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ABSTRACT In order to solve the problem of insufficient search ability of the unmanned surface vehi-

cle (USV) collision avoidance planning algorithm, this paper proposes an improved ant colony optimization

algorithm (ACO). First, aiming at the static unknown environment, in order to improve the real-time

performance of USV online planning, and considering the environmental characteristics of USV operation

for improving ACO to search for the optimal path, a dynamic viewable method is proposed for the local

environment model. Second, according to the known dynamic environment, based on the motion velocity

model and International Regulations for Preventing Collisions at Sea (COLREGS), a reverse eccentric

expansion method is designed to deal with the dynamic obstacles. Then, aiming at the problem that ACO

has a slow convergence speed, an improved pseudo-random proportional rule is proposed to select the ant

state transition. And the wolf pack allocation principle and the maximum-minimum ant system are used

to update the global pheromone to avoid the search falling into local optimum. Finally, the convergence,

real-time performance, and stability of the improved ACO are verified through the simulation experiment of

USV collision avoidance in the static unknown and dynamic known environment.

INDEX TERMS Unmanned surface vehicle (USV), ant colony optimization algorithm (ACO), viewable

method, reverse eccentric expansion method, collision avoidance planning.

I. INTRODUCTION

As an autonomous marine vehicle, unmanned surface vehi-

cle (USV) attracts wide attention due to its fast sailing speed,

small ship scale and high intelligence. Its advantage lies in its

ability to carry out dangerous and unsuitable tasks formanned

vessels [1]. Therefore, it has broad development prospects in

both military and civilian fields, and has become a research

hotspot of intelligent equipment at home and abroad. Liter-

atures [2], [3] summarize the development history, research

status and future trends of USV. At present, a variety of USVs

have been applied in military and scientific research fields.

Collision avoidance planning is an important research

direction in the development trend of USV. Its purpose is to

find an optimal path without collision from the starting point

to the target point in an unknown environment with obsta-

cles [4]. It is both a prerequisite for the USV to complete its
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mission and an important indicator of the level of intelligence.

At present, scholars from various countries have done a lot

of research work on the USV collision avoidance planning

method. Svec et al. have proposed a USV collision avoidance

method based on three path planning methods (A∗ algo-

rithm, local boundary method and game tree method). The

method combines the heuristic A∗ algorithm with the local

boundary optimal programming, and obtains the obstacle

information by using the game tree search method, so that

the optimal path of the USV collision avoidance planning

can be quickly obtained [5]. Liu et al. firstly, have ras-

terized the environment and established an environmental

potential field based on distance factors. Finally, the fast

step method is used to enable the formation USV to quickly

plan the path in a complex, high sea state environment [6].

Kim et al. have combined Line-of-sight (LOS) navigation

strategy and based on angular rate limitation (ARL) stud-

ied individual USV collision avoidance planning problems
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under high-speed motion conditions. Although this method

is similar to the A∗ algorithm, ARL limits the convergence

angle of LOS and considers the USV’s own motion abil-

ity, the choice of planning points is different [7]. Based on

International Regulations for Preventing Collisions at Sea

(COLREGS), Tam et al. based on the encounter situation of

the two ships and the evolutionary algorithm have achieved

dynamic collision avoidance of the two ships. The method

evaluates the feasibility of the USV collision avoidance plan

in accordance with COLREGS based on the collision risk of

obstacles at fixed time intervals [8], [9]. For the purpose of

USV navigation cost reduction, Song et al. have proposed

a novel multi-layer fast stepping method (MFM), which

firstly constructed an environment containing ocean current

information, and established force field through attraction

and repulsive force set in the environment. Finally, real-time

collision avoidance of individual USV was realized based on

the fast steppingmethod [10]. Due to the complex constraints,

more uncertain factors and critical real-time demand of path

planning for USV, an approach of fast path planning based on

voronoi diagram and improved Genetic Algorithm has been

proposed by Song et al., which makes use of the principle

of hierarchical path planning. Simulation results verify that

the optimal time is greatly reduced and path planning based

on voronoi diagram and the improved Genetic Algorithm is

more favorable in the real-time operation [11].

