
~1~ Computer Graphics, Volume 22, Number 4, August 1988

Collision Detection and Response for Computer Animation

Matthew Moore and Jane Wilhelms

Computer Graphics & Imaging Laboratory
Computer & Information Sciences Board

University of California at Santa Cruz

Santa Cruz, California 95064

Abs t rac t

When several objects are moved about by computer ani-

marion, there is the chance that they will interpenetrate. This
is often an undesired state, particularly if the animation is
seeking to model a realistic world. Two issues are involved:

detecting that a collision has occurred, and responding to it.

The former is fundamentally a kinematic problem, involving

the positional relationship of objects in the world. The latter

is a dynamic problem, in that it involves predicting behavior

according to physical laws. This paper discusses collision

detection and response in general, presents two collision

detection algorithms, describes modeling collisions of arbi-
trary bodies using springs, and presents an analytical collision

response algorithm for articulated rigid bodies that conserves

linear and angular momentum.

CR Categories and Subject Descriptors: 1.3.5: [Computer
Graphics]: Computational Geometry and Object Modeling -

Geometric algorithms; 1.3.7: [Computer Graphics]: Three Di-

mensional Graphics and Realism - Animation.

Key W o r d s and Phrases: computer animation, collision

detection, collision response, analytical solution, dynamical

simulation.

1. O V E R V I E W

Computer animation provides a number of methods for

controlling object motion.[28] The object 's positions and

orientations as functions of time may be interpolated from

keyframes or parameter specification,[27] or may be the out-

put of special computer programs written by the user,[23] or

may be produced by physical simulation of the effect of inter-

nal, model-derived, and user-specified forces and

torques.J1, 12, 16,29, 32] In any such scheme, the main ques-

tions when animating a single object are how to achieve real-

istic motion and how to economize on the human animator 's

time. When several objects are animated at once, the addi-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

tional problem of detecting and controlling object interactions

is encountered. When no special attention is paid to object in-
teractions, the objects will sail majestically through each oth-

er, which is usually not physically reasonable and produces a
disconcerting visual effect. Whenever two objects attempt to

interpenetrate each other, we call it a collision.

The most general requirement that arises from this is an

ability to detect collisions. Most animation systems at present

do not provide even minimal collision detection, but require

the animator to visually inspect the scene for object interac-

tion and respond accordingly. This is time-consuming and

difficult even for keyframe or parameter systems where the

user explicitly defines the motion; it is even worse for pro-

cedural or dynamical animation systems where the motion is

generated by subroutines and laws defining their behavior.
Though automatic collision detection is somewhat expensive

both to code and to run, it is a considerable convenience for

animators, particularly when more automated methods of mo-
tion control, such as dynamics or behavioral control, are

used.[24, 31] This paper describes two collision detection al-

gorithms. One algorithm deals with triangulated surface

representations of objects, and is appropriate for flexible or ri-

gid surfaces. The other algorithm applies to objects modeled

as rigid polyhedra. Both algorithms are simple, robust, and not

dreadfully expensive.

The related issue is response to collisions once they are

detected. Even keyframe systems could benefit from automat-
ic suggestions about the motion of objects immediately fol-

lowing a collision; animation systems using dynamical simu-

lation inherently must respond to collisions automatically and

realistically. Linear and angular momentum must be

preserved, and surface friction and elasticity must be reason-

able. This article presents two methods that satisfy these cri-

teria. One is the obvious method, based on temporary springs

introduced at collision points. The other method is an analyti-

cal linear system solution. The former method is more gen-

eral, working equally well for flexible, rigid, and articulated

bodies. The latter, limited to rigid and articulated objects, is

typically faster. Furthermore, while the spring solution as-

sumes the ability to use the dynamics equations of motion to

predict the motion immediately after impact, the analytical

solution could be used within a kinematic animation system.

@1988 AC M-0-89791-275 -6/88/008/0289 $00.75

289

SIGGRAPH '88, Atlanta, August 1-5, 1988

2. C O L L I S I O N D E T E C T I O N

Collision detection involves determining when one ob-

ject penetrates another. It is clearly an expensive proposition,

particularly when large numbers of objects are involved and

the objects have complex shapes. Collision detection has been

extensively pursued in the fields of CAD/CAM and robot-

ies,[2, 3, 6,7, 11, 30] and it is with some diffidence that we

offer any more algorithms. Some published algorithms[2, 3]

solve the problem in more generality (and at higher cost) than

we have found to be necessary for computer animation. Oth-
ers[6] do not easily produce the collision points and normal

directions necessary if collision response is to be calculated.

VoxeI-based methods have also been used,J30] but would not

be appropriate for all applications. Finally, many collision

detection algorithms are quite intricate and must deal with

many special cases, which we wished to avoid for software

engineering reasons. Two collision algorithms are discussed

here: the first is designed to test the interpenetration of sur-

faces modeling flexible objects; the latter is designed to test

for interpenetration of convex polyhedra.

