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1 I n t r o d u c t i o n  

Collision detection is a basic tool whose performance is of capital importance 
in order to achieve efficiency in many robotics and computer graphics applica- 
tions, such as motion planning, obstacle avoidance, virtual prototyping, com- 
puter animation, physical-based modeling, dynamic simulation, and, in general, 
all those tasks involving the simulated motion of solids which cannot penetrate 
one another. In these applications, collision detection appears as a module or 
procedure which exchanges information with other parts of the system concern- 
ing motion, kinematic and dynamic behaviour, etc. It is a widespread opinion 
to consider collision detection as the main bottleneck in these kinds of appli- 
cations. 

In fact, static interference detection, collision detection and the generation 
of configuration-space obstacles can be viewed as instances of the same prob- 
lem, where objects are tested for interference at a particular position, along a 
trajectory and throughout the whole workspace, respectively. The structure of 
this chapter reflects this fact. 

Thus, the main guidelines in static interference detection are presented in 
Section 2. It is shown how hierarchical representations allow to focus on relevant 
regions where interference is most likely to occur, speeding up the whole inter- 
ference test procedure. Some interference tests reduce to detecting intersections 
between simple enclosing shapes, such as spheres or boxes aligned with the co- 
ordinate axes. However, in some situations, this approximate approach does not 
suffice, and exact basic interference tests (for polyhedral environments) are re- 
quired. The most widely used such test is that involving a segment (standing for 
an edge) and a polygon in 3D space (standing for a face of a polyhedron). In this 
context, it has recently been proved that interference detection between non- 
convex polyhedra can be reduced, like many other problems in Computational 
Geometry, to checking some signs of vertex determinants, without computing 
new geometric entities. 

Interference tests lie at the base of most collision detection algorithms, 
which are the subject of Section 3. These algorithms can be grouped into four 
approaches: multiple interference detection, swept volume interference, space- 
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time volume intersection, and trajectory parameterization. The multiple inter- 
ference detection approach has been the most widely used under a variety of 
sampling strategies, reducing the collision detection problem to multiple calls 
to static interference tests. The efficiency of a basic interference test does not 
guarantee that a collision detection algorithm based on it is in turn efficient. 
The other key factor is the number of times that this test is applied. Therefore, 
it is important to restrict the application of the interference test to those in- 
stants and object parts at which a collision can truly occur. Several strategies 
have been developed: 1) to find a lower time bound for the first collision, 2) to 
reduce the pairs of primitives within objects susceptible of interfering, and 3) 
to cut down the number of object pairs to be considered for interference. These 
strategies rely on distance computation algorithms, orientation-based pruning 
criteria and space partitioning schemes. 

Section 4 describes how motion planners adopt different strategies with 
respect to the use of static interference and collision detection procedures, de- 
pending on their global or local nature. While global planners use static in- 
terference tests, or their generalizations, to generate a detailed description of 
either configuration-space obstacles or free-space connectivity, incremental and 
local path planners avoid this costly computation by fully relying on collision 
detection tests during the search process. 

Finally, some conclusions are sketched in Section 5. 

2 I n t e r f e r e n c e  d e t e c t i o n  

Objects to be checked for interference are usually modeled by composing sim- 
ple shapes. Hierarchies of spheres (or other primitive volumes) and polyhedral 
approximations are the most commonly used. The former exploit the low cost 
of detecting interference between spheres, which reduces to comparing the dis- 
tance between their centers and the sum of their radii. This type of model is 
particularly adequate in situations not demanding high accuracy, since achiev- 
ing that would require going down many levels in the hierarchy. Objects with 
planar faces and subject to small tolerances are usually dealt with using poly- 
hedral representations of their boundaries. 

Hierarchical approximations permit focusing on the regions susceptible of 
interfering, as described in Section 2.1. Then, basic interference tests, which 
are the subject of Section 2.2, need only be applied within the focused regions. 

2.1 Focusing on relevant regions 

The two main approaches to confine the search for interferences to particular 

portions of the solids are representation dependent. On the one hand, there are 
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algorithms that bound volume portions, and they are suited for volume repre- 

sentations, like Constructive Solid Geometry (CSG), octrees, or representations 
based on spheres. On the other hand, there are procedures that restrict the el- 
ements of the boundary of the objects that can intersect, and these algorithms 
are of course used together with boundary representations. 

Hierarchica l  vo lume  represen ta t ions  Two advantages of hierarchical rep- 
resentations must be highlighted: 

- In many cases an interference or a non-interference situation can be easily 
detected at the first levels of the hierarchy. This leads to substantial savings 
under all interference detection schemes. 

- The refinement of the representation is only necessary in the parts where 
collision may occur. 

There are two types of bounding techniques for hierarchical volume rep- 
resentations, those that are based on an object partition hierarchy, and those 
where subregions of a space partition are considered. 

O b j e c t  pa r t i t ion  hierarchies  The so called "S-bounds" were developed and 
used in [8] for bounding spatially the part of the CSG tree that represents 
an intersection between two solids. S-bounds are simple enclosing volumes 
of the primitives at the leaves of the CSG tree: two examples are shown 
and discussed in [8] where rectangular parallelepipeds aligned with the 
coordinate axes and spheres are used as S-bounds. According to the set 
operations attached to every node in the tree, the S-bound corresponding 
to the root of the CSG intersection tree can be obtained after a number of 
pseudo-union and intersection operations of S-bounds. An algorithm that 
runs upwards and downwards on the tree performs all these operations 
(see Figs. 1 and 2). The main advantages of this procedure are the cut- 
off of subtrees included in empty bounds, leading to possibly important 
computational savings, and the focusing of intersection searching on zones 
where intersection can actually occur. 
The "successive spherical approximation" described in [6] allows focusing 
on the region of possible interference by checking intersection of spherical 
sectors at different levels in the hierarchy (Fig. 3). Hierarchies based on 
spheres that bound objects at different levels of refinement are also used in 
[50] and in [52]. 