The ant colony optimization algorithm (ACO) [12], [13]

was first proposed by the Italian scholar M. Dorigo and

others. It is inspired by the behavior of simulating ant social

division and collaborative learning. ACO has the advantages

of positive feedback, parallelism and strong robustness, and

has successful cases in solving path planning [14], [15] and

function optimization [16], [17]. Aiming at the problem that

ACO has a slow convergence speed and is easy to fall into

the local optimum [18], [19], many scholars at home and

abroad have made many improvements. T. Stutzle et al.

have proposed a Max-Min Ant System (MMAS) ACO to

prevent premature convergence. However, when the average

distribution of environmental information is in all directions,

the pheromone released by the ant will mislead the deci-

sion behavior of the ant colony [20]. In order to solve the

convergence speed problem of ACO, Yao et al. have pro-

posed a heterogeneous feature ACO in robot path planning

problem. By introducing the force field factor, the ant is

driven to optimize the path to a higher fitness space, which

effectively improves the search speed of the algorithm [21].

Cekmez et al. have proposed a multi-group cooperative opti-

mization ACO to exchange optimal information to achieve

data fusion, avoiding the algorithm falling into premature

convergence [22]. Chaari et al. have proposed a new efficient

hybrid ACO-GA method, using the ACO method to find

the suboptimal solution, and then using the GA to search

for the optimal solution in the suboptimal solution, which

is used to solve the global robot path planning in static

environment [23]. To enhance the global searchability and

convergence speed of ACO, Cao has proposed an improved

ACO and applied it to solve the robot global path planning

problem. In the improved ACO, pheromone quantity is rein-

forced in some short paths of each cycle, and the pheromone

evaporation rate is adjusted dynamically with the change of

iterations [24].

Aiming at the problem of USV collision avoidance plan-

ning, firstly, in view of the static unknown environment,

in order to improve the real-time performance of USV online

planning, this paper combines the dynamic environmentmod-

eling method [25] with the improved ant colony optimization

algorithm (IACO), and uses viewable method [26] to con-

struct the local static unknown USV operation environment

model. Secondly, in view of the known dynamic environ-

ment, based on the motion velocity model and COLREGS,

the reverse eccentric expansion method is adopted to treat

the dynamic obstacles. In addition, in order to improve the

convergence speed of ACO and avoid falling into the local

optimum, the improved pseudo-random proportion rule is

adopted as the state transition rule, and the pheromone is

updated globally by referring to the wolf pack allocation

principle [27] and MMAS. Finally, IACO is used to realize

the USV collision avoidance planning and to complete the

simulation verification.

II. ENVIRONMENTAL MODEL

A. STATIC ENVIRONMENT MODEL

1) USV COLLISION AVOIDANCE PLANNING STRATEGY

The dynamic environment modeling method adopted in this

paper is to set up an environment window moving together

with the USV under the condition of high-speed motion, and

conduct a dynamic collision avoidance planning for the USV

at a fixed time. In collision avoidance planning, only obsta-

cles in the current rolling window are modeled. In this way,

as the environment window keeps rolling forward, the opti-

mization of USV online planning is greatly improved. Among

them, the smaller the environment window design is, the

less the environment information will be, and the faster the

real-time planning speed will be. The larger the environment

window is, the greater the amount of information will be

grasped. Because of the limited sensing range of the sensor

carried by USV itself, USV in this paper adopts the analog

environment sensing sensor (navigation radar) to obtain the

static unknown environment, the size of the rolling window

is set as the actual detection range of the navigation radar.

For the collision avoidance planning of static unknown

obstacles, the dynamic environment modeling method

designed in this paper has the following two characteristics:
• For each collision avoidance planning, all known obsta-

cle information are included in the collision avoidance

planning instead of only aiming at the environmental

information in the rolling window. For static obstacles

in the unknown environment, the collision avoidance

planning always takes the end point as the target point.
In this paper, all static obstacles detected by USV sensors

are stored in the obstacle information link list. Each collision

avoidance planning will carry out global path planning based
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on all environmental information in the obstacle information

link list. Although this will lead to more and more environ-

mental information participating in dynamic programming,

it also adds the ‘‘memory’’ function to the algorithm to avoid

the USV falling into the local optimum and causing the USV

to oscillate in the trap.

