
Collision-based Power Analysis of Modular

Exponentiation Using Chosen-message Pairs

Naofumi Homma1, Atsushi Miyamoto1, Takafumi Aoki1,
Akashi Satoh2, and Adi Shamir3

1Graduate School of Information Sciences, Tohoku University
{homma, miyamoto}@aoki.ecei.tohoku.ac.jp, aoki@ecei.tohoku.ac.jp

2National Institute of Advanced Industrial Science and Technology
akashi.satoh@aist.go.jp

3Weizmann Institute of Science
adi.shamir@weizmann.ac.il

Abstract. This paper proposes new chosen-message power-analysis at-
tacks against public-key cryptosystems based on modular exponentia-
tion, which use specific input pairs to generate collisions between squar-
ing operations at different locations in the two power traces. Unlike pre-
vious attacks of this kind, the new attacks can be applied to all the
standard implementations of the exponentiation process: binary (left-to-
right and right-to-left), m-ary, and sliding window methods. The SPA
countermeasure of inserting dummy multiplications can also be defeated
(in some cases) by using the proposed attacks. The effectiveness of the
attacks is demonstrated by actual experiments with hardware and soft-
ware implementations of RSA on an FPGA and the PowerPC proces-
sor, respectively. In addition to the new collision generation methods, a
high-accuracy waveform matching technique is introduced to detect the
collisions even when the recorded signals are noisy and the clock has
some jitter.

Keywords: side-channel attacks, power-analysis attacks, RSA, modu-
lar exponentiation, waveform matching

1 Introduction

Physical attacks on cryptographic modules using side-channel information are
attracting extensive attention. In order to reveal the secret parameters, the power
dissipation, the electromagnetic radiation, or the operating times related to in-
ternal operations are analyzed. Two of the best known attacks are Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) proposed by Kocher et
al. [1, 2].

The original concept of side-channel attacks against modular exponentiation
[3] is to look for some physical phenomena which differentiates between multipli-
cation and squaring operations. Messerges presented a variety of power-analysis
attacks against RSA with some experimental results [4]. However, most of the

implementations of modular exponentiation nowadays use the same sequence of
instructions to implement multiplications and squarings, and for random inputs,
it is very difficult to distinguish between these two operations. In order to cause
secret information to leak via the power waveforms, chosen-message attacks that
use specific data specialized for a particular cryptographic module were proposed
[5–10].

The timing attacks against RSA with Montgomery multiplication [11] and/or
CRT algorithm in [5, 6] measures the operating times caused by extra calcula-
tions depending on input data. The SPA with adaptively chosen messages [7] can
be applied to an RSA implementation using CRT based on Garner’s algorithm,
in which an extra modular reduction is performed at the end of the operation
according to the input data. The DPA using the Hamming weight of an inter-
mediate value [8] was also applied to RSA with CRT. These attacks focused
on specific RSA implementations, and thus information about the implementa-
tion is indispensable to reveal the secret keys. The first three attacks can be
defeated by inserting dummy operations, and the DPA of [8] cannot be applied
to implementations using the Montgomery algorithm.

Over the last few years, several researchers have proposed to use a power anal-
ysis technique which is a mixture of the simple and the differential approaches.
This technique compares two segments of power consumption data (within a
single execution or in two different executions) and uses the result to determine
whether the values operated on were the same or different. For example, when
we perform two multiplications a×b and c×d, we expect the power consumption
curves to be similar when a = c and b = d, and different in all other cases. This
can give us a simple equality oracle, even though it may be extremely difficult to
determine the actual values of a, b, c, and d from the complex waveforms. This
is not a standard SPA technique since we do not try to understand the details
of each waveform, and it is not a standard DPA since it is not based on the
statistical analysis of large collections of power traces. We propose to call such
attacks on pairs of waveforms CPA (Comparative Power Analysis).

One of the simplest attacks of this type was proposed by Yen et al [10]. It
uses the particular input data of N − 1 where N is the modulus, which has
the special property that all its powers are either 1 or −1. However, a simple
countermeasure is to block the special message N − 1, and the attack can only
be applied to implementations using a left-to-right binary method.