Space  pa r t i t i on  hierarchies  The octree representation allows to avoid 
checking for collision in those parts of the workspace where octants are 
labelled empty, that is, where no part of any object exists. H a full (to- 
tally occupied by the solid) or mixed (partially occupied) octant is inside 
a full one of the other solid, interference occurs. Only if a full or mixed 
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Fig. 1. S-bounds. (a) The intersection (i) between two polygons described by their CSG 
representations has to be computed. (b) The rectangular boxes that bound the prim- 
itives are combined and the boxes corresponding to the higher levels are determined, 
according to the nature of the nodes (union or intersection). 
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Fig. 2. S-bounds (cont.). (c) The box obtained at the root node is intersected with the 

boxes of nodes at lower levels. The empty set is obtained for some nodes, which can be 

eliminated. (d) The representation is once again explored upwards, and a smaller box 

is obtained at the root. I f  the process is repeated once more every node will contain 

the small box or the empty set. This small box bounds the region where intersection 

has to be looked for. 
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Fig. 3. (a) Interference cannot be decided at the first level in the hierarchy, since 

neither the inner circles intersect nor the outer circles are disjoint. Nevertheless, the 

region of possible interference can be bounded, using the intersection points of the outer 

spheres. (b) At the next level two inner sectors intersect, thus interference exists. 
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octant is inside a mixed one, the representation has to be further refined. 
The "natural" octree primitive is a cube [1,27], but there exist also mod- 
els based on the same idea where spheres are used, as octant-including 
volumes [31] or within a different space subdivision technique, where the 
subdivision branching is 13 instead of 8 [39]. In the binary space partition 
tree [56], a binary tree is constructed that represents a recursive partition- 
ing of space by hyperplanes. The authors describe such representation as 
a "crossing between octrees and boundary representations", but partition- 
ing is not restricted to be axis-aligned, as in the octree representation, and 
therefore transformations (a change in orientation, for example) can be sim- 
ply computed by applying the transformation to each hyperplane, without 
rebuilding the whole representation. 

B o u n d a r y  r ep resen ta t ions  Hierarchical representations associated to 
bounding volumes that contain boundary features allow to restrict the effort 
of determining which parts of the objects boundaries may intersect to the 
most "promising" parts. Octrees have been used for subdividing axis aligned 
bounding boxes and constructing a bounding box hierarchy for the hull features 
(features of the polyhedron also appearing on its convex hull) and concavities 
of non-convex polyhedra [51]. Once penetration has been detected between the 
convex hulls of two polyhedra, a sweep and prune algorithm is applied to tra- 
verse the hierarchies down to the leaf level, where overlapping boxes indicate 
which faces may intersect, and exact contact points can be quickly determined. 

In dense, cluttered environments, Oriented Bounding Boxes (OBB) perform 
better than axis aligned boxes or spheres, as they do fit more tightly to the 
objects and therefore less interferences between bounding volumes are reported. 
A hierarchical structure called OBB-Tree is used in [25] to represent polyhedra 
whose surfaces have been triangulated. Overlaps between OBBs are rapidly 
determined by performing 15 simple axis projection tests (about 200 arithmetic 
operations), as proved by the authors through their separating axis theorem. 

2.2 Basic  interference tests  

Convexity plays a very important role in the performance of interference de- 
tection algorithms, and it is therefore used as classification criterion in the 
description below. 

Convex  p o l y h e d r a  As pointed out in [37], intersection detection for two 
convex polyhedra can be done in linear time in the worst case. The proof is by 
reduction to linear programming, which is solvable in linear time for any fixed 
number of variables. If two point sets have disjoint convex hulls, then there is a 



312 P. Jim@nez, F. Thomas and C. Torras 

plane which separates the two sets. The three parameters that define the plane 
are considered as variables. Then, a linear inequality is attached to each vertex 
of one polyhedron, which specifies that the point is on one side of the plane, 
and the same is done for the other polyhedron (specifying now the location on 
the other side of the plane). 

Moreover, convex polyhedra can be properly preprocessed, as described in 
[17], to make the complexity of intersection detection drop to O(logn logm). 
Preprocessing takes O(n + m) time to build a hierarchical representation of two 
polyhedra with n and m vertices. The lowest level in the hierarchical represen- 
tation is a tetrahedron. At each level of the hierarchy, vertices of the original 
polyhedron are added, such that they form an independent set (i.e. , are not 
adjacent) in the polyhedron corresponding to this hierarchical level, and the 
corresponding edge and face adjacency relationships are updated. 

In fact, this algorithm computes the distance between two convex polyhedra. 
Likewise, all algorithms developed for distance computation can be adapted to 
detect interference. We refer the reader to Section 3.2. 

One  convex a n d  o n e  o n e  n o n - c o n v e x  An algorithm for computing the 
intersection between a convex and a non-convex polyhedron is described in 
[45]. A by-product of intersection computation is interference detection. Let P 
and Q be the surface of P (convex, n edges) and of Q (possibly non convex, 
m edges), respectively. The algorithm needs to solve the support problem, that 
is, to determine at least one point of each connected component of P f3 Q (this 
set of points will be called S). The methods for interference detection between 
convex polyhedra and linear subspaces developed by Dobkin and Kirkpatrick 
[16] are used for determining the intersections of P with edges and faces of Q: a 
hierarchical representation is used for P ,  so that the intersection between a line 
l, supporting an edge of Q, and P is computed in time O(log n), and a point in 
h N P ,  where h is a plane supporting a face of Q, can also be computed in time 
O(logn). Therefore, an algorithm can be constructed that solves the support 
problem in O(m log n). The next step consists in determining C = P f3 Q, by 
taking points of S, which are intersections between a face and an edge, and 
determining the intersections between the face and the two faces which are 
adjacent to the edge. Finally, the segments of edges of P and Q which are 
inside the intersection have to be determined. Figure 4 illustrates the main 
steps of the strategy. The overall complexity is O((n + m + s) log(n + m + s)), 
where s is the number of edges in the intersection. 

Non-convex  p o l y h e d r a :  D e c o m p o s i t i o n  i n t o  c o n v e x  p a r t s  It is possible 
to extend the usage of the above algorithms to non-convex polyhedra just by 
decomposing these polyhedra into convex entities. Typically, decomposition 
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Fig. 4. (a) Intersection computation (and -implicitly- interference detection) between 

two polyhedra, one of which is allowed to be non-convex (here, both have been depicted 

as convex for clarity). (b) Solving the support problem, the set of black (intersections of 
edges of Q and P)  and white (intersections of edges of P and Q)points are obtained. 

Each pair of adjacent faces to these edges is intersected with the face of the other 
polyhedron that intersects this edge. (c) The segments of edges of one polyhedron 
inside the other one (and vice-versa) are finally computed (dotted lines). 
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is performed in a preprocessing step, and therefore has to be computed only 
once. The performance of this step is a tradeoff between the complexity of its 
execution and the complexity of the resulting decomposition. For example, the 
extreme case of solving the minimum decomposition problem is known to be 
NP-hard in general [3]. On the other hand, algorithms such as that in [13] can 
always partition a polytope of n vertices into at most O(n 2) convex entities. 

Consider two polyhedra. Discarding the case in which one is fully inside the 
other, they intersect if their surfaces do. The detection of intersections between 
polyhedral surfaces reduces to detecting that an edge of one surface is piercing 
a face of the other sm'face. 

Although interference detection becomes quite simple when faces are de- 
composed into convex polygons, and easy to implement, as explained below, 
the sequence of reductions used implies that the final complexity is O(nm). 

