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Abstract

The Traffic Alert and Collision Avoidance System (TCAS) is mandated worldwide to
protect against aircraft mid-air collisions. One drawback of the current TCAS design
is limited support for certain closely spaced parallel runway operations. TCAS alerts
too frequently, leading pilots to often inhibit Resolution Advisories during approach.
Research is underway on the Airborne Collision Avoidance System X (ACAS X), a
next-generation collision avoidance system that will support new surveillance systems
and air traffic control procedures. ACAS X has been shown to outperform TCAS for
enroute encounter scenarios. However, the design parameters that are tuned for
the enroute environment are not appropriate for closely spaced parallel operations
(CSPO).

One concept to enhance the safety of CSPO is a procedure-specific mode of the
logic that minimizes nuisance alerts while still providing collision protection. This
thesis describes the application of surrogate modeling and automated search for the
purpose of tuning ACAS X for parallel operations. The performance of the tuned
system is assessed using a data-driven blunder model and an operational performance
model. Although collision avoidance system development normally relies on human
judgment and expertise to achieve ideal behavior, surrogate modeling is efficient and
effective in tuning ACAS X for CSPO as the tuned logic outperforms TCAS in terms
of both safety and operational suitability.

Thesis Supervisor: Mykel J. Kochenderfer
Title: Technical Staff, Surveillance Systems Group, MIT Lincoln Laboratory

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

3



Acknowledgments

I would like to thank MIT Lincoln Laboratory for supporting my education and
research over the past two years, especially Col. (ret) John Kuconis, Division 4 Di-
rector Dr. Israel Soibelman, Group 42 Leader Gregory Hogan, and Associate Group
42 Leader Dr. Gregg Shoults.

I am thankful for Dr. Wesley Olson’s leadership and support as head of the Group
42 ACAS X program, and for continually guiding and supporting my work in every
aspect. This work was sponsored by the FAA TCAS Program Office AJM-233, and
I gratefully acknowledge Neal Suchy for his leadership and support.

I am extremely grateful to Professor Jonathan How as my advisor and thesis
supervisor for looking out for my best interests over the past two years and ensuring
that I stayed on target in successfully completing my coursework and research on
time.

I am indebted to Dr. Mykel Kochenderfer for his continual guidance during my en-
tire time at Lincoln Laboratory, including helping to provide direction for my research
and invaluable critique of this thesis throughout the entirety of its development. Like-
wise, Dr. Adan Vela stood by my side during critical moments of research and writing
and dedicated extensive effort and time to helping me complete quality work. I would
not have succeeded without the hard work and commitment exhibited by these two
gentlemen.

I am thankful to numerous members of Group 42 and others within Lincoln Lab-
oratory who offered their expertise when I needed it most. Specifically, I wish to
thank Jessica Holland, Dylan Asmar, James Chryssanthocopoulos, Tomas Elder, and
Thomas Billingsley for their insights and assistance in completing this work. Chung
Lee of Georgia Tech was a great help due to his early input regarding potential opti-
mization tools. I am also appreciative of my officemate Melvin Stone for his seemingly
endless supply of stories, advice, peanuts, and tea.

Finally, the love and support shown by my family and friends never ceases to
amaze me. Throughout the years, they have played a critical role in building the
foundations for who I am today and every one of my accomplishments, and I am
forever grateful.

4



Contents

1 Introduction 11

1.1 Traffic Alert and Collision Avoidance System . . . . . . . . . . . . . . 11

1.2 Closely Spaced Parallel Operations . . . . . . . . . . . . . . . . . . . 14

1.3 Collision Avoidance System Design . . . . . . . . . . . . . . . . . . . 17

1.4 ACAS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Objective: Tuning ACAS Xo for CSPO . . . . . . . . . . . . . . . . . 20

1.6 Literature Review: Optimization Methods . . . . . . . . . . . . . . . 21

1.7 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Worst-Case Analysis of Airborne Collision Avoidance Systems 25

2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Worst-Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Optimization via Surrogate Modeling 37

3.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Historical Encounter Set . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Simulation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Defining the Objective Value . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Screening Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Sampling Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Searching the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5



3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Performance Analysis 55

4.1 Historical Encounter Set Performance . . . . . . . . . . . . . . . . . . 57

4.2 Individual Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Generated Encounter Set Performance . . . . . . . . . . . . . . . . . 63

4.4 Operational Performance Analysis . . . . . . . . . . . . . . . . . . . . 68

4.5 Policy Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Application of Worst-Case Analysis to ACAS Xo Development . . . . 76

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusions and Further Work 85

A Objective Value Weighting Sweep 89

Bibliography 102

6



List of Figures

1-1 Example TA cockpit display and annunciation . . . . . . . . . . . . . 12

1-2 Example RA cockpit display and annunciation . . . . . . . . . . . . . 12

1-3 Aircraft trajectories and TCAS commands in the Überlingen mid-air
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Chapter 1

Introduction

This thesis asserts that a surrogate modeling and automated search process can tune

an airborne collision avoidance system for ideal alerting behavior during closely spaced

parallel operations (CSPO). The goal is to produce a system that maintains or en-

hances the safety level of the current operational system while reducing unnecessary

alerts, thereby decreasing pilot workload during parallel approaches. Improved alert-

ing behavior will allow for greater operational efficiency during CSPO, leading to

greater airport throughput and cost savings especially during Instrument Meteoro-

logical Conditions in which pilots and controllers cannot rely on visual separation

between aircraft.

1.1 Traffic Alert and Collision Avoidance System

The Traffic Alert and Collision Avoidance System (TCAS) provides pilots with verti-

cal avoidance maneuver guidance when a near mid-air collision is imminent. TCAS is

currently mandated on all commercial aircraft with more than thirty seats or a max-

imum takeoff weight greater than 33,000 lbs, in addition to being used extensively by

many business jet type aircraft [9]. TCAS is able to provide pilots with both Traf-

fic Alerts (TAs) and Resolution Advisories (RAs) for any aircraft with an operating

transponder. TAs warn pilots of nearby traffic that poses a potential threat and fa-

cilitate pilots in visually acquiring the traffic. TAs consist of an aural annunciation
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(“Traffic, Traffic”) and traffic information such as relative altitude on a visual display

in the cockpit, as depicted in Figure 1-1.

Figure 1-1: Example TA cockpit display and annunciation

Figure 1-2: Example RA cockpit display and annunciation

If a threat becomes imminent, an RA is issued to prevent a collision by command-

ing the pilot to execute a vertical avoidance maneuver (e.g., Climb, Descend, Level
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Off). As shown in Figure 1-2, RAs include visual instructions such as target vertical

speeds or pitch angles, as well as aural annunciations (e.g., “Climb, Climb”). TCAS

functions independently of ground-based systems and air traffic controllers and relies

on surveillance equipment onboard the aircraft [9].

If an aircraft has begun a maneuver in concordance with an RA, the ground con-

troller is no longer responsible for separation between that aircraft and any other

aircraft, airspace, or obstacle. Once the controller is aware of the RA, he or she

is not authorized to instruct the pilot to maneuver contrary to the RA. Controller

responsibility for separation is reinstated when either the aircraft returns to its pre-

viously assigned altitude or the pilot indicates that the RA maneuver is completed.

The pilot in command is ultimately responsible for the safe operation of flight and

should immediately respond to any RA unless a response would jeopardize safety or

is deemed unnecessary by visual contact with the target aircraft [9]. To illustrate the

importance of these responsibilities, Figure 1-3 shows the aircraft trajectories and

TCAS commands in the 2002 mid-air collision over Überlingen, Germany. The con-

flicting instructions of TCAS (Climb) and air traffic control (Descend) resulted in the

Russian Tu-154 passenger jet following the controller’s instructions and descending

into the path of the Boeing B-757 [23].

Figure 1-3: Aircraft trajectories and TCAS commands in the Überlingen mid-air

collision [23]
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1.2 Closely Spaced Parallel Operations

The National Airspace System (NAS) is operated by the Federal Aviation Adminis-

tration and consists of various units that regulate, coordinate, and supervise aircraft

travel over the United States. The NAS is designed to enable safe and efficient air-

craft operations through the interaction of airspace structure, technologies, policies,

and standard procedures [40]. One such set of procedures is CSPO, in which multi-

ple aircraft simultaneously approach parallel runways for landing at a given airport

to increase airport throughput. Depending on the airport, parallel runways can be

laterally spaced as close as 700 ft [28]. Uninterrupted and efficient CSPO is normally

feasible during Visual Meteorological Conditions when pilots are able to maintain vi-

sual separation with other aircraft. However, Instrument Meteorological Conditions

(IMC) are defined by varying degress of reduced visibility and cloud clearance, de-

pending on the type of airspace. As visibility deteriorates in IMC, safety cannot be

ensured at smaller runway spacings and CSPO is restricted to a smaller set of runway

configurations. This limited CSPO capability decreases airport throughput, causes

delays in the air and on the ground, and decreases the overall efficiency in the NAS

[7].

Executing CSPO often allows for higher airport throughput than would otherwise

be achievable [7]. However, such operations are sometimes prohibited due to safety

concerns, such as during IMC. Between October 2010 and March 2011, CSPO ac-

counted for 13% of all unique RAs detected in U.S. high-tempo regions. Among the

most affected regions were San Francisco, where 92.6% of RAs were during parallel

approaches, Atlanta (56.3%), and Denver (54.1%) [28]. Under current regulations,

independent parallel approaches, in which no minimum diagonal spacing is required,

may only be conducted in IMC for runways separated laterally by at least 4300 ft [25].

This requirement is relaxed down to a minimum of 3000 ft if certain conditions are met

for approaches equipped with the Precision Runway Monitor (PRM) system. PRM

employs a ground-based high-update-rate radar that allows an air traffic controller to

closely monitor aircraft tracks on parallel approaches. If either aircraft deviates, or
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blunders, from its correct trajectory into a predefined No Transgression Zone (NTZ)

during PRM, as illustrated in Figure 1-4, the controller will issue an alert to prevent a

collision if TCAS has not already issued an RA [3]. These separation standards were

developed by simulating worst-case blunder scenarios and determining the minimum

acceptable runway separations [25].

Runway

Stagger

No Transgression

Zone (NTZ)20
00

ft

Runway

thresholds

Turn onto

localizer

Glide slope

capture

Figure 1-4: Example parallel approach scenario

PRM is only available at select U.S. airports and only allows dependent ap-

proaches, in which aircraft must maintain certain diagonal spacing in addition to

in-trail spacing, for runway separations of at least 3000 ft [25]. Figure 1-5 gives an

example of this dependent approach geometry.
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Figure 1-5: Example dependent approach geometry [2]

PRM also requires an additional specially trained controller to monitor and pro-

vide separation assurance for the aircraft on parallel approach. This staffing require-

ment can be difficult to schedule, especially in the case of unanticipated weather

events. Providing an alternate means of conducting CSPO in IMC for smaller run-

way separations, specifically an enhanced airborne collision avoidance system, would

enable high throughput at a larger set of airports without requiring additional staffing

or technology on the ground.

CSPO often involves unique aircraft geometries that require collision avoidance

logic to respond with fine-tuned sensitivity. One example is an overtake scenario,

shown in Figure 1-6, in which a trailing aircraft overtakes a lead aircraft on a parallel

approach due to speed differential.

Figure 1-6: Example overtake geometry [9]

A second example involves navigation error during CSPO in IMC. For instance, an

aircraft may appear to be initiating a blunder toward another aircraft on approach, as

shown in Figure 1-7, but it may simply be oscillating along the approach path while

16



attempting to stabilize its track along the localizer during an Instrument Landing

System (ILS) approach.

Figure 1-7: Example oscillation geometry

As a third example, an aircraft that seems to be aimed toward another aircraft

on final approach may simply be angling to initially establish the localizer, as in

Figure 1-4. These situations are typically safe and intentional, but the challenge lies

in tuning the collision avoidance system such that it can distinguish between these

safe scenarios and imminent threats due to deviations from the correct nominal flight

paths.

1.3 Collision Avoidance System Design

There are a number of trade-offs that must be taken into account in the design of a

collision avoidance system. For example, the system should alert frequently enough to

maintain a desired level of safety. However, the system should also minimize nuisance

alerts such that safe operations can be performed without being interrupted by an RA.

There are several hazards associated with nuisance alerts. For example, when faced

with too many unnecessary alerts during intentional and safe operations, pilots may

become desensitized and distrust the collision avoidance system, potentially ignoring

legitimate alerts [23, 31].

Collision avoidance systems are highly complex and a comprehensive understand-

ing of their decision processes is not a trivial task for most common users. The fact
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that pilots regularly utilize collision avoidance systems “implies that they must have

made a leap of faith” [27]. This leap of faith is heavily based on experience with

the system and its perceived predictability during risky events, leading the pilot to

generalize the system’s dependability [24]. Perceived system unreliability can also

lead to increased response times due to indecision about the best course of action

[33]. Finally, excessive nuisance alerts may increase the potential for induced colli-

sions where a pilot follows a nuisance RA, maneuvers unnecessarily, and creates an

unsafe situation.

Figure 1-8: Example TCAS pseudocode [34]

TCAS follows a complex set of heuristic rules, as illustrated in the pseudocode

of Figure 1-8, that are difficult to adjust in concordance with airspace and proce-

dure changes over time. At its foundation, the TCAS logic uses the projected time

until closest point of approach to determine when to issue an RA. However, during

slow-closure situations, such as in Figure 1-9, the projected time until closest point

of approach may be too large to provide adequate protection against an intruder air-

craft. In these circumstances, TCAS uses an enlarged critical region based on the

aircraft altitude. These ranges are defined as follows: 0.2NM below 2350 ft Above
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Ground Level, 0.35NM below 5000 ft Mean Sea Level, and 0.55NM between 5000 ft

and 10,000 ft Mean Sea Level [9]. Although the thresholds defining the critical re-

gion tend to provide an adequate level of safety, rigid rules like these can result in

undesirable alert rates and behavior during CSPO [23, 30, 37].

Figure 1-9: Example slow-closure geometry [9]

1.4 ACAS X

As the airspace evolves with the introduction of the Next Generation Air Trans-

portation System (NextGen), research is underway to field a system known as the

Airborne Collision Avoidance System X (ACAS X) to replace TCAS. In contrast to

the rule-based logic of TCAS, ACAS X uses probabilistic models and cost functions

to determine an optimal collision avoidance action [21]. Four variants of ACAS X

are in development for different users and objectives. The first variant is ACAS Xa,

which uses active secondary radar supplemented with passive surveillance. ACAS Xa

is the analogue to TCAS and is intended to be used by current TCAS-mandated

users during the majority of flight operations. ACAS Xo, the subject of this thesis, is

tuned for specific operations such as CSPO. ACAS Xo issues procedure-specific RAs

for designated aircraft while ACAS Xa maintains global protection against all other

aircraft in the vicinity. The initial version of ACAS Xo uses the same surveillance as

ACAS Xa, while future versions may incorporate data obtained directly from other

aircraft such as bank angle or autopilot status. The two other variants, ACAS Xp
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and Xu, are designed for general aviation aircraft and unmanned aicraft, respectively.

The optimization and development process of ACAS X is depicted in Figure 1-10

[21]. ACAS X differs from TCAS in that it uses a probabilistic dynamic model of

aircraft behavior and optimizes the alerting behavior with respect to an offline cost

function defined by numerous design parameters (approximately forty). The aim of

the cost function is to balance safety and operational goals such as minimizing collision

risk and nuisance alerts. With an appropriate cost function and probabilistic model,

a dynamic programming approach is used to precompute an offline look-up table and

optimal system parameters (millions). Using the offline look-up table and additional

online parameters in real-time, the optimal action is determined at each timestep.

Probabilistic

Dynamic Model

Offline

Look-up Table

Dynamic

Programming

Onboard

Logic

Offline Design

Parameters

Online Design

Parameters

Figure 1-10: ACAS X optimization and development process

1.5 Objective: Tuning ACAS Xo for CSPO

CSPO is the initial target application for ACAS Xo. The goal of ACAS Xo is to

provide additional protection during CSPO, especially in IMC, while minimizing un-

necessary alerts. Providing protection with minimal alerting will increase the effi-

ciency of parallel approaches during IMC and help achieve NextGen goals such as

fewer flight delays, greater cost savings, and increased throughput at high-volume

airports [17]. TCAS has been able to maintain adequate safety levels during CSPO

[23], but it is also plagued with excessive alert rates which cause pilots to inhibit

RAs by switching to a TA-only mode [28]. To be operationally suitable for CSPO,

ACAS Xo must maintain the safety level of TCAS while improving the overall alerting

behavior, specifically by reducing nuisance alerts.
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The performance of ACAS Xo depends on design parameters that can be tuned to

modify various behaviors of the collision avoidance logic. Hand-tuning these design

parameters is challenging since the impact of changing parameters can be difficult to

predict, usually resulting in sub-optimal system behavior. Instead, optimization via

surrogate modeling is applied to tune parameters for desirable ACAS Xo performance

during CSPO. The safety and alerting performance of ACAS Xo on a set of CSPO

encounters is essentially a “black-box” function that is dependent on the individual

design parameter values. Using surrogate modeling to tune ACAS Xo allows for a

more efficient and effective process that results in ideal alerting behavior during CSPO

encounters.

The global optimization process used here efficiently selects data points to test

in order to model the “black-box” function that is unknown to the user [11]. The

function value at a given point is unknown until a simulation is performed for a

certain combination of parameter settings. Exploring the design space improves the

function prediction, thereby allowing the search method to identify promising areas

of the design space (i.e., parameter settings) to search [18]. Eventually the design

space is explored thoroughly enough to determine the location of the global optimum.