Another attack of this type is the “doubling attack” of Fouque and Valette [9].
They used the two related input messages X and X2 to cause collisions between
adjacent time frames in the two power waveforms, where squaring operations
are performed. Since every message X can be part of such a message pair, it is
harder to block potentially harmful messages. As in the case of Yen’s method,
these attacks can only be applied to the left-to-right binary method, and the
authors make this point explicit in the title of their paper: “The Doubling Attack
- Why Upwards is Better than Downwards”.

In this paper we propose new power-analysis attacks using input pairs which
can be successfully applied to all the standard implementations of the exponen-

tiation function, including both left-to-right and right-to-left binary methods,
m-ary (window), and sliding window methods. The major new element of these
attacks is the observation that an attacker can easily choose pairs of messages
that generate collisions between their power traces at arbitrary time frames
(which need not be the same or adjacent) even though he does not know the
factorization of the modulus and thus cannot extract modular roots. Informa-
tion about the locations of such non-adjacent collisions in the power traces is
then used to identify the bit pattern of the secret exponent. In the proposed at-
tack, the relationship between the two input messages can cope flexibly with the
many variants of exponentiation algorithms, including those which were immune
to previous attacks.

We demonstrate the practical effectiveness of the proposed attacks against
hardware and software implementations of RSA using a Xilinx FPGA with a
PowerPC processor core. In this experiment, a high-accuracy waveform matching
technique is introduced to find collisions between squaring patterns that appear
at different time frames even when the signal is noisy and the clock has some
jitter.

The remainder of this paper is organized as follows: Section 2 presents an
overview of modular exponentiation algorithms and describes power-analysis at-
tacks using a chosen-message pair. In Section 3, the new power-analysis attacks
using chosen-message pairs against binary and m-ary methods are proposed.
Section 4 describes the experimental results using actual RSA hardware and
software implementations. Finally, Section 5 contains some concluding remarks.

2 Preliminary and related attacks

2.1 Modular exponentiation algorithms

Modular exponentiation is one of the most important arithmetic operations for
public-key cryptography, such as the RSA scheme and the ElGamal encryption
scheme, and for the Diffie-Hellman key agreement. Basically, there are two types
of efficient exponentiation algorithms: binary methods and m-ary (or window)
methods [12, 13].

The binary method performs multiplications and squarings sequentially ac-
cording to the bit pattern of the exponent. There are two variations of the algo-
rithm. The left-to-right binary method starts at the exponent’s MSB and works
downward. The right-to-left binary method, on the other hand, starts at the
exponent’s LSB and works upward. ALGORITHM 1 shows the left-to-right
binary method, where k indicates the bit length of the secret keys. Each multi-
plication (or squaring) operation requires a large number of clock cycles due to
the long operand length depending on the implementation. The binary method
is frequently used in smartcards and embedded devices, due to its simplicity and
low resource consumption.

The m-ary method processes more than one bit of the exponent in each
iteration cycle, in which the exponent uses a representation with base m. AL-
GORITHM 2 shows the m-ary method in which the exponent is processed from

ALGORITHM 1
Left-to-right binary method

Input: X, N ,
E = (ek−1, ..., e1, e0)2

Output: Z = XE mod N

1 : Z := 1;
2 : for i = k − 1 downto 0
3 : Z := Z * Z mod N ;
4 : if (ei = 1) then
5 : Z := Z * X mod N ;
6 : end if
7 : end for

ALGORITHM 2
m-ary method

Input: X, N ,
E = (ek−1, ..., e1, e0)2m ,
for m ≥ 1.

Output: Z = XE mod N

1 : g0 := 1;
2 : for i = 1 to 2m − 1
3 : gi := gi−1 ∗ X; — gi = Xi

4 : end for
5 : Z := 1;
6 : for i = k − 1 downto 0
7 : for l = 1 to m
8 : Z := Z * Z mod N ;
9 : end for
10: Z := Z * gei mod N ;
11: end for

the MSB down to the LSB. The powers gi mod N (i = 0, 1, 2, ..., 2m−1) are pre-
computed and used in multiplication. The intermediate value Z is raised to the
power of 2m by repeating the squaring operation m times. The m-ary method
requires fewer clock cycles but more memory resources compared with the bi-
nary methods, and thus is often used for software implementation on processors
with large memory resources. The sliding window method is an extension of the
m-ary method to reduce the amount of pre-computation by using the presence
of zero bits in the exponent.