• Collision avoidance planning adopts new trigger mech-

anism of unknown environment information instead of

fixed time interval

In the course of navigation, if it encounters an environment

that is not in the obstacle information list, it will add the

environmental information to the obstacle information list,

shorten the fixed time interval of the trigger, and increase the

number of triggering plans. So not only can the newly discov-

ered unknown obstacles respond quickly and effectively, and

avoid unnecessary waste of triggering collision avoidance

planning too frequently. In the absence of new environmental

information, even if the planning is triggered multiple times,

the USV navigation path will not change significantly.

In summary, when USV is performing local collision

avoidance planning, each step of the environmental window

scrolling must judge whether the USV navigation path is

based on the known environmental information to collide

with the unknown obstacle detected by the navigation radar.

If there is no collision, USV continues to sail according to

the originally planned path. Otherwise, the local environment

will be modeled according to the navigation radar to obtain

new unknown environment information, so as to find the local

optimal path for the local collision avoidance planning of

USV. Then USV will be sailed along the new path until it

reaches the end of the route.

2) STATIC ENVIRONMENT MODELING METHOD

In this paper, USV uses analog navigation radar to obtain

a static unknown environment. Navigation radar detects the

surrounding environment by emitting electromagnetic waves

and receiving the reflected waves from obstacles, that is,

the intersection of electromagnetic waves and the surface of

obstacles is the reflection point or obstacle point. As shown

in figure 1, according to the distance di and angle θi between

each reflection point and the navigation radar, the position

information of each obstacle vertex relative to the navigation

radar is known, and the position information is converted into

the position information relative to the center of mass of USV,

so as to complete the detection of the local static unknown

environment in the USV dynamic rolling window.

In order to facilitate ACO to search for the optimal

path, this paper adopts viewable method to model the local

static unknown environment in the dynamic rolling window.

In view of the fact that the USV should be regarded as a par-

ticle in the collision avoidance planning, and that the actual

USV has a specific size, the obstacles in the environment need

to be expanded outwards equivalent. Where, this process is

called expansion process [28], and the purpose of expansion

is to improve the safety of the USV in the collision avoidance

planning path.

FIGURE 1. Detection of unknown obstacles by navigation radar.

FIGURE 2. (a) Puffing method 1, (b) Puffing method 2.

a: VIEWABLE INFLATION METHOD

For the elliptical obstacle, according to the actual need to set

the safe distance, it is expanded into an ellipse with the same

ellipse center and a longer radius (longer radius refers to the

safe distance), so that the Pythagorean theorem can be used

to obtain the expanded ellipse external rectangle.

For polygonal obstacles, they are generally divided into

convex polygonal and concave polygonal obstacles. In lit-

erature [29], the concave polygonal obstacles are expanded

by the expansion method of convex polygonal obstacles,

as shown in figure 2 (a), it can be seen that this way of

inflation may lose the optimal path in the planning of col-

lision avoidance, so this paper will design a applies to both

the expansion method of the convex polygonal and concave

polygonal obstacle, as shown in figure 2 (b).

Therefore, this paper firstly uses the vector area method

to determine whether the vertex of a polygon is convex or

concave. As shown in figure 3, polygons are set to form

vectors in clockwise order. The area of the polygon is shown

in formula (1):

SABCDEFG = SABba+SBCcb+SDEed−SCDdc

− SEFfe − SGFfg − SAGga (1)

where it takes the trapezoid area formula as an example, xi
and yi are the coordinates of point i, each trapezoid area

is calculated according to formula (2). Obviously, when the

direction of each vector of the polygon is as shown in figure 3,

the sum obtained is positive.

SABba =
1

2
(yA + yB)(xB − xA) (2)

If the vertex of a polygon is a concave point, the area

of the vector triangle formed by the vertex and the neigh-

boring point with the same vector direction as the polygon

is opposite to the area of the vector polygon, for example

SABCDEFG × SCDE < 0. If the vertex of a polygon is a convex
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FIGURE 3. Vector area method.

FIGURE 4. (a) Convex case, (b) Concave case.

point, the area of the vector triangle formed by the vertex and

the neighboring point with the same vector direction as the

polygon is the same as the area of the vector polygon, for

example SABCDEFG × SBCD > 0.