The objective of this thesis is to apply the aforementioned global optimization to

ACAS Xo such that it achieves acceptable performance on the encounter set used for

tuning as well as additional independent CSPO encounter sets that represent various

aircraft behaviors and procedures. Furthermore, the tuning process should result in

ACAS Xo outperforming TCAS in terms of both safety and operational suitability in

all encounter sets used for analysis.

1.6 Literature Review: Optimization Methods

Variations of this global optimization process have been used in many different ap-

plication areas. One example is a model for flame velocity (output) based on five

different chemical reaction rates (input). The objective was to tune a computer fluid-

dynamics model to match physical data for flame velocity. High computational cost
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for each run dictated the need for careful selection of data points to test [35]. Another

application has been in minimizing the drag coefficient of an airfoil (output) defined

by various inputs such as thickness-to-chord ratio. Expensive computer simulations

must be run to determine the drag coefficient at each distinct input setting [10].

There are many different types of surrogate models that can be used for tuning.

Kriging models are often used due to the flexibility and high dimensionality that they

allow. Kriging was originally developed for geostatistics, where core samples were

taken at carefully selected positions with the goal of predicting the concentration of

a mineral at a given location [18]. The model has been applied to a wide range of

topics and represents a special case of radial basis functions. The Kriging model is

used extensively in work by Forrester et al., Jones et al., Sacks et al., and Schonlau,

who sometimes refer to the model as a “stochastic process model” [10, 11, 18, 35, 36].

Sacks et al. explored various methods of determining the Kriging model parameters

that best represent a given data set, including Integrated Mean Squared Error and

Maximum Mean Squared Error [35].

Jones et al. developed a process called “Efficient Global Optimization” which uses

a Kriging model and search criteria that maximizes expected improvement for each

evaluation point [18]. Forrester et al. expanded the scope of global optimization work

by applying Kriging and max expected improvement criteria to noisy computer exper-

iments and adjusting the estimate of prediction error [10, 11]. Regis and Shoemaker

developed a global optimization method subject to nonlinear constraints. Additional

constraints were imposed which force the search method to cycle between global and

local search by specifying the next evaluation point’s minimum distance from pre-

vious data points [32]. This thesis mainly utilizes methods developed by Forrester

et al. to show that global optimization can be used to tune ACAS Xo for optimal

performance during CSPO [11].

On a broader level, there are numerous stochastic optimization methods that do

not rely on an already existing model of the “black-box” function. A genetic algorithm

is one such method which uses ideas derived from evolution to find an optimal solution,

as outlined by Goldberg and Whitley [12, 42]. A process of selection is applied to each
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population to determine the best solutions. Recombination and mutation processes

are applied to the population to generate a new population that is ideally comprised

of more promising solutions.

Alternatively, Kirkpatrick et al. and Press et al. describe Simulated Annealing as

an optimization method that bases its implementation on thermodynamic principles

[19, 29]. The goal is to navigate around many local optima within a large design space

to find the approximate location of the global optimum. An annealing schedule is

generated which dictates the direction and magnitude of change in parameter settings.

An important feature of Simulated Annealing is that, in a minimization problem for

example, the algorithm may accept sample points with higher objective values, but

with decreasing probability over time.

Gaussian Adaptation is an additional optimization method that is similar to Sim-

ulated Annealing with respect to the decreasing probability of accepting less desirable

points over time [20]. Drawing from its name, Gaussian Adaptation adapts a Gaussian

distribution to regions of feasible points in the design space. Certain regions in the

design space are designated as feasible based on whether associated samples satisfy

a criterion that becomes more demanding over time. This increasingly demanding

criterion drives the aforementioned decreasing probability of accepting points with

higher objective values (when minimization is desired).

1.7 Contributions and Outline

This thesis offers several contributions to the problem of designing airborne collision

avoidance systems:

❼ Worst-case scenarios are identified for various blunder types and severities, and

the available alert time is calculated for each scenario. The worst-case available

alert times help guide the development of collision avoidance systems by defining

alerting requirements at various parallel approach configurations.

❼ Optimization via surrogate modeling is proven as a viable global optimization
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process for tuning collision avoidance systems. Given a collision avoidance logic

dependent on a small number of design parameters, the logic’s performance can

be tuned to behave optimally for specific operations and procedures.

❼ The tuning process is shown to not only result in acceptable ACAS Xo per-

formance, but also in exceptional performance on independent encounter sets

compared to that of TCAS. As ACAS Xo development continues in the future,

the tuning process can be reapplied to update the design parameter settings

based on revised versions of the logic.

The remainder of this thesis is organized as follows:

❼ Chapter 2 completes a worst-case analysis of CSPO. The alerting limits of col-

lision avoidance systems during these worst-case scenarios are determined for

varying aircraft behaviors, runway configurations, and pilot responses. These

collision avoidance limits help guide the development of ACAS Xo and establish

realistic expectations for performance in worst-case scenarios.

❼ Chapter 3 provides an overview of the surrogate modeling and tuning process,

as well as the encounter set used for simulations. The results of the tuning

process are presented in preparation for more detailed performance analysis in

Chapter 4.

❼ Chapter 4 analyzes and compares the safety and alerting performance of TCAS

and ACAS Xo. Additional encounter sets are utilized to compare TCAS and

ACAS Xo alerting ranges and probabilities in certain approach configurations.

Performance contributions of individual ACAS Xo parameters are analyzed,

and the ACAS Xo logic is tested in various worst-case scenarios from Chapter

2. The alerting behavior of ACAS Xo is also compared to the limits determined

in Chapter 2.

❼ Chapter 5 concludes and suggests areas for further work related to the limits of

collision avoidance and tuning ACAS Xo for CSPO.
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Chapter 2

Worst-Case Analysis of Airborne

Collision Avoidance Systems

During CSPO, there may exist certain blunders and aircraft configurations that com-

prise “worst-case” scenarios in which a collision avoidance system may be unable to

alert in time to prevent a near mid-air collision (NMAC). This inability to alert in

time may be caused by several factors, most notably: a small period of time between

blunder initiation and NMAC, and the desire to minimize nuisance alerts. Minimizing

nuisance alerts is only desirable until safety is undermined. The worst-case scenarios

analyzed in this chapter aid in understanding where this threshold lies. Understand-

ing the alerting requirements of collision avoidance systems during CSPO is helpful

in guiding the development of ACAS Xo and setting realistic expectations for its

performance.

To extract certain worst-case scenarios, two types of basic aircraft blunders rel-

evant to CSPO are simulated for the intruder aircraft, as well as a corresponding

vertical avoidance maneuver for the own aircraft. By simulating these aircraft dy-

namics within feasible parallel approach configurations, scenarios are extracted for

which an NMAC is only avoidable if the collision avoidance system issues an RA

within a small timeframe.
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2.1 Problem Description

A general encounter framework is applied from which worst-case scenarios can be

extracted. Each encounter consists of two aircraft on final approach to parallel run-

ways separated by distance D. The own aircraft is defined to be on final approach

to the left runway and only strays from its nominal flight path to execute a vertical

avoidance maneuver. The intruder aircraft is defined to be on approach to the right

runway and is simulated to blunder into the own aircraft’s flight path. Both aircraft

maintain a constant speed (v1 and v2, respectively) and a 3➦ glide slope, with the

exception of the own aircraft which may deviate from its glide slope to execute an

avoidance maneuver. Only the own aircraft is simulated as equipped with a collision

avoidance system, as the intruder does not terminate its blunder maneuever once

initiated.

Two types of blunders are simulated: constant-drift and constant-turn. The

constant-drift blunder is characterized by the intruder flying a normal final approach

and suddenly altering its course to the left by a constant drift angle β. The intruder

maintains its new course across the own aircraft’s approach path. The constant-

turn blunder is characterized by the intruder flying a normal final approach and then

initiating and maintaining a constant-rate turn to the left with turn rate ω.

The possible avoidance maneuvers for the own aircraft are limited to a constant-

rate climb or descent. The own aircraft dynamics [43] are modeled such that the pilot

applies a constant-acceleration control input until the target rate of climb or descent is

achieved. Unless otherwise stated, the target vertical rate for climbs/descents is fixed

at ±2500 ft/min since that is the greatest vertical rate commanded by TCAS and

ACAS Xo. Furthermore, a 5 s pilot response delay (PD) is assumed unless otherwise

stated. This delay is the elapsed time between the initial RA and the initial pilot

response to the RA. For simplicity, no horizontal avoidance maneuevers are simulated.

This simplification aligns with the implementation of TCAS and ACAS Xo, both of

which restrict RAs to the vertical dimension [9, 21].

The basis of measurement for the limits of collision avoidance is the available time
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to alert in order to avoid an NMAC, which is defined as when aircraft come within

500 ft horizontally (hnmac) and 100 ft vertically (vnmac) of each other. This calculation

requires knowledge of the theoretical time until NMAC, assuming the own aircraft

does not execute an avoidance maneuver, and the time required for the own aircraft

to respond to an RA and climb or descend to a clear-of-conflict altitude. These values

are represented by T and tm, respectively. The difference of these two values results in

the time available for the collisoin avoidance system to issue an RA before an NMAC

is unavoidable, represented by tc:

tc = T − tm. (2.1)

The point at which tc = 0 indicates where an NMAC is unavoidable unless an RA is

issued before the blunder is initiated. Figure 2-1 illustrates the relationship between

T , tm, and tc.

Figure 2-1: Encounter timeline

Figure 2-2 illustrates an example vertical profile over time of the own aircraft

(blue) and intruder aircraft (red) after the intruder has begun to blunder. After the

intruder begins to blunder at time zero, the own aircraft receives an RA at time tc

and initiates a climb avoidance maneuver after the pilot response delay PD. In this

case, since the RA was issued at time tc, the own aircraft achieves clear-of-conflict

vertical separation vnmac at time T . If the RA had been issued any later, the own

aircraft would not have had enough time to maneuver to a safe altitude. If the RA

had been issued earlier, separation would have been achieved with altitude to spare.
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Figure 2-2: Climb maneuver

Figure 2-3: Constant-drift blunder
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Figure 2-3 illustrates the horizontal profile of an example constant-drift blunder

scenario. For the constant-drift blunder, T is defined as a quadratic such that

T =
−b−

√
b2 − 4ac

2a
, (2.2)

where

a = v21 + v22 − 2v1v2 cos(β)

b = 2v2(S cos(β)−D sin(β))− 2Sv1

c = D2 + S2 − h2nmac.

Figure 2-4: Constant-turn blunder

Figure 2-4 illustrates the horizontal profile of an example constant-turn blunder

scenario. T cannot be calculated directly for the constant-turn blunder and requires

a series of intermediate steps. The intruder’s turn radius and velocity help calculate

when the intruder enters and exits the horizontal region defined by a perpendicular

distance of hnmac from either side of the own aircraft’s flight path. The boundaries
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of this region represent the outer bounds for the possible values of T . Discretizing

and searching over this time range yields the time when the intruder is first within

an absolute horizontal distance of hnmac from the own aircraft.

2.2 Worst-Case Analysis

With the previous aircraft dynamics and blunders developed, an analysis of the phys-

ical collision avoidance limits can be completed. For a constant-drift blunder, the

minimum (worst-case) available time to alert (tc) is calculated for a given runway

separation and intruder drift angle β, for 10–90➦ in 5➦ intervals, over all possible

combinations of velocity, longitudinal runway stagger, and longitudinal aircraft stag-

ger. The velocity for each aircraft is searched between 110 and 170 kt in 5 kt incre-

ments. Longitudinal runway and aircraft stagger are both searched between ❂4000

and 4000 ft in 200 ft increments. The vertical aircraft stagger is not directly varied,

but rather derived from the longitudinal runway and aircraft stagger distances.

Figure 2-5 displays the worst-case available time to alert (tc) versus drift angle β

for a 5 s pilot response delay and runway separations of 2500, 3000, 3500, and 4000 ft.

As drift angle β increases, the plot lines become slightly wavy due to the velocity

and stagger discretization eliminating potentially worse scenarios from consideration.

The smallest drift angle β for which the worst-case configuration precludes NMAC

resolution (tc < 0) is 50➦ at 2500 ft runway separation. The worst-case scenario at

3000 ft runway separation that guarantees an NMAC occurs at a 70➦ drift angle.

However, even at a 90➦ drift angle, worst-case scenarios at runway separations of 3500

and 4000 ft do not quite reach tc = 0.

Although tc does not reach zero until β = 50➦ for 2500 ft runway separation, the

available time to alert is still limited for smaller, more realistic drift angles. For

example, even at β = 25➦, the collision avoidance system must recognize the blunder

and decide to alert less than 10 s after the blunder begins. This 10 s threshold is

crossed at β = 30➦ for 3000 ft runway separation. Alerting within 10 s is manageable,

though not trivial, for a system like ACAS Xo.
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Figure 2-5: Worst-case available time to alert (tc) vs. drift angle

Figure 2-6 displays the intruder’s perpendicular deviation from the runway at

the corresponding tc from Figure 2-5, with varying pilot response delays, for 3000 ft

runway separation. Again, the lack of smoothness in the plot lines is due to the same

discretization as in Figure 2-5. Notice that pilot response delay has a larger effect

on tc, and thus the perpendicular distance from the nominal flight path at tc, as the

intruder’s drift angle increases.

Figure 2-6 allows for comparison to a PRM approach, in which the controller

would issue breakout instructions after the intruder violates a 2000 ft wide NTZ. This

2000 ft wide NTZ would begin 500 ft from the intruder’s nominal flight path when

considering the 3000 ft runway separation of Figure 2-6. Considering the 5 s pilot

response delay curve in Figure 2-6, the collision avoidance system would be able to

effectively alert later than during PRM for intruder drift angles below 50➦ (where the

curve crosses the 500 ft mark).
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Figure 2-6: Drift angle vs. perpendicular deviation

For a constant-turn blunder, the minimum (worst-case) available time to alert

(tc) is calculated for a given runway separation and intruder turn rate ω, between 1

and 5 deg/s in 1 deg/s intervals, over all possible combinations of velocity, longitudi-

nal runway stagger, and longitudinal aircraft stagger. The velocity for each aircraft

is searched between 110 and 170 kt in 10 kt increments. Longitudinal runway and

aircraft stagger are both searched between ❂4000 and 4000 ft in 400 ft increments.

These larger increments, compared to those of the constant-drift analysis, are due to

computational limitations.

Figure 2-7 displays the worst-case available time to alert (tc) versus turn rate ω

for a 5 s pilot response delay and runway separations of 2500, 3000, 3500, and 4000 ft.

The filled plot areas represent the tc range for avoidance maneuever vertical rates

between 1500 and 2500 ft/min. For a given runway separation and intruder turn rate,

an increased avoidance vertical rate from 1500 ft/min to 2500 ft/min only adds, at

most, about 1 s to the available alert time tc. Since no curve passes below the tc = 0

line, there are no worst-case scenarios which absolutely preclude NMAC resolution.

For 3000 ft runway separation, the worst-case available time to alert drops below 10 s
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at intruder turn rates greater than or equal to 3 deg/s. Furthermore, each additional

500 ft of runway separation allows for approximately 2 s of additional time to alert.
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Figure 2-7: Worst-case available time to alert (tc) vs. turn rate

Figure 2-8 displays the worst-case available time to alert (tc) versus turn rate ω

for 3000 ft runway separation and pilot response delays of 0, 2.5, and 5 s. The trends

are similar to those observed in Figure 2-7. As expected, each additional 2.5 s of pilot

response delay decreases the available time to alert by 2–3 s.

Figure 2-9 displays the intruder’s perpendicular deviation from the runway at

the corresponding tc from Figure 2-8, with varying pilot response delays, for 3000 ft

runway separation and a 2500 ft/min avoidance maneuever. Comparing the 5 s pilot

response delay curve in Figure 2-9 with a PRM approach, the collision avoidance

system would be able to effectively alert later than when using PRM for intruder turn

rates less than 4 deg/s. With a standard 2000 ft NTZ and 3000 ft runway separation,

PRM alerts when the intruder deviates 500 ft from centerline. Smaller pilot response

delays allow for even greater advantages over PRM alert thresholds, as any intruder

turn rate up to at least 5 deg/s does not require an RA until after the 500 ft mark.
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Figure 2-9: Turn rate vs. perpendicular deviation
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2.3 Discussion

According to Figures 2-5 and 2-6, for reasonable blunders (around 30➦ drift angle

or 3 deg/s turn rate) and assuming a 5 s pilot response delay and 3000 ft runway

separation, the worst-case scenarios allow 5–10 s to alert after the blunder is initiated.

These worst-case alerting requirements correspond to path deviations equal to or

greater than those that would trigger a controller-issued alert during PRM operations,

as displayed in Figures 2-6 and 2-9. There are no cases in which it is too late to avoid

an NMAC (tc < 0) for any turn rate or any drift angle less than 70➦ at 3000 ft runway

separations. However, Figure 2-6 reveals that there are some high-angle drift scenarios

at 3000 ft runway separation that require an alert within only a few seconds of the

start of a blunder.

Taking these conclusions into consideration, it is feasible that ACAS Xo can be

tuned to meet the alerting criteria for all reasonable blunders and potentially more

severe constant-turn blunders. Even in the worst-case and with the most conservative

pilot response assumption (5 s), ACAS Xo could likely detect the blunder and alert

in time to resolve any conflicts. Furthermore, in the case of the more severe drift

blunders, even with a few seconds of available alert time, the blunder may be obvious

enough from the outset that ACAS Xo is able to alert in time. The true abilities of

ACAS Xo, however, cannot be realized until it is tuned for CSPO through surrogate

modeling and automated search. This optimization process is described in the next

chapter.
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Chapter 3

Optimization via Surrogate

Modeling

To achieve optimal ACAS Xo performance with respect to a set of CSPO encounters,

optimization via surrogate modeling is used to tune applicable design parameters.