2.1. Collision Detection for Flexible Surfaces

Surfaces are modeled as a grid of points connected to

form triangles.[19] Collisions between surfaces axe detected
by testing for penetration of each vertex point through the

planes of any triangle not including that vertex (thus, self-

intersection of surfaces is detected). The surfaces are assumed

to be initially separate. For each time step of animation, the

positions of points at the beginning and the end of the time

step must be compared to see i f any point went through a tri-

angle during that time step. If so, a collision has occurred.

The algorithm is O (nm) for n triangles and m points.

A correct test must consider edges and triangles, as po-
lyhedral objects can collide edge-on without any vertices be-

ing directly involved. However, in many cases merely testing
points versus triangles produces acceptable results. This algo-

rithm only tests points versus triangles. It is worth noting that

the mathematics for testing intersection of a moving point
with a fixed triangle is the same as for testing a fixed edge

versus a fixed triangle. Thus the fully general edge versus tri-

angle tests could be done at fixed instants in time, with the

same advantages and disadvantages that will be discussed for

the second collision detection algorithm.

The question of whether a moving point has intersected a

surface can be divided into two cases. The easy ease requires

the surface to be fixed in space, whereas the hard case allows

the surface to be moving also. When the surface triangle is

fixed, the parametric vector equation

P + (P" - P) t = Po + (Pi-Po) u + (P2---Po) v

where P and U a.re the beginning and ending positions of the

point and the Pi's define the triangle, is set up and solved for

the variables u,v,t , u and v are parametric variables for the

plane defined by the triangle, whereas t is a time variable

which is 0 at the beginning of the simulation step in question,

and 1 at the end. The left hand side is the parametric equation

for the path of the point, and the right hand side is the

parametric equation for any point on the plane. This vector

equation represents three scalar equations in three unknowns

and is solved by matrix inversion. If 0,St_<l and u:20 and v:20

and u+v_<l, then the point has intersected the triangle during

the time step.

The hard case is solved by setting up the parametric vec-

tor equation

P + V t =Po+Vo t +((PI-Po)+(VI-Vo) t)u

+ ((P2-Po) + (V2-V0) t) v

where P is the point (with velocity V per time step), the Pi s

define the triangle vertices (with velocity V i per time step),

and t,u,v are the parametric variables. Rearranging, we can

write this as three linear equations in three unknowns.

a u +b v +c t = d
e u + f v + g t = h
i u + j v + k t = l

where

a = (P 1 , - P a x) + t (V l x - V a x)

b = (Pz~- Pax) + t(Vz~- Vax)

C ~ - - V x

d =Px -(Pax + tVox)

e = (P l y - P o y) + t (V t y - V o y)

f = (P2y- Coy) + t(V2y- roy)

g =-Vy

h =ey - (eoy +tVoy)

i = (P l , - P a x) + t (V l , - Vo,)

J = (P ~ - Po,) + t (V ~ - Vo,)

k = - V z

t = P , -(P0= +tVoD

The Pw s and Vws are the position and velocity components of

the point, and the Piw S and Viw s are the position and velocity

components of the triangle vertices. The velocities are per

t ime step.

The linear system above can be solved for t and expand-

e d t o

0 = a Ua- /b) (ha-ca) - a (da-ib)(ga --cc) t

+ (fa -eb)(ka-ic) t - (la-id)ffa--eb)

Substitution of the actual expressions for a through l gives a

5 ' th order polynomial in t. I f further substitutions were made,

the equations could be written in the form

C 5t5 .l- c 4t4 -1-c 3 t3 -I-c2t2-I-Cl t l -I- C o= O

Polynomials of order 5 and above cannot be solved

analytically,[10] so a binary search technique is used to find

approximate values for t.[5] Binary search is used because it

is guaranteed to converge, and because, using economizing

techniques described below, this algorithm is not used often

enough to warrant large efforts at optimization. The interval

from t=0 to t=l is subdivided into a number of sub-intervals,

and the left-hand side is evaluated at each dividing point. If

the sign of that value is different for the two endpoints of

some subinterval, then some t for which the equation is true

must lie within that interval. A binary search of values of t

within that interval brings the brackets around that value of t
closer together, until a limit is reached (after 10 iterations, in

our system) and an approximate value of t is found. Each

value of t thus arrived at is used to get values for u and v by

back substitution, and then the standard 0<_t<_l and u~0 and
v~0 and u+v~l test is used to determine whether a collision

has occurred.

290

~) ' Computer Graphics, Volume 22, Number 4, August 1988

To minimize the cost of executing the above calcula-

tions, a preliminary step is used. Every point is compared to

every triangle. The perpendicular distance of the point from

the plane defined by the triangle is first derived, by substitut-

ing into the plane equation,[25] for the beginning and the end

of the time step. If the sign of the perpendicular distance has

not changed intersection is assumed not to have occurred. If

the sign has changed, then the more expensive tests outlined

above must be done, but in practice this test eliminates most

point-triangle pairs.

