like the ORCA method, our MVO could also generate the

collision-free and smooth actions in the position region,

in other words, the selected velocities are continuous.

First, we denote 1t as a small-time step and vA (t) as the

current velocity in the sequence of vA. And vA (t + 1t) is the

velocity in the next time step, but also the selected velocity

at the current time step. To analyze the continuity of vA,

it needs to deduce the vA (t + 1t) ≈ vA (t), when 1t → 0.

By the method of induction, from vA (t + 1t) ≈ vA (t),

we will get vA (t + 21t) ≈ vA (t + 1t), when the 1t is

small. So, to prove vA (t + 1t) ≈ vA (t), it needs to prove

that vA (1t) ≈ vA (0). As yet, it is clear that we should

focus on the method to get vA (t + 1t) and the initialization

velocity vA (0).

The selected optimal velocity of the robot vnewA =

vA (t + 1t) is based on the MVO method can be generated

by the function vA (t + 1t) = f (h (t) , g (t) , q (t)), where

the h (t)=v
pref
A (t) and g (t)=MVOτ

A (t), q (t)=VOτ
A (t).

The preferred velocity v
pref
A (t) is calculated by the current

position pA (t) and the target position p
goal
A . It is clear that the

pA (t) is continuous and the p
goal
A is fixed. So the preferred

velocity h (t)=v
pref
A (t) is also continuous, where v

pref
A (t) ≈

v
pref
A (t+1t).

The MVOτ
A (t) is the intersection of the velocity

region MVOτ
A|Oi

(t). So it needs to prove MVOτ
A|Oi

(t) ≈

MVOτ
A|Oi

(t+1t). As the introduction proposed above,

MVOτ
A|Oi

(t) is inferred from the velocity obstacle region

based on the continuous position pA (t) and the velocity

vA (t). So, if vA (t) is continuous, the MVOτ
A|Oi

(t) is also

continuous. Similarly, VOτ
A|Oi

(t) is also continuous. Thus,

f (h (t) , g (t) , q (t)) ≈ f (h (t+1t) , g (t+1t) , q (t+1t)).

On the other aspect, to make vA (1t) ≈ vA (0), it will occur

when the robot’s initial condition is beginning with v
pref
A (0).
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When vA (0)=v
pref
A (0), the vA will begin with continuity

and make the next sequence of MVOτ
A|Oi

(t) and VOτ
A|Oi

(t)

continuous.

As is concerned above, if a robot can keep v
pref
A (0) as the

initial velocity, the sequence of vA (t) is continuous and the

MVO method will generate a smooth collision-free action

series.

B. SAFETY ANALYSIS CONSIDERING LIMITED SENSING

DISTANCE RANGE

Generally, the robot has limited perception capability includ-

ing limited sensing distance and sensing angle. It is dangerous

for the robot if the obstacle runs towards its blind spot when

they are passing to each other. On the other hand, according to

continuity analysis of theMVO approach discussed in section

V-A, if the feasible velocity circle has been fully contained

at the beginning, the robot has no chance to escape from the

velocity obstacle in the next steps. In this section, the effect of

the limited sensing distance range on the safety of the MVO

approach is analyzed. Suppose that the robot has a limited

perception distance rs (Fig.10(a)). The following theorem 1

shows the maximum velocity of a dynamic obstacle with

respect to the maximum velocity of the robot, beyond which

the MVO approach cannot avoid the dynamic obstacle under

the condition of limited sensing distance.

Theorem 1: The extreme situation is discussed when the

obstacle rushes to the robot in the velocity vO. When the

obstacle enters into the boundary of detection, there exists

a maximum velocity of an obstacle for the robot to avoid

collision.

|vO|upper = vmax
A · rs/r, (21)

where vmax
A is the maximum velocity of robot, r is the sum

of radii of robot and obstacle, rs is the limited perception

distance.