Optimization via surrogate modeling is an approach that aims to reduce computation

time and increase optimization effectiveness in a large design space by testing data

points that are most likely to lead to the global optimum. The goal of this study is

to tune ACAS Xo for optimal performance during CSPO with respect to both safety

and alerting behavior. The logic can be tuned by altering the settings of multiple

design parameters, the effects and interactions of which are difficult to infer by human

judgment.

The automated tuning procedure applied here begins with a screening study of a

large initial set of design parameters to reduce the dimensionality of the search to a

smaller subset of parameters. Latin hypercubes are optimized to generate a sampling

plan that effectively samples the design space [15]. Each design parameter setting

in the sampling plan is evaluated on 100,000 CSPO encounters using Monte Carlo

simulation. Using the resulting sample data, a surrogate model is generated that

estimates the model parameters, and thus the performance function (the “black-box”

function) at each point in the design space. The sample data and surrogate model

are updated after testing each new infill point (additional sample point) that meets
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the Maximum Expected Improvement criterion. With sufficient data, this iterative

process converges on the optimum [11]. Figure 3-1 outlines the process.
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Figure 3-1: Overview of the optimization via surrogate modeling process

3.1 Performance Metrics

As previously stated, the ultimate goal is to tune ACAS Xo for optimal safety and

alerting behavior during CSPO. Safety and alerting behavior can generally be mea-

sured by two performance metrics:

Risk Ratio =
NMACs with collision avoidance

NMACs without collision avoidance
, (3.1)

Nuisance Alert Rate =
Alerts in non-NMAC encounters

Non-NMAC encounters
. (3.2)

The output of the Monte Carlo simulations includes information about each en-

counter, such as whether an NMAC occurs and whether an RA is issued. The CSPO

encounters are also simulated without any collision avoidance system to determine
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which encounters nominally result in an NMAC. An NMAC is defined to occur when

two aircraft come within 500 ft horizontally and 100 ft vertically of each other.

Additional performance metrics not involved in the optimization process may still

be of interest when analyzing collision avoidance system performance. These addi-

tional metrics, referred to as secondary metrics, relate to specific behaviors during

an RA, such as strengthenings and reversals. For example, a Climb (1500 ft/min)

command could be strengthened to a 2500 ft/min climb rate or reversed to a De-

scend command (1500 ft/min). Though strengthenings and reversals are sometimes

necessary, they should be minimized when possible due to their disruptive nature

[21]. Table 3.1 lists the performance metrics considered in this study. The metrics

in boldface correspond to the primary metrics of Equations 3.1 and 3.2 that are used

in the tuning process. The performance metrics of Table 3.1 are also commonly used

for ACAS Xa performance assessments.

Table 3.1: Optimization Performance Metrics

Metric Description

Unresolved NMACs # NMACs that occur when an alert is issued and when an NMAC would have

occurred otherwise

Induced NMACs # NMACs that occur when an alert is issued but when an NMAC would not

have occurred otherwise

Missed Alerts # NMACs that occur when no alert is issued

Risk Ratio Ratio of total NMACs with collision avoidance to NMACs without collision

avoidance

Nuisance Alert Rate Rate of alerting in encounters where no NMAC occurs both with and without

collision avoidance

Strengthenings # encounters that include a strengthening command

Reversals # encounters that include a reversal command

3.2 Historical Encounter Set

To support the tuning efforts described in this thesis, an historical CSPO encounter

set of 100,000 encounters was generated to enable Monte Carlo simulation. A tech-

nical report describes the historical CSPO encounter model development in further

detail [41]. Individual encounters are used to simulate certain aircraft dynamics, con-
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figurations, and procedures by specifying the states of multiple aircraft at regular

time intervals. This encounter set includes significant aircraft blunders and is used

to assess system safety as well as alerting behavior.

For every encounter, runways are separated by 3000 ft without stagger. A runway

separation of 3000 ft is selected because it represents the minimum distance allowed

for parallel operations without addressing the risk of wake turbulence. For each

encounter, two aircraft are initialized so that they come within 2000 ft of each other’s

longitudinal position at some point along the approach path.

Figure 3-2: Example encounter generation

The 100,000 encounters are generated by randomly selecting two aircraft tracks

from an historical trajectory library. The library contains approximately 140,000

tracks of aircraft on approach to landing during IMC at various airports in the NAS.

Three main assumptions were required to create the historical trajectory library [41]:

❼ Only including trajectories from IMC periods results in only instrument ap-

proach trajectories.

❼ Lateral deviations about the localizer are symmetrically distributed.

❼ An approach path’s glide slope is best determined by the mode of the discretized

probability distribution.
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Each aircraft track is transformed (rotated and/or flipped) such that the aircraft

approaches a generic runway 09L or 09R (east-bound). To create an encounter, two

trajectories are transformed to approach the desired parallel runways. An illustration

of this process is provided in Figure 3-2.

Each sampled trajectory begins at least 10NM from the runway threshold. The

sampling process biases trajectories with large deviations over small deviations by

up to a factor of 1000. Nominally, each pair of trajectories should be vertically

separated by at least 1000 ft when entering the localizer beam, which guides each

aircraft’s lateral position. Blunder types include incorrect altitude join-ups, incorrect

ILS captures (Figure 3-3(a)), and break-out maneuvers in the direction of the paired

aircraft (Figure 3-3(b)), each occurring at a rate of one per hundred approaches. This

rate is chosen so that ACAS Xo is tested against a sufficiently high number of severe

blunders.

(a) Incorrect ILS capture (b) Break-out (c) Large-angle intercept

Figure 3-3: Example aircraft behavior

Because the aircraft trajectories are sampled directly from the historical library,

they exhibit a wide range of behavior, including intercepting the localizer at large

angles (Figure 3-3(c)) and capturing the ILS at a variety of altitudes and distances

from the runway. Some of these behaviors are outside those observed during actual

CSPO operations in IMC. The goal of such an encounter set is to allow for simulations

over a wide range of possible scenarios. This is the encounter set that is used to tune

ACAS Xo for CSPO.
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3.3 Simulation and Evaluation

Collision avoidance system performance is evaluated on a given encounter using Monte

Carlo simulation. Both TCAS and ACAS Xo aircraft are simulated to be equipped

with the same surveillance capabilities to determine the range, bearing, and altitude of

other aircraft within radar range. The range and bearing measurements are corrupted

with zero-mean Gaussian noise with 50 ft and 10➦ standard deviations, respectively,

to account for surveillance uncertainty, while the altitude is quantized to 25 ft.

The state space within which the sensor measurements are taken must be dis-

cretized so that the ACAS X solution is computationally feasible to obtain. Variables

within the horizontal and vertical dimensions are discretized such that the state space

is adequately defined. A pilot response model must also be defined to accurately

reflect pilot response delays observed in real life. For both TCAS and ACAS X sim-

ulations, the pilot response model includes a 5 s initial pilot response delay and a 3 s

subsequent pilot response delay. In other words, the pilot will begin to respond 5 s

after an initial RA is issued and 3 s after any additional RAs are issued.

After an encounter is simulated, a wide variety of performance metrics can be

extracted for that encounter. For the purposes of tuning ACAS Xo, these metrics

include:

❼ Whether an RA is issued for either aircraft

❼ Whether a strengthening RA is issued for either aircraft

❼ Whether a reversal RA is issued for either aircraft

❼ Whether the encounter results in an NMAC

A set of encounters can be simulated with any combination of unequipped aircraft

(i.e., lacking a collision avoidance system) and aircraft equipped with TCAS or

ACAS Xo. By simulating an encounter set with two unequipped aircraft, in ad-

dition to simulating with equipped aircraft, the performance metrics for each case

can be combined to output additional meaningful metrics for each encounter, such
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as specific NMAC types. For example, an NMAC resulting from a simulation of

equipped aircraft is categorized as an induced NMAC if the unequipped simulation

of the same encounter does not result in an NMAC. Unresolved NMACs and missed

alerts can be similarly extracted from the raw output metrics.

3.4 Defining the Objective Value

The collision avoidance system performance for a given set of encounters is essentially

a “black-box” function since the performance cannot be known until simulations are

performed for each combination of design parameter settings. An underlying premise

of surrogate modeling is that the performance of the system can be defined by a single

function value, or objective value, at each point in the design space. Based on the

objective values at different parameter settings, a surrogate model for the function can

be estimated with increasing accuracy as more data points are intelligently selected

and tested over time to find the “black-box” function’s global optimum.

Utility elicitation is one concept that helps generate an objective function which

combines performance metrics into a single objective value [38]. Examples of utility

elicitation methods include additive modeling, swing weight elicitation, and rank-

weighting [8]. Although several methods are available to elicit preferences from users

to determine the appropriate attribute rankings and relative weightings, utility elici-

tation is not within the scope of this study.

The objective function is formulated as a linear combination of two performance

metrics: risk ratio and nuisance alert rate. A weighting sweep is performed to test

various linear combinations of performance metrics and select the weighting that most

effectively tunes ACAS Xo. The weighting sweep procedure and results are provided

in more detail in Appendix A. Since safety is the primary concern, the risk ratio is

given more weight than the nuisance alert rate, resulting in the following objective

function:

Objective Value = 0.95× (Risk Ratio) + 0.05× (Nuisance Alert Rate). (3.3)
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Risk ratio also requires more weight due to its lower-magnitude values compared to

those of nuisance alert rate. The selected linear combination in Equation 3.3 is cross-

referenced and confirmed with a subjective hand-ranking of data points with respect

to overall performance. Such a simple linear combination of performance metrics has

been shown to perform well in decision-making processes [5].

3.5 Screening Study

To maximize computational efficiency in the optimization process, the scope of the

tuning process is reduced. For the ACAS Xo problem, the scope correlates to the

number of design variables that will be tuned. The ACAS X logic incorporates 46

distinct design parameters. Based on prior knowledge of ACAS X, the eight param-

eters listed in Table 3.2 were deemed appropriate to tune and potentially relevant to

ACAS Xo behavior in CSPO encounters. These parameters are discussed in further

detail in technical reports [1, 21]. The goal of the screening study is to extract the

most significant parameters affecting the performance metrics of interest, specifically

the primary metrics of risk ratio and nuisance alert rate.

Table 3.2: Design Parameters Analyzed in the Screening Study

Parameter Description

r alert Cost of issuing an RA to the pilot

r maintain < 1500 ft/min Cost of issuing a “Maintain Vertical Rate” command when the current vertical

rate is < 1500 ft/min

ddx ddy sigma Intruder horizontal acceleration deviation

cycles Number of seconds for which alerting is allowed when in horizontal conflict

horiz. conflict def. Horizontal range that defines an NMAC for logic calculations

vert. conflict def. Vertical range that defines an NMAC for logic calculations

slow clos. rho thresh. Range threshold where time until conflict is calculated using horizontal and

vertical information

slow clos. drho thresh. Range rate threshold where time until conflict is calculated using horizontal

and vertical information

To determine the most significant parameters relative to each performance metric,

the elementary effect on the primary and secondary performance metrics is calculated;
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that is, a sensitivity study is performed. The elementary effect for each parameter-

metric pair is expressed by a mean and standard deviation. The mean value measures

the change in the performance metric for a given change in the parameter. A large-

magnitude mean indicates that the parameter has a strong effect on the given metric.

A large standard deviation indicates that the parameter experiences strong interac-

tions with other parameters [11].

Table 3.3: Design Parameter Screening Study Results (Mean)

Risk Alert Strengthening Reversal

Design Parameter Min Max Mean Mean Mean Mean

r alert −1.5 · 10−2
−3 · 10−3

−0.0643 0.3047 −0.0198 −0.0002

r maintain < 1500 ft/min −1 −1 · 10−2 0.0000 0.0000 −0.0002 0.0000

ddx ddy sigma 0 32 −0.0012 0.0411 −0.0132 −0.0006

cycles 0 5 −0.0684 0.4368 0.0337 0.0020

horiz. conflict def. 300 1,000 −0.0358 0.2039 −0.0087 −0.0002

vert. conflict def. 0 500 −0.0239 0.5672 0.0461 0.0008

slow clos. rho thresh. 1,500 3,000 0.0372 0.0742 0.0140 0.0000

slow clos. drho thresh. 0 500 0.0191 0.0131 0.0008 0.0000

Table 3.4: Design Parameter Screening Study Results (Standard Deviation)

Risk Alert Strengthening Reversal

Design Parameter Min Max Std Dev Std Dev Std Dev Std Dev

r alert −1.5 · 10−2
−3 · 10−3 0.0556 0.1963 0.0174 0.0004

r maintain < 1500 ft/min −1 −1 · 10−2 0.0000 0.0000 0.0002 0.0000

ddx ddy sigma 0 32 0.0009 0.0409 0.0127 0.0009

cycles 0 5 0.0820 0.2817 0.0349 0.0019

horiz. conflict def. 300 1,000 0.0378 0.1434 0.0262 0.0010

vert. conflict def. 0 500 0.0349 0.3387 0.0356 0.0009

slow clos. rho thresh. 1,500 3,000 0.0540 0.1082 0.0270 0.0000

slow clos. drho thresh. 0 500 0.0314 0.0251 0.0017 0.0002

Table 3.3 shows the eight parameter ranges and the mean elementary effect for

each parameter-metric pair. As an example, the cycles parameter, which was tested

between values of 0 and 5, exhibits a relatively large-magnitude elementary effect for

each of the four metrics. Therefore, the cycles parameter has a significant effect on

each of the performance metrics and is included in the optimization process moving
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forward. The standard deviations are also included in Table 3.4. The results indicate

a strong correlation between design parameters with a large standard deviation and

those with a large mean.

The five parameters that exhibit significant elementary effects for the primary

metrics are: (1) cost of alerting, (2) number of cycles, (3) horizontal conflict definition,

(4) vertical conflict definition, and (5) slow closure rho threshold. The cost of alerting

relates to the cost of issuing an initial RA to the pilot. The cycles parameter indicates

the number of seconds the logic may continue issuing an RA while the two aircraft

remain in horizontal conflict for an extended period of time. The cycles parameter is

particularly relevant when considering CSPO encounters in which low closure rates

are prevalent. The horizontal and vertical conflict definitions define the NMAC region

on which the ACAS X logic bases its calculations, though the actual horizontal and

vertical NMAC definitions remain unchanged (500 ft and 100 ft, respectively) for the

performance metrics. The slow closure rho threshold parameter defines the range

threshold between aircraft where ACAS X begins using both horizontal and vertical

state information to calculate the estimated time until conflict. These five design

parameters are used for the remainder of the tuning of ACAS Xo for CSPO.

3.6 Sampling Plan

The next step to prepare for the optimization is to generate a sampling plan that

will provide a uniform, space-filling initial data set over the design space. This initial

sampling plan will lead to a well informed surrogate model from which additional

infill points can be intelligently selected for testing. The sampling plan is generated

using Latin hypercubes that are optimized with respect to the Morris-Mitchell cri-

teria. The result is a sampling plan that does not repeat any one parameter setting

and comprehensively samples the design space [11]. Forty sample points, each rep-

resenting a combination of parameter settings, are tested on the historical encounter

set of 100,000 CSPO encounters. Table 3.5 lists the ranges used for the five design

parameters.
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Table 3.5: Design Parameter Ranges used for Optimization

Design Parameter Min Max

r alert −5 · 10−3 −2.5 · 10−3

cycles 4 7

horiz. conflict def. 200 400

vert. conflict def. 0 100

slow clos. rho thresh. 1,500 2,500

3.7 Surrogate Modeling

After simulating the 100,000 CSPO encounters from the historical encounter set,

and calculating objective values using Equation 3.1 through Equation 3.3 for each

parameter setting from the sampling plan, a surrogate model can be generated that

approximates the objective value of Equation 3.3 at every point in the design space.

The Kriging model is a Gaussian process based model that allows for the calcula-

tion of a prediction mean and variance at every point in the design space. The Kriging

model is chosen for its ability to model complex functions and measure uncertainty at

each point [22]. Specifically, the Kriging model is defined by the radial basis function

of the form

ψ(i) = exp



−
k
∑

j=1

θj|x(i)j − xj|pj


 . (3.4)

The Kriging basis function only differs from a Gaussian basis function in that the

Kriging basis allows the width and smoothness of the function to vary in each di-

mension. Holding the width and smoothness constant for every parameter yields the

Gaussian basis function [11].

In Equation 3.4, ψ denotes the basis function (one centered at each data point),

k is the number of design parameters (dimensionality), θ defines the basis function

width (also known as the “activity” parameter) for each dimension, and p determines

the function smoothness for each dimension. The sample data and their observed
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responses (objective values) are defined, respectively, as follows:

X = {x(1),x(2), ...,x(n)}T , (3.5)

y = {y(1), y(2), ..., y(n)}T . (3.6)

The observed responses at each data point are considered to be derived from a stochas-

tic process with mean 1µ, where 1 is an n by 1 vector of ones:

Y = {Y (x(1)), ..., Y (x(n))}T . (3.7)

The basis function of Equation 3.4 can then be used to calculate the correlation

between each pair of responses, resulting in an n by n correlation matrix Ψ, where

an element Ψ(i, l) of the matrix is defined by

cor[Y (x(i)), ..., Y (x(l))] = exp



−
k
∑

j=1

θj|x(i)j − x
(l)
j |pj



 . (3.8)

The correlation between a pair of responses, expressed by Equation 3.8, depends on

the distance between each point as well as the θ and p parameters [11].