2.2 SPA using a chosen-message pair against modular
exponentiation

The doubling attack [9] uses the two related inputs X and X2. The secret ex-
ponent is revealed by detecting collisions of squaring operations in two power
traces. Fig. 1 illustrates an image of the doubling attack against the left-to-right
binary method in ALGORITHM 1 with the secret key exponent of “101001...”
The doubling attack can generate a collision between a squaring operation at
the i + 1-th cycle in the power trace of X and a squaring operation at the i-th
cycle in that of X2 only if the corresponding key bit ei is 0. The collision for
squaring is detected by comparing the power traces, and thus we do not have
to know the intermediate data being processed. The doubling attack works on
modular exponentiation based on left-to-right binary methods including those
using the blinding countermeasures shown in [14].

A different attack which uses the message pair X and −X (= N −X mod N)
was proposed by Yen et al [10]. Fig. 2 illustrates an image of this attack against
the left-to-right binary method. When the key bit ei is 0, a collision between
power traces can be observed for the two squaring operations during the same
iteration cycle.

Time
P

o
w

e
r

Time

P
o

w
e

r

1 X2 X4 X40X8 X10 X80X20 X82

1 X X2 X20X5 X40X10 X41X4

PX

PX
2

S M S SS M SS M

S M S SS M SS M

Fig. 1. Doubling attack. [9]

Time

P
o

w
e

r

Time

P
o

w
e

r

1 -X X2 X20X4 -X5 X40X10 -X41

1 X X2 X20X5 X40X10 X41X4

PX

P-X

S M S SS M SS M

S M S SS M SS M

Fig. 2. Yen’s attack. [10]

Both attacks exploit the fact that the values which are squared depend on the
bits of the secret exponent. As mentioned in [9], it is hard to apply the attack to
exponentiation algorithms such as right-to-left algorithms and window methods
that perform squaring operations independently of the secret exponent.

3 The New Attacks

The above two attacks generate collisions of squaring operations at the adjacent
or the same time frames in two power traces. In contrast, the proposed attacks
generate a collision between two power traces at two arbitrary time frames by us-
ing two input messages with a more flexible relationship. One input gives a power
trace including an unknown (multiplication or square) operation depending on
a target key bit to be estimated, which is called a target operation. The other
input gives a power trace including a square operation, the input of which can
be determined by the known sub-key bits, referred to as the reference operation.
The partial traces for the target and reference operations are called target and
reference waveforms, respectively. The collision between the target and reference
waveforms is used to estimate the target key bit.

Our attacks provide direct and backward estimations of the key exponent
using the collision. The direct estimation simply compares the target (squaring or
multiplication) operation with the reference (squaring) operation to identify the
target operation corresponding to the key bit. The backward estimation identifies
the target operation by comparing a squaring operation following the target
operation with the reference operation. Unlike all the previous techniques, these
new estimation techniques can be applied to all the standard exponentiation
techniques (including both left-to-right and right-to-left binary methods, m-ary
methods and the sliding window methods).

The simple trick we use in order to generate a collision at any pair of locations
in two power traces is to find a solution for any equation of the form Y α =
Zβ mod N , where α and β are given constants. Note that the attacker does not
know the factorization of N and thus cannot solve this equation by extracting
modular roots. However, he can choose an arbitrary value R and compute Y =
Rβ mod N and Z = Rα mod N , which is clearly a solution for the equation. This
method is also applicable for CRT implementation that uses the prime factors p

Time

P
o

w
e

r
Time

P
o

w
e

r
1 Z Z2 Z24Z3 Z6 Z12

1 Y Y2 Y24Y6 Y12

1 …001Sub-key

Y3

Check the collision

between these parts.

PY

PZ

S M S SM S S

S M S SM S S

Fig. 3. Attack on the binary method (direct estimation).

and q of N as the moduli since Y α = Zβ mod N satisfies Y α = Zβ mod p and
Y α = Zβ mod q.