This reduction of the problem to detect edges piercing faces, formulated 
using the idea of predicates associated with the basic contacts, was introduced 
in [12]. The concept of basic contacts was introduced in [40], and its name 
derives from the fact that all other contacts can be expressed as a combination 

of them. 
There are two basic contacts between two polyhedra. One takes place when 

a face of one polyhedron is in contact with a vertex of the other polyhedron 
(Type-A contact), and the other when an edge of one polyhedron is in con- 
tact with an edge of the other polyhedron (Type-B contact). Although in [40] 
and in [18] two different contacts between vertices and faces were considered, 
depending on whether they belong to the mobile polyhedron or the obstacle, 
avoiding to make this distinction greatly simplifies the presentation. 

It is possible to associate a predicate with each basic contact, which will be 
true or false depending on the relative location between the geometric elements 

involved, as we will describe next. 
Let us assume that face Fi is represented by its normal vector fi; edge Ej, 

by a vector ej along it; and vertex V~ by its position vector vk. Although 
this representation is ambiguous, any choice leads to the same results in what 

follows. 
According to Fig. 5(a), predicate Ave,F~, associated with a basic contact of 

Type-A, is defined as true when 

(fj,vi - v k )  > 0, (1) 

for any vertex Vk in face Fj, and false otherwise. 
According to Fig. 5(b), predicate BE,  Ej, associated with a basic contact of 

Type-B, is defined as true when 

(ei × ej,Vm -- vk) > O, (2) 
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Fig. 5. Geometric elements involved in the definition of the predicates associated with 
Type-A (a) and Type-B (b) basic contacts. 

Vm and Vk being one of the two endpoints of Ei and Ej, respectively, and false 
otherwise. 

It can be checked that if one of the following predicates 

OOUt E~,Fi = -~Av~ ,Fj A A%,v~ A A BE~ ,Ek 
E~ Eedges( Fj ) 

OE~ ,Fj ---" Av .  ,Fj A "~Avt t ,Fj A A -~BE~,E~ 
EiEedges(Fj) 

(a) 

is true (see Fig. 6), then edge Ei intersects face Fj, provided that its edges (Ek) 
are traversed counter-clockwise. 

Non-convex  po lyhedra :  Direc t  approach  If faces are not decomposed into 
convex polygons, two simple steps can be followed to detect whether an edge 
intersects a face. First, check if the edge endpoints are on opposite sides of 
the face plane. If so, check if the intersection point between the edge and the 
face plane is located inside the face by simply casting a ray from this point 
and determining how many times the ray intersects the polygon. Then, if this 
number is odd, the intersection does exists (odd-parity rule). Note that the 
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Fig. 6. Basic edge-face intersection test (convex faces). 

latter step corresponds directly to solving a point-in-polygon problem, for which 
several alternatives, different from that of shooting a ray, have been proposed 

[281. 
This was the approach adopted in [7] almost twenty years ago. Although 

the final complexity of the algorithm is clearly O(nm), it is still the solution 
adopted in most implementations. Note that the only subquadratic algorithm 
developed so far [49] lacks practical interest because of the high time constants 
involved. 

A simpler approach is to reduce the problem to computing the signs of some 
determinants [58], as it has been done for many other problems within the field 
of Computational Geometry [2], 

Consider a face from one polyhedron, defined by the ordered sequence of the 
vertices around it, represented by their position vectors P l , . . . ,  Pt, expressed in 
homogeneous coordinates (that is, pi = (pz~ ,Py~,Pz,, 1)), and an edge, from the 
other, defined by its endpoints h and t. Then, consider a plane containing the 
edge and any other vertex, say v, of the same polyhedron, so that all edges in 
the face whose endpoints are not on opposite sides of this plane are discarded. 
In other words, we define, according to Fig. 7, s := sign Ih t v Pit- Then, if 
Pi and Pi+l are on opposite sides, s should have a different sign from that of 

lh t v Pi+t I. 
It can be checked that, if the number of edges straddling the plane and 

satisfying s * sign Ih t Pi Pi+I I > 0 is odd, then the face is intersected by the 
edge. Actually, this is a reformulation of the odd parity rule that avoids the 
computation of any additional geometric entities such as those resulting from 
plane-edge or line-edge intersections. 
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Fig. 7. Basic edge-face intersection test (general faces). 

The two special cases in which the arbitrary plane intersects at one vertex 
of the face or it is coplanar with one of the edges lead to determinants that are 
null. Actually, equivalent situations also arise when the ray shooting strategy 
is used. In order to take them into account, a simple modification of the odd 
parity rule has to be introduced as in [7]. 

It is also interesting to point out that, if the arbitrary point v corresponds 
to a point on one of the two faces in which the edge lies, different from its 
endpoints, the above approach is a generalization of Canny's predicates, by 
simply noting that they can also be expressed in terms of signs of determinants 
involving vertex locations [58]. 

Thus, in order to decide whether two non-convex polyhedra intersect, only 
the signs of some determinants involving the vertex location coordinates are 
required. Since the signs of all the determinants involved are not independent, 
it is reasonable to look for a set of signs from which all other signs can be 
obtained. This is discussed in [57] through a formulation of the problem in 
terms of oriented matroids. 

3 C o l l i s i o n  d e t e c t i o n  

Collision detection admits several problem formulations, depending on the type 
of output sought and on the constraints imposed on the inputs. The simplest 
decisional problem, that looking for a yes/no answer, is usually stated as fol- 
lows: Given a set of objects and a description of their motions over a certain 
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time span, determine whether any pair will come into contact. More intrincate 
versions require finding the time and features involved in the first collision, or 
even the time intervals over which objects would be intersecting if they were 
adhering to the predefined motions. Placing constraints on the inputs is a usual 
way of simplifying problems. Thus, often objects are assumed to be polyhedra, 
usually convex ones, and motions are constrained to be translational or quasi- 

linear. 
The four main approaches that have been proposed to deal with the dif- 

ferent instances of the collision detection problem are described in Section 3.1. 
After this description, it becomes clear that tests for static interference lie at 
the base of most approaches. However, the efficiency of a basic interference test 
does not guarantee that a collision detection algorithm based on it is in turn 
efficient. The other key factor is the number of times that this test is applied. 
Therefore, it is important to restrict the application of the interference test 
to those instants and object parts at which a collision can truly occur. Sec- 
tion 3.2 reviews the different strategies for time and space bounding that have 
been developed, among them distance computation, orientation-based pruning 

criteria, and prioritizing collision pairs. 

3.1 Four main approaches 

Collision detection algorithms can be grouped into four approaches: multiple 
interference detection, swept volume interference, extrusion in 4D space, and 
trajectory parameterization. As we will see, some approaches are linked to a 
particular object representation scheme (e.g. , extrusion is particularly suited 

to a CSG representation), while others do not. 

Mul t ip le  interference de tec t ion  The simplest way to tackle collision detec- 

tion consists in sampling the trajectories followed by the objects and repeatedly 
applying a static interference test. This is called the multiple interference de- 

tection approach. 
The way sampling is performed is crucial for the success of the approach. A 

too coarse sampling may lead to accepting a trajectory as safe when it actually 
leads to collision (see Fig. 8), while a too fine one may be computationally 
expensive. The reasonable way out is to apply adaptive sampling. 