The next step in generating the surrogate model is to calculate maximum likeli-

hood estimates (MLEs) for the parameters µ and σ, which are base terms used to

define the model. The MLEs of µ and σ are calculated by maximizing the likelihood

of the existing sample data given the parameters:

L(Y (i), ...,Y (n)|µ, σ) = 1

(2πσ2)n/2
exp

[

−
∑n

i=1 (Y
(i) − µ)2

2σ2

]

. (3.9)

Equation 3.9 can be expressed in terms of its natural logarithm and the existing data

set:

ln(L) =
n

2
ln(2π)− n

2
ln(σ2)− 1

2
ln |Ψ| − (y − 1µ)TΨ−1(y − 1µ)

2σ2
. (3.10)

48



By setting the derivatives of Equation 3.10 to zero, the MLEs for µ and σ2 can

be extracted [11]:

µ̂ =
1TΨ−1y

1TΨ−11
, (3.11)

σ̂2 =
(y − 1µ)TΨ−1(y − 1µ)

n
. (3.12)

These MLEs can be substituted back into Equation 3.10 to derive the concentrated

log-likelihood function (constant terms removed) which depends on θ and p via Ψ

[11]:

ln(L) ≈ −n
2
ln(σ̂2)− 1

2
ln |Ψ|. (3.13)

The log-likelihood function in Equation 3.13 is not differentiable and requires numer-

ical optimization to maximize the function and find MLEs for θ and p.

A genetic algorithm was applied throughout this process [12, 42]. The parameter

θ was searched on a logarithmic scale from 10−3 to 103, and p was searched from 1 to

2. After finding the MLEs for each model parameter, a prediction can be made at any

point in the design space by maximizing the conditional likelihood of the existing data

set and the point’s predicted objective value. After defining a vector ψ of correlations

between the prediction point and each existing observed value, the objective value

prediction at a point x in the design space can be calculated [11] by

ŷ(x) = µ̂+ψTΨ−1(y − 1µ̂). (3.14)

3.8 Searching the Model

After developing the Kriging model to estimate the objective value at each point in

the design space, a search algorithm must determine which point in the design space,

known as an infill point, to test next and efficiently drive toward the optimum design

setting with the best performance. This determination relies on a specific heuristic to

be used in computing the expected reward of sampling a certain point. In searching

for the global optimum, an heuristic can be designed to focus on global exploration,
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local exploitation, or a combination of both. A possible exploration heuristic could

aim to maximize the variance (uncertainty) of the function, so that information gain

is likewise maximized in each iteration [39]. This search strategy ignores potential

points of improvement (greedy search) in favor of increased learning of the function.

Entropy Search is one such method that places an emphasis on exploration as opposed

to exploitation [13].

In contrast to exploration, an exploitation-based heuristic places emphasis on

finding local optima earlier in the process. One such heuristic could combine predicted

mean and variance to calculate an optimistic predicted objective value (reward) at

each point [39]. A final option is combining global exploration and local exploitation

strategies into a balanced heuristic. One way of striking this balance is by searching

for the point of Maximum Expected Improvement (Max EI) given each prediction’s

mean ŷ(x) and variance ŝ2(x) [35]. After comparing results through preliminary

optimization tests, the Max EI search method yielded the best results in tuning

ACAS Xo. The expected improvement at a point x is calculated [11] by

E[I(x)] = (ymin−ŷ(x))
[

1

2
+

1

2
erf

(

ymin − ŷ(x)

ŝ(x)
√
2

)]

+ŝ(x)
1√
2π

exp

[

−(ymin − ŷ(x))2

2ŝ2(x)

]

.

(3.15)

After sampling each subsequent infill point, the Kriging model in Equation 3.4

is recomputed. The process is repeated until eighty infill points are computed and

evaluated for a total of 120 evaluations. Figure 3-4 shows the objective value achieved

after including each new infill point (solid). The dashed curve indicates the best

value achieved up to and including that infill point. The 103rd data point (i.e.,

the 63rd infill point) results in the best performance with a risk ratio of 0.0014 and

a nuisance alert rate of 12.9% for the historical encounter set. As mentioned in

Section 3.4, this infill procedure is repeated using different weightings in the objective

value calculation. The weighting sweep is performed in Appendix A, indicating that

the 95%/5% weighting of the primary metrics (risk ratio and nuisance alert rate,

respectively) used here results in the most effective tuning.
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Figure 3-4: Objective values of eighty infill points (solid) and the cumulative minimum

value achieved (dashed)

Tables 3.6 and 3.7 show the eighty infill points and their simulation results. The

progression in Figure 3-4 indicates significant local search but also includes global

exploration which is partially indicated by spikes in the objective values. The local

search is often indicated by consecutive points with similar, ideally decreasing, values.

However, local search does not always yield improving results, especially during

early infill points as the model is not yet well predicted in various areas of the design

space. As an example, data points 55–58 represent a local search progression. Each

pair of consecutive data points in this cluster contains similar values for two of the

parameters, as shown in Table 3.6. The remaining three parameters are altered,

based on the current Kriging model, in hopes of improving the objective value. The

objective value improves with the 56th and 57th data points, but the 58th point allows

too many alerts and increases the objective value. Notice that, following the 58th

data point, the point of Max EI is no longer local, and global search is implemented

for the 59th data point. In this case, the global search at the 59th data point yields

an objective value similar to that of the 57th data point, albeit in a different area of

the design space.
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Table 3.6: Evaluation Results for the First Forty Infill Points
Data Pt R Alert Cyc. HCD VCD Slow Clos. Rho Risk Ratio Nuis. Rate Obj Value

41 −0.0050 7 293 0 1,562 0.2946 0.092 0.2845
42 −0.0025 7 224 5 1,653 0.0021 0.147 0.0094
43 −0.0026 5 312 91 1,500 0.0021 0.155 0.0098
44 −0.0050 7 215 0 2,012 0.4584 0.076 0.4392
45 −0.0037 4 400 5 2,281 0.0014 0.163 0.0095
46 −0.0025 4 400 50 1,500 0.0014 0.160 0.0093
47 −0.0025 4 200 39 2,500 0.0007 0.214 0.0113
48 −0.0025 4 200 91 2,500 0.0007 0.214 0.0113
49 −0.0025 4 308 44 2,500 0.0007 0.237 0.0125
50 −0.0050 4 200 57 2,500 0.0042 0.179 0.0129
51 −0.0050 7 400 71 1,500 0.0021 0.130 0.0085
52 −0.0025 7 395 20 2,500 0.0007 0.280 0.0146
53 −0.0050 5 262 11 1,769 0.0049 0.104 0.0098
54 −0.0050 4 300 0 2,314 0.5388 0.063 0.5150
55 −0.0027 4 400 6 2,188 0.0014 0.178 0.0102
56 −0.0031 4 400 3 1,500 0.0028 0.141 0.0097
57 −0.0025 4 200 83 1,500 0.0042 0.108 0.0094
58 −0.0025 7 400 12 1,500 0.0014 0.196 0.0111
59 −0.0038 4 300 7 2,000 0.0035 0.121 0.0094
60 −0.0050 4 200 85 1,500 0.0147 0.074 0.0177
61 −0.0025 4 400 4 2,063 0.0014 0.175 0.0101
62 −0.0025 4 201 66 2,500 0.0007 0.214 0.0113
63 −0.0037 7 200 5 1,816 0.0028 0.114 0.0084
64 −0.0025 4 200 28 2,500 0.0007 0.214 0.0113
65 −0.0050 7 200 52 1,500 0.0126 0.089 0.0164
66 −0.0038 4 230 99 1,750 0.0049 0.101 0.0097
67 −0.0050 7 322 4 2,000 0.0014 0.133 0.0080
68 −0.0050 7 324 5 1,926 0.0014 0.130 0.0078
69 −0.0025 7 400 29 1,500 0.0014 0.196 0.0111
70 −0.0025 7 400 97 1,500 0.0014 0.196 0.0111
71 −0.0050 4 398 100 1,577 0.0056 0.107 0.0107
72 −0.0050 7 299 0 2,095 0.4486 0.086 0.4304
73 −0.0050 4 400 8 2,500 0.0007 0.196 0.0105
74 −0.0050 7 400 59 2,500 0.0007 0.224 0.0119
75 −0.0050 4 400 27 2,078 0.0028 0.125 0.0089
76 −0.0025 4 400 72 2,500 0.0007 0.246 0.0130
77 −0.0025 7 200 65 1,500 0.0028 0.129 0.0091
78 −0.0050 7 200 61 1,500 0.0126 0.089 0.0164
79 −0.0042 4 309 57 2,250 0.0014 0.143 0.0085
80 −0.0034 4 312 100 2,225 0.0007 0.153 0.0083

The improving accuracy of the Kriging model over time is apparent, indicated in

Figure 3-4 by consistently low objective values following data point 97. Careful analy-

sis of Table 3.7 shows that the majority of consecutive data points after data point 97

do not share similar parameter values, indicating a search progression different from

the local search experienced for data points 55–58. However, global search is also not

prevalent, with the exception of data point 117, considering the relative consistency

in the objective values achieved. A comparison of Tables 3.6 and 3.7 reveals that

many of the parameter settings after data point 97 are similar to earlier infill points.

This indicates that the search progression after data point 97 mostly contains isolated

continuations of local search progressions from the first forty infill points.
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Table 3.7: Evaluation Results for the Second Forty Infill Points
Data Pt R Alert Cyc. HCD VCD Slow Clos. Rho Risk Ratio Nuis. Rate Obj Value

81 −0.0050 4 217 100 1,633 0.0119 0.085 0.0155
82 −0.0050 4 300 0 1,875 0.4612 0.067 0.4415
83 −0.0025 5 400 4 1,718 0.0014 0.179 0.0103
84 −0.0025 4 400 41 2,000 0.0014 0.172 0.0099
85 −0.0041 5 311 25 1,984 0.0014 0.133 0.0080
86 −0.0036 5 309 1 1,716 0.0028 0.132 0.0092
87 −0.0049 4 288 100 2,062 0.0063 0.111 0.0115
88 −0.0047 7 319 27 1,959 0.0014 0.135 0.0081
89 −0.0035 5 375 44 2,375 0.0007 0.196 0.0104
90 −0.0050 4 300 0 2,188 0.5227 0.064 0.4998
91 −0.0046 5 338 10 1,754 0.0042 0.117 0.0098
92 −0.0038 4 334 28 1,990 0.0021 0.128 0.0084
93 −0.0041 6 304 0 2,091 0.4010 0.105 0.3862
94 −0.0044 7 335 74 1,813 0.0014 0.135 0.0081
95 −0.0038 6 400 48 1,612 0.0021 0.149 0.0095
96 −0.0034 4 262 2 1,500 0.0049 0.110 0.0101
97 −0.0025 4 267 1 1,563 0.2449 0.116 0.2385
98 −0.0038 5 400 3 1,500 0.0028 0.136 0.0095
99 −0.0048 4 284 100 2,094 0.0056 0.114 0.0110

100 −0.0050 4 394 100 2,156 0.0042 0.131 0.0105
101 −0.0025 4 335 100 1,783 0.0021 0.152 0.0096
102 −0.0036 6 231 66 2,187 0.0014 0.145 0.0086
103 −0.0038 5 278 90 2,000 0.0014 0.129 0.0078
104 −0.0042 6 237 43 2,164 0.0014 0.134 0.0080
105 −0.0025 4 393 100 1,502 0.0014 0.160 0.0093
106 −0.0031 4 282 48 2,334 0.0007 0.166 0.0090
107 −0.0050 6 397 45 1,500 0.0028 0.124 0.0088
108 −0.0050 6 252 99 1,562 0.0056 0.105 0.0105
109 −0.0035 4 318 100 2,250 0.0014 0.154 0.0090
110 −0.0040 5 334 24 1,828 0.0021 0.128 0.0084
111 −0.0044 7 345 55 2,102 0.0014 0.148 0.0087
112 −0.0029 5 300 69 1,625 0.0035 0.135 0.0101
113 −0.0037 7 275 100 1,514 0.0021 0.127 0.0084
114 −0.0041 4 400 72 1,676 0.0035 0.123 0.0095
115 −0.0041 4 288 100 2,078 0.0035 0.121 0.0094
116 −0.0034 6 371 39 2,250 0.0007 0.187 0.0100
117 −0.0050 5 300 1 2,043 0.4675 0.074 0.4478
118 −0.0037 4 200 42 1,500 0.0126 0.086 0.0163
119 −0.0025 7 233 7 1,521 0.0021 0.145 0.0092
120 −0.0037 5 200 81 1,500 0.0084 0.094 0.0127

3.9 Discussion

The procedure executed in this chapter attempted to locate the global optimum of a

performance function related to the behavior of ACAS Xo during CSPO. An historical

blunder set was utilized to compute the performance of ACAS Xo by testing the

system on a wide variety of blunders and aircraft behaviors. A small set of design

parameters was selected to tune such that the behavior of ACAS Xo during CSPO

would be meaningfully affected. A Kriging model was fit to the sample data and

subsequently searched to determine the point of Max EI for each infill iteration.

After eighty iterations of the search and infill procedure, the 63rd infill point was

53



discovered to achieve the lowest objective value and, theoretically, the most desired

performance of the existing sample data. However, a thorough investigation of the

performance and behavior of ACAS Xo at this data point must be carried out. This

investigation includes performance analyses on several distinct encounter sets and

comparisons to the performance of TCAS, the current benchmark. This performance

analysis and comparison is the objective of the next chapter.
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Chapter 4

Performance Analysis

The tuning process of Chapter 3 results in an optimal combination of the five design

parameters that emerged from the screening study: (1) cost of alerting, (2) number of

cycles, (3) horizontal conflict definition, (4) vertical conflict definition, and (5) slow

closure rho threshold. The optimal settings for ACAS Xo are found at the 103rd

data point in Table 3.7. The cost of alerting defines the cost of issuing an RA to the

pilot. The number of cycles indicates the number of seconds the logic may continue

issuing an RA while the two aircraft are in horizontal conflict for an extended period

of time. In normal circumstances, ACAS X ceases alerting once the aircraft are in

horizontal conflict, but the cycles parameter allows for continued alerting during this

time, which becomes necessary during many slow-closure scenarios such as CSPO. The

horizontal and vertical conflict definitions define the NMAC region for the ACAS X

logic, though the NMAC definition for subsequent performance analysis remains fixed

at 500 ft horizontally and 100 ft vertically. The slow closure rho threshold parameter

defines the aircraft range at which ACAS X calculates the estimated time until conflict

using both horizontal and vertical state information, as opposed to solely horizontal

state information.

Table 4.1 shows the relative parameter value changes from ACAS Xa to ACAS Xo.

The cost of alerting is increased by 50%, which is expected since one of the main objec-

tives is to limit the rate of nuisance alerts. However, the alerting cost is not increased

to the point of adversely affecting safety and allowing additional NMACs to remain
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unresolved, as is evident in this chapter’s performance analyses. To effectively reduce

nuisance alerts, alerting must also be restricted to a select set of circumstances defined

by the horizontal and vertical conflict definitions. These two parameters define the

NMAC thresholds that the ACAS X logic attempts to avoid. If the conflict definiton

values are too large, the logic will alert more than necessary so that it maintains the

required separation defined by the horizontal and vertical conflict definitions. Both of

the conflict definition values decrease, especially the horizontal parameter, to reflect

the smaller ranges experienced during CSPO. These decreases help accommodate

CSPO with smaller runway separations and turns near parallel approach paths, while

still enforcing adequate separation to maintain acceptable safety levels. The number

of cycles increases to reflect the need to account for more slow-closure scenarios in

which alerts may still be effective when two aircraft are converging at close range.

Finally, the slow closure rho threshold parameter decreases to activate the specialized

slow-closure logic earlier in the encounter.

Table 4.1: ACAS Xo Parameter Value Changes Relative to ACAS Xa

Parameter Relative Change

r alert 50%

cycles 67%

horiz. conflict def. −72%

vert. conflict def. −10%

slow clos. rho thresh. −33%

In this chapter, the optimized parameter settings for ACAS Xo are shown to bal-

ance safety and operational suitability. Although system experts could likely deduce

the direction of change required for each of the five tuned parameters, the appro-

priate magnitude of change for each parameter is much more difficult to determine.

The ability to solve such a complex problem is the strength of the automated tuning

process carried out in the previous chapter. The surrogate model is able to infer the

performance effects of mulitdimensional parameter changes and identify promising

areas of the design space.
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The remainder of this chapter compares the performance of ACAS Xo and TCAS.

Section 4.1 compares performance on the historical encounter set described in Chap-

ter 3 and provides two sample encounters. ACAS Xo is tuned for this encounter set

and is expected to exhibit its best behavior for this encounter set. Section 4.2 inves-

tigates each parameter’s contribution to the improvement of ACAS Xo performance

over that of ACAS Xa, according to the changes in Table 4.1. Section 4.3 describes

two additional generated encounter sets that more accurately reflect typical aircraft

behavior during CSPO, and uses them to compare the performance of ACAS Xo

and TCAS. The performance of ACAS Xo for these two encounter sets helps demon-

strate that the tuned logic performs well on a wide variety of encounter types and

distributions.

Section 4.4 compares ACAS Xo and TCAS performance for an operational per-

formance model. The operational performance model tests each system’s ability to

minimize nuisance alerts in non-NMAC encounters with varying degrees of aircraft

navigational error. Section 4.5 compares the specific alerting behaviors of ACAS Xo

and TCAS at various horizontal and vertical configurations. The comparisons al-

low for a deeper understanding of each system’s sensitivity to changes in both the

horizontal and vertical dimensions. Section 4.6 applies the ACAS Xo logic to four

sample encounters derived from the worst-case analysis of Chapter 2. The actual alert

times of ACAS Xo are compared to the theoretical required alert times calculated in

Chapter 2. Finally, Section 4.7 discusses the chapter’s results and their implications.