Proof: In the ORCA method, the extreme situa-

tion is that the feasible velocity circle D
(

−vO, vmax
A

)

of a

robot is contained by D
(

−pO|A/τ, r/τ
)

(Fig.10(b)). When

D
(

−vO, vmax
A

)

is tangent with the bottom arc of the velocity

obstacle, it is the upper bound for the obstacle velocity:

|vO|upper = (|pO|A| − r)/τ + vmax
A . (22)

In theMVOmethod, because of the additional part, the fea-

sible velocity set should not be contained by the original and

additional velocity obstacle. When the obstacle rushes to the

robot straightly, the feasible velocity circle D
(

−vO, vmax
A

)

may first meet the additional velocity obstacle MVOτ
A|O (t),

as shown in Fig.10(c). When the circle is tangent with the

boundary ofMVO, it can be calculated that T0 = −
r/τ
vmax
A

·vO+

pO|A/τ , T1 = pO|A/τ + vO, T2 = −vO, r1 = r/τ − vmax
A , and

r2 = vmax
A . Based on homothetic triangle theory, it is found

that the upper bound of obstacle’s velocity in this situation,

|vO|upper = vmax
A · |pO|A|/r, (23)

FIGURE 10. The extreme situation with a limited perception distance.

where r is the sum of radii of robot and obstacle. When there

exist a detection limits rs, the relative distance |pO|A| between

robot and obstacle can be replaced by rs.

Considering the kinematic constraints of the robot, mod-

els of the robot can be divided into the holonomic and

non-holonomic ones. Therefore, the following corollaries can

be derived from Theorem 1.

Corollary 2: If the robot is holonomic and omnidirec-

tional, with radius rH . The upper bound of the vO can be

applied to the holonomic robot.

|vO|upper = vmax
A · rs/rH . (24)

Corollary 3: If the robot is non-holonomic as concerned

in section IV-B, the trajectory error is controlled within the

maximum error εmax. It is equal to the increasing radius of

the holonomic robot so that rNH = rH + εmax. The upper

bound of the vO can be also applied to the non-holonomic

robot.

|vO|upper = vmax
A · rs/rNH . (25)

C. COMPUTATION COMPLEXITY ANALYSIS

Like the ORCA algorithm, theMVO algorithm still maintains

a low computational complexity and is suitable for quadro-

tor platforms with limited computational capacities. In the

ORCA algorithm, the velocity obstacle area is firstly con-

structed referred to Eq.(6). For limited operations of the equa-

tion, the computational complexity is O(n), where n is the

number of obstacles. Referring to Eq.(7), it is a QP problem to

calculate the optimal speed, and the computational complex-

ity isO(n2). In the MVO algorithm, the velocity obstacle area
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FIGURE 11. Average computing time of constuction of MVO region per
execution vs the number of obstacles.

is expanded into two parts referred to Eq.(11), where the com-

putational complexity of the construction of the VO region

is O(n), the computational complexity of the construction

of the MVO region is O(n). The computational complexity

after synthesis is still O(n) (Fig.11 ). Similarly, after the

obstacle area is obtained, it is a QP problem to calculate

the optimal speed referred to Eq.(12), and the computational

complexity is O(n2). Besides, the limited sensing constraint

and kinematics constraint are designed as linear constraints

of the QP problem, which will not increase the computational

complexity. Therefore, the MVO algorithm does not increase

the computational complexity and applies the complex envi-

ronment with high-frequency and high-speed obstacles.

VI. SIMULATIONS AND EXPERIMENTS

In this section, simulation and experimental results are pre-

sented to illustrate the performance of the MVO approach

in the presence of one and multiple dynamic obstacles. Var-

ious numerical simulations are conduceted to evaluate the

proposed method. Moreover, physical experiments are per-

formed using a holonomic unmanned aerial vehicle platform

Parrot Bebop 2 and a differential-drive vehicle Jackal. Exper-

imental results comparing between the MVO and the ORCA

are also presented in the presence of dynamic obstacles.