Ideally, the next time sample should be the earliest time at which a collision 
can really occur. The different sampling strategies differ in the way this earliest 
time is estimated. The most crude estimation is that relating a lower bound 
on the distance between objects to an upper bound on their relative velocities 

[10,15]. 
More sophisticated strategies take not only distance into account, but also 

directional information. One such strategy [23] requires computing the closest 
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Fig. 8. Multiple interference detection approach. As the time step is too large, the 

collision between the polygons 1 and 2, which takes place between instants (b) and 

(c), is missed. At instant (d) polygons 1 and 2 have attained their final positions, 

whereas polygon 3 had already attained it between instants (b) and (c). The polygons 

and their trajectories are the same as those in the next three figures. 
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points from the objects at the current time sample, as well as the line joining 
them. The first future instant at which the projections of the objects on the 
line meet is taken as the next time sample (see Fig. 9). 

I • 

t • 

i 
i 

.-_ . . . . . .  _ ,  (b) 

, :  . . . . . .  ~ (C) (d) 

Fig. 9. Adaptive time sampling. Starting position is depicted in (a), where the closest 
points and the line joining them are computed. The projections of the objects on this 
line meet at instant (b), which is taken as the next time sample. At this instant, the 
new closest points are computed (c), and the next time sample, where the polygons do 

actually collide, is determined in the same way (d). 

Since the closest points between two objects lie always in their boundaries, 
it is usual practice to resort to boundary representations (B-rep) when following 
a multiple interference detection approach. However, to confine the application 
of the interference test to those object parts susceptible of colliding first, spa- 
tial partitioning techniques such as octrees and voxels have also been used in 
conjunction with this approach. 

Swept  vo lume  interference Given an object and a description of its motion 
over a time period, the volume containing all the points occupied by the object 
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at some time instant is called the swept volume. If the swept volumes for all 

the objects in a scene do not intersect, then no collision between them will 
occur during the specified time period. However, this is a sufficient, but not a 
necessary condition: It may happen that the swept volumes intersect but no 
collision takes place (see Fig. 10). 

Fig. 10. Swept volume interference. Polygons 1 and 2 collide, and their swept areas 
interfere. However, interference exists between the swept areas of polygons 2 and 3, 
but they do not actually collide. 

In order for the condition to be also necessary, the sweep has to be performed 
according to the relative motion of one object with respect to another one, for 
each pair of objects. This can be computationally very costly. 

The generation of the swept volume per se is also computationalty expen- 
sive. This is the reason why most works in this area deal with convex ap- 
proximations of the swept volume and, only when the global swept volumes 
intersect, they proceed to split the trajectory into pieces and to compute a 
convex approximation of the swept volume for each piece [19]. 

The union of the convex approximations for the several trajectory pieces 
constitutes a much finer approximation to the real swept volume than the initial 
global approximation for the entire trajectory. For convex objects, Foisy and 
Hayward [19] have proved that the approximations obtained in the successive 
splittings of the trajectory converge to the real swept volume. 
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Simplifying alternatives consist in restricting the kind of shapes and trajec- 
tories to very simple ones [29], or creating implicitly the swept volume from 
the volumes swept out by the primitives of the B-rep [7]. 

Ex t rus ion  in 4D space Probably the collision detection approach most at- 
tractive from a theoretical viewpoint is that based on the extrusion operation 
[9]. Given an object and a description of its motion over a time period, the 
extruded volume is the spatio-temporal set of points representing the spatial 
occupancy of the object along its trajectory. 

The intersection of two extruded volumes is a necessary and sufficient condi- 
tion for the occurrence of a collision between the corresponding objects as they 
move along their respective trajectories (see Fig. 11). Therefore, this approach 
obviates a priori all the problems derived from sampling and from having to 
consider relative motions between pairs of objects. The problem that remains, 
however, is that of generating the volumes, which are 4D in this case. 

/ 

Fig. 11. Interference between eztruded volumes. Time is ezplieitly taken into account 
and therefore collision situations can be clearly identified (such as that of polygons 
i and 2). Note the change in the shape of the volume e~truded by polygon 3, corre- 
sponding to the change in its velocity (it has stopped moving earlier than the other 

polygon#. 
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The extrusion operation is distributive with respect to the union, inter- 
section and set difference operations. This motivated the development of the 
extrusion approach in the context of CSG representations. The mentioned dis- 
tributive property guarantees that an object and its extruded volume can be 
represented through the same boolean combination of volumetric primitives 
and extrusions of these primitives, respectively. 

The formal beauty of this approach is partially occluded by the high cost 
of its practical implementation. Thus, for example, the extrusion of a linear 
subspace subject to a constant angular velocity is bounded by a helicoidal hy- 
persurface. For this reason, the implementation deals only with linear subspaces 
subject to piecewise translational motions [9]. 

T r a j e c t o r y  pa rame te r i za t i on  The collision instant can be analytically de- 
termined if the object trajectories are expressed as functions of a parameter 
(time) and the collision condition is formulated as a semialgebraic set involv- 
ing the locations of object features (faces, edges and vertices). This requires to 
perform a change of variable in order to obtain an algebraic expression for rota- 
tion, instead of equations in terms of trascendent functions. By replacing those 
locations by the corresponding parameterized trajectories, a semialgebraic set 
in terms of a single variable (time) is obtained. Once this set is explicitly com- 
puted, the time instants at which objects establish and lose contact are known. 

The trajectory parameterization approach has been followed in [12,33,54], 
where a polyhedra interference test is expressed as a combination of param- 
eterized basic contact functions. These functions reflect the spatial relation- 
ships between the primitives of the B-rep of the polyhedra. The zeros of these 
functions delimit several time intervals, whose combination according to the 
interference test provides the desired set of intervals over which objects would 
be intersecting, if they were ~lhering to the predefined trajectories. 

3.2 St ra tegies  for space and t ime  bound ing  

The first three approaches described in the preceding section eventually re- 
quire to apply a static interference test between either 3D volumes or 4D ones. 
However, even if a basic interference test is made very efficient, the collision de- 
tection algorithm can still be computationally expensive if the basic test has to 
be applied many times. Thus, the key aspect of any collision detection scheme 
is to restrict as much as possible when and where this test is applied. Knowing 
how the objects are moving and how far away they are from one another, it 
is possible to bound the time interval where the collision is likely to occur. 
Therefore, it is important to determine quickly the distance between the ob- 
jects. On the other hand, if the direction of motion is known, the search for 
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possible collisions can be restrained to those object parts which may first come 
into contact. Finally, if there are many moving objects in the scene, means to 
avoid having to check every pair of objects for collision need to be provided. 
These are the issues discussed in the next subsections. 