A special kind of bounding box can also be used to

minimize computation. This bounding box includes the be-

ginning and ending position of the triangle. This box is then

grown by the distance between the beginning and ending posi-

tions of the point being tested. (This is necessary to avoid the

point passing unnoticed completely through the box during the

time step. A similar growth technique is used in the Lozano-

Perez path planning algorithm.)[15]

The basic algorithm is O (nm), for n triangles and m

points. Use of an octree[19] and bounding boxes can reduce

the time to O (mlogm) to construct the octree, and O (n logm) to

search it (assuming that the tree is almost balanced and that

the bounding boxes are small compared to the space covered

by the tree).

The search finds all point - bounding box pairs that must

be examined more closely for possible intersection. All of the

points in the model are inserted into an octree, which is creat-

ed anew for each round of collision detection. This octree is

based on the points themselves, with each point P having up

to 8 subtrees containing points in each of the octants of space

defined by the P's position. This is an obvious generalization

of the well known binary search tree.[13, 14] A pseudo-

random number generator is used to scramble the order of

insertion; in this way, Knuth assures us, J13] the tree will be al-

most balanced, i.e. the height of the octree will be O (logm) al-
most always.

Each triangle's bounding box is grown by the distance

between the starting and ending positions of the fastest point

being tested. Each bounding box is then recursively compared

against the octree to find the points inside it. If a point is in-
side the box, all of its subtrees must be searched recursively. If

a point is outside the box, at least half of its subtrees do not

need to be searched. I f a point is found to be inside a box, then

the algorithm above must be run to determine if the point in-

tersected the associated triangle during the time step.

r D

'

Figure 1

Searching a Quadtree

Figure 1 illustrates a two-dimensional version of this pro-

cedure. The points A through 1 were inserted into an initially

empty quadtree in alphabetical order, so that A is the root ele-
ment of the tree. The tree is to be searched for all points inside

the dotted box. A is inside, so all of i t 's subtrees must be

searched. B is above and to the right of the dotted box, so only

its lower left subtree must be searched. This finds C, which is

inside the box. If C had subtrees, they would all have to be

searched. The next subtree of A starts with F. F is above the

bounding box, so both of its lower subtrees must be searched.

One is empty, and the other contains only I, which is also out-

side the box. A ' s third subtree contains only E, which is below
the box. If E had subtrees, only the upper ones would need to

be searched. A ' s fourth and last subtree contains only G,

which is outside the box. If G had subtrees, only the two fight

hand ones would be searched. A large, bushy quadtree would

be very fast to search (if the dotted box were small relative to

the area covered by the tree) because the unsearched subtrees

would often contain large numbers of points.

2.2. Collision Detection for Convex Polyhedra

The detection of collisions between solids (or closed sur-

faces) can be treated somewhat differently, for the objects

have a distinguishable inside and outside. The problem is
somewhat more complex than might be initially thought.

Edges as well as vertex points may be involved in collisions.

This method for detecting collisions is based on the

Cyrus - Beck clipping algorithm.[25] Collisions of articulated

objects can be detected by applying this algorithm to all pairs

of the polyhedra making up the two objects. The two polyhe-
dra are assumed to be convex; concave polyhedra can be

decomposed into collections of convex ones. The basic algo-

rithm is O(n2m 2) for n polyhedra and m vertices per po-

lyhedron. Methods for reducing these exponents are discussed
below.

The two-dimensional Cyrus - Beck algorithm[25] tells

whether a point is inside a convex polygon. It takes the dot

product of each side's outward normal vector (n) with a vector

from some point (v) on the side to the point in question (p). If

that dot product is negative for all edges of the polygon, then

the point is inside; if not, it is outside (see Figure 2).

dot pro.duct
negative,

~ p

n l

V

Figure 2

Cyrus - Beck Clipping

291

¢ SIGGRAPH '88, Atlanta, August 1-5, 1988

The collision detection algorithm is developed as a

three-dimensional analogy to Cyrus - Beck clipping. The al-

gorithm works by testing whether representative points of one

polyhedron are inside the other polyhedron. First points from

polyhedron B are tested against polyhedron A, and then the

process is reversed and points from A are tested for inclusion

in B. These two steps combine to cover all special cases and

give a reliable answer. The algorithm given below terminates

when a single point of interpenetration is found, which is

sufficient for collision detection. If collision response is also
required, the algorithm below should be modified to find all

points of interpenetration. The rest of this section describes

the test of points from B against A.

Let A consist of a set of planar polygonal faces (Pi). Each

polygon contains a set of vertices (uii) and an outward point-

ing normal vector ni. Let B consist of a set of vertices (vD, a

set of edges (el), and a set of planar polygonal faces ffi). Al l

coordinates of B have been transformed into the reference

frame of A.

The first step tests for the presence of vertices of B inside

of A. Each vertex of B is compared to every face of A ; if any

vertex is on the inward side of all such faces, it is inside A and

the algorithm terminates having detected a collision. For each

vertex i of B and for each face j of A, form the dot product

(v i -u j l) • nj . I f this dot product is negative the vertex is on the

inward side of the face.