A. SIMULATION

In Fig. 12, the simulations are conducted for the scenario

where a robot starts at the original point and moves to

the target point with a maximum speed of 1 m/s. Mean-

while, the obstacle rushes to the robot with an average speed

of 15 m/s. For comparison, the MVO and ORCA method are

both implied in the simulations. There are four snapshots to

show these two methods’ different appearances. Using the

MVO method, the robot generates effective actions before

the feasible velocity cycle D
(

−vO, vmax
A

)

is fully contained

by the velocity obstacle. After that, the robot moves to the

target point with maximum speed. But when using the ORCA

method, the robot tends to move in the same direction of

the obstacle. And because the vO is much larger than the

robot’s,D
(

−vO, vmax
A

)

can be easily contained in the velocity

obstacle. In Fig. 12(b), the region surrounded by blue lines is

the MVO velocity obstacle, which makes it move aside.

FIGURE 12. The red and blue cycle represents the robot and the obstacle,
respectively. The speed of the obstacle is almost 15 m/s and the
maximum speed of robot is 1 m/s. (a) The robot is navigated with the
MVO method, and at 3s, the robot avoids collision successfully. (b) This
figure is the velocity obstacle, the region constructed by the blue line is
the MVO and the red region is the velocity obstacle generated by ORCA.
We can observe that the velocity feasible cycle is in the MVO so that the
robot could generate the actions ahead of time. (c) The robot is navigated
by ORCA, and collision occurs at 3s. (d) We can observe that the ORCA
method have not enough awareness before the velocity feasible cycle is
fully contained by the velocity obstacle region.

FIGURE 13. (a) and (b) Is the scenario where the robot is navigated by the
method without considering kinematic constraints. Before the collision
occurs, the MVO method generates the optimal velocity which can’t be
arrived for the robot. (c) and (d) is the scenario where the robot is
navigated by the MVO method with kinematic constraints, and we can see
the robot’s action is smooth and collision-free.

In Fig. 13, when using MVO without considering kine-

matic constraints, the robot pays not enough attention to

choosing optimal velocity. It will lead the robot cannot reach
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TABLE 1. The variances of the robot’s actions under different collision
avoidance algorithms.

FIGURE 14. Blue and cyan circles are the robot and obstacle, respectively.
The blue solid line and cyan dotted line are robot’s path and obstacle’s
path, respectively. The blue circular sector is the sensing range.
(a) Obstacle gets away from the robot’s sensing range when the robot is
back on the obstacle at 13s. (b) The path generated by the MVO method is
not smooth enough and oscillation occurs. (c) The robot keeps the
obstacle within its sensing range before passing it. (d) The path generated
by the MVO method with limited sensing constraints is smooth.

the desired velocity when the distance between them becomes

small, and the result is the robot cannot get a feasible solution

at last. After considering the kinematic constraints when

using MVO (Fig. 9), the path becomes smooth and the robot

avoids collision successfully. Moreover, the limited field of

view of the robot is not shown since the simulation experi-

ment is mainly to demonstrate the necessity of considering

kinematic constraints.

We conducted another experiment to show that the MVO

algorithmwith kinematic constraints(MVO-NH) can produce

smooth actions. The experimental scenario is the same as that

in Fig. 13, and an obstacle rushes to the non-holonomic robot

from different random directions with a random speed in the

interval [3, 6]m/s. In this scenario,We conducted 1000 exper-

iments and the results are averaged. The variances of the

robot’s speed under the MVO algorithm and the MVO-NH

algorithm are computed with respect to the preferred velocity

v
pref
A . The data in TABLE 1 show that theMVO-NH algorithm

can generate smoother velocities for the robot.

In Fig. 14, the trajectories are obtained by the contrast

experiment of MVO and MVO method with limited sensing

FIGURE 15. The three snapshots of the UAV experiment show the process
of collision avoidance with multiple obstacles. In these snapshots,
the red rectangular box is the target point of the robot. The red circle and
green circle are denoted as robot and obstacle, respectively. The blue
circular sector is the sensing range. Two obstacles rush to the robot in
different directions at twice the speed of the robot.

constraints. The common parameters of both robot and obsta-

cle are radius r = 0.6 m, maximum velocity vmax
A = 0.6 m/s.