Dis tance  computation for collision t ime  bound ing  Spherical represen- 
tations are appealing because the elementary distance calculation between two 
spheres is trivial. The problem rather consists in determining which spheres of 
the representation have to be tested. In [59] the objects are described in terms 
of spherical cones (generated by translating a sphere along a line and changing 
its radius) and spherical planes (which are obtained by translating a sphere 
in two dimensions, and eventually changing also its radius). These primitives 
can also be viewed as a collection of spheres. Any distance can be expressed 
as a combination of the distances between two spherical cones and between a 
sphere and a spherical plane. The distance between two spherical cones is deter- 
mined in two steps: first, compute the direction where the minimum distance 
occurs, then compute the involved spheres (locate their centers on the axes of 
the spherical cones). The distance between a sphere and a spherical plane is 
found by projecting the sphere perpendicularly on the plane, and calculating 
the sphere on the plane that corresponds to this projection. In any case, once 
the spheres are located, the distance is easily found as the distance between 
their centers minus the sum of their radius. 

Most distance computation algorithms have been developed for convex poly- 
hedra. Some exploit specific features of the polyhedra and therefore cannot be 
used for other type of geometric models. Others, like the method explained in 
[24], can be used with spherical [26] or other non-polytopal surface descriptions 

[22]. 
There are two main streams in the way that the distance computation 

problem is treated, namely the geometric and the optimization approaches. 

The geometric approach 
The closest points of two polyhedra are obtained, under this approach, by 
expanding a hierarchical (incremental) representation in a given direction or 
by navigating along the boundaries of the polyhedra. The euclidean distance 
between these closest points is then computed. The methods differ in the way 
that the closest points are obtained: 

- An adequate representation may justify the effort spent in obtaining it, 
as a preprocessing step is done only once, if it allows important computa- 
tional savings in subsequent operations. This is the idea behind Dobkin and 
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Kirkpatrick's hierarchical polyhedral representation, already mentioned in 
Section 2. Using their representation leads to distance computation in op- 
timal worst-case O(log n log m) time [17]. Every step of the closest points 
search procedure corresponds to a level in the construction of the hierar- 
chical representation. In the first step the closest points of two tetrahedra 
(the lowest level in the hierarchical representation), have to be determined, 
which is trivial. Now consider the direction of the segment that joins the 
closest points found at a given step. The two planes which are perpendicu- 
lar to this direction and touch each polyhedron (in the hierarchy expanded 
so far) bound the zone where the next closest pair has to be searched for. 
This zone consists, for each polyhedron, in the intersection of the next hi- 
erarchy level polyhedron and the negative halfspace defined by the plane 
(the normal of the plane points towards the polyhedron expanded so far). 
Thus, it is either a simplex or the empty set. If the closest points are not 
the same as in the previous step, then at least one of them belongs to one 
of these intersection simptices. Therefore, every search step is restricted to 
at most two simplices. The number of steps is bounded by log n • log m. 
Figure 12 may help understand this procedure. 

Fig. 12. The hierarchical representation allows to build up and search only those parts 
of the polygons where the closest points can be found. 



326 P. Jim6nez, F. Thomas and C. Torras 

- The Minkowski difference Mp, Q ---. {p - q[p E P, q E Q} of two polytopes P 
and Q has been used in distance computation algorithms, since the distance 
between two polytopes is equal to the distance of their Minkowski difference 
to the origin (Fig. 13). This result is proved by Cameron and Culley (1986), 
and they provide also a procedure for computing Mp, Q, as well as the 
minimum translational distance (the minimum translation to be applied to 
one of the polyhedra in order to attain a situation where both polyhedra 
just touch). If Mp, Q contains the origin of coordinates, the polyhedra are 
intersecting, and the minimum translational distance is negative. 

- Efficiency is greatly increased in the procedure described in [24]. Com- 
plexity of Mp, Q is, in general, quadratic, and therefore an algorithm that 
avoids generating the whole Minkowski difference would be desirable. Here, 
a directed sequence of subsets of the Minkowski difference polyhedron is 
generated, converging to a subset that contains the point that is closest 
to the origin. The convex hull of a subset of the vertices of the Minkowski 
difference is taken, and vertices are added which lie in the direction of 
interest, closer to the origin. At the same time non-relevant vertices are 
deleted, so that the search of the closest point to the origin is always done 
on a simplex, as can be seen in Fig. 14. The "vertex-selection" part of the 
algorithm can be done in linear time: a single direction is tested over the 
set of vertices of one of the original polyhedra and the opposite direction 

over the vertices of the other one. 
- If a given point of a polyhedron is the closest one to a given feature (a 

vertex, an edge, or a face) of another polyhedron, it must be contained 
in the Voronoi region of this feature. The first step in this direction was 
done in [46] for rectangular boxes, but it was formalized and extended to 
any convex polyhedra in [37]. In their incremental distance algorithm, two 
arbitrary features are selected and the closest points that belong to them 
are obtained. In order to be actually the closest points of both polyhedra, 
these points have to belong to the Voronoi region of the other feature. 
If not, each point has to be closer to another neighboring feature, which 
is selected, and these steps are repeated until the condition of point-in- 
Voronoi-region-inclusion is met. The Voronoi regions for the three kinds of 
features are characterized in the mentioned reference (see Fig. 15). 

In their work, another important point is addressed: consider that the dis- 
taace between two polyhedra has to be computed as they move along a 
finely discretized path. The closest features do not change often, and a 
change almost always involves neighboring features, due to the convexity 
of the polyhedra and the small discretization step. Therefore, not an ar- 
bitrary pair of features, but the closest features at the previous step are 
considered for initialization for every step. Simple preprocessing of the poly- 
hedra, so that every feature has a constant number of neighboring features, 
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Fig. 13. (a) The distance between the polygons is the same as the distance from the 
origin to their Minkowski difference. (b) I f  the polygons are interfering, the origin 
will be contained in the interior of their Minkowski difference. A hint is given for the 
construction of the Minkowski difference as the convex hulls of the points resulting 
from the subtraction of the vertices of Q from the vertices of P (thin lines). 
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Fig. 14. The closest poini of the original Minkowski polygon (a) to the origin (0) 
has to be determined. The first simplex (b) has been chosen arbitrarily. A subset of 
vertices, whose convex hull contains the closest point of the simplex to the origin, is 
taken (4 and 9, although in this case also 1 and 9 could have been chosen), and a 
new vertex is selected (c). Note that this new vertex, 6, has the minimum projection 
onto the direction to the closest point found in (b). At the same time, the non-relevant 
vertex 1 is deleted. The direction to the closest point of the simplex in (c) is computed, 
and in the next step the closest point of the polygon to the origin (7 in this ease) is 
determined (d). 
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Fig. 15. Voronoi regions o] a vertex (a), an edge (b), and a face (c). 

allows the distance computation algorithm to run in expected constant 
time, once initialized (the global initialization step is typically linear in the 
total number of features). 
To overcome the difficulty associated to the basic assumption that the 
two polyhedra have to be separated (if the objects actually penetrate each 
other, the algorithm goes into a cyclic loop), some authors have extended 
the space partition to the interior of the object, defining pseudo-Voronoi  

regions whose boundaries are faces determined by the centroid of the object 
and its edges (or the edges of its convex hull) [14,51,38]. These pseudo- 
Voronoi regions are only used to determine if the objects interpenetrate or 
not. 