3.1 Attack on binary methods

First, the direct estimation of the binary method shown in ALGORITHM 1 is
described. Suppose that the sub-key bits E(j) (= ek−1, ..., ek−j+1) of the secret
exponent E have already been obtained. In order to estimate the next key bit
ek−j , a message pair is used, which causes a collision between the target and
reference operations performed at different time frames. If a collision is observed,
the target operation is a squaring (i.e., ek−j = 0). If no collision is observed,
then the operation is a multiplication (i.e., ek−j = 1). Once ek−j is obtained,
the remaining bits ek−j−1, ..., e0 are sequentially computed in the same manner.

The message pair Y and Z is given as Y α = Zβ(Y �= Z), where the α and β
satisfy

α = 2E(j), (1)

β =
⌊ α

2t

⌋
(0 ≤ t ≤ j), (2)

respectively. Here, Y α is the input for the target operation performed by ek−j ,
and Zβ is the input for the reference operation. If ek−j = 0, the operation of
Y α is the same as that of Zβ. In contrast, if ek−j = 1, the operation of Y α is
a multiplication, and is different from that of Zβ. As a result, the bit ek−j is
obtained by comparing the target waveforms of Y α and the reference waveform
of Zβ.

Fig. 3 shows an example of the direct (bit/digit) estimation of ALGO-
RITHM 1. Suppose that the attacker already knows the first four bits (E(4) =
11002). In this condition, α and β are given as α = 24 and β = 1, 3, 6, 12, or 24.
In order to estimate the next key bit, a message pair Y and Z, which meets the
condition Y 24 = Z3 (i.e., α = 24 and β = 3) is used. Here, Y 24 is the input for
the target operation, and Z3 is the input for the reference operation. If β = 24
(Y 24 = Z24), then Y = r and Z = −r. Therefore, this attack is identical to
Yen’s attack [10]. If β = 12 (Y 24 = Z12), then Y = r and Z = r2, which is

Time

P
o

w
e

r
Time

P
o

w
e

r
1 Z Z2 Z24Z3 Z6 Z12

1 Y Y2 Y24Y6 Y12

1 …001Sub-key

Y3

Check the collision

between these parts.

PY

PZ

S M S SM S S

S M S SM S S

Y25

Fig. 4. Attack on the binary method (backward estimation).

identical to the doubling attack [9]. Thus, these attacks are special cases of the
present direct estimation.

Now, the backward estimation of ALGORITHM 1 is explained. To esti-
mate the key bit ek−j , a squaring operation following the target operation for
ek−j is investigated. Unlike the direct estimation, the bit value of ek−j (0 or 1)
is estimated first, and the input message pair is then selected so that the power
waveform for the squaring following the target operation would match the wave-
form for the reference operation. Assuming that ek−j = 1, the message pair Y
and Z is selected so as to meet the condition Y α+1 = Zβ. If the estimation of
ek−j is correct, the operating sequence and data for the squaring of Y α+1 are the
same as those of Zβ, and the two waveforms of the squaring would be identical.
In contrast, if the estimation is incorrect, the two square waveforms would be
different.

Fig. 4 shows an example of the backward (bit/digit) estimation against the
binary method. Assuming that the target key bit is 1, and the message pair is
selected to meet the condition Y 25 = Z3. If the estimation is correct, a multipli-
cation Y 24 × Y is performed as the target operation and the result of Y 25 is fed
to the following squaring. Therefore, the same input values Y 25 and Z3 (= Y 25)
are used for the squaring operations that generate two power waveforms to be
compared. If the target key bit is 0, the target operation is squaring, and the
input of the following squaring is Y 48 (= Y 24×2), which is not equal to Z3, and
thus the two waveforms for the squaring do not match.

As described above, the direct estimation compares the two waveforms gen-
erated by the reference (square) and the target (unknown) operations with the
same input data to determine the target operation. In contrast, the backward
estimation compares the two waveforms generated by square operations to deter-
mine the input data to the squaring following the target (unknown) operation. In
order to determine the operation or the data using waveform matching, the pro-
posed method controls the relation between the messages Y and Z as Equations
(1) and (2).

1 1 1 Z121 Z48Z24

P
o

w
e

r
P

o
w

e
r

1 1 1 Y12

cSub-key

1 Y48 Y96Y24

Check the collision

between these parts.

…

PY

PZ

Y192 Y192+

S S S S M S S S S M

S S S S M S

S

Fig. 5. Attack on the m-ary methods (backward estimation).