The second step tests for penetration of the edges of B

through the faces of A. Each edge of B is divided into a

number of smaller line segments by intersecting it with the

infinite planes corresponding to every face o fA . See Figure 3.

This subdivision is done as follows. Let some edge of B con-

nect the vertices vi and vy, and let us compare it against some

face of A that has an outward pointing normal n, and a vertex

point u~l. First the perpendicular distance of each vertex from

the plane defining the face is calculated, by substitution into

the plane equation.[25] If the perpendicular distances differ in

sign, then the edge intersects the plane, and the intersection

point P can be calculated.

di = (v i - Uk l) " nk

a j = (v j - a k ~) ' n ,

td~t
t - -

mail + IdyE

P =v~ + t (vy -v~)

V2

planes seen edge-on

Figure 3

Edge Subdivision

This will result in a collection of intersection points P ly-

ing along the edge. Intersection points with t < 0 or t > 1 do

not lie on the actual edge and are discarded. The remaining in-

tersections are sorted into order according to their t values,

forming a sequence of points from one vertex to the other

along the edge. Each adjacent pair of points in this sequence,

including those made by the vertices and the first and last sub-

division points, defines a sub-segment of the edge. The mid-

point of each resulting line segment is checked for being in-

side A by the same method that was used for vertices, above.

Again, if any of these midpoints is inside A the algorithm ter-

minates with a detected collision.

The third step tests for the infrequent case where two

identical polyhedra are moving through each other with faces

perfectly aligned. Here, the centroid point of each face of B is

tested against A by the method used for vertices, above. If
any of these centroids is inside A the algorithm terminates

with a detected collision.

If the algorithm survives the above three steps without

detecting a collision, and also does not detect one when rev-

ersing and comparing A against B, then the two polyhedra do

not interpenetrate.

The above algorithm can be speeded up by a variety of

tricks. A bounding box or bounding sphere test can be applied

to every pair of polyhedraa, yielding an immediate "no colli-

sion" result in most cases. Many of these bounding box tests

can even be eliminated by octree or voxel methods. [4,9]

When a point is to be tested against a polyhedron, it chn first

be compared to the polyhedron's bounding box, which will

probably eliminate the need to compare it against all of the

faces. The bounding box can be aligned with the coordinate

axes of the polyhedron's local frame to make this point elimi-

nation test particularly fast.

It should be noted that this algorithm, or indeed any algo-

rithm which point samples the positions of objects over time,

could fail if one object moved entirely through another during
a single time step. This is a rather unusual occurence in pro-

cedural or dynamic animation because simulation time steps

are normally small relative to the velocities of the objects. The

correct solution to this problem is to generalize to four dimen-

sions;J3] the starting and ending positions of the polyhedra

define 4-D hyper-polyhedra which are checked for interpene-

tration by higher-dimensional analogues to the algorithm

given above. The more practical approach is either to ignore

the problem (as we do) or to restrict the animation step size so

that the change in any object 's position in any step is small re-

lative to the object 's size.

3. C O L L I S I O N RESPONSE

In keyframed and procedural animation systems, colli-

sion detection is the main requirement; collision response usu-

ally consists of informing the animator or the motion control

program that a collision has occurred, and trusting them to

handle it. In animation systems using dynamics to generate

motion, the system itself must respond to a collision by deter-

mining new linear and angular velocities for the colliding ob-
jects. These new velocities must conserve linear and angular

momentum, or else the resulting "funny bounce" will be very

obvious to viewers of the animation. The elasticity of the sur-
faces must also be taken into account, as this determines how

much kinetic energy is lost in the collision; no-one will be-

292

@ * Computer Graphics, Volume 22, Number 4, August 1988

lieve that a bean bag should bounce off of a hard surface as i f

it were a golf ball.

3.1. Collision Response Using Springs

The most intuitive way to handle collisions is with

springs. Dynamic simulation systems must already have a

method for applying external forces to objects. Thus, when a

collision is detected, a very stiff spring is temporarily inserted

between the points of closest approach (or deepest interpene-

tration) of the two objects. The spring law is usually K / d , or

some other functional form that goes to infinity as the separa-

tion d of the two objects approaches 0 (or the interpenetration
depth approaches some small value). K is a spring constant

controlling the stiffness of the spring. The spring force is ap-

plied equally and in opposite directions to the two colliding

objects. The direction of the force is such as to push the two

objects apart (or to reduce their depth of interpenetration).

Our particular implementation handles variable elasticity

by making a distinction between collisions where the objects

are approaching each other and collisions where the objects

are receding from each other. For e = 1, i.e. perfectly elastic

(hard) collisions, the spring constant K will be the same

whether the objects are approaching or receding. For e = 0, i.e.

totally inelastic (soft) collisions, the spring will act as noted
above as long as the objects are approaching each other, but as

soon as they start to move apart the spring force will decrease

to 0. For elasticities between 0 and 1, the two spring constants

will be related by K,e,,d~ = e Kot, p r ~ h .