The optimization approach 

Distance is viewed as a quadratic function to be minimized, under linear con- 
straints due to the convexity of the polyhedra. 

- The minimization of the non-linear function f ( p ,  q) = HP - q[12/2 subject 

to the linear constraints (p, n P) < d R, i = 1 , . . . ,  k p and (q, n?)  < d~j, j = 

1 , . - - ,  k Q (these constraints mean that p E P and q E Q, where the poly- 
hedra P and Q are described as intersections of halfspaces) is solved in 
[5] by means of a gradient projection algorithm. At each step, the active 



330 P. Jim~nez, F. Thomas and C. Torras 

constraints are determined (those where equality holds, with certain toler- 
ance) and Kuhn-Tucker conditions are used to test if the global minimum 

has been attained. If this is not the case, the coefficients of the Kuhn-Tucker 
conditions are used to find the new search direction. There are two alterna- 
tives for obtaining the starting points: to perform a simplex minimization 
subalgorithm along the direction given by the centroids of the polyhedra, 
or by considering the intersection points of the polyhedra boundary and 

the segment that joins the centroids. 
- In applying Rosen's gradient projection method as Bobrow did, a conver- 

gence problem may occur, as stated in [62]. This problem is called the 
zig-zag phenomenon and it appears when the Kuhn-Tucker conditions are 
satisfied alternatively at each polyhedron. This happens because a zero vec- 
tor is given as search direction on the polyhedron where the Kuhn-Tucker 
conditions are satisfied. The solution provided by these authors to this 
problem consists in considering as search direction for this polyhedron the 
projection of the search direction of the other polyhedron on the active 
constraints of the first one, instead of the zero vector, as shown in Fig. 16. 

(a) (b) 

Fig. 16. The zig-zag phenomenon (a) is avoided if the projection of S~l on the active 
constraint of B is taken as the search direction Sbl (b). 

- Certain quadratic optimization problems can be solved in linear time, as 
shown in [44]. In [36] the distance computation problem between convex 
polyhedra is stated as described in Section 2, reducing it to a linear pro- 
gramming problem. It can be shown that the distance computation problem 
between non-intersecting convex polyhedra can be solved in O(n) (n is the 
total number of vertices) by using a quadratic programming algorithm. 
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The linear constraints are here formulated in terms of the convex hull of 

the vertices of each polyhedron. In [53] the complexity associated with the 

intersection intensity computation between two polyhedra is also discussed. 

No work has been devoted specifically to distance computation between 

non-convex polyhedra. In the context of collision detection, non-convex objects 
are usually approximated by simpler convex shapes, and a conservative lower 
bound on the distance is thus obtained. Some authors that deal with convex 
polyhedra mention the possibility of extending their algorithms to non-convex 
ones by decomposing them into convex entities, as explained in Section 2. Un- 
fortunately, this solution may be inefficient, because of the complexity incre- 
ment associated with the convex decomposition step. Moreover, if the number 
of generated convex entities is important, a large number of pairwise distances 
have to be computed, and although the individual objects are simpler, the net 

result is an important increment in the global complexity. 

Or ien ta t ion-based  p run ing  If any kind of relative motion between two solids 
is allowed, every part of their boundary may intersect. But if a polyhedron can 
only move in a specific way with respect to another one, only certain parts of 
them can actually collide. 

- Back-face culling techniques, which have been widely used in Computer 
Graphics to speed up the rendering of polyhedra, can also be used in the 
collision detection context to avoid unnecessary checking of boundary ele- 

ments for collision, as shown in [61]. The basic idea consists in comparing 
the normal vectors of the faces of the polyhedra with the relative velocity 
vectors. A face is culled if its normal has a negative projection on the mo- 
tion vector, as can be seen in Fig. 17. On the average, half of the faces of 
the two polyhedra are eliminated in this way. An algorithm that performs 
culling is described in the above reference. 

- The incremental minimum distance realization technique [36] has already 
been mentioned in Section 3.2. At a given instant, the boundary elements 
that realize the minimum distance must be close to those realizing it at the 
previous instant, which are therefore taken as initial points for the search. 
In this case it is not a specific orientation, but a neighborhood criterion 
which is used for saving computational effort. 

- A third possibility to avoid having to perform unnecesary intersection tests 
arises in the context of convex polyhedra where only translational motions 
are allowed. The applicability constraints [18] permit detecting those vertex- 
face and edge-edge pairings which can really come into contact (Fig. 18). 
The vertex-face applicability condition expresses the fact that a vertex 
can touch a face only if every adjacent edge projects positively on the 
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Fig. 17. Only the faces (shown as heavy lines) whose normals have positive projections 
on the relative motion vectors (v~,l and vl,2) need to be considered. 

face's normal (taking the vertex as origin of every edge interpreted as a 

vector). Two edges can touch only if there exist a separating plane between 
their respective wedges, as formally stated in the edge-edge applicability 

condition. 

(a) (b) 

Fig. 18. (a) An applicable vertex (Vj) - face (Fi) pairing. (b) Edges Ei and Ej  are 
also applicable. 

The applicability constraints may be used as a preprocessing step in a col- 
lision detection scheme based on performing edge-face intersection tests. In 
general, ff the contact between a vertex of a convex polyhedron and a face of 
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another polyhedron is applicable, only one of the edges which are adjacent 
to the vertex have to be considered for intersection with this face to report 
collision. Any other edge-face test with this face can be cut off. In a similar 
way one can bound the number of edges to be considered with respect to 
a given face resulting from edge-edge applicability constraints. In [32] an 
efficient algorithm for geometric pruning based on applicability constraints 
for convex potyhedra is described. Experimental results show that, by using 
this pruning technique, collision detection based on the edge-face intersec- 
tion test has an expected O(n) complexity, where n is the total number of 
edges, and the constant of linearity is close to 1. The algorithm is based on 
a face orientation graph representation, where face adjacency relations are 
explicitly depicted. The authors are currently working on extensions of the 
algorithm to non-convex polyhedra. 

Pr ior i t iz ing  collision pairs The algorithms that try to avoid having to test 
for collision every possible pairing between solids in a given workspace are only 
useful if there is a large number of solids that may collide. Candidates for col- 
lision checking are prioritized in order to test only those pairs which are more 
likely to collide. The first criterion one may consider is distance, but it is not 
enough if the relative velocities are not taken into account, as pointed out in 
[20]. These authors introduce the concept of awareness or imminence of a col- 
lision. The shortest possible time at which a collision may occur is computed, 
considering mutual distance, instantaneous relative velocity, and velocity and 
acceleration bounds. This calculation is initially done for every pair, and after- 
wards the updating is done more frequently for those pairs whose awareness 
is larger. According to their value of awareness, the pairs are partitioned into 
equivalence classes whose collision imminence is similar. A binary partition 
scheme is used, where the cardinality of each class (called "bucket") is an in- 
creasing power of 2, and the value of the measure of awareness for all elements 
of a given class is greater than that for any other element in a lower bucket 
(of greater cardinality). At every time step, only one pair within each bucket is 
updated. Since the higher the bucket, the less pairs it contains, higher buckets 
are updated more frequently than lower ones. As their measures of awareness 
change, pairs can percolate from bucket to bucket. 