3.2 Attack on m-ary methods.

The backward estimation has no additional advantage over the direct estimation
for attacking the conventional binary method. However, the backward estimation
is essential when attacking the m-ary method shown in ALGORITHM 2. This
algorithm always performs a multiplication after raising the intermediate result
to the power of 2m (i.e., m squaring operations). Therefore, the direct estimation,
which detects the multiplication performed only if the corresponding key bit is 1,
cannot be applied. Suppose that the m-bit sub-keys E(j) = (ek−1, ..., ek−j+1)2m

of the secret exponent E have already been obtained. To estimate the next sub-
key ek−j , the waveform of the squaring following the target multiplication is
investigated. At the beginning of the attack, the target sub-key ek−j is assumed
as γ (0 ≤ γ ≤ 2m − 1), and the message pair Y and Z is selected to meet the
condition Y α+γ = Zβ , where the α and β are given as

α = 2mE(j), (3)

β =
⌊ α

2mt

⌋
(0 ≤ t ≤ j), (4)

respectively. If the estimation is correct (ek−j = γ), the input data Y α+γ to the
squaring following the target multiplication is the same as the Zβ input in the
reference squaring, and thus the waveforms for the two squaring operations would
match. Even if the estimation is wrong, the correct sub-key can be obtained after
2m trials at most.

Fig. 5 shows an example of the attack against the m-ary algorithm of AL-
GORITHM 2, where m = 4. When the sub-key ek−1 = 12 is already known, α
and β can be given by α = 192 and β = 12. Assuming that ek−2 is γ, a message
pair Y and Z is selected to meet the condition Y 192+γ = Z12. If the estimation
is correct, the input of the squaring (Y 192+γ) following the target operation is
equal to that of the reference squaring (Z12), and these inputs would make iden-
tical waveforms. In this case, the correct sub-key ek−2 can be estimated with at
most 24 = 16 trials.

PY

PZ

P’Y , P’Z P’Y , P’’Z P’Y - P’’Z

Waveform
matching

Difference
calculation

Coarse
alignment

Fig. 6. Identification of operations using waveform matching.

FPGA
(Xilinx Virtex-II Pro xc2vp7)

Measuring points

Fig. 7. Evaluation board.

Experimental FPGA board (SASEBO)

FPGA Virtex-II Pro xc2vp7

Crystal oscillator 24-MHz

Resistance value 1 Ohm

Power supply voltage 3.3 V

Experimental equipment

Digital oscilloscope Agilent MSO6104A

Probe Coaxial cable (50 Ohm)

Fig. 8. Experimental conditions.

4 Experiments

4.1 Identification of operations by waveform matching

The proposed attacks create collisions between target and reference power wave-
forms at time frames which can be far apart, whereas previous attacks compare
the waveforms at adjacent time frames or at the same time frame, as shown in
Figs. 1 and 2. Therefore, a flexible and precise matching technique which can
overcome the cumulative effect of clock jitter and noise is crucial for collision
detection. In the following, the phase-based waveform matching technique [15],
which can match waveform positions with a resolution higher than the sampling
resolution, is used. Fig. 6 shows an overview of the identification method. Given
two power traces PY and PZ , we first cut out the waveform segments that include
the target and reference operations, P ′

Y and P ′
Z , respectively. The segments can

easily be recognized because each multiplication or square operation consumes
less power around the boundaries of the operation. The waveform segments are
then aligned precisely using the phase-based waveform matching technique. Fi-
nally, the difference between the waveforms is calculated to evaluate the equality
of the operations or data being processed.

4.2 Experimental results

RSA hardware and software using the Montgomery multiplication algorithm
were implemented on the Xilinx FPGA platform Side-channel Attack Standard

Y

Z

Reference

(b)

TargetS M S S S S

S M S S S S

(b)

Horizontal axis: 500µs/div
Vertical axis: 30mV/div

(a)

Reference

Target

S

M S S S

Y

Z

Sampling Point
0 1 2 3 4 5 6

x 105

(b)

S

S

Sampling Point
0 1 2 3 4 5 6

x 105

(c)

Fig. 9. Results of hardware implementation (target: squaring):(a) power traces of Y
and Z, (b) waveform segments, and (c) differential waveform.