Secondly, according to the concavity and convexity of

polygon vertex, the corresponding vertex expansion method

is designed. As shown in figure 4 (a), vertex A of the polygon

is a convex point, and A is used as the origin of the coordinate

to establish a rectangular coordinate system. According to

its neighboring points F and B, the angle between its angle

bisector and the positive direction of the axis can be obtained,

as shown in formula (3):

α = 6 FAX −
6 BAF

2
(3)

where h is the manually set safe distance, then the puffed

obtained point is the intersection point between the reverse

extension line of 6 BAF angle bisector and the parallel line

outside the polygon ABCDE with a distance of h from AB

(or AF), as shown in formula (4):

x =
−h

(

yB
xB

+ tanα
)

· cos
(

arctan
yB
xB

)

y =
tanα · h

(

yB
xB

+ tanα
)

· cos
(

arctan
yB
xB

) (4)

Similarly, as shown in figure 4 (b), the vertex F of the

polygon is a concave point, which can also be obtained by the

above method. However, the obtained puffed point becomes

the intersection point of 6 AFE angular bisector and parallel

lines outside the polygon ABCDE and separated from AF

FIGURE 5. Method based on relative position detection.

(or FE) by h, instead of the reverse extension line of angular

bisector.

b: VIEWABLE BUILD METHOD

The state transition point in IACO is the viewable point in

the viewable view, so the key to view construction is to

judge the visibility of any two visible points. The so-called

visibility refers to whether the path formed by any two visible

points intersects the obstacle of the environmental space dur-

ing the collision avoidance planning process. Therefore, this

paper adopts the method based on relative position detection

for discrimination, as shown in figure 5, that is, to deter-

mine whether the line segment P1P2 composed of path

point P1 and path point P2 intersects the polygon obstacle

ABCDE .

The method based on relative position detection is to firstly

figure out the distance d1, d2, d3, d4 and d5 between the

endpoint P1 and each vertex of the obstacle. And it sorts

them according to the distance size to select the two obstacle

vertices closest to the starting point P1 of the path. Then it

judges whether the boundary line of the obstacle with the two

vertices closest to P1 as the endpoints intersects. As shown

in figure 5, it is determined whether P1P2 intersects AE , AB

and BC . If they intersect, P1P2 will conflict with obstacles.

Therefore, the question of whether path P1P2 intersects with

obstacles in environmental space turns into the question of

whether P1P2 intersects AE , AB and BC .

Where Line segment P1P2, AE , AB and BC can be

expressed by line formula (5):

Ax + By+ C = 0 (5)

According to the formula of the distance from point (x,y) to

straight line, the distance da and db from point A and B to path

segmentP1P2 and the distance dP1 and dP2 from pointP1 and

P2 to AB are calculated respectively, as shown in formula (6).

Where the distance is signed plus or minus.

d = (Ax + By+ C) /
√

A2 + B2 (6)

As shown in figure 5, if the point is above the line segment,

the distance d from the point to the line segment is less than

zero. If the point is below the line segment, d of the line

segment is greater than zero. According to the above rules,
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FIGURE 6. USV encounter situational division.

the distance from point A and B to path segment P1P2 is da
and db. If da × db < 0 and dP1 × dP2 < 0, the boundary line

AB of the obstacle intersects path P1P2. If da × db < 0 and

dP1×dP2 ≥ 0, AB and P1P2 do not intersect. If da and db are

not equal to zero at the same time, it means that AB and P1P2

only intersect at one vertex A or B, and the obstacle has been

expanded at this time, so AB and P1P2 could be considered

as disjoint. If da and db are equal to zero at the same time,

it means that the boundary line AB of the obstacle is on the

same line as the path P1P2, so AB and P1P2 do not intersect.

Similarly, whether path P1P2 intersects AE and BC could be

determined, so as to determine whether path P1P2 conflicts

with this obstacle.

B. DYNAMIC ENVIRONMENT MODEL

1) USV ENCOUNTER SITUATIONAL DIVISION

When USV and the target ship can be within the scope of

‘‘mutual visibility’’, the encounter situation of USV can be

divided into three situations of encounter, cross encounter and

chasing based on COLREGS [30], as shown in figure 6.

• encounter:When the target ship is locatedwithin a sector

of 355◦ ∼ 5◦ centered on the USV.

• cross encounter: When the target ship is located within

a sector of 5◦ ∼ 112.5◦ centered on the USV, it is called

the starboard crossing. When the target ship is located

within a sector of 247.5◦ ∼ 355◦ centered on the USV,

it is called the port side crossing.