4.1 Historical Encounter Set Performance

The optimized parameter settings of ACAS Xo exhibit improved performance over

TCAS. Table 4.2 compares the performance of both systems for the historical blunder

encounter set described in Chapter 3.
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Table 4.2: Metric Results for the Historical Blunder Encounter Set
NMACs

System Unresolved Induced Missed Alerts Risk Ratio Nuisance Rate Strengthenings Reversals

ACAS Xo 0 0 2 0.0014 0.129 596 236

TCAS 4 1 2 0.0049 0.358 1,562 2,283

As indicated in Table 4.2, TCAS results in mediocre performance compared to

ACAS Xo. TCAS is unable to resolve four of the 1429 NMACs, misses two alerts,

and induces one NMAC which would not have occurred had the aircraft continued

their trajectories without interruption. The two missed alerts with both TCAS and

ACAS Xo are for encounters that experience extremely low closure rates at low al-

titudes where alerting is inhibited due to operational concerns. These encounters

are considered extraneous and are arguably encounters for which an alert above the

inhibition altitude of approximately 1000 ft would be undesirable, due to sufficient

aircraft separation down to 1000 ft of altitude.

The most noticeable advantage of ACAS Xo over TCAS is its lower nuisance alert

rate. ACAS Xo achieves a rate of 12.9% compared to 35.8% with TCAS. Furthermore,

ACAS Xo limits the number of encounters that include strengthenings or reversals.

ACAS Xo only issues strengthenings and reversals in 596 and 236 encounters, re-

spectively, whereas TCAS issues them in 1562 and 2283 encounters, respectively. Al-

though they may be necessary in some situations, strengthenings and reversals should

be minimized when possible [21]. ACAS Xo unquestionably outperforms TCAS in all

areas under consideration.

To help illustrate the differences between ACAS Xo and TCAS, two sample en-

counters are provided in Figure 4-1 and Figure 4-2. Aircraft 1 is defined by the

darker track and Aircraft 2 is defined by the lighter track. Figure 4-1 illustrates an

encounter where TCAS induces an NMAC that would not have occurred had the

aircraft continued their trajectories without interruption. The horizontal profile of

Figure 4-1(a) illustrates a parallel approach in which Aircraft 1 overshoots the ap-

proach path, proceeds to establish final approach on the same runway as Aircraft 2,

and overtakes Aircraft 2. Though the paths overlap, the aircraft avoid an NMAC as
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their trajectories are spatially separated. During the overtake portion, the aircraft

converge horizontally but remain vertically separated by no less than 140 ft during

horizontal conflict, thus remaining clear of conflict.

The NMAC induced by TCAS occurs at the perpendicular crossing (approximately

the 75-second mark), though the intended flight paths (indicated by the dashed lines)

avoid an NMAC by a small margin at the point of crossing (118 ft of vertical separa-

tion), as shown in Figure 4-1(b). The NMAC is induced when TCAS issues a Climb

command to both aircraft simulataneously, and then issues one reversal to Aircraft 1

and two reversals to Aircraft 2, all within 10 s. The result of these reversals within a

small timeframe, compounded with a delayed pilot response, leads to an NMAC at

the point of crossing. In a similar real-life scenario, one or both aircraft could po-

tentially be commanded to terminate the approach. However, this analysis is solely

concerned with how each collision avoidance system performs with respect to the

aircraft geometry, independent of air traffic controller intervention or pilot judgment.

Figure 4-1(c) shows the same encounter when using ACAS Xo as the alerting

system. Notice that ACAS Xo alerts far less frequently than TCAS and does not

issue a reversal. ACAS Xo only issues Descend and Do-Not-Descend commands

to the aircraft to resolve the potential perpendicular crossing conflict. The sample

encounter demonstrates the efficiency and effectiveness of ACAS Xo in alerting to

avoid a potential NMAC.

Figure 4-2 depicts an encounter in which TCAS issues a nuisance alert to both

aircraft, whereas ACAS Xo does not issue any alerts. The ACAS Xo vertical trajec-

tories are not shown since they are the same as the nominal trajectories, indicated by

the dashed lines in Figure 4-2(b). The horizontal trajectories shown in Figure 4-2(a)

maintain about 3000 ft lateral separation on parallel approach. TCAS, which relies on

straight-line trajectory projections, issues an alert to each aircraft just as Aircraft 1

begins its turn onto final approach. ACAS Xo, on the other hand, is tuned such that

it delays alerting until it is certain that an NMAC is imminent without intervention.
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(c) ACAS Xo Vertical Profile

Figure 4-1: Sample encounter
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Figure 4-2: Sample encounter

4.2 Individual Parameter Analysis

While observing the overall performance of the optimized ACAS Xo settings is critical,

each parameter’s individual contribution to the improvement in performance should

be understood so that parameter settings can be intelligently adjusted throughout

future ACAS Xo development. Taking the final tuned ACAS Xo settings as a baseline,

the 100,000 encounters of the historical blunder encounter set are re-simulated using

the original ACAS Xa setting for a given parameter while holding all other parameters

at the tuned ACAS Xo settings. Table 4.3 shows the performance metrics for each

setting combination. For example, the first entry shows the performance metrics

achieved using the ACAS Xa value for the alerting cost (r alert), while holding all
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other values at the tuned ACAS Xo settings.

The results in Table 4.3 indicate that all of the ACAS Xa parameter settings,

except for cycles, result in a higher nuisance alert rate than with the ACAS Xo

settings. Compared to the ACAS Xa settings, the alerting cost of ACAS Xo increases,

both conflict definitions decrease, and the slow closure range threshold decreases.

Each of these changes results in more restricted alerting with ACAS Xo. In other

words, the ACAS Xo settings for these parameters limit the set of scenarios in which

issuing an RA is the optimal action. In contrast, the number of cycles increases with

ACAS Xo compared to ACAS Xa, allowing alerting during a longer time period while

the aircraft are in horizontal conflict.

Table 4.3: Metric Results using ACAS Xa Settings for One Parameter at a Time

NMACs

Parameter Unresolved Induced Missed Alerts Risk Ratio Nuisance Rate Strengthenings Reversals

r alert 0 0 2 0.0014 0.205 279 296

cycles 7 1 2 0.0070 0.107 171 161

horiz conflict def 0 0 0 0.0000 0.516 196 797

vert conflict def 0 0 2 0.0014 0.241 524 487

slow clos rho thresh 0 0 0 0.0000 0.709 6,665 844

When using the ACAS Xa setting for the cycles parameter, the number of NMACs

increases and safety decreases. More NMACs occur with the ACAS Xa cycles setting

because the smaller cycles value inhibits alerting sooner after horizontal conflict has

occurred. Once the aircraft are in horizontal conflict, the number of cycles deter-

mines the number of seconds for which RAs may continue to be issued, as illustrated

in Figure 4-3. Earlier alerting inhibition increases the likelihood that a potentially

resolvable NMAC remains unresolved. The remainder of the ACAS Xa parameter set-

tings achieve an equal or better risk ratio compared to ACAS Xo, albeit with higher

nuisance alert rates. With the exception of the effect that the number of cycles has on

safety, the slow closure range threshold has the largest overall effect. When applying

the ACAS Xa setting for this parameter, not only does the nuisance alert rate in-

crease dramatically to 70.9%, but 6665 encounters include a strengthening command

as opposed to 596 when using the ACAS Xo setting.
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4.3 Generated Encounter Set Performance

Two additional encounter sets are developed and utilized to further assess unnecessary

alert rates with ACAS Xo and TCAS. In a similar fashion as the historical encounter

set, the generated encounters sets are created by sampling trajectories from a trajec-

tory library. The generated trajectory library differs from the historical trajectory

library in that it contains trajectories intended to accurately reflect realistic IMC

final approaches. In contrast, the historical trajectory library is intended to contain a

wide range of possible scenarios, though many may not represent realistic IMC final

approach trajectories. The generated encounter model, described in further detail in

a technical report, uses a Markov representation through a dynamic Bayesian Net-

work [41]. This approach results in the aircraft state (e.g., position, heading, speed,

descent rate) being updated at each time step in a probabilistic manner. The Markov

representation dictates that the probability distribution of the future state depends

only on the current state.
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Several assumptions were made during the development of the generated encounter

model [41]:

❼ Final approach trajectories can be modeled by a Markov process.

❼ Aircraft vertical, lateral, and speed controls are independent.

❼ Final approach trajectories and course deviations are independent of airport,

runway configuration, approach direction, and aircraft type.

❼ Glide slope deviations are independent of the glide slope.

❼ A pilot is in direct control of the aircraft with flight director guidance.

❼ Measurement noise and aircraft disturbances are modeled through randomness

in the control process.

❼ Trajectories can be represented by heading, speed, and descent rate changes

using first-order Euler update equations.

❼ Trajectories in the historical trajectory library are not interrupted by a collision

avoidance system.

The two generated encounter sets are defined by the following airport configuration

and requirements for aircraft entering the localizer beam, as illustrated in Figure 4-4:

❼ Aircraft begin their approach within 30 s of each other.

❼ Runways are spaced 3000 ft apart without stagger.

❼ The glide slope for both runways is 3➦.

❼ The left aircraft intercepts the localizer 14–25NM from the runway threshold

at an altitude of 4000 ft.

❼ The right aircraft intercepts the localizer 14–25NM from the runway threshold

at an altitude of 5000 ft.

❼ Aircraft intercept their respective localizers at an angle of 20–45➦.
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Allowing for variance in the intercept angles allows for situations in which aircraft do

not properly capture the ILS and large deviations that may occur later in the final

approach.
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Figure 4-4: Generated encounter set configuration

The difference between the two generated encounter sets involves the prevalence

of blunders. For stress-testing, an over-sampled blunder encounter set is desired. The

blunder encounter set includes the following blunders and corresponding frequencies:

❼ Aircraft intercepting the localizer co-altitude (15 per 1000 aircraft approaches)

❼ Aircraft establishing the incorrect ILS approach (wrong runway) (3 per 1000

aircraft approaches)

❼ Aircraft breaking out toward the other runway (150 per 1000 aircraft approaches)

These blunder frequencies were chosen to reflect the tuning priorities for ACAS Xo.

Deviations from centerline during final approach are probabilistically distributed

such that smaller deviations are much more likely than larger deviations. Aircraft
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tracks that overshoot their localizer intercept or experience large centerline deviations

during final approach are over-sampled from the original probability distribution by

a factor of up to 1000, compared to a trajectory with little deviation. This over-

sampling results in a higher proportion of trajectories that experience large deviations.

The purpose of this blunder encounter set is to stress-test TCAS and ACAS Xo, so

that their performance can be observed and differentiated during blunder scenarios.

For the nominal generated encounter set, break-outs, incorrect ILS captures, and

co-altitude join-ups are ignored.

Because ACAS Xo is tuned against an historical blunder encounter set, testing

against the generated encounter sets is necessary to ensure no adverse effects exist

from the original tuning. The historical encounter set was used for tuning since it

effectively stress-tests the logic to resolve severe blunders, while also ensuring appro-

priate alert rates. The generated encounter sets engender more representative aircraft

behaviors during CSPO by allowing the designer to specify the desired dynamics, in-

stead of the historical trajectories dictating the aircraft behavior. Tables 4.4 and 4.5

compare the performance of ACAS Xo and TCAS for the generated blunder encounter

set and the generated nominal (lateral deviations only) encounter set, respectively.

Table 4.4: Metric Results for the Generated Blunder Encounter Set
NMACs

System Unresolved Induced Missed Alerts Risk Ratio Nuisance Rate Strengthenings Reversals

ACAS Xo 0 0 1 0.0011 0.022 158 27

TCAS 0 0 2 0.0023 0.133 111 224

Although ACAS Xo is not tuned for the two generated encounter sets, it still

matches or outperforms TCAS in terms of both safety and alerting in both encounter

sets. For the generated blunder encounter set, as shown in Table 4.4, TCAS misses two

alerts and resolves the remainder of the 877 NMACs, and ACAS Xo misses one alert.

However, each of the missed alerts for both systems is due to the slow convergence

occurring below the alert inhibition altitude. By eliminating the missed alerts from

consideration, both systems effectively resolve all NMACs in the encounter set.

66



Even though their safety levels are considered equivalent, ACAS Xo has a lower

nuisance alert rate of 2.2% compared to 13.3% with TCAS. Furthermore, ACAS Xo

only issues reversals in 27 encounters whereas TCAS reverses in 224 encounters. Al-

though strengthenings should be minimized when possible, the slightly increased fre-

quency with ACAS Xo is of no concern, especially considering the dramatic improve-

ment in nuisance alert rate.

Table 4.5: Metric Results for the Generated Nominal Encounter Set
NMACs

System Unresolved Induced Missed Alerts Risk Ratio Nuisance Rate Strengthenings Reversals

ACAS Xo 2 0 1 0.0192 0.042 107 38

TCAS 10 6 1 0.1090 0.181 376 925

For the nominal generated encounter set, as shown in Table 4.5, TCAS is unable

to resolve ten of the 156 NMACs, misses one alert, and induces six NMACs that

would not have occurred otherwise. ACAS Xo, on the other hand, is only unable

to resolve two NMACs and misses one alert. Similar to the historical encounter set,

the missed alert experienced by both systems is due to slow closure below the alert

inhibition altitude. The nuisance alert rate is 4.2% with ACAS Xo compared to

18.1% with TCAS. ACAS Xo also experiences a lower number of encounters with

strengthenings and reversals (107 and 38, respectively) compared to TCAS (376 and

925, respectively).

ACAS Xo outperforms TCAS with respect to safety and operational suitability

for all three encounter sets. ACAS Xo is able to consistently prevent NMACs while

also maintaining a nuisance alert rate significantly lower than TCAS. Reversals are

much less frequent with ACAS Xo for each encounter set, and strengthenings are, at

worst, only slightly higher than TCAS to offset the lower frequency of reversals and

alerts.
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4.4 Operational Performance Analysis

An operational performance model has been previously developed that allows for

CSPO performance analysis at different runway and aircraft configurations. This

model allows the designer to sweep through various configurations and quickly an-

alyze the effects of varying different aspects. The model also allows for analysis of

TCAS and ACAS Xo performance when presented with different navigational errors.

The study in this section compares the operational performance of TCAS and the

ACAS Xo logic during normal operations when no NMACs occur during the approach.

Because no NMACs occur nominally in these encounters, any alerts issued by TCAS

or ACAS Xo are classified as nuisance alerts.

The operational performance of the system is evaluated at a single point during

final approach. The positions and velocities of the two aircraft at the evaluation

point are defined by various parameters. These parameters include runway spacing

and threshold stagger, threshold elevation and crossing height, aircraft distance from

threshold, glide slope, ground speed, and navigational mode [4]. The left aircraft,

hereafter referred to as the own aircraft, is simulated as starting 10NM from the

runway threshold at a 3➦ glide slope and 140 kt, resulting in an altitude of about

3200 ft. The right aircraft, hereafter referred to as the intruder, is initiated with

intrail distance (stagger behind the own aircraft) varying between 0 and 1NM at

0.1NM increments, and ground speed differential (relative to the own aircraft) varying

between 0 and 80 kt at 10 kt increments. The lateral runway separation is set at 3000 ft

with no runway stagger, both runways at 0 ft elevation, and both aircraft crossing 50 ft

above the threshold.

Four aircraft navigational modes are applied in the evaluations to reflect various

navigational deviations [4]. Two of the modes sample distributions defined in the

Collision Risk Model developed by the International Civil Aviation Organization [14]:

❼ Perfect: There is no lateral or vertical deviation from the intended course.

❼ Required Navigation Performance (RNP): A lateral deviation is intro-

duced as an initial centerline bias. The deviation is sampled from a zero-mean
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Figure 4-5: Probability (in percent) of alert
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normal distribution per the RNP 0.1 standards [16, 26].

❼ ILS CAT II Autopilot: Lateral and vertical deviations are sampled from the

Collision Risk Model distributions for the Category (CAT) II Autopilot mode.

❼ ILS CAT II Flight Director: Lateral and vertical deviations are sampled

from the Collision Risk Model distributions for the CAT II Flight Director

mode.

RNP defines performance standards related to an aircraft’s ability to navigate pre-

cisely along a desired flight path. RNP utilizes ground-based and space-based naviga-

tion aids, as well as on-board systems. RNP is unique in that it requires an on-board

performance monitoring and alerting system that monitors the actual navigation per-

formance achieved during flight and alerts the pilot if standards are not met [6]. In

the Autopilot mode, the pilot is not needed to control the aircraft. The autopilot

uses the pre-loaded ILS approach specifications to guide the aircraft along its as-

signed flight path. In the Flight Director mode, the pilot is in control of the aircraft’s

trajectory. The on-board flight director displays the required pitch and bank angles

on the attitude indicator for the pilot to follow.

The evaluations are performed using Monte Carlo simulation for 10,000 encounters

at each combination of intrail distance and speed differential. The encounter trajec-

tories are simulated for 15 s prior to the evaluation point so that the own aircraft can

build a track of the intruder based on sensor measurements of range, bearing, and

altitude at each time step.

The first set of plots in Figure 4-5 shows the alert probabilities for TCAS and

ACAS Xo when both aircraft have perfect navigation. The region of maximum alert

probability for TCAS is where the intrail distance is between 0 and 0.3NM and the

speed differential is between 50 and 80 kt. Speed differentials greater than 50 kt can be

significant, especially considering the relatively slow speeds flown during approach.

The areas of high alert probability indicate where the predicted time until closest

approach is close to its minimum. As the intrail distance increases or the overtake

speed decreases, the time until closest approach increases and TCAS will not alert
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as often. In contrast, ACAS Xo alerts the most for intrail distances less than 0.1NM

at varying overtake speeds. Interestingly, ACAS Xo is not as sensitive to overtake

speed as TCAS since the ACAS Xo contour runs parallel to the vertical axis (speed

differential), whereas TCAS contours are crossed more regularly when varying over-

take speed. With perfect navigation, albeit unrealistic, the alert rate with ACAS Xo

is less than 2% at all points.