Y

Z

Reference

(b)

TargetS M S S S S

S M S S S S

Horizontal axis: 500µs/div
Vertical axis: 30mV/div

(b)

(a)

Reference

Target

S

M S S S

Y

Z

Sampling Point
0 1 2 3 4 5 6

x 105

(b)

S

M

Sampling Point
0 1 2 3 4 5 6

x 105

(c)

Fig. 10. Results of hardware implementation (target: multiplication):(a) power traces
of Y and Z, (b) waveform segments, and (c) differential waveform.

Evaluation BOard (SASEBO) [16] shown in Fig. 7. The RSA hardware with
the FPGA’s embedded multipliers performs 1,024-bit modular exponentiation
using the binary method. On the other hand, the RSA software is executed as a
PowerPC processor macro in the FPGA, where both binary and 4-ary methods
are applied to a 256-bit exponent due to memory limitations.

The power traces were monitored using an oscilloscope (Agilent MSO 6104A)
at 80 Msamples/sec for software and 200 Msamples/sec for hardware as voltage
drops caused by the resistor inserted between the FPGA ground pin and the
ground plane. Fig. 8 summarizes the experimental conditions.

Figs. 9 and 10 show the experimental results of the direct estimation using
power traces generated by the RSA hardware with two different keys. The mea-
sured power waveforms in Figs. 9 (a) and 10 (a) are aligned on the reference
and target time frames as (b), and then the differential waveforms in (c) are
calculated. In order to reduce the noise distortion of the differential waveform,
low-pass filtering techniques, as well as phase-based waveform matching, are ap-
plied. The result is extremely clean, producing a greatly reduced difference signal
when the two squared values are the same. In Figs. 9 and 10, the first four bits of
the exponents are the same and are known as “1101”, and each 5-th key bit will
be identified. As described in the example operation of Fig. 3, a message pair
Y and Z that satisfies Y 24 = Z3 is used for the identification. The amplitude

Y

Z

Reference

(b)

(b)

TargetS M S S S S

S M S S S S

Horizontal axis: 1.0ms/div
Vertical axis: 20mV/div

(a)

0 1 2 3 4 5 6 7 8 9

Reference

Target

S

M S S S

Y

Z

Sampling Point x 105

(b)

S

S

0 1 2 3 4 5 6 7 8 9
Sampling Point x 105

(c)

Fig. 11. Results of software implementation (target: squaring):(a) power traces of Y
and Z, (b) waveform segments, and (c) differential waveform.

Y

Z

Reference

(b)

(b)

TargetS M S S S S

S M S S S S

Horizontal axis: 1.0ms/div
Vertical axis: 20mV/div

(a)

0 1 2 3 4 5 6 7 8 9

Reference

Target

S

M S S S

Y

Z

Sampling Point x 105

(b)

S

M

0 1 2 3 4 5 6 7 8 9
Sampling Point x 105

(c)

Fig. 12. Results of software implementation (target: multiplication):(a) power traces
of Y and Z, (b) waveform segments, and (c) differential waveform.

of the differential waveform in Fig. 9 (c) remains around zero, and thus the tar-
get (unknown) and reference (square) operations are the same. As a result, the
target operation is squaring, and the 5-th key bit is identified as 0. In contrast,
the differential waveform in Fig. 10 (c) indicates that the target and reference
operations do not match. Therefore, the target operation is multiplication, and
the 5-th key bit is revealed to be 1. Figs. 11 and 12 show the experimental results
of the software implementation of RSA with the same algorithm and parameters
used in Figs. 9 and 10, respectively. By applying the same matching techniques
used for the hardware implementation, the secret key bits (target operations)
can be easily identified.