The parameters of robot are sensor range rs = 3 m, sensor’s

half-angle αs = 1.919 rad/s, initial point = [−5, −5]T ,

goal point = [5, 5]T . The parameters of the obstacle are

initial point = [5, 5]T , goal point = [−5.3, −5.3]T . We can

observe that the robot navigated with only MVO loses the

sight obstacle briefly when the robot is back on the obstacle.

And theMVOmethodwith limited sensing constraints avoids

this situation happened. So it is necessary to consider the

limited field of view of a robot especially.

B. EXPERIMENT SETUP

1) IMPLEMENT

Ourmethod is evaluated on the holonomic and non-holonomic

platforms with encountering a different number of obstacles

in the serials scenario. Note that in every scenario, the obsta-

cles rush to the robot while the robot moving to the target

point. The robot calculates collision-free actions every period

using the MVO method.

The holonomic robot platform is Parrot Bebop 2 (Fig. 15),

which is equipped with Raspberry Pi 3 with the Robot Oper-

ating System (ROS). Bebop is a kind of quad-rotor helicopter

with opened interfaces to control three-axis linear speed. The

maximum speed is 0.5 m/s in both forward and backward

directions and its mass is about 0.5 kg. The lighter weight
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FIGURE 16. The two snapshots of the non-holonomic experiment show
the process of collision avoidance with multiple obstacles. In these
snapshots, the red rectangular box is the target point of the robot. The
red and green circles are denoted as the robot and obstacles. The blue
circular sector is the sensing range.

brings more flexibility, so it has a faster speed response. In the

experiments, the shape of Bebop is assumed to be a circle with

radius 0.3m. But the local sensing power is not strong enough

to get accurate location information.

Jackal Unmanned Ground Vehicle is a differential-drive

robot platform with on-board mini PC preloaded ROS pack-

ages (Fig. 16). On-board CPU is Intel’s Core i7 6700. The

maximum velocity is limited at 0.6 m/s in our experiments

and the maximum rotate speed is 1 rad/s. We can use

ROS interfaces to deliver the orders of velocity and rotate

speed to the robot. The obstacles are the human and the

remote-controlled holonomic robot refitted by DJI ROBO-

MASTER 2016 INFANTRY.

In the indoor experiments, for convenience, the robot and

obstacles are tracked by the OptiTrack motion capture sys-

tem. The position and orientation information is sent every

5 ms from the central computer through Wi-Fi. To simulate

the limited sensing scenario, the robot is artificially set to

avoid obstacles onlywithin the sensor range, where the sensor

distance rang rsA is 3m and the half detection angular range

αs
A is 3π

5
. And the velocity information of every robot and

obstacle is inferred from the position and orientation data

using Kalman filter.

In the outdoor experiments, Velodyne VLP16 LIDAR is

applied as a detection module to gather the environment

laser-point cloud (Fig. 20). Therefore, in the scenario which

limits the robot’s field of view, the maximum distance of

LIDAR we restricted under 3m and the half detection angular

range αs
A is 3π

5
. After that, the obstacles’ current positions

are predicted by the Kalman equation through the Hungary

algorithm.

2) PERFORMANCE METRICS

Here we propose the performancemetrics of our experiments,

to verify the feasibility of our MVO method.

• Method feasibility: The MVO method tends to reduce

the cases of no solution when facing high-speed obsta-

cles. If the unsolvable cases are too much, the robot will

collide with an obstacle or overreact.

• Collision-free movement: The robot travels from the

original point to the target point, while the actions are

collision-free ones with encountering obstacles. And

the robot would stop the movement when the relative

distance is smaller than the safe distance.

• Smooth action: The action orders should be smooth and

easy for a robot to follow. The non-holonomic robot has

limited linear velocity and angular velocity, which are

obvious observation features.

C. EXPERIMENT RESULTS

The experiments are conducted in following three basic sce-

narios which limit the robot’s field of view:

• Holonomic robot scenario: We set two basic scenarios

in this part. One is the robot encountering a single obsta-

cle and another is multi-obstacle existing(Fig. 16). The

robot’s initial point and goal point are the same one or

different ones, and Bebop needs to reach the goal point

without collision. The speed of obstacles is almost twice

as large as the Bebop’s. And the maximum velocity of

the robot is limited at 0.6 m/s in our experiments

• Non-holonomic robot scenario: The scenario is the same

as the holonomic robot scenario. The obstacles rush to

Jackal with a constant velocity. Jackal has to calculate

its actions to navigate to the goals.