The spring method is easy to understand and easy to pro-

gram. It applies equally well to rigid bodies (articulated or

not) and to flexible bodies, whether modeled as point masses

connected by springs, or by energy of deformation tech-

niques.[29] The main problem with this method is that it is
computationally expensive; stiffer springs mean stiffer equa-

tions, which require smaller time steps for accurate numerical

integration. [8] The numerical effort required goes up with the

violence of the collision; as the springs are compressed more

and more, the equations become stiffer and stiffer, and smaller

and smaller time steps are needed. This was the motivation for

seeking a better method of collision response.

3.2. Collision Response Using an Analytical Solution

An analytical solution for the collision of two arbitrary

articulated rigid objects is available. The analytical solution

depends upon the conservation of momentum during a colli-

sion, and results in a new angular and linear velocity for each

body. Thus, the solution bypasses the question of collision

forces and can be used independent of dynamic simulation, as-

surning information concerning the bodies mass and mass dis-

tribution can be provided.

Some combination of spring and analytical collision

response may be desirable for a dynamic animation system.

Analytical solutions are typically faster for strong collisions,

because the solution need only be found once. However, for

gentle collisions, such as a body resting quietly atop another

body, springs may be desirable.[26] In such a case, gravity

may eonsistently cause the two objects to interpenetrate and,

thus, the analytical solution would have to be applied time and

time again. A simple spring that counteracts gravity will be

faster and more stable in this case.

This section develops the solution in stages. First, an
analytical solution for the collision of two rigid bodies is

presented; this result is due to MacMillan.[17] MacMil lan 's
solution is extended to tree-like articulated rigid objects with
revolute joints. Then, the restriction to wee-like objects is re-

moved, and finally the method is extended to encompass joints

with one or two sliding degrees of freedom.

3.2.1. Single Rigid Bodies

MacMillan gives a general solution for the collision of

two arbitrary rigid objects. Each object has a linear velocity

vector v i, an angular velocity vector toi, a mass m i, a center of

mass vector cl, and an inertial tensor matrix Ii which is rela-

tive to the center of mass. All of these quantities, for both ob-

jects, are expressed in the same inertial reference frame. In

addition, each object has a vector Pi which points from its

center of mass to the collision point~ The solution also re-
quires three orthogonal unit vectors i ,j,k that define the "colli-

sion frame", k will be perpendicular to the plane of collision

and i and j will be in that plane. The definition of the plane of
collision is somewhat arbitrary; for convenience we will

define it as follows. If a vertex of one object is colliding with

a face of the other, then that face defines the plane of collision.

I f an edge of one object is colliding with an edge of the other,

these two'edges define the plane of collision. If two vertices

are colliding, k is directed along the line joining them. See

Figure 4.

"q ot

C2

Figure 4.

Collision Problem - Two Rigid Objects

It is desirable to assume that there is only one collision

point in any given collision; this restriction is not totally
necessary, but it simplifies the formulations given below. It is

reasonable to say that whenever two objects collide in the real

world, there is one point at which they collide first (other col-

lisions may follow within microseconds). Thus, the collision

detection algorithm must furnish a single collision point
between two objects. Because of the time-stepped nature of

dynamics simulations, this will only be an approximate colli-

sion point; a good heuristic is to take the point of greatest in-
terpenetration of any two objects in the simulation, provided
that the relative velocities of the two objects at that common
point are such that the interpenetration depth is increasing. If

adaptive step size control is available, this heuristic can be

293

SIGGRAPH '88, Atlanta, August 1-5, 1988
i i

refined by stating that interpenetration to greater than some

threshold depth iz unacceptable, and causes backtracking and

reduction of the step size. This allows the simulation to close

in on a collision point very close to the surfaces of the objects

by a process similar to binary search. Multiple collision

points can be handled by a straightforward extension to the al-

gorithms given below, by inventing multiple collision im-

pulses and incorporating them into the matrix.

The solution involves solving a set of 15 linear equations

in 15 unknowns. The fifteen unknowns are: the new linear

velocity vector for each object (~1, V2); the new angular velo-

city vector for each object (c01, o2); and the impulse vector R.

An impulse has units of momentum and can be thought of as a

huge force applied for a tiny time. Because the collision is as-

sumed to occur in a negligible time (approximately instan-
taneous), only the collision impulse itself matters; any other

forces being applied to the objects will be too small to have an

effect. By convention, the impulse is directed from object 2 to
object 1.