Fig. 13 shows the differential waveforms derived from the backward estima-
tion applied to the RSA software using the 4-ary method, where the known
sub-key is 12. As described in Section 3.2 using the example operation of Fig. 5,
a message pair Y and Z that meets the condition Y 192+γ = Z12 was executed
by the RSA software. The parameter γ denotes the next unknown 4-bit sub-key,
and thus all sixteen possible sub-keys 0000 ∼ 1111 were tested. Figs. 13 (a) and
13 (b) show the differential waveforms for the correct sub-key (γ = 3) and for
one of the fifteen incorrect sub-keys (γ = 4), respectively. The correct wave-
form is easily distinguished from the incorrect waveforms. For additional details,
Root Mean Square (RMS) and maximum errors in the differential waveforms

S

Sampling Point
0 1 2 3 4 5 6

x 105

M S S

Region of interest

(a)

Sampling Point
0 1 2 3 4 5 6

x 105

M S S

Region of interest

(b)

Fig. 13. Results of software implementation based on the 4-ary method:(a) differential
waveform of correct estimation (γ = 3), and (b) differential waveform of incorrect
estimation (γ = 4).

Table 1. RMS and maximum errors of differential waveforms

Key guess 0 1 2 3 4 5 6 7

RMS error 1.92 2.11 1.98 1.27 1.77 2.91 1.75 1.95

Max. error 11.39 11.55 12.05 4.86 11.76 12.41 11.70 11.50

Key guess 8 9 a b c d e f

RMS error 1.96 1.89 1.74 2.11 1.90 1.82 2.21 2.07

Max. error 11.78 11.52 11.43 12.53 12.29 11.07 12.83 12.55

are shown in Table 1. In addition to visual observation, Table 1 can be used to
automate the computation of the correct key bits.

The above results demonstrate that the proposed attacks can defeat both bi-
nary and m-ary methods. The m-ary method was not implemented in hardware
due to memory limitations. But the proposed attack would defeat RSA hardware
with the m-ary method as well as RSA software implementations, judging from
the results of RSA hardware with the binary method. In addition to the logical
approach, signal processing techniques such as phase-based matching and filter-
ing greatly reduced the noise disturbing the correlation check between the target
and reference waveforms. The same squaring operations can then be identified by
numerical (RMS and maximum error) evaluation as well as visual observation.
Although waveforms are not shown in the present study, the right-to-left bi-
nary method under the same condition described above was also defeated by the
proposed attacks. Furthermore, the proposed attacks can be adapted to sliding
window methods by combining the attacks against the binary and m-ary meth-
ods. These results clearly indicate that the proposed attacks are better than the
previous attacks, which can only be applied to some of the implementations.

5 Conclusions

In this paper, we proposed new power-analysis attacks using chosen-message
pairs against a variety of modular exponentiation algorithms. The message pairs
are selected to have an exponential relationship in order to identify the same
squaring operations which are performed at different time frames as determined
by the bit pattern of the secret exponent. The proposed attacks can be adapted
to all the standard exponentiation algorithms such as left-to-right/right-to-left
binary methods, m-ary methods, and sliding window methods. Notice that stan-
dard message padding techniques such as OAEP provide no protection against
our attacks: even though the chosen Y and Z ciphertexts are unlikely to produce
validly padded plaintexts, this fact will be discovered only after the modular
exponentiations will take place, and thus the attacker can recover the secret
exponent even when no plaintexts are provided by the decryption process.

The effectiveness of the proposed attacks was demonstrated by experiments
on RSA hardware/software implementations with the Montgomery multiplica-
tion algorithm. We also introduced signal processing techniques to reduce the
expected noise distortion in the waveform comparison process. The proposed at-
tacks derived the secret exponents from both binary methods and m-ary methods
independently of the implementation platform. The values of the message pair
can be selected arbitrarily. Therefore, the proposed attacks can also be applied to
CRT implementations with/without the Montgomery multiplication algorithm,
in which the relationship is controllable. In addition, dummy multiplication in-
serted as an SPA countermeasure for the left-to-right binary method can easily
be detected by the new backward estimation technique which compares a squar-
ing waveform following the true or dummy multiplication waveform with the
reference waveform.

The right-to-left binary method with the squaring-and-multiply-always tech-
nique [17] and the blinding techniques [3] can still be used as effective coun-
termeasures against the proposed attacks. Note however that the blinding tech-
niques for the exponent and the message should be used simultaneously because
each one of them separately can be defeated by the proposed attacks. For exam-
ple, the mask updating technique in [3, 14] is vulnerable to the proposed attacks
as suggested in [9]. With regard to m-ary methods, the randomized m-ary meth-
ods [18, 19] would also work as countermeasures.