• chasing: Take the USV as the overtaking ship, when the

USV is located in the sector of 112.5◦ ∼ 247.5◦ with

the target ship as the center.

Figure 7 shows four situations in which USV encounter

collision avoidance based on COLREGS, namely, encounter,

chasing, port side crossing and starboard crossing. Where the

arrow direction represents the course of the dynamic obstacle,

USVfinds the dynamic obstacle in ‘‘Start’’, and ‘‘Goal’’ is the

USV navigation target point.

FIGURE 7. (a)Encounter, (b)Chasing, (c)Port side crossing, (d)Startboard
crossing.

2) USV COLLISION RISK MODEL

In view of the high speed and safety of USV movement, this

paper adopts the method of combining fuzzy mathematics

and neural network [31] to calculate the risk of collision.

a: MEMBERSHIP FUNCTION OF THE SHORTEST

ENCOUNTER DISTANCE (DCPA):

where d1 is the safe distance for collision avoidance at the

latest, d2 is a threshold.

b: MEMBERSHIP FUNCTION OF THE TIME (TCPA) THAT

REACHES THE SHORTEST MEETING POINT:

If TCPA > 0

utT =



















1 TCPA ≤ t1
(

t2 − TCPA

t2 − t1

)2

t1 < TCPA ≤ t2

0 TCPA > t2

(8)

Else

utT =



















1 TCPA ≤ t1
(

t2 + TCPA

t2 − t1

)2

t1 < TCPA ≤ t2

0 TCPA > t2

(9)

where t1 =

√

d21−DCPA2

1v
, t2 =

√

d22−DCPA2

1v
.

3) DYNAMIC OBSTACLE AVOIDANCE MODEL BASED

ON COLREGS

The dynamic obstacle reverse eccentricity expansion method

designed in this paper based on COLREGS, that is,

the dynamic obstacle provided by AIS system will be

reversed eccentricity expansion to the collision avoidance

direction required by COLREGS, so that the dynamic obsta-

cle avoidance direction of USV conforms to the COLREGS.

As shown in figure 8, where O∗ is the reverse eccentric

expansion circle, O
′
is the safety expansion circle, and R is

the radius of the dynamic obstacle envelope circle.
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FIGURE 8. Reverse eccentric puffing effect diagram.

a: USV COMPOSITE COLLISION RISK udt :

udt = min

(

udT + utT

2
, 1

)

(10)

b: REVERSE ECCENTRIC EXPANSION OF CIRCLE RADIUS R∗:

R∗ = 3R′

(

1 +
2

3
sin

(π

2
(udt + 2)

)

)

(11)

When udt is small, the dynamic obstacle reverse eccentric-

ity expansion is large, and the impact of collision prevention

rules is large. When udt is large, the dynamic obstacle reverse

eccentricity expansion is small, and the impact of collision

prevention rules is small.

c: THE CENTER OF CIRCLE O∗ IS EXPANDED BY REVERSE

ECCENTRICITY:
{

O∗ (x) = O
′
(x)+

(

R∗ − R′
)

cos ζ

O∗ (y) = O
′
(y)+

(

R∗ − R′
)

sin ζ
(12)

ζ =











ψ + π
/

2, if Encounter

ψ + π
/

2, if Chasing

ψ ± π
/

2, if Crossing

(13)

where, ζ is the eccentricity angle of the reverse eccentricity

expanded circle. When 1v turns to vO along the arc, if the

turn is counterclockwise, it is the left intersection and ‘‘±’’ is

+. The opposite is the right cross case, where ‘‘±’’ is −.

4) USV COLLISION AVOIDANCE PLANNING STRATEGY

The motion velocity model of USV and dynamic obstacle is

shown in figure 9. In the figure, the boat-borne coordinate

system is established with USV as the center. The dynamic

obstacle is the reverse eccentrically expanded circle O∗. T

is the tangent point of circle O∗. The USV velocity is vUSV .

FIGURE 9. USV and dynamic obstacle motion speed model.

The dynamic obstacle velocity is vO and the relative velocity

is 1v.