Twelve linear equations can be written down immediate-

ly, expressing the change in linear and angular momentum

that each object experiences as a result of the collision im-
pulse R.

rnlv- 1 = r n l v 1 + R

ra2V2 = rnxvz - R

I101 =ll001 + Pl ×R

12~2 = 12002 - Pa × R

The last three linear equations come from some assump-

tions about the collision conditions; the assumptions that we

will use are that the elasticity, e, is zero (so that the two collid-

ing objects come to rest relative to each other, at least at the
collision point) and that the surfaces are frictionless (so that

the impulse must be perpendicular to the collision plane). Oth-

er assumptions are possible and are discussed below. Our as-

sumptions require the dot products of R with the collision

frame unit vectors i and j to be zero, and the difference in the

velocity of the collision point, as seen from each of the two
objects, to be zero in the k direction. We can write:

R . i = O

R " j = 0

(V2 + 02 x p 2 - V l - ~ l x p l)"k = 0

These equations can be solved by standard Gauss-Jordan
elimination with maximal pivoting,[5] LU-decomposition,[22]

or by more advanced sparse matrix methods.[20, 21] It is pos-
sible at this point in the algorithm to find the solution for an

elastic collision. The actual elasticity of the collision can be

taken as the lower of the elasticities of the two colliding sur-

faces. A new collision impulse Rae~l Can then be calculated

as Ractual = (l + e a a u a t) R . This new collision impulse is then

plugged back into the defining equations above, to solve for

the ~ and ~i vectors that are required. The ~ vectors come

out easily; the oi vectors require inverting the I i inertial tensor

matrices.

Next consider including friction. If the objects axe

infinitely rough and e = 0, the collision condition requires that
the objects come to rest (relative to each other) at the collision

point. This corresponds to the vector equation:

V 2 + ~ x p 2 - ~ l - ~ l x p l = 0

In between perfectly smooth and perfectly rough colli-

sions lies the great middle ground of partially rough friction.

Modeling partial (i.e. realistic) friction can become quite com-

plex; the simple treatment given here is from MacMillan[17]

and McLean[18] and is sufficient to produce visually reason-
able results.

The coefficient of friction, 7, is the maximum allowed ra-
tio of force parallel to the collision plane versus force perpen-

dicular to that plane. Although properly speaking, y is a pro-

perty of pairs of surfaces, we assign a y value to each surface,

and then use the larger of the 77 values of the colliding objects.

When the two objects have finite 77 and e = 0, the collision can
be solved in two steps. First the collision is solved as if it were

infinitely rough. Then the resulting collision impulse, R, is

examined. I f the allowed ratio, 77, of the components of R

parallel and perpendicular to the collision plane is not exceed-

ed (i.e. if77R, k ~ I R - k (R - k) I), all is well and the solution
stands, because the objects should stick.

Otherwise, the objects should slide. The system of equa-

tions must be set up and solved again with different collision

conditions. These new conditions will give a smaller restrain-

ing parallel force, because only a limited amount of friction

earl act against sliding motion. Two constants ct and 13 are cal-

culated, such that the collision impulse will exactly fulfill

77R - k = I R - k (R • k) I, or in other words such that the ratio

of the parallel and perpendicular components of R is exactly y,

and the direction of the parallel component of R is the same as

before. This gives the maximum parallel force allowed by the

necessary perpendicular force and the coefficient of friction.

The collision conditions axe then:

R -i =txR -k

g -j = ~ R -k

(V2 + ~2 x p2 - Vl - ~ l x pl) " k = O

ct and ~ are calculated as follows, with Q the component
of R perpendicular to the collision plane, and P the unit direc-

tion vector of the component of R parallel to the collision

plane:

Q = k (R . k)

R - Q
P

t R - Q t

ct = 77(P . i)

~=77 (P - j)

To reiterate, the full algorithm for solving a general colli-

sion of two rigid objects is to transform the required quantities

(incoming velocities, tensor matrices, Pi, etc) from the ob-

jects ' local coordinate frames to a common inertial frame,

define the collision frame's orthogonal unit vectors i , j , and k,

choose appropriate collision conditions, set up and solve the

system of equations as outlined above, and transform the new

linear and angular velocities back to the objects ' local frames.

This may seem like a drastic amount of work when compared

with inserting a simple spring between the two objects, and it

does require more lines of computer code, but this method is
usually applied only once for each collision, whereas springs

294

~ Computer Graphics, Volume 22, Number 4, August 1988

generally must be applied over a large number of very small

t ime steps. This analytical method is cheaper computationally

unless the collision is very gentle indeed, and the cost of this

collision solution does not depend upon the violence of the

collision, certainly a desirable property.

3.2.2. Ar t i cu la ted Rig id Bodies - Tree -Structured , Revo-

lute Joints

Now we extend MacMillan 's solution to tree-like articu-

lated rigid objects with revolute joints. The various rigid ob-

jects that make up the tree-like linkages will be numbered

from 1 to n. Objects 1 and 2 will be the colliding objects, and
the rest will be linked to one or both of them, either directly or

through some number of intermediaries. Note that this solu-

tion allows the links of an articulated object to collide with

other links of the same object or with another object entirely.

Each rigid object will again have a linear velocity vector v i , an

angular velocity vector toi, an inertial tensor mawix li, a mass

mi, and a center of mass ci, all expressed in a common inertial

reference frame.