In [47] a heap is used to store object pairs and soonest possible collision 
times, so that the pair on the top is the nearest to collide. This soonest col- 
lision time is computed from the distance between the closest points of the 
objects, current velocities and accelerations, and acceleration bounds assuming 
a ballistic trajectory for the objects. At each time step, integration of the dy- 
namic state is done up to the time of collision for the pair on the top. Collision 
detection is performed for this pair, and if no collision actually occurs, the time 
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of impact is recomputed and the heap updated. Only the objects whose bound- 
ing boxes for their swept volumes during the frame period intersect with other 
boxes are selected and included in the heap. The intersections between these n 
boxes can be done in O(n(1 + logR)) (R is the ratio of largest to smallest box 
size), as shown in [48]. 

The same idea is followed in [35,14,51,38], where the concept of geometric 
and temporal coherence is emphasized, not only to speed up pairwise intersec- 
tion detection (as done in [36] and whose algorithm is also used here) but also 
to perform less of these pairwise tests. If time steps (frames) are small enough, 
the position and orientation of the objects undergo only small changes, and it 
has already been mentioned how this fact can be used to keep track for the 
closest feature pair of two convex polyhedra. But it also means that there will 
be little changes in the position of the bounding boxes 1, and, of course, in the 
sequence of intervals that these bounding boxes project onto the coordinate 
axes, and which overlap (in the three axes) if and only if the corresponding 
bounding boxes intersect. Interval sorting techniques exist that take into ac- 
count the sorted lists of interval endpoints in the previous frame, and allow to 
lower the effort to determine the projection intervals overlap to expected linear 
instead of O(n log n) (for n boxes). The computational cost of keeping track 
of changes in overlap status of interval pairs, following this line, is O(n + s) 
(where s is the number of pairwise overlaps). 

The so called sweep algorithms in [60] are along the same line: at a given 
instant, a plane is swept through the scene and only pairs of objects simultane- 
ously intersecting the plane are tested for possible interference, thus avoiding 
to test every pair. The algorithm mentioned in this reference due to [30] does 
not find all intersections, although it reports at least one intersection if any 
exists, in O(nlog 2 n) time between n spheres. 

It is also possible to use such a sweep algorithm in 2D for bounding collision 
pairs in 3D, as done in [31]. 4D hyper-trapezoids are used to bound the object 
during its motion. If one intersection between two hyper-trapezoids occurs, the 
corresponding objects are tested for collision. These intersections are computed 
from intersections between their faces. The problem is reduced, by succesive 
projections, to a 2D segment intersection detection problem. The 2D sweep 
algorithm is described in [4] and runs in O((m + k) log m) time for m segments 
that intersect k times. Although for N objects the worst case value of k is 
O(N2), empirical evidence shows that the average value of k is much lower 

(0.07~). 

1 Two kinds of axis aligned bounding boxes are used in [14], fixed bounding cubes and 
dynamically rectangular boxes; for the latter, object orientation changes translate 
into changes in the dimensions of the bounding box. 
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4 Collision detection in motion planning 

The goal of motion planning is to generate a collision-free path for a robot. 
Thus, collision-free trajectory planners must be able to perform some kind 
of geometric reasoning concerning collision detection between the robot and 
the obstacles [5,12]. In the generation of the path from the initial to the final 
robot configuration other criteria than mere collision avoidance may intervene, 
in order to optimize the resulting path in terms of its length, distances to 
obstacles, or orientation changes. Not to speak about extensions of the basic 
motion planning problem, that include uncertainty, kinematic constraints, or 
movable objects [34]. 

Depending on whether the static interference or collision detection tests are 
performed in a preprocessing step or during the path planning process, three 
kinds of planners can be distinguished: global, incremental, and local planners. 

4.1 Global  p lanners  

In general, the configuration of a robot is given by a set of parameters, or 
degrees of freedom, that determine its location and orientation. The space 
defined by the ranges of allowed values for these parameters is usually called 
C-space. 

An obstacle in C-space (C-obstacle, for short) is defined as the connected 
set of configurations where a given mobile object intersects with an obstacle 
in workspace. C-obstacles can be interpreted as the intersection of halfspaces 
bounded by C-surfaces, each C-surface being associated with a basic contact 
(see Section 2.2). 

It can be shown that when working with polyhedra (and vertex, edge and 
face locations are expressed in terms of the degrees of freedom of the moving 
polyhedron), expressions (1) and (2) in Section 2.2 lead to the above-mentioned 
halfspaces, and using the predicate formalism in expression (3) a proper descrip- 
tion of the C-obstacles can be obtained. 

The collection of all C-obstacles constitutes the C-obstacle region. Some 
properties of the C-obstacles concerning compactness, connectedness and regu- 
larity are shown in [34]. C-obstacle generation can be viewed as a further gener- 
alization of the static interference and collision detection problems: here objects 
are not tested for interference at a particular configuration nor even along a 
given parameterized trajectory, but rather at all possible configurations in the 
workspace. Thus, once the C-obstacles are obtained, all information concerning 
interferences is captured. 

Global planners construct a complete representation of the connectivity 
of free space (the complementary of the C-obstacle region) for their planning 
purposes. Several techniques have been devised to this end, depending on the 
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degrees of freedom of the robot as well as on its shape and the shape of the 
obstacles. Nevertheless, they are only of practical interest in low-dimensional 
configuration spaces. Pioneer work in this direction was done in [42,40] for 
polytopal environments. As a result of applying these techniques, a graph-based 
representation of free space is obtained: a roadmap or the connectivity graph 
of a cell decomposition. Afterwards a graph search algorithm can be applied in 
order to find the path that connects the initial and the final configurations. 

In some simple cases, the configuration of a robot can be expressed in terms 
of the workspace coordinates of a given robot's point: for example, if the robot is 
a sphere (a disc in 2D) this reference point will be its center. The C-obstacles 
are trivially obtained from the obstacles in the workspace by performing an 
isotropic growth by the radius of the robot. Another simple case consists in a 
polytopal robot translating amidst polytopal obstacles. Any vertex of the robot 
can be taken as reference point. In this particular case, C-obstacles can also be 
interpreted as the Minkowski difference between the obstacle and the robot at a 
fixed orientation (as already mentioned in the context of distance computation 
in Section 3.2). This fact can be used for constructing the C-obstacle itself. This 
alternative representation is obviously related to the general predicate-based 
one, in the sense that the differences between the vertices corresponding to the 
features related to basic contacts are vertices of the C-obstacle. Both represen- 
tations have been developed for convex polytopes. Non-convex obstacles can 
be treated in the same way by representing them as overlapping convex parts. 