As shown in figure 9, only abs ( γ ) ≥ µ is required to

ensure that USV does not collide with dynamic obstacles at

any time. γ is the included angle between 1v and USV −

O∗ directions. The geometric relationship in the figure can

be obtained as γ :

γ = tan−1 vUSV sin(α − θ ) − vO sin(β − θ )

vUSV cos(α − θ ) − vO cos(β − θ )
(14)

Take the derivative of γ and simplify to get:

1γ =
sinϕ

1v
1vUSV +

vUSV cosϕ

1v
1α (15)

Real-time Angle adjustment γ enables USV to meet

dynamic collision avoidance condition |γ +1γ | ≥ µ,

namely:
{

1γ ≥ µ− r, if γ > 0

1γ ≤ −(µ+ r), if γ < 0
(16)

Therefore, according to the dynamic obstacle information

provided by the AIS system, reverse eccentric swelling is

used to generate virtual obstacle. At this time, USV makes

instantaneous static processing for all environmental infor-

mation, that is, virtual obstacle is regarded as the static known

obstacle after instantaneous expansion, and the improved ant

colony optimization algorithm designed in this paper can

be used to plan a real-time safe air route at this moment.

Moreover, based on the motion velocity model of USV and

dynamic obstacle, the optimal 1vUSV and 1α should be

solved simultaneously to meet the dynamic collision avoid-

ance condition of USV for avoiding dynamic obstacle. There-

fore, USV collision avoidance planning in a known dynamic

udT =















1 |DCPA| < d1
1

2
−

1

2
sin

[

π

d2 − d1
·
|DCPA| (d1 + d2)

2

]

d1 < |DCPA| ≤ d2

0 d2 < |DCPA|

(7)
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environment can be regarded as a multi-condition objective

optimization problem in a known instantaneous static envi-

ronment, as shown in the following formula.























f (1vUSV ,1α) = min (m1|1vUSV | + m2 |1α|)

sinϕ

1v
1vUSV +

vUSV cosϕ

1v
1α ≥ µ− r, if γ > 0

sinϕ

1v
1vUSV +

vUSV cosϕ

1v
1α ≤ −(µ+ r), if γ < 0

(17)

where f (1vUSV ,1α) is the objective optimization function

of IACO, and m1 and m2 are the weights of 1vUSV and 1α

respectively.

III. IMPROVED ANT COLONY OPTIMIZATION

ALGORITHM

A. STATE TRANSITION RULES BASED ON DIRECTION

ANGLE WEIGHTS

In the USV workspace model, the angle between the ant

origin and terminal line and the positive east direction is

defined as the course angle ω. While the angle between the

ant real-time position and terminal line and the positive east

direction is defined as the real-time course angle ωe, so the

real-time course Fq:

Fq =
ωe · ω

‖ωe‖ · ‖ω‖
(18)

State transition rules refers to the ant to choose the next

state point s criterion, this paper uses the pseudo-random

proportion rule implementation based on real-time heading

angle state transition, by adding the weights of direction angle

this coefficient, can choose the path optimization of ants,

increase the convergence speed of ACO, the state transition

probability design as shown below:

s

=







argmaxj∈allowedk

{

[

τij(t)
]α

·
[

ηij(t)
]β

·
1

Fq

}

if q ≤ q0

S else

(19)

pkij (t)

=



















[

τij (t)
]α [

ηij (t)
]β

∑

r∈allowedk

[τir (t)]
α [ηir (t)]

β
·
1

Fq
if j ∈ allowedk

0 else

(20)

where τ is the pheromone concentration function, allowedk
is the set of viewable points of point k that ant i is allowed

to make state transition, η is the heuristic function, α is the

importance of pheromone, β is the importance of the heuristic

function.

B. GLOBAL PHEROMONE UPDATE MODEL BASED ON

WOLF GROUP ALLOCATION PRINCIPLE

In order to avoid the local optimum and improve the conver-

gence speed, this paper uses thewolf pack allocation principle

to update the pheromone globally. Because the wolves will

eliminate the thin wolves based on the natural law of survival

of the fittest, leaving a strong wolf to ensure the success of

foraging and improve the survival of the wolves. Therefore,

this paper uses the principle of wolf pack allocation for

reference to conduct pheromone enhancement on the path

traveled by the top quartile of ants in each generation:

τij(t + n)

= (1 − α)τij(t) +1τij(t) (21)

1τij(t)

=







Q

LBEST
if (i, j) belongs to the global optimal path

0 else

(22)

where α is the global pheromone volatility coefficient, LBEST
is the length of the current global optimal path.