The second set of plots in Figure 4-5 shows the alert probabilities for TCAS and

ACAS Xo when both aircraft use the RNP navigational mode. The regions of max-

imum alert probability for both TCAS and ACAS Xo expand due to the increased

aircraft track uncertainty. For TCAS, the alert probability tends to be more sensi-

tive to intrail distance than overtake speed at all but the smallest intrail distances,

indicated by the more vertically oriented contour lines. However, for intrail distances

less than 0.2NM the contours become more horizontal and thus more sensitive to

overtake speed. The ACAS Xo alert probability is almost completely dependent on

intrail distance and insensitive to overtake speed due to the near-vertical contours.

Again, there is a significantly smaller alert probability with ACAS Xo compared to

TCAS. Even in the regions of greatest alert probability with ACAS Xo, just above

6%, the same regions with TCAS experience probabilities ranging from 8% to 35%

depending on the overtake speed.

The third set of plots in Figure 4-5 shows the alert probabilities for TCAS and

ACAS Xo when both aircraft are using the CAT II Autopilot navigational mode.

The regions of maximum alert probability for both TCAS and ACAS Xo shrink

compared to the RNP mode due to more precise navigation. The trends for TCAS

and ACAS Xo are similar to those with RNP, though the alert probability of ACAS Xo

approaches zero for overtake speeds less than 20 kt. The ACAS Xo alerting behavior

also becomes slightly more dependent on overtake speed as the contours angle more

toward the horizontal axis. The maximum alert probability with TCAS reaches 30%,

whereas ACAS Xo slightly exceeds 2%.

The last set of plots in Figure 4-5 shows the alert probabilities for TCAS and

ACAS Xo when both aircraft are using the CAT II Flight Director navigational mode.
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The regions of maximum alert probability for both TCAS and ACAS Xo expand

slightly from the CAT II Autopilot mode due to the lack of autopilot precision. The

trends mirror those observed with the CAT II Autopilot mode. The maximum alert

probability with TCAS approaches 35% and ACAS Xo approaches 3%.

The results illustrated in Figure 4-5 indicate that, when using TCAS, the greatest

alert probabilities occur in regions of small intrail distance and high overtake speed.

Either decreasing the intrail distance or increasing the overtake speed will mono-

tonically increase the alert probability for any navigational mode. ACAS Xo also

tends to experience the greatest alert probability in regions of small intrail distance

and high overtake speed. However, small intrail distances with small overtake speeds

sometimes experience similarly high alert probabilities, especially with less accurate

navigational modes. This reduced sensitivity to overtake speed reflects the fact that

ACAS Xo is tuned for sensitivity to slow-closure scenarios and does not necessarily

require a high closure rate to issue an RA.

Along the same lines, the alert probability of ACAS Xo does not necessarily mono-

tonically increase with overtake speed. Overall, ACAS Xo experiences much lower

alert probabilities than TCAS. ACAS Xo reaches a maximim 6% alert probability

with RNP navigation; otherwise, the nuisance alert rate with ACAS Xo does not

exceed 3%. These ACAS Xo alert probabilities pose an exceptional advantage over

TCAS which reaches an alert probability of at least 30% with all imperfect naviga-

tional modes.

ACAS Xo dramatically outperforms TCAS with respect to the operational per-

formance model, which was developed independently of the model used in the tuning

process. Therefore, the tuning process not only results in a solution that satisfies the

original encounter set, but one that satisfies a variety of encounter models developed

independently for CSPO.
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4.5 Policy Examples

TCAS and ACAS Xo policies for generating advisories can be visualized for a given

encounter at various vertical configurations. Likewise, alert probabilities can be deter-

mined for each system at various horizontal configurations. Understanding the specific

alerting behavior of the two systems provides valuable insight into the strengths and

weaknesses of each system. A no-blunder CSPO encounter is generated where two

aircraft are separated by 1000 ft laterally on a side-by-side 3➦ glide slope, as illus-

trated in Figure 4-6. Separation of 1000 ft is chosen since both TCAS and ACAS Xo

are likely to alert at that configuration. Aircraft 2 (not equipped with a collision

avoidance system) is initiated at an altitude of 2500 ft while the initial altitude of

Aircraft 1 is varied between 1500 and 3500 ft in 10 ft bins. Figure 4-7 shows the

policies of Aircraft 1 for TCAS and ACAS Xo at this approach configuration. The

policies displayed are based on Aircraft 1 continuing on its nominal trajectory (i.e.,

no pilot response). Removing pilot response allows for a better understanding of how

vertical stagger affects each system’s alerting behavior.
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Figure 4-6: No-blunder CSPO configuration (vertical sweep)
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Figure 4-7: Example policy plots for Aircraft 1

The first notable difference between TCAS and ACAS Xo is the range of vertical

separations at which an RA is issued. TCAS issues a preventive RA (e.g., Do Not

Climb, Do Not Descend) to Aircraft 1 if Aircraft 2 is within 600 ft of Aircraft 1’s

altitude, and will issue a corrective RA (e.g., Climb, Descend) if Aircraft 2 remains

between 300 ft below and 600 ft above Aircraft 1. ACAS Xo’s alerting range is much

smaller; Aircraft 2 must be between 200 ft below and 300 ft above for an RA to be

issued to Aircraft 1.

The other main difference between the two systems is that ACAS Xo is likely to

initially issue a corrective RA, whereas TCAS always begins with a preventive RA

at this horizontal configuration. ACAS Xo is also quick to issue strengthenings so

that separation is achieved without delay. Compared to TCAS, ACAS Xo shrinks the

alerting range, indicated by the smaller shaded regions, while issuing more effective

RAs (i.e., correctives and strengthenings) earlier in the encounter.

For varied horizontal configurations, the alert probabilities for TCAS and ACAS Xo

are simulated for a no-blunder CSPO encounter where both aircraft are on a 3➦ glide

slope beginning at an altitude of 2500 ft, as illustrated in Figure 4-8. Aircraft 1 is

initiated at the origin for each simulation. The relative initial north and east positions

of Aircraft 2 are both varied between ❂5000 ft and 5000 ft in 250 ft bins. Each bin
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is randomly sampled and simulated with five different random noise generator seeds.

The alert probability at a given point in Figure 4-9 represents the alert probability

of Aircraft 1 when Aircraft 2 is initiated at that horizontal position.
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Figure 4-8: No-blunder CSPO configuration (horizontal sweep)
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The alerting range of TCAS at a co-altitude configuration is smaller than that

of ACAS Xo, as shown in Figure 4-9. With co-altitude aircraft, TCAS maintains

an alerting radius of 1375 ft in all directions, whereas ACAS Xo’s alerting radius

is 2125 ft. The alerting range of TCAS is determined by the distance modification

heuristic. ACAS Xo, on the other hand, is tuned for nominal CSPO at 3000 ft runway

separations.

The larger alerting radius of ACAS Xo also reflects the fact that the encounter

set used in the tuning process over-samples blunders and essentially tunes ACAS Xo

for stress-testing. Tuning for frequent blunders results in an alerting radius that is

smaller than the nominal runway separation such that nuisance alerts are reduced,

but large enough to successfully resolve blunders during stress-testing. As indicated

in Figure 4-7, the alerting behavior of ACAS Xo is much more sensitive to vertical

separation. This heightened sensitivity causes the alerting radius of ACAS Xo to

decrease more quickly than TCAS with increasing vertical separation.

4.6 Application of Worst-Case Analysis to ACAS

Xo Development

To illustrate the behavior of the ACAS Xo logic with respect to the worst-case analysis

of Chapter 2, four sample encounters with 3000 ft runway separations are provided in

Figures 4-10 through 4-13. Each blunder is initiated at the 15-second mark so that

the own aircraft can build a track of the intruder based on sensor measurements at

each time step.

The encounter in Figure 4-10 illustrates two aircraft on a collision course, with

the intruder executing a constant-drift blunder at a 30➦ drift angle in the worst-case

configuration. ACAS Xo alerts 3 s after the blunder begins (at the 18-second mark).

The initial RA meets the required alert time of 9 s in Figure 2-5, and ACAS Xo is

able to resolve the NMAC. Similarly, the intruder in Figure 4-11 blunders at 45➦, and

ACAS Xo alerts 3 s after the blunder begins. According to Figure 2-5, the available
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alert time is 4 s, so the NMAC is successfully avoided.
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Figure 4-10: Sample encounter
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Figure 4-11: Sample encounter

The encounter in Figure 4-12 illustrates two aircraft on a collision course, with

the intruder executing a constant-turn blunder at 1 deg/s. The blunder is initiated at

the 15-second mark and, as shown in Figure 4-12(b), ACAS Xo alerts 20 s after the

blunder begins. This meets the required alert time of 22 s in Figure 2-7. ACAS Xo is

able to resolve the NMAC by strengthening the Climb command 3 s after the initial

RA.

Figure 4-13 illustrates a similar encounter with the intruder executing a constant-

turn blunder at 3 deg/s. Again the blunder is initiated at the 15-second mark. As

shown in Figure 4-13(b), ACAS Xo alerts 10 s after the blunder begins. This exceeds

the required alert time of 9 s in Figure 2-7. ACAS Xo is thus unable to resolve the

NMAC in time, resulting in a vertical miss distance of 63 ft when horizontal conflict

first occurs.
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Figure 4-13: Sample encounter

Figure 4-14 compares the constant-drift available alert times with the actual initial

alert times of ACAS Xo when simulated on each drift angle’s worst-case scenario with

3000 ft runway separation, a 5 s pilot response delay, and a 2500 ft/min avoidance

maneuver vertical rate. Similarly, Figure 4-15 compares the available and ACAS Xo

alert times for the constant-turn blunder. As expected, the actual ACAS Xo initial

alert time decreases as the blunder severity increases with drift angle or turn rate.

ACAS Xo becomes unable to avoid an NMAC in the worst-case scenario once the

drift angle exceeds 45➦ or, for the constant-turn case, the turn rate exceeds 2 deg/s.
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There are several implications for collision avoidance that arise from the results

of the worst-case analysis and examples shown here. First, constant-turn blunders

should be of more concern when attempting to extract the worst-case scenarios. As

observed in Figure 4-15, constant-turn blunders can cause situations where the re-

quired time of alert is on the order of 15 s or less. Although the required alert times are

smaller for some constant-drift scenarios, it is much more difficult for the ACAS Xo

surveillance to quickly identify a turn blunder. The initial slow closure between the

aircraft does not immediately prompt an alert and the final miss distances tend to be

much smaller than for constant-drift blunders.

Another noteworthy implication is that state uncertainty and delayed pilot re-

sponses limit the ability to alert in time for certain worst-case scenarios. As state

uncertainty and pilot response delay grow, the time available to alert in order to avoid

an NMAC will decrease significantly. This becomes problematic in situations where

the available time to alert is already small.

4.7 Discussion

This chapter analyzed the performance of ACAS Xo on various encounters after it

was tuned on the historical encounter set in Chapter 3. Section 4.1 confirms that

ACAS Xo outperforms TCAS on the historical encounter set in terms of both safety

and alerting behavior. Fewer NMACs, nuisance alerts, strengthenings, and reversals

result with ACAS Xo than TCAS. The effect of each individual parameter was ana-

lyzed as well. Without each of the five design parameters set at their respective values

from the tuning procedure, either safety or alerting behavior is adversely affected. The

ACAS Xa cycles setting has the most dramatic effect on safety by increasing the risk

ratio by a factor of five. The slow closure rho threshold has a similarly negative effect

on nuisance alert rate and the number of strengthenings, which increase by over a

factor of five and four, respectively. The complexity of simultaneously tuning multi-

ple design parameters to achieve desirable alerting behavior is made evident by the

results of Section 4.2. Such complexity supports the need for the automated tuning
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process applied in Chapter 3.

Section 4.3 uncovered the flexibility afforded by ACAS Xo in that one combina-

tion of design parameter settings can perform well on independent encounter sets.

The tuning process results in design parameter settings that lead ACAS Xo to out-

perform TCAS on both generated encounter sets. Furthermore, the performance of

ACAS Xo with respect to the operational performance model of Section 4.4 reinforces

the flexibility of ACAS Xo. Even when varying navigational error and uncertainty is

introduced in yet another independent encounter set, ACAS Xo still maintains con-

sistently lower alert rates than TCAS at almost all combinations of overtake speed

and intrail distance.

The alerting regions associated with ACAS Xo and TCAS in Section 4.5 reflect

the foundations of each logic. As opposed to TCAS, the ACAS Xo horizontal and

vertical alerting regions reflect the results of the tuning process. ACAS Xo shrinks

the vertical alerting region compared to TCAS to account for the smaller vertical

separations associated with CSPO. However, the horizontal alerting region is larger

than that of TCAS due to the fact that ACAS Xo is specifically tuned for encounters

with 3000 ft runway separations. The TCAS logic, on the other hand, cannot be

similarly tuned for specific procedures and configurations such as CSPO with 3000 ft

runway separations.

Finally, the ACAS Xo performance in Section 4.6 validates the results of Chapter

2 in that ACAS Xo is only able to avoid an NMAC in the worst-case scenarios when

it alerts within the available time calculated in Chapter 2. ACAS Xo is able to

resolve each NMAC in the example encounters of Section 4.6 except for the 3 deg/s

constant-turn blunder. This failure indicates that more emphasis should be placed

on constant-turn blunders since they are more difficult for the system to immediately

detect than constant-drift blunders.
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Chapter 5

Conclusions and Further Work

The surrogate modeling process, paired with Max EI search, results in a tuned

ACAS Xo logic that outperforms TCAS in terms of both safety and operational

suitability. ACAS Xo results in fewer NMACs, nuisance alerts, strengthenings, and

reversals than TCAS for the historical encounter set. ACAS Xo also outperforms

TCAS with respect to the generated encounter sets and the operational performance

model, which were developed independently of the historical encounter model for

which ACAS Xo was tuned. For the operational performance model, the nuisance

alert rate of ACAS Xo does not exceed 3% except during RNP navigation where the

nuisance alert rate reaches 6%. TCAS reaches nuisance alert rates over 30% for all

imperfect navigational modes.

The ability of ACAS Xo to provide protection with minimal alerting will increase

the efficiency of CSPO, especially during IMC, and help achieve NextGen goals in-

cluding increased throughput at high-volume airports. Furthermore, tuning ACAS Xo

for specific aircraft behaviors and approach configurations may eliminate the need for

additional collision avoidance systems such as ground-based PRM.

As for the worst-case analysis of collision avoidance, the results indicate that pilot

response delay is a important factor in the limits of collision avoidance, and removing

a 5 s delay from the equation can make a significant difference in many encounters.

Auto-alerting is one possible means of completely eliminating pilot response delays.

As a continuation of the worst-case analysis in Chapter 2, there are a number of
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additional goals to accomplish. First, it would be useful to analyze how coordinated

alerts would affect the previous analysis. There are currently systems in development

that have the ability to coordinate collision avoidance alerts between multiple air-

craft. This could potentially resolve many additional conflicts by providing alerts to

the blundering aircraft as well as the non-blundering aircraft and increasing vertical

separation at close range. This analysis also assumed that only Climb and Descend

commands were issued by the system. Incorporating the ability to simultaneously

command horizontal and vertical maneuvers could potentially provide greater sepa-

ration and collision avoidance capability.

Additional work remains that can further enhance the performance of ACAS Xo.

First, ACAS Xa and ACAS Xo functionality must be combined so that system op-

erators may easily transition from one mode to another in flight. As an additional

application, the use of ACAS Xo during parallel departures and corresponding spe-

cial procedures will be relevant to many airports in addition to parallel approaches.

Another area of interest is how an autopilot response model would affect the alerting

logic, as opposed to the human pilot response model. Finally, additional data ob-

tained from target aircraft, such as bank angle or autopilot status, may be included

in future versions of ACAS Xo to enhance the surveillance capabilities of the system.

There are also improvements that can be made to the ACAS Xo tuning process. In

this study the objective value weightings were determined by performing a weighting

sweep alongside a hand-ranking of sample points to validate the selected weightings.

This process can be improved by implementing methods that incorporate preference

elicitation by learning from expert preferences. Furthermore, only one encounter set

was used to directly tune ACAS Xo, and that encounter set does not necessarily

represent a realistic probability distribution of encounter types. The encounter set

used for tuning also only included encounters with 3000 ft runway separations. The

wide range of possible encounter scenarios calls for further analysis on other encounter

models that may represent CSPO encounters differently.

Regardless, the satisfactory performance of ACAS Xo on the generated encounter

sets and operational performance model indicates that the tuning process can yield a
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solution that performs well on independent CSPO encounter models not considered

during optimization. The tuning process used here is not limited to ACAS Xo and

can be applied to a variety of research efforts. Successful application requires that

the user is equipped with a means of simulating results, able to reduce the scope of

the problem to a small number of variables, and can meaningfully combine multiple

output metrics into one representative performance metric.

The contributions of this thesis include: worst-case alerting requirements at vari-

ous parallel approach configurations, proving optimization via surrogate modeling as

a viable means of tuning collision avoidance systems, and achieving ACAS Xo per-

formance superior to that of TCAS during CSPO. Tuning ACAS Xo for CSPO, and

comparing TCAS performance with respect to various encounter models, displays the

efficiency and effectiveness of the tuning process for an airborne collision avoidance

system. The time required to complete the tuning process pales in comparison to

the time it may take a human designer to determine an optimal combination of pa-

rameter settings. Even then the ideal balance of safety and operational suitability

is unlikely to be achieved without the use of an automated surrogate modeling and

tuning process.
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Appendix A

Objective Value Weighting Sweep

A weighting sweep was performed to test various linear combinations of the primary

performance metrics (risk ratio and nuisance alert rate) and to select the objective

value weighting that most effectively tunes ACAS Xo for the historical CSPO en-

counter set.