Fig. 17 shows the traces of the agents, which are recorded

in different scenarios. Note that when the number of obsta-

cles increases, the robot never overreacts and oscillates. The

MVO with kinematic constraints combined with the feasible

velocity region of the non-holonomic robot gives the desired

velocity and rotate speed of the robot. It brings more smooth

and safety to the non-holonomic robot. We simply consider

that our formulations are capable of handling the distinction

should it be made and satisfy the metrics. The snapshots

in Fig. 16 shows the performance of a non-holonomic robot

in the multi-obstacle scenario.

Fig. 18 shows the holonomic robot avoided collision with

one obstacle. The velocity of the obstacle is almost 1.1 m/s

and it moved straight to the robot. And the average speed of

the robot is 0.5m/s. Notice that here we added a little margin

to the robot’s radius. In the figure, we can observe that the

robot generated evasive action when the obstacle is close to

the robot at 5 s. And the snapshots in Fig. 15 present the

collision-free navigation in themulti-obstacle scenario for the

holonomic robot.
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FIGURE 17. The path point data of non-holonomic robot experiments are
plotted by using Matlab, which shows smooth navigation of the robot.
The red one is the robot and the blue ones are obstacles. The red circular
sector is the sensing range. (a) and (b), single obstacle. (c) and (d),
multi-obstacle.

FIGURE 18. Bebop avoided collision with a single obstacle using MVO.
The blue line is the velocity of the robot and the orange one is the
velocity of the obstacle.

We also conduct a comparing experiment between the

ORCAmethod and theMVOmethod. The scenario in Fig. 19

is the same as the scenario with the non-holonomic robot. The

only difference is the method used for navigation. We can see

that the robot has not enough awareness about the coming

obstacle on account of the limited field of view, and it gener-

ated effective action when the obstacle was so closed to the

robot. When the obstacle is close enough to the robot, ORCA

generates the velocity order in the same direction with the

obstacle. Because of the kinematic constraints, the robot can-

not flee from the velocity obstacle. And put the experiment

result with Fig. 17, we can get the conclusion that our MVO

method is useful when there exist high-speed obstacles in the

workspace.

In Fig. 20, Jackal’s detection module is LIDAR and

the field of view is limited in a specific range. In the

FIGURE 19. The non-holonomic robot experiment navigated by the ORCA
method. Collision occurs in the process of navigation. The red circular
sector is the sensing range. (a) The snapshot of the experiment shows the
collision occurred. (b) The path of the experiment is plotted in Matlab.

FIGURE 20. Non-holonomic robot avoided collision with multiple
obstacles using MVO, which has a certain range of angles and a limited
field of view. In the image on the upper left corner, the red point is the
running human and the black one in the yellow cycle is another moving
obstacle.

experiment, we artificially limited the detection range of

the sensor, to verify our algorithm. The robot moves to the

target point and avoid collision with the human and moving

obstacle. The human speed is around 2 m/s and the robot’s

maximum speed is 0.6 m/s. We use the MVO method con-

cerned above with limited field of view.

VII. CONCLUSION

In this article, a novel two-period velocity obstacle method

called MVO is presented for a mobile robot with a limited

field of view to avoid collision with high-speed obstacles

in dynamic scenarios. An extended velocity obstacle is con-

structed to avoid collision with the obstacles whose veloc-

ities are larger than the maximum speed of the robot. The

limited sensing field of view and kinematic constraints are

incorporated into the MVO approach. Extensive experiments

are conducted on the holonomic and non-holonomic robotic

platforms to verify the efficacy of the proposed method.

In future work, the dynamic constraints of the mobile robot

will be considered. In addition, the trajectory prediction of

dynamic obstacles will be studied to improve the performance

of the MVO method. We will apply the MVO algorithm to

more scenarios, such as different robot models and different

sensor perception capabilities.
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