The proposed chosen-message attacks provide a flexible relationship between
two input messages and can generate waveform collisions in different time frames.
The phase-based waveform matching with filtering technique enables high-accuracy
alignment and collision detection between reference and target waveforms in any
time frames independently of the algorithms, implementations, and platform.
As a whole, the proposed methods and techniques make it possible to apply
comparative power-analysis attacks to additional RSA implementations, using
a very small number of chosen messages. Further research is being conducted
to expand the applicable scope of the attacks even further (e.g., to exponentia-
tion algorithms based on addition chains), and to overcome a variety of possible
countermeasures.

References

1. P. Kocher, J. Jaffe, and B. Jun,“Differential power analysis,” CRYPTO 1999,
LNCS, Vol. 1666, pp. 388–397, August 1999.

2. P. Kocher, R. Lee, G. McGraw, and A. Raghunathan,“Security as a new dimen-
sion in embedded system design,In Proc. the 41st annual conference on Design
automation, pp. 753–760. ACM Press, June 2004.

3. P. Kocher,“Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems,” CRYPTO 1996, LNCS, Vol. 1109, pp. 104–113, August 1996.

4. T. S. Messerges, E. A. Dabbish, and Sloan. R. H.,“Power analysis attacks of mod-
ular exponentiation in smartcards,” CHES 1999, LNCS, Vol. 1717, pp. 144–157,
August 1999.

5. W. Schindler,“A timing attack against RSA with the Chinese remainder theorem,”
CHES 2000, LNCS, Vol. 1965, pp. 109–124, August 2000.

6. C. D. Walter and S. Thompson,“Distinguishing exponent digits by observing mod-
ular subtractions,” CT-RSA 2001, LNCS, Vol. 2020, pp. 192–207, April 2001.

7. R. Novak,“SPA-based adaptive chosen-ciphertext attack on RSA implementation,”
PKC 2002, LNCS, Vol. 2274, pp. 252–262, February 2002.

8. B. D. Boer, K. Lemke, and G. Wicke,“A DPA attack against the modular reduction
within a CRT implementation of RSA,” CHES 2002, LNCS, Vol. 2523, pp. 228–
243, August 2002.

9. A. P. Fouque and F. Valette,“The doubling attack -why upwards is better than
downawards,” CHES 2003, LNCS, Vol. 2779, pp. 269–280, September 2003.

10. S. M. Yen, W. C. Lien, S. J. Moon, and J. C. Ha,“Power analysis by exploiting
chosen message and internal collisions - vulnerability of checking mechanism for
RSA-decryption.,” Mycrypt 2005, LNCS, Vol. 3715, pp. 183–195, September 2005.

11. P. L. Montgomery,“Modular multiplication without trial division,” Math. Comp.,
Vol. 44, No. 170, pp. 519–521, 1985.

12. J. A. Menezes, C. P. Oorschot, and A. S. Vanstone,Handbook of Applied Cryptog-
raphy,CRC Press, 1997.

13. C. K. Koc,“High-speed RSA implementation,Technical Report TR201, RSA Lab-
oratories, November 1994.

14. J. S. Coron,“Resistance against differential power analysis for elliptic curve cryp-
tosystems,” CHES 1999, LNCS, Vol. 1717, pp. 192–302, August 1999.

15. N. Homma, S. Nagashima, Y. Imai, T. Aoki, and A. Satoh,“High-resolution side-
channel attack using phase-based waveform matching,” CHES 2006, LNCS, Vol.
4249, pp. 187–200, May 2006.

16. Side-channel Attack Standard Evaluation Board (SASEBO)
http://www.rcis.aist.go.jp/special/SASEBO/.

17. M. Joye,“Highly regular right-to-left algorithms for scalar multiplication,” CHES
2007, LNCS, Vol. 4727, pp. 135–147, September 2007.

18. C. D. Walter,“MIST: An efficient, randomized exponentiation algorithm for resist-
ing power analysis,” CT-RSA 2002, LNCS, Vol. 2271, pp. 53–66, April 2002.

19. K. Itoh, J. Yajima, and M. Takenaka,“DPA countermeasures by improving the
window method,” CHES 2002, LNCS, Vol. 2523, pp. 303–317, August 2002.