Tables 3.6 and 3.7 in Section 3.8 contain the infill results for the 95%/5% weight-

ing; therefore, the tables are not repeated here. Tables A.1 and A.2 show the eighty

infill points and their simulation results when a 97.5%/2.5% weighting is applied in

calculating the objective value. Similarly, Tables A.3 through A.10 show the infill re-

sults for weighting combinations of 92.5%/7.5%, 90%/10%, 85%/15%, and 80%/20%.

The lowest objective value using the 97.5%/2.5% weighting is achieved at data

point 115 in Table A.2. Compared to the best performance achieved with the 95%/5%

weighting (0.0014 risk ratio and 12.9% nuisance alert rate), data point 115 results in

only one NMAC (0.0007 risk ratio) and a 17.0% nuisance alert rate. The increased

weighting toward risk ratio results in an unacceptably high nuisance alert rate in

return for one fewer NMAC.

Similarly, the lowest objective values achieved with the 92.5%/7.5% and 90%/10%

weightings represent points that result in one additional NMAC and only slight

changes in nuisance alert rate from 12.9%. The lowest objective value using the

92.5%/7.5% weighting is achieved at data point 94 in Table A.4, with a 0.0021 risk

ratio and 13.1% nuisance alert rate.
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The 90%/10% weighting minimizes the objective value at data point 84 in Table

A.6, with a 0.0021 risk ratio and 12.8% nuisance alert rate. The 0.1% reduction

in nuisance alert rate cannot be concluded to warrant any subsequent detriment to

safety. The sample point which minimizes nuisance alert rate, while matching the

safety level achieved with the 95%/5% weighting (0.0014 risk ratio), is only able

to reduce the nuisance alert to 14.0%. The priorities communicated by the heavier

weighting of nuisance alert rate lead the lowest objective values to represent risk ratios

no lower than 0.0021, which is undesirable for the purposes of ACAS Xo.

The lowest objective values achieved with the 85%/15% and 80%/20% weightings

represent points that result in additional NMACs and slight decreases in nuisance

alert rate from 12.9%. The lowest objective value using the 85%/15% weighting is

achieved at data point 86 in Table A.8, with a 0.0028 risk ratio and 11.6% nuisance

alert rate. The 80%/20% weighting minimizes the objective value at data point 66 in

Table A.9, with a 0.0056 risk ratio and 10.3% nuisance alert rate.

Again, as the weightings shift more in favor of nuisance alert rate, the supposedly

optimal sample points result in unacceptably high risk ratios and marginally reduced

nuisance alert rates, as shown in Figure A-1. For these reasons, the 95%/5% weight-

ing is determined to best represent the priorities of ACAS Xo performance for the

historical CSPO encounter set and yield the most desirable behavior during the infill

process.
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Table A.1: Evaluation Results for the First Forty Infill Points (97.5%/2.5%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

41 −0.0025 7 200 5 1,875 0.0028 0.134 18.3308

42 −0.0025 5 312 75 1,500 0.0021 0.158 6.7043

43 −0.0025 4 400 20 2,323 0.0028 0.199 16.0938

44 −0.0050 4 400 0 1,835 0.3912 0.083 2.1058

45 −0.0036 4 400 5 1,500 0.0035 0.127 5.7239

46 −0.0048 7 400 5 2,128 0.0021 0.152 27.9734

47 −0.0047 7 400 11 2,000 0.0021 0.145 21.2414

48 −0.0050 6 400 4 2,500 0.0014 0.215 56.4351

49 −0.0050 4 400 8 2,500 0.0021 0.194 34.5396

50 −0.0050 7 400 45 1,500 0.0028 0.128 9.8495

51 −0.0049 4 201 57 2,500 0.0049 0.178 43.0989

52 −0.0032 6 294 4 2,500 0.0014 0.227 51.0968

53 −0.0025 4 400 91 2,500 0.0028 0.245 22.2137

54 −0.0050 7 200 97 1,500 0.0133 0.086 16.1840

55 −0.0050 7 397 14 1,500 0.0028 0.128 9.8244

56 −0.0025 7 200 50 1,500 0.0035 0.124 9.6211

57 −0.0050 4 200 8 1,500 0.0168 0.072 10.9948

58 −0.0025 4 400 3 1,500 0.0042 0.160 5.2062

59 −0.0050 4 200 41 2,500 0.0049 0.178 43.0733

60 −0.0050 6 393 4 1,500 0.0021 0.121 9.3934

61 −0.0050 7 400 8 2,500 0.0021 0.222 61.8660

62 −0.0025 7 200 67 2,498 0.0021 0.232 59.9509

63 −0.0050 7 400 45 2,500 0.0021 0.222 61.9161

64 −0.0050 4 400 87 2,500 0.0021 0.194 34.5396

65 −0.0041 5 238 50 2,250 0.0028 0.136 35.7827

66 −0.0025 7 200 38 1,500 0.0035 0.124 9.6461

67 −0.0050 4 400 71 2,500 0.0021 0.194 34.5895

68 −0.0040 7 200 100 2,250 0.0021 0.140 47.3864

69 −0.0050 4 400 94 1,500 0.0077 0.103 8.0000

70 −0.0025 4 200 4 1,500 0.0056 0.103 7.2254

71 −0.0040 7 201 100 2,211 0.0035 0.135 44.6812

72 −0.0050 7 200 21 1,503 0.0133 0.086 16.2341

73 −0.0043 6 355 49 2,094 0.0014 0.152 22.2986

74 −0.0037 5 338 13 1,672 0.0042 0.126 9.8480

75 −0.0049 5 400 0 1,522 0.2582 0.099 2.5965

76 −0.0025 4 200 27 2,500 0.0021 0.210 32.4047

77 −0.0050 5 280 57 1,934 0.0049 0.107 22.6539

78 −0.0036 7 200 63 2,078 0.0042 0.126 34.9476

79 −0.0050 7 363 0 1,500 0.2134 0.114 3.0615

80 −0.0025 7 200 83 1,500 0.0035 0.124 9.6211
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Table A.2: Evaluation Results for the Second Forty Infill Points (97.5%/2.5%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

81 −0.0025 4 400 4 1,897 0.0035 0.168 7.6384

82 −0.0043 4 304 69 2,259 0.0021 0.140 22.2115

83 −0.0050 4 399 71 1,500 0.0070 0.103 8.1752

84 −0.0025 4 400 4 1,938 0.0035 0.169 8.1144

85 −0.0050 4 400 53 1,500 0.0077 0.103 8.0001

86 −0.0025 7 200 38 2,500 0.0021 0.233 60.4519

87 −0.0045 5 295 50 1,934 0.0035 0.112 20.1347

88 −0.0025 7 398 10 2,500 0.0021 0.281 39.2992

89 −0.0050 4 200 62 1,500 0.0168 0.072 10.9948

90 −0.0025 7 400 29 1,500 0.0021 0.201 7.0964

91 −0.0025 4 200 17 1,500 0.0056 0.103 7.2504

92 −0.0025 4 328 1 1,650 0.2568 0.128 2.0496

93 −0.0036 5 375 48 2,370 0.0007 0.191 30.5360

94 −0.0048 5 326 88 1,702 0.0063 0.110 12.7577

95 −0.0050 7 400 59 2,500 0.0021 0.222 61.9160

96 −0.0050 6 244 34 2,094 0.0049 0.116 35.4879

97 −0.0050 7 400 74 2,500 0.0021 0.222 61.9161

98 −0.0050 7 341 100 1,617 0.0042 0.118 12.4396

99 −0.0044 6 259 29 2,140 0.0028 0.134 31.8553

100 −0.0050 5 288 52 1,969 0.0056 0.108 23.7558

101 −0.0050 7 400 25 2,500 0.0021 0.222 61.9160

102 −0.0033 6 313 87 1,673 0.0021 0.147 9.4428

103 −0.0027 5 400 53 1,875 0.0021 0.174 9.8196

104 −0.0025 4 399 6 1,521 0.0035 0.160 5.2310

105 −0.0031 6 238 19 2,407 0.0007 0.188 46.9080

106 −0.0033 6 277 27 1,969 0.0021 0.140 17.8360

107 −0.0050 4 200 85 1,500 0.0168 0.072 10.9948

108 −0.0031 7 384 50 2,000 0.0021 0.185 14.0308

109 −0.0025 4 388 98 2,125 0.0035 0.178 10.6235

110 −0.0041 7 393 28 2,061 0.0021 0.162 21.4076

111 −0.0025 4 400 80 1,500 0.0035 0.160 5.1812

112 −0.0047 6 344 49 1,677 0.0035 0.118 13.3398

113 −0.0025 4 400 35 1,500 0.0035 0.160 5.1560

114 −0.0031 7 388 100 1,624 0.0021 0.176 8.3961

115 −0.0037 4 382 46 2,344 0.0007 0.170 21.7904

116 −0.0025 7 399 4 1,930 0.0021 0.209 10.9039

117 −0.0050 6 275 1 1,750 0.3737 0.081 2.3536

118 −0.0029 6 300 75 1,937 0.0028 0.147 15.1183

119 −0.0050 5 336 0 1,672 0.3457 0.085 2.3328

120 −0.0038 6 346 57 1,676 0.0021 0.134 10.5306
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Table A.3: Evaluation Results for the First Forty Infill Points (92.5%/7.5%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

41 −0.0029 4 323 50 1,500 0.0042 0.129 0.0136

42 −0.0050 4 307 0 2,489 0.5521 0.066 0.5156

43 −0.0025 7 201 5 1,500 0.0035 0.124 0.0126

44 −0.0041 6 200 7 1,500 0.0084 0.092 0.0147

45 −0.0025 7 208 0 1,750 0.2841 0.124 0.2721

46 −0.0025 4 200 40 2,500 0.0021 0.210 0.0177

47 −0.0050 7 200 10 1,500 0.0133 0.086 0.0188

48 −0.0050 4 400 53 1,500 0.0077 0.103 0.0148

49 −0.0025 7 209 4 2,063 0.0021 0.158 0.0138

50 −0.0039 7 399 4 1,500 0.0021 0.151 0.0132

51 −0.0025 4 400 91 2,500 0.0028 0.245 0.0209

52 −0.0025 4 200 27 2,500 0.0021 0.210 0.0177

53 −0.0025 4 200 4 1,500 0.0056 0.103 0.0129

54 −0.0050 4 200 8 2,500 0.0049 0.178 0.0179

55 −0.0050 7 293 0 2,416 0.5038 0.078 0.4719

56 −0.0025 7 202 81 1,500 0.0021 0.140 0.0125

57 −0.0050 7 397 61 1,500 0.0028 0.128 0.0122

58 −0.0025 7 202 3 1,500 0.0021 0.140 0.0125

59 −0.0025 7 200 17 1,500 0.0035 0.124 0.0126

60 −0.0025 4 200 37 1,500 0.0056 0.103 0.0129

61 −0.0050 7 200 44 2,500 0.0042 0.200 0.0189

62 −0.0050 4 400 88 1,500 0.0077 0.103 0.0148

63 −0.0025 4 204 29 1,500 0.0056 0.115 0.0138

64 −0.0050 7 400 73 2,500 0.0021 0.222 0.0186

65 −0.0050 7 291 64 2,474 0.0021 0.197 0.0167

66 −0.0025 7 200 66 2,500 0.0021 0.233 0.0194

67 −0.0025 7 400 21 1,500 0.0021 0.202 0.0171

68 −0.0037 6 326 75 1,644 0.0021 0.134 0.0120

69 −0.0050 7 399 25 2,500 0.0021 0.222 0.0186

70 −0.0050 4 400 12 1,500 0.0077 0.103 0.0148

71 −0.0025 4 400 7 1,500 0.0042 0.160 0.0159

72 −0.0025 7 400 58 2,500 0.0021 0.281 0.0230

73 −0.0050 7 200 85 1,500 0.0133 0.086 0.0188

74 −0.0050 4 201 98 1,500 0.0168 0.072 0.0209

75 −0.0050 4 200 56 2,500 0.0049 0.178 0.0179

76 −0.0047 7 399 0 1,521 0.2099 0.121 0.2032

77 −0.0041 6 341 68 1,659 0.0028 0.127 0.0121

78 −0.0025 4 374 0 1,500 0.1882 0.147 0.1852

79 −0.0044 4 200 100 1,703 0.0126 0.083 0.0179

80 −0.0025 7 305 4 1,500 0.0021 0.178 0.0153
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Table A.4: Evaluation Results for the Second Forty Infill Points (92.5%/7.5%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

81 −0.0050 4 314 98 1,521 0.0070 0.094 0.0135

82 −0.0045 4 306 68 2,256 0.0021 0.138 0.0123

83 −0.0050 4 400 71 1,500 0.0077 0.103 0.0148

84 −0.0050 7 400 94 2,500 0.0021 0.221 0.0186

85 −0.0050 7 400 34 1,500 0.0028 0.128 0.0122

86 −0.0050 7 293 50 2,461 0.0021 0.192 0.0163

87 −0.0041 5 259 45 1,535 0.0056 0.105 0.0131

88 −0.0050 7 200 48 1,500 0.0133 0.086 0.0188

89 −0.0025 7 200 18 2,500 0.0021 0.233 0.0194

90 −0.0050 4 356 100 1,665 0.0070 0.106 0.0144

91 −0.0050 7 200 65 1,500 0.0133 0.086 0.0188

92 −0.0028 6 224 51 2,052 0.0014 0.143 0.0121

93 −0.0025 7 224 6 2,000 0.0021 0.154 0.0135

94 −0.0044 5 255 25 2,166 0.0021 0.131 0.0117

95 −0.0050 7 200 4 1,687 0.0112 0.091 0.0172

96 −0.0048 4 400 5 2,380 0.0021 0.162 0.0141

97 −0.0050 7 288 0 1,947 0.4241 0.084 0.3986

98 −0.0025 6 281 6 1,904 0.0028 0.159 0.0145

99 −0.0045 4 233 50 2,021 0.0084 0.103 0.0155

100 −0.0025 4 310 100 1,937 0.0028 0.153 0.0140

101 −0.0050 7 203 0 1,656 0.3688 0.076 0.3468

102 −0.0044 5 385 34 2,375 0.0014 0.177 0.0146

103 −0.0034 6 350 50 1,688 0.0028 0.142 0.0132

104 −0.0025 4 400 99 1,500 0.0042 0.160 0.0159

105 −0.0038 5 372 52 2,367 0.0007 0.186 0.0146

106 −0.0050 7 400 3 2,153 0.0021 0.151 0.0133

107 −0.0025 7 360 0 2,121 0.3058 0.183 0.2966

108 −0.0025 7 200 14 1,500 0.0035 0.124 0.0126

109 −0.0050 7 200 89 2,500 0.0042 0.200 0.0189

110 −0.0043 4 400 28 1,500 0.0049 0.113 0.0130

111 −0.0050 5 341 100 2,105 0.0028 0.125 0.0120

112 −0.0029 6 212 22 2,035 0.0014 0.142 0.0119

113 −0.0041 7 400 4 1,934 0.0021 0.155 0.0136

114 −0.0050 4 353 100 2,172 0.0035 0.130 0.0130

115 −0.0050 4 400 42 2,500 0.0021 0.194 0.0165

116 −0.0025 4 310 100 1,969 0.0028 0.154 0.0141

117 −0.0048 4 394 38 2,353 0.0021 0.157 0.0137

118 −0.0039 5 242 33 2,172 0.0035 0.129 0.0129

119 −0.0025 4 268 0 1,555 0.2505 0.112 0.2402

120 −0.0031 6 328 23 1,673 0.0028 0.150 0.0139

94



Table A.5: Evaluation Results for the First Forty Infill Points (90%/10%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

41 −0.0029 4 323 50 1,500 0.0042 0.129 0.0167

42 −0.0050 4 306 0 2,469 0.5500 0.066 0.5016

43 −0.0033 4 200 20 2,500 0.0035 0.198 0.0229

44 −0.0025 7 200 5 1,500 0.0028 0.124 0.0149

45 −0.0025 6 400 5 2,500 0.0014 0.272 0.0285

46 −0.0032 6 200 0 1,606 0.3310 0.086 0.3065

47 −0.0050 4 400 4 1,500 0.0070 0.103 0.0166

48 −0.0050 4 397 11 1,500 0.0070 0.103 0.0166

49 −0.0030 7 400 4 1,500 0.0014 0.179 0.0192

50 −0.0037 4 200 5 2,500 0.0042 0.191 0.0229

51 −0.0045 6 200 5 2,000 0.0056 0.106 0.0156

52 −0.0025 4 203 40 2,500 0.0021 0.217 0.0236

53 −0.0025 7 400 58 2,500 0.0014 0.281 0.0294

54 −0.0050 4 400 87 2,500 0.0021 0.194 0.0213

55 −0.0050 7 200 45 2,500 0.0042 0.200 0.0238

56 −0.0025 7 200 68 2,500 0.0014 0.233 0.0245

57 −0.0025 7 200 8 1,500 0.0028 0.124 0.0149

58 −0.0050 7 200 33 1,500 0.0133 0.086 0.0206

59 −0.0025 7 400 21 1,500 0.0014 0.202 0.0214

60 −0.0025 7 200 92 2,500 0.0014 0.233 0.0245

61 −0.0025 4 400 29 1,500 0.0035 0.160 0.0192

62 −0.0050 4 200 8 1,500 0.0168 0.072 0.0223

63 −0.0050 7 292 44 2,469 0.0014 0.195 0.0207

64 −0.0040 5 200 100 1,788 0.0077 0.096 0.0165

65 −0.0038 4 353 45 1,875 0.0021 0.129 0.0148

66 −0.0050 7 400 13 1,500 0.0021 0.128 0.0147

67 −0.0025 7 200 81 1,500 0.0028 0.124 0.0149

68 −0.0033 6 275 50 1,733 0.0028 0.131 0.0156

69 −0.0050 4 200 98 1,500 0.0168 0.072 0.0223

70 −0.0050 4 200 61 1,500 0.0168 0.072 0.0223

71 −0.0050 7 400 55 1,500 0.0021 0.128 0.0147

72 −0.0025 4 392 98 1,500 0.0035 0.160 0.0192

73 −0.0037 6 326 51 1,653 0.0021 0.133 0.0152

74 −0.0031 6 380 0 1,500 0.1728 0.153 0.1709

75 −0.0050 5 285 0 1,969 0.4605 0.071 0.4215

76 −0.0050 5 295 0 2,109 0.4955 0.070 0.4529

77 −0.0050 4 400 71 1,500 0.0070 0.103 0.0166

78 −0.0048 5 287 100 2,067 0.0042 0.117 0.0155

79 −0.0025 7 200 65 1,500 0.0028 0.124 0.0149

80 −0.0025 4 275 4 1,912 0.0028 0.137 0.0163
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Table A.6: Evaluation Results for the Second Forty Infill Points (90%/10%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