The revolute joints connecting the various rigid objects

will be assumed to be ideal, that is, perfectly elastic and with

no mechanical tolerance. The single joint that connects object

i to object j will be described by the vector Pij that points

from c i to the joint, and the vector Pji that points from cj to

the joint. As well as the collision impulse R, this solution will

calculate an attachment impulse Rij for each joint. Unlike the

collision impulse, the attachment impulses Rij are uncon-

strained as to direction. By convention, the attachment im-

pulse Rij points from object j to object i , and Rij =-Rji . Rij

will be (0,0,0) i f objects i and j are not connected by a joint.

See Figure 5.

. . . . collision
~',,,,. point

Figure 5.

Articulated Collision Problem

For a collision involving n rigid objects there are 6n

unknowns corresponding to the resulting linear and angular
velocities of the objects, 3 unknowns for the collision impulse,
and either 3 (n - l) unknowns corresponding to the attachment

impulses i f the objects are all part of one articulated linkage,

or 3(n-2) unknowns if two different articulated objects are

colliding. Thus, the total size of the linear system to be solved

is approximately 9n for n rigid objects involved in the coUi-

sion. The sparsity of the matrix increases as n increases, so
that if sparse matrix methods are used the solution should be

around O (n).[20, 21]

Once again, the unknowns to be solved for are g. and ~i

for i = 1...n, R, and Rq for all pairs of objects i and j connect-

ed by a joint. The equations for objects 1 and 2, and for the

collision impulse, still look familiar. The extra summation

terms reflect the change in linear and angular momentum

resulting from any attachment impulses felt by those objects.

n

m l ~ t = m l v l +R + ~ R l i
iffil

n

m2V2 =m2v 2 - R + ~ R ~
i=1

n

1 1 ~ 1 = I 1 0 9 1 + p l x R + ~ P l i ×Rli
i=1

n

12~2 =12(.022 -- P2 × R + ~ 92i ~R2i
i=1

The conditions on the collision impulse R are still the

s a m e .

R "i = 0

R ' j = 0

(V2+~xp2-VI-~I x Pl)" k = 0

For the objects that are not directly colliding (for object
i = 3..n), the momentum conservation equations are

n

rrti~. =miv i + ~Rij
j= l

n

lif-Oi =liOOi + ~Pij ×Rij
j=t

Each joint requires three more linear equations to make

the system of equations complete and solvable. These are

derived from the basic requirement of a revolute joint: the

velocity of the joining point, when seen as part of either of the

rigid objects which it connects, must be the same. Otherwise,

the joint would tend to pull apart. For each joint connecting

objects i and j , three more equations can be written.

~ +~ xpu =~ +~j xp~

Once again, the algorithm requires that the necessary in-
formation about all of the objects be transformed from their

local reference frames to a common inertial reference frame.
The collision frame orthogonal unit vectors i , j , and k must

be determined. The (potentially rather large) linear system is

set up and solved for the variables V/, 0~ i, R, and Rij, by stan-

dard methods.[5, 22, 20, 21] The actual elasticity of the colli-

sion is determined as above, and actual impulses are deter-

mined by multiplying R and the Rq ' s by (1 + I~aa.al). The ac-

tual impulses are then put back into the equations above to get

the final solution for linear and angular velocities. The last

step is to transform the solution back to the object 's local
frames.

295

SIGGRAPH '88, Atlanta, August 1-5, 1988

3.2.3. Articulated Rigid Bodies - Revolute Joints

The above solution for tree-like articulated rigid objects
can be extended by removing the requirement for tree-like
linkage. Since the two articulated objects that are colliding are

defined to be connected objects, some subset of the attachment
points will define tree-like linkages. The first step is to set up

the problem as above for the objects and for those joints. Then
the extra joints are added; each contributes another attachment
impulse Rij, and thus adds three variables to the problem.

Each joint also allows three more linear equations to be writ-
ten down, the familiar velocity matching condition.

This larger system once again contains as many variables

as equations, and so can be solved by standard techniques.
The actual collision and attachment impulses are calculated
and applied in the same way as above, and the solution values
are transformed back to the objects' local coordinate systems.

It is even possible to have more than one joint connecting two

objects i and j , although in that case the notation used above
would have to be expanded slightly. If two joints connect ob-

jects i and j , the objects will have only one degree of freedom
of motion relative to each other; they will be able to twist

around the line connecting the two joints. If a third joint is ad-

ded connecting i and j , which is not colinear with the other
two, the two objects will be locked in position relative to each

other, and will form in effect a single rigid object. This is

probably not a desirable state of affairs, but the solution algo-

rithm does permit it.

3.2.4. Articulated Bodies - Sliding Joints

A sliding joint is one in which the joining points on the

two objects are allowed to move freely with respect to each

other in one or two dimensions, but are at the same time con-
strained to a fixed relationship in the other dimensions. A
linear sliding joint allows sliding motion in one degree of free-
dom, while controlling two others; a planar sliding joint con-
trois one degree of freedom, allowing sliding motion in the

other two. For now, assume that these joints allow three revo-
lute degrees of freedom as well.