τij(t + 1) = λ× τij(t + n)

λ = 1 + 0.5 ×
D

Lk
(23)

where D is the euclidean distance from the starting point to

the end point.

C. MMAS-BASED GLOBAL PHEROMONE UPDATE MODEL

In order to make the optimization algorithm still have certain

exploration ability in the later stage of search, this paper uses

MMAS for reference and limits the pheromone processing

after the completion of the global pheromone update based

on the wolf pack allocation principle:

τij(t + 1) =











τmin if τij(t + 1) < τmin

τmax if τij(t + 1) > τmax

τij(t + 1) else

(24)

where τmin and τmax are the upper and lower limits of their

own pheromone concentration.

IV. SIMULATION RESULTS AND ANALYSIS

A. USV COLLISION AVOIDANCE PLANNING SIMULATION

RESULTS IN STATIC UNKNOWN ENVIRONMENT

In order to verify the effectiveness of the USV collision

avoidance planning method based on IACO, ACO and IACO

have been simulated and compared based on Qt.

According to the environment model of USV, each param-

eter is set to: α = 1, β = 7, ρ = 0.3, Q = 300, m = 30,

Nmax = 500. And the USV has a speed of 50 knots. In order

to verify the superiority of IACO, the global environment has

been taken as a rolling window and ACO and IACO have

been run repeatedly. The optimal path and algorithm aver-

age iteration by the two optimization algorithms are shown

in figure 10, 11 and table 1.
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FIGURE 10. Multi-test USV optimal path comparison.

FIGURE 11. Multi-test algorithm average iteration curve.

TABLE 1. Multi-test comparisons of ACO and IACO.

By comparing the optimal path length, heading and head-

ing difference of the two ACOs in figure 11-13, it can be

intuitively seen that the path of ACO is relatively long and the

heading changes greatly when USV sails. While the path of

IACO is relatively short and the heading changes little. Based

on the data analysis in figure 10 and table 1, it can be seen

that:

• the optimal path length of ACO is greater than IACO.

ACO of the optimal average path length is about

274.6 km, while IACO is about 265.8 km and relatively

stable, this suggests that the optimal path from IACO is

better than ACO.

• In terms of the average number of iterations, the number

of iterations below 275 km is basically greater than

50 by ACO. And the average time of ACO is 957 ms.

Those show that ACO has a slow search speed, and the

optimization algorithm is prone to premature stagnation,

FIGURE 12. USV heading change comparison.

FIGURE 13. Heading difference change comparison.

so it is easy to fall into local optimal. However, IACO

can basically plan the path length below 266 km after

20 iterations, and the average time of IACO is 306 ms,

indicating that IACO has strong search ability and fast

convergence speed.

The collision avoidance planning process of ACO and

IACO are shown in figure 14, where the green and purple

solid lines respectively represent the planning results of ACO

and IACO. It can be seen from the figure that the path

smoothness and efficiency planned by IACO are better.

The results show that ACOhasweak searching ability, poor

searching ability and effect. IACO has strong search ability,

fast convergence speed and high efficiency. In addition, IACO

has good experimental results in solving concave polygon

obstacles and local optimization.

B. SIMULATION RESULTS OF USV COLLISION AVOIDANCE

PLANNING FOR DYNAMICALLY KNOWN ENVIRONMENTS

Based on Qt, the collision avoidance planning of the known

dynamic environment based on COLREGS is firstly divided

into four kinds of encounter situations for simulation verifi-

cation: encounter, chasing, port side crossing and startboard

crossing, as shown in figure 15. Where USV cruising speed
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FIGURE 14. (a)Overall comparison chart USV, (b)Magnification chart 1,
(c)Magnification chart 2 of collision avoidance planning comparison
chart.

FIGURE 15. (a)Encounter, (b)Chasing, (c)Port side crossing, (d)Startboard
crossing of USV collision avoidance planning based on COLREGS.

vUSV = 40kn, maximum speed vUSV max = 60kn, and

dynamic obstacle speed vO = 20kn.

As can be seen from figure 15∼19, by establishing a

motion velocity model, the USV takes the reverse eccentri-

cally expanded circle of the dynamic obstacle as the collision

FIGURE 16. Composite collision risk of USV encounter based on collision
avoidance rules.