81 −0.0025 4 200 36 1,500 0.0056 0.103 0.0153

82 −0.0045 5 225 87 1,508 0.0084 0.091 0.0166

83 −0.0032 5 234 53 1,500 0.0042 0.110 0.0148

84 −0.0050 7 400 96 1,500 0.0021 0.128 0.0147

85 −0.0047 5 337 0 1,500 0.2722 0.091 0.2541

86 −0.0037 5 231 62 1,531 0.0070 0.102 0.0165

87 −0.0048 5 400 100 2,500 0.0007 0.210 0.0216

88 −0.0050 4 200 26 2,500 0.0056 0.178 0.0228

89 −0.0025 4 200 29 1,500 0.0056 0.103 0.0153

90 −0.0048 5 250 99 2,168 0.0056 0.120 0.0170

91 −0.0025 7 282 9 1,898 0.0014 0.167 0.0179

92 −0.0025 7 400 71 1,500 0.0014 0.202 0.0214

93 −0.0025 7 265 2 1,552 0.0014 0.159 0.0172

94 −0.0037 5 235 47 2,017 0.0035 0.119 0.0151

95 −0.0025 4 400 72 2,500 0.0021 0.245 0.0264

96 −0.0045 5 209 100 1,531 0.0091 0.092 0.0174

97 −0.0025 7 400 2 1,500 0.0014 0.202 0.0214

98 −0.0050 7 200 75 2,500 0.0042 0.200 0.0238

99 −0.0025 4 200 90 1,500 0.0056 0.103 0.0153

100 −0.0042 5 203 0 2,163 0.5059 0.069 0.4623

101 −0.0025 7 207 3 1,500 0.0014 0.140 0.0153

102 −0.0047 5 297 86 2,406 0.0014 0.167 0.0179

103 −0.0049 7 295 43 2,445 0.0014 0.187 0.0199

104 −0.0050 5 299 0 2,168 0.5073 0.069 0.4635

105 −0.0034 5 218 49 1,578 0.0049 0.107 0.0151

106 −0.0049 7 200 6 2,500 0.0035 0.200 0.0232

107 −0.0025 4 316 100 1,500 0.0021 0.143 0.0162

108 −0.0025 7 299 3 1,500 0.0014 0.158 0.0171

109 −0.0048 7 275 75 2,500 0.0021 0.211 0.0229

110 −0.0050 7 200 56 2,500 0.0042 0.200 0.0238

111 −0.0047 5 359 69 2,500 0.0007 0.212 0.0218

112 −0.0048 6 296 100 2,062 0.0028 0.122 0.0147

113 −0.0039 5 200 94 1,757 0.0077 0.096 0.0165

114 −0.0048 5 275 100 2,500 0.0014 0.199 0.0211

115 −0.0045 5 275 36 1,500 0.0056 0.100 0.0151

116 −0.0025 7 400 6 1,500 0.0014 0.202 0.0214

117 −0.0025 4 400 12 2,000 0.0028 0.171 0.0196

118 −0.0047 5 266 100 1,500 0.0070 0.097 0.0160

119 −0.0047 6 325 63 2,000 0.0021 0.129 0.0148

120 −0.0047 6 399 24 2,500 0.0021 0.219 0.0238
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Table A.7: Evaluation Results for the First Forty Infill Points (85%/15%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

41 −0.0025 7 200 5 2,500 0.0014 0.233 0.0361

42 −0.0030 4 325 36 1,500 0.0042 0.128 0.0228

43 −0.0025 5 200 0 1,813 0.3779 0.093 0.3351

44 −0.0050 4 400 9 1,502 0.0070 0.103 0.0213

45 −0.0050 4 400 4 1,500 0.0070 0.103 0.0213

46 −0.0042 5 213 87 1,568 0.0091 0.096 0.0221

47 −0.0025 7 200 81 1,500 0.0028 0.124 0.0210

48 −0.0025 7 250 4 1,500 0.0014 0.140 0.0222

49 −0.0025 4 200 92 2,387 0.0021 0.170 0.0273

50 −0.0041 7 200 4 2,500 0.0028 0.209 0.0337

51 −0.0025 4 400 4 2,499 0.0021 0.244 0.0385

52 −0.0050 7 399 57 2,500 0.0014 0.222 0.0344

53 −0.0050 4 304 0 2,279 0.5297 0.068 0.4605

54 −0.0025 4 200 39 2,500 0.0021 0.210 0.0333

55 −0.0025 7 400 30 1,500 0.0014 0.202 0.0315

56 −0.0045 7 300 13 1,954 0.0042 0.124 0.0221

57 −0.0025 4 200 50 1,500 0.0056 0.103 0.0202

58 −0.0037 7 400 5 1,500 0.0014 0.156 0.0247

59 −0.0025 4 400 5 2,074 0.0028 0.175 0.0286

60 −0.0050 7 204 33 1,500 0.0091 0.095 0.0220

61 −0.0050 4 400 54 2,496 0.0021 0.193 0.0307

62 −0.0050 7 200 44 2,500 0.0042 0.200 0.0336

63 −0.0050 7 200 60 1,500 0.0133 0.086 0.0242

64 −0.0050 4 400 12 1,500 0.0070 0.103 0.0213

65 −0.0050 4 400 14 1,750 0.0056 0.108 0.0210

66 −0.0050 4 400 72 1,500 0.0070 0.103 0.0213

67 −0.0025 4 397 69 2,500 0.0021 0.245 0.0385

68 −0.0050 7 400 74 1,500 0.0021 0.128 0.0209

69 −0.0050 7 294 0 1,995 0.4360 0.083 0.3830

70 −0.0050 7 399 49 1,500 0.0021 0.128 0.0209

71 −0.0050 7 251 5 1,904 0.0049 0.107 0.0202

72 −0.0050 7 200 67 1,500 0.0133 0.086 0.0242

73 −0.0050 7 400 8 2,500 0.0014 0.222 0.0344

74 −0.0025 7 200 15 1,500 0.0028 0.124 0.0210

75 −0.0050 4 201 29 1,500 0.0161 0.078 0.0254

76 −0.0050 5 200 5 1,500 0.0154 0.078 0.0248

77 −0.0044 5 200 100 1,683 0.0119 0.089 0.0234

78 −0.0042 6 327 50 2,120 0.0014 0.144 0.0227

79 −0.0025 4 400 7 2,500 0.0021 0.245 0.0385

80 −0.0038 4 313 100 2,266 0.0021 0.148 0.0241
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Table A.8: Evaluation Results for the Second Forty Infill Points (85%/15%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

81 −0.0050 4 201 97 1,500 0.0161 0.078 0.0254

82 −0.0046 7 335 88 1,750 0.0021 0.127 0.0208

83 −0.0050 4 200 100 2,500 0.0056 0.178 0.0314

84 −0.0037 4 300 100 2,239 0.0028 0.138 0.0231

85 −0.0025 7 200 22 1,500 0.0028 0.124 0.0210

86 −0.0033 6 242 50 1,565 0.0028 0.116 0.0197

87 −0.0044 6 331 50 2,110 0.0014 0.140 0.0223

88 −0.0050 4 373 42 1,500 0.0070 0.103 0.0213

89 −0.0050 7 400 93 2,500 0.0014 0.222 0.0344

90 −0.0044 6 400 0 2,082 0.3870 0.112 0.3457

91 −0.0050 7 400 24 1,500 0.0021 0.128 0.0209

92 −0.0043 5 306 56 1,538 0.0049 0.113 0.0211

93 −0.0026 7 400 3 1,621 0.0014 0.200 0.0312

94 −0.0025 4 200 65 1,500 0.0056 0.103 0.0202

95 −0.0045 7 333 100 1,609 0.0028 0.125 0.0211

96 −0.0038 4 300 5 1,998 0.0042 0.117 0.0211

97 −0.0042 5 250 22 2,156 0.0042 0.124 0.0222

98 −0.0043 6 338 50 2,148 0.0014 0.145 0.0229

99 −0.0050 4 212 69 1,502 0.0161 0.078 0.0254

100 −0.0025 4 200 56 2,500 0.0021 0.210 0.0333

101 −0.0045 6 350 25 1,982 0.0014 0.131 0.0208

102 −0.0050 7 204 47 2,126 0.0042 0.122 0.0219

103 −0.0030 7 400 0 1,859 0.2645 0.164 0.2495

104 −0.0042 5 294 50 1,531 0.0056 0.104 0.0204

105 −0.0031 4 200 100 1,906 0.0063 0.105 0.0210

106 −0.0043 5 336 0 1,578 0.2834 0.096 0.2553

107 −0.0041 6 200 100 1,562 0.0091 0.093 0.0217

108 −0.0046 5 212 100 1,563 0.0091 0.091 0.0213

109 −0.0044 7 200 19 1,500 0.0091 0.092 0.0216

110 −0.0050 7 200 74 2,500 0.0042 0.200 0.0336

111 −0.0041 7 400 100 2,135 0.0014 0.165 0.0259

112 −0.0025 4 200 97 1,500 0.0056 0.103 0.0202

113 −0.0025 7 400 72 1,500 0.0014 0.202 0.0315

114 −0.0046 6 262 79 1,594 0.0063 0.107 0.0214

115 −0.0043 6 291 61 1,516 0.0049 0.109 0.0206

116 −0.0034 6 253 60 2,000 0.0021 0.139 0.0226

117 −0.0039 5 313 96 1,705 0.0042 0.124 0.0222

118 −0.0050 4 400 41 2,250 0.0028 0.138 0.0231

119 −0.0032 7 242 4 1,940 0.0021 0.134 0.0219

120 −0.0050 4 400 63 2,234 0.0028 0.136 0.0228

98



Table A.9: Evaluation Results for the First Forty Infill Points (80%/20%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

41 −0.0025 7 200 6 2,469 0.0014 0.217 0.0446

42 −0.0050 4 306 0 2,437 0.5451 0.066 0.4493

43 −0.0032 7 200 0 1,648 0.3233 0.091 0.2769

44 −0.0025 7 400 5 1,500 0.0014 0.202 0.0415

45 −0.0050 4 400 10 2,500 0.0021 0.194 0.0406

46 −0.0025 4 400 91 2,500 0.0021 0.245 0.0507

47 −0.0050 4 200 5 2,125 0.0133 0.101 0.0309

48 −0.0050 4 200 30 1,500 0.0168 0.072 0.0277

49 −0.0025 4 200 40 2,500 0.0021 0.210 0.0437

50 −0.0050 4 200 86 1,500 0.0168 0.072 0.0277

51 −0.0050 7 200 32 1,500 0.0133 0.086 0.0279

52 −0.0025 7 201 66 2,500 0.0014 0.233 0.0477

53 −0.0025 7 400 58 2,500 0.0014 0.281 0.0574

54 −0.0050 7 398 45 1,500 0.0021 0.128 0.0272

55 −0.0025 7 400 49 1,500 0.0014 0.202 0.0415

56 −0.0050 7 200 16 1,500 0.0133 0.086 0.0279

57 −0.0050 4 200 55 1,500 0.0168 0.072 0.0277

58 −0.0050 4 200 8 1,862 0.0133 0.084 0.0274

59 −0.0044 4 300 63 2,266 0.0035 0.134 0.0296

60 −0.0050 7 399 21 1,500 0.0021 0.128 0.0272

61 −0.0050 4 200 61 1,500 0.0168 0.072 0.0277

62 −0.0034 5 324 63 1,633 0.0042 0.131 0.0296

63 −0.0025 7 400 81 1,500 0.0014 0.202 0.0414

64 −0.0050 7 292 50 2,483 0.0021 0.201 0.0418

65 −0.0046 4 313 84 2,250 0.0028 0.135 0.0293

66 −0.0025 4 201 35 1,500 0.0056 0.103 0.0250

67 −0.0045 5 339 24 1,739 0.0056 0.115 0.0275

68 −0.0050 7 400 94 1,500 0.0021 0.128 0.0272

69 −0.0036 4 205 99 1,743 0.0091 0.101 0.0274

70 −0.0047 4 200 98 1,500 0.0147 0.074 0.0266

71 −0.0050 4 200 100 1,500 0.0168 0.072 0.0277

72 −0.0047 4 220 74 1,586 0.0119 0.083 0.0262

73 −0.0031 6 262 81 1,524 0.0028 0.132 0.0285

74 −0.0035 4 200 5 1,500 0.0105 0.086 0.0257

75 −0.0038 4 200 5 2,500 0.0042 0.191 0.0416

76 −0.0044 4 353 49 1,719 0.0042 0.116 0.0266

77 −0.0040 4 213 41 1,875 0.0070 0.100 0.0255

78 −0.0044 7 331 74 1,659 0.0021 0.128 0.0273

79 −0.0025 4 400 70 1,500 0.0028 0.160 0.0343

80 −0.0031 6 239 75 2,012 0.0014 0.135 0.0281
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Table A.10: Evaluation Results for the Second Forty Infill Points (80%/20%)

Data Pt R Alert Cycles HCD VCD Slow Clos. Rho Risk Ratio Nuisance Rate Obj Value

81 −0.0050 7 200 21 2,500 0.0042 0.200 0.0434

82 −0.0050 4 300 0 2,209 0.5437 0.060 0.4470

83 −0.0036 4 387 97 1,619 0.0035 0.129 0.0286

84 −0.0044 5 341 39 1,539 0.0049 0.111 0.0262

85 −0.0040 5 344 59 1,695 0.0042 0.122 0.0278

86 −0.0050 6 200 5 2,000 0.0084 0.102 0.0272

87 −0.0045 6 350 75 1,664 0.0035 0.120 0.0267

88 −0.0025 4 267 86 2,210 0.0035 0.158 0.0343

89 −0.0050 4 200 44 2,500 0.0056 0.178 0.0400

90 −0.0050 5 400 4 1,500 0.0063 0.113 0.0277

91 −0.0025 5 400 5 1,949 0.0014 0.186 0.0383

92 −0.0050 4 200 91 2,500 0.0056 0.178 0.0400

93 −0.0050 5 299 0 2,121 0.4976 0.069 0.4119

94 −0.0025 4 200 27 2,500 0.0021 0.210 0.0437

95 −0.0025 7 200 18 1,500 0.0028 0.124 0.0271

96 −0.0045 6 365 99 1,500 0.0021 0.130 0.0277

97 −0.0046 7 356 99 1,508 0.0021 0.136 0.0288

98 −0.0050 7 200 94 2,125 0.0077 0.116 0.0293

99 −0.0050 7 200 3 1,500 0.0133 0.086 0.0279

100 −0.0050 4 376 0 1,518 0.2834 0.087 0.2441

101 −0.0047 4 300 99 2,257 0.0042 0.129 0.0292

102 −0.0040 4 332 100 2,500 0.0014 0.202 0.0416

103 −0.0025 7 200 92 2,000 0.0021 0.140 0.0297

104 −0.0025 4 400 31 1,704 0.0035 0.163 0.0354

105 −0.0045 6 350 13 1,998 0.0014 0.132 0.0275

106 −0.0050 6 300 0 2,160 0.4878 0.076 0.4053

107 −0.0050 4 200 80 1,656 0.0147 0.076 0.0270

108 −0.0050 7 200 69 1,500 0.0133 0.086 0.0279

109 −0.0044 4 200 8 1,500 0.0154 0.077 0.0278

110 −0.0050 7 200 28 1,938 0.0084 0.101 0.0270

111 −0.0045 5 250 99 1,500 0.0091 0.091 0.0255

112 −0.0050 4 200 83 1,625 0.0147 0.075 0.0268

113 −0.0025 4 200 38 1,875 0.0042 0.114 0.0261

114 −0.0025 6 204 29 1,500 0.0014 0.134 0.0279

115 −0.0050 4 200 35 1,719 0.0140 0.078 0.0269

116 −0.0041 4 338 88 2,116 0.0028 0.128 0.0279

117 −0.0025 7 400 13 1,500 0.0014 0.202 0.0415

118 −0.0047 5 323 30 1,797 0.0063 0.113 0.0277

119 −0.0031 5 250 67 2,000 0.0028 0.127 0.0277

120 −0.0025 7 400 66 1,500 0.0014 0.202 0.0415
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Figure A-1: Risk ratio (blue) and nuisance alert rate (red) at the optimal point found

for each weighting combination
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