When the robot polytope is allowed to rotate, the computation of the C- 
obstacles becomes much more difficult. Although an approximate solution can 
be readily obtained by sampling the involved rotations, in general C-obstacles 
can only be accurately described using the aforementioned predicates, which 
can be formally interpreted as semialgebraic sets (see [11] for more details). 
Note that when all degrees of freedom but one are sampled, the problem be- 
comes one of detecting intervals of interference, as many times as needed, de- 
pending on the sampling rate. This technique is used with up to three degrees 

of freedom in [41]. 

4.2 Inc rementa l  planners  

While global path planners generate a detailed description of the connectivity 
of the whole free space, incremental path planners avoid this costly compu- 
tation by obtaining this description in an incremental fashion. In this case, 
the construction of the free-space representation is carried out simultaneously 
with the path planning process. A paradigmatic example of this strategy can 
be found in [21], where a restricted visibility graph in C-space is built up it- 
eratively. This subset of the whole visibility graph is granted to contain the 
optimal path. It is constructed by determining which C-obstacles intersect the 
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segments of the shortest path found so far (a straight line joining the initial 

and final positions at the first step), and rearranging the visibility graph with 

these new C-obstacles. 

Randomized path planning methods might work in a similar way: points are 
randomly generated and those lying in free space are retained. Then, attempts 
are made to link these points by means of collision-free line segments. In this 
wa3; a representation of free space is gradually built up by locally testing for 
collisions, while generating a path from the initial to the final configurations. 
The same applies to those techniques that combine a potential field approach 
with randomization to escape from local minima. More details on this kind of 
algorithms can be found in Chapter 5. 

4.3 Local  planners 

Local planners use collision detection as a subroutine whose output is used on- 
line to guide the search of a collision-free trajectory. The main difference with 
respect to incremental strategies is that local methods perform path planning 

by applying motion operators that act locally. In [18] these operators are used 
for sliding on C-surfaces and along their intersections without computing an 
explicit representation of free-space. They also allow to jump in free-space be- 
tween obstacles. In any case, each time a C-surface is traversed, an interference 
test is performed to ensure that the motion is collision-free. These operators 
are the building blocks of more sophisticated local experts, which are strategies 
for deciding which trajectory to follow, based on the local geometry as well as 
on the history of the current planning process. This combination of motion in 

free space with motion in contact (or up to a safety distance from the obsta- 

cles) is used by other local motion planners. This is the case of the algorithms 
developed for planar articulated and 3D cartesian robot arms in [43,55]. The 
intersection points of the obstacles with the main line joining the initial and 

final positions are found, and motions along the obstacle boundaries between 
these points are computed. 

Some local planners, as well as some incremental ones, can be applied in a 

recursive way: starting from an initial guess for a path between the initial and 
the final position, intermediate points are determined as collisions are detected, 
and the algorithm is recursively applied to the resulting path segments until 
a collision-free trajectory is detected or the conclusion is drawn that no such 
path exists. 

While global path planners are always complete, that is, they are able to find 
a solution if one exists, those based on local techniques only ensure completeness 
at a resolution level. In [18] a partition of C-space based on neighborhoods 
is adopted, which are marked as visited if they are traversed by a trajectory 
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generated during the path planning process. As a consequence, if neighborhoods 
are made arbitrarily small, the algorithm becomes arbitrarily slow. 

5 C o n c l u s i o n s  

The different approaches to collision detection lie within two main categories: 
algebraic and geometric. The first try to solve equations that describe collision 
situations. These equations are expressed in terms of one parameter which is 
time or a variable related to time, and collision instants are determined. The 
trajectory parameterization approach corresponds to this strategy. 

The geometric approaches compute geometric entities where time is treated 
as one more dimension, and try to determine intersections between them us- 
ing methods developed within Computational Geometry. The most general ap- 
proach is spatio-temporal volume intersection. However, no techniques exist for 
solving this problem directly, except for simple particular cases. The other two 
approaches can be viewed as particular techniques that simplify the resolution 
of the problem: the multiple interference detection approach applies sampling, 
whereas the swept volume interference approach uses projection. The draw- 
backs of these simplifying techniques have already been mentioned: sampling 
is complete only up to a given resolution, and projections may lead to report 
false collisions. Combinations of these techniques may allow to avoid these 
drawbacks, as in the adaptive sampling approach. 

This perspective permits to formulate extensions for further work in a 
straightforward way: simplifying techniques have always been formulated con- 
sidering time as a privileged dimension. Time is discretized by sampling or ob- 
viated by projection, but both techniques may also apply as well to the other 
dimensions or to combinations of them. To identify the classes of situations 
where sampling or projecting along other dimensions will ease the computa- 
tion of collisions is more than an interesting theoretical exercise and may open 
new promising trends in collision detection algorithms. 

Algebraic methods can also be viewed as a simplification of the general 
spatio-temporal problem formulation, as a projection on the time coordinate 
axis. Other dimensions instead of time could be used as parameters of the 
contact equations. However, the degree of the equations cannot be lowered in 
this way, and thus the efforts in looking for more efficient algorithms have to 
point in another direction, namely reducing the number of equations to be 
considered. This can be done by applying the complexity reduction techniques 
already mentioned in Section 3.2. In particular, orientation-based pruning may 
be applied to subdivide the trajectory into intervals where the same boundary 
primitives have to be considered for possible intersection, reducing drastically 
the number of contact equations to be considered within each interval. 
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In the line of developing complexity reduction techniques for interference 

detection we have centered our contribution to the PROMotion Project. Little 
work had previously been done on algorithms that deal directly with non-convex 
polyhedra, without decomposing them into convex parts. We have developed 
one such algorithm, based on a boolean combination of signs of vertex determi- 
nants [58]. Thus, neither line-plane intersections, nor ficticious edges and faces 
arising from a decomposition are required. Only the signs of determinants, for 
which there exist very efficient and robust algorithms, need to be computed. 
Moreover, we have developed a representation that captures the applicability 
relationships between the boundary features of two general polyhedra, that is, 

it allows to determine quickly which contacts can arise under translational mo- 
tions [32]. In the case of non-convex polyhedra a large subset of all contacts 
that cannot take place for a given relative orientation are pruned off (all of 
them in the case of convex polyhedra). As these relationships hold over whole 
ranges of orientations, this technique can also be used to perform pruning along 
a trajectory that includes rotation[33], as mentioned above in the context of 
algebraic techniques for collision detection. 

The speed-up of the basic interference and collision detection tests will nec- 

essarily improve the performance of motion planners, thus making the famous 
bottleneck a little bit wider. 
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