FIGURE 17. Composite collision risk of USV chasing based on collision
avoidance rules.

FIGURE 18. Composite collision risk of USV port side crossing based on
collision avoidance rules.

avoidance area. In the collision avoidance process, the safety

of the USV and the dynamic obstacle is not only guaranteed,

but also the avoidance direction of the USV conforms COL-

REGS. Since the USV finds the collision risk in the first place

and the USV is far away from the dynamic obstacle at this

time, so USV has enough time to combine with COLREGS

to dynamically avoid collision. Therefore, USV only realizes

collision avoidance planning by adjusting the course in the

case of encounter, port side crossing and startboard crossing.

In the case of chasing, the course and speed are adjusted at the

same time. The highest speed of USV is adopted to surpass

the dynamic obstacle, and the cruise speed of USV is restored

after collision avoidance.

Secondly, this paper simulates and verifies the collision

avoidance planning of multiple dynamic known obstacles

based on COLREGS, as shown in figure 20. Where USV

cruising speed vUSV = 40kn, maximum speed vUSV max =

60kn, dynamic encountering obstacle 1 speed vO1 = 20kn,
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FIGURE 19. Composite collision risk of USV startboard crossing based on
collision avoidance rules.

FIGURE 20. Simulation of multi - dynamic known obstacle avoidance
planning for USV based on COLREGS.

dynamic overtaking obstacle 2 speed vO2 = 20kn, dynamic

left crossing obstacle 3 speed vO3 = 50kn. In order to make

the route of collision avoidance planning clearer, the reverse

eccentrically expanded circle of dynamic obstacle is not

shown in the simulation.

In figure 20, USVfirstly avoids the encountering obstacle 1

only by adjusting the course. Secondly, the course and speed

are adjusted simultaneously to avoid the overtaking obsta-

cle 2, and the highest speed of USV is adopted to surpass the

obstacle 2 until the collision avoidance is realized. Then the

cruise speed of USV is restored. Due to the fast speed of the

left intersection obstacle 3, it is difficult for USV to achieve

collision avoidance according to its cruising speed. So at this

time USV adopts deceleration strategy to complete collision

avoidance planning while adjusting the course. Finally, USV

first returns to its cruising speed for a period of time until it

is not far away from the end point. And it slows down to the

end point by itself.

In addition, figure 21∼23 show the heading, heading dif-

ference and velocity change curve of USV multi-dynamic

known obstacle collision avoidance planning based on

COLREGS. It can be seen from the figure that the track

planned by USV is relatively smooth, and the adjustment pro-

FIGURE 21. USV heading change curve.

FIGURE 22. USV heading difference change curve.

FIGURE 23. USV velocity change curve.

cess of heading, heading difference and velocity all meet the

constraint conditions of USV collision avoidance planning

under the condition of high-speed movement.

The analysis results show that according to the known

dynamic obstacle information provided by AIS, the dynamic

collision avoidance planning of USV based on directional

eccentric expansion and motion speed model can not only

realize the safe collision avoidance of USV, but also make

the avoidance direction of USV conform to COLREGS.

V. CONCLUSION

Based on the analysis of the disadvantages of ant colony

optimization algorithm in USV collision avoidance planning,

such as insufficient search ability, slow convergence speed

and be easy to fall into local optimum, aiming at the static

unknown environment, this paper has combined the dynamic

environment modeling method with IACO to improve the

capability of local dynamic programming of USV, and

proposed a viewable method to construct the environment

model. Based on the motion velocity model and COLREGS,

a reverse eccentric expansion method for dynamic obstacles

has been designed. In addition, the improved pseudo-random
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proportion rule has been adopted to select ant state tran-

sition, which greatly has improved the convergence speed

of ant colony optimization algorithm. Based on the prin-

ciple of wolf pack allocation and MMAS, the pheromone

has been updated globally, which not only has avoid the

interference of pheromone on the worst path, but also has

avoid the search getting trapped into local optimum. Finally,

USV collision avoidance planning in static unknown environ-

ment and dynamic known environment has been realized by

IACO. Simulation results show that the proposed approach

is feasible and effective. In addition, this method has been

specially combined with the actual motion characteristics

of USV to avoid the danger caused by large and frequent

heading adjustment to the high-speed navigation of USV,

which is of certain practical significance to the research on

safe navigation control of USV.
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