For a linear sliding joint, assume that objects i and j are
connected, and that a joint coordinate system is defined by

three orthogonal unit vectors di, dj, and dk. These vectors are

stated in the local coordinate system of object i and rotate

with it. Further assume that the attachment point on object j is

allowed to move freely in the d; direction, but must maintain

some particular value for its position along dj and d k as seen

from object i . Note that the "attachment point" on object i is

in fact a line; this requires us to calculate P0, the actual attach-

ment point on object i , separately for each collision. Note also
that the joint coordinate system orthogonal unit vectors must
be rotated into the common inertial frame.

Notice that the attachment impulse R V is required to lie
in the dj, dk plane. As it is possible to write down three linear
constraining equations about this joint, such a joint can be

treated within the linear systems described above. One equa-
tion expresses the constraint that Rij must lie in a plane; the

other two equations constrain the attachment point velocities
to match in two of the three joint coordinate system directions.

R U "d i =0

(vj +~j X Pji -v'i -~ j X pij)'dj =0

(~ +~j xpj~-~ - ~ j xpv)-ak =o

The argument for a planar sliding joint is similar. In this

case the attachment point on object j is allowed to move free-

ly in the d~ and dj directions, constraining the collision im-

pulse to exactly the dk direction, but leaving its magnitude

unknown. The attachment point velocities must still match in

the d k direction, but are allowed to vary in the other two direc-

tions. The equations are as follows.

n~ i .d~ =o

eli .dj =o

(~j + ~ x p j i - ~ - ~ j ×P0) ' dk =0

The sliding joints described above allow the two objects
that they connect either 4 (linear) or 5 (planar) degrees of free-

dom of movement relative to each other. Sliding joints that

provide fewer degrees of freedom can be constructed by ad-
ding one or more extra joints of the above types. For instance,

suppose that a planar sliding joint is desired such that one ob-

ject can slide relative to the other, but the objects cannot rotate
relative to each other. This can be accomplished by defining

three planar sliding joints (all using the same plane) with the

sliding points not colinear. A piston type joint (one degree of

translational freedom and one degree of rotational freedom)
can be described by two linear sliding joints of the above type,

with the connection points constrained to slide along the same
line.

3.3. Collisions of Dynamic Objects with Non-Dynamic

Objects

A complication seems to arise when dynamically con-
trolled objects collide with objects that are controlled in other

ways (such as keyframe interpolation). In these cases the velo-
cities of the non-dynamic objects involved in the collision

cannot change. Thus, ~ =vi andtoi =o)i for the objects that
are not under dynamic control, and V/ and o01 are not variables

in the linear system formulations above. The systems can be

reformulated with fewer rows and columns, and the solution
proceeds just as before. The result is collisions that do not

conserve linear or angular momentum. The keyframe or pro-
cedurally controlled objects move along their assigned paths

with lordly disdain, brushing aside the dynamically controlled

objects as if they had negligible mass.

More complex responses from the non-dynamic objects

are possible. Programs that control objects could be written to

take the results of dynamic collisions into account. In effect,

the procedural object could become dynamic for the duration
of the collision, and its velocity could change. The program

would have to be alert to this possibility. This would be fairly
simple to implement using the analytic solution, which does
not require setting up and solving the complete dynamics

equations of motion. Altematively, collisions between
dynamic and keyframed objects could be defined as excep-
tional events that require that the human animator be notified.

296

~ Computer Graphics, Volume 22, Number 4, August 1988

4. CONCLUSIONS

Collision detection is important for any animation sys-
tem. The coding requirements are not excessive, and, while a
naive approach to collision detection can consume large
amounts of computer time, several tricks are available to keep
the cost reasonable.

Dynamical simulation systems must resolve collisions
after detecting them. The obvious method of inserting tem-
porary springs is general and easy to program, but exacts a
severe execution time penalty, particularly for violent colli-
sions. This makes an analytical collision resolution algorithm
attractive. On the other hand, for objects resting against each
other but encouraged by forces to interpenetrate, the spring
solution is more appropriate. A dynamical simulation system
should have a combination of both methods available.

ACKNOWLEDGEMENTS

This work was supported by National Science Founda-
tion grant number CCR-8606519. We wish to thank Robert
Skinner, David Forsey, and Peter Valtin for contributing to the
dynamical animation software that we used to implement
these algorithms. We would also like to thank our reviewers
for their incisive and helpful comments and references.

References

1. William W. Armstrong and Mark W. Green, "The
Dynamics of Articulated Rigid Bodies for Purposes of
Animation," Proceedings of Graphics Interface '85, pp.
407-415, Canadian Information Processing Society,
Toronto, Ontario, Canada, May 1985.

2. John W. Boyse, "Interference Detection Among Solids

and Surfaces," Communications of the ACM, vol. 22:1,
pp. 3-9, January, 1979.

3. John Canny, "Collision Detection for Moving Polyhe-
dra," MIT Aar. Lab Memo 806, October, 1984.

4. Ingrid Carlbom, "An Algorithm for Geometric Set
Operations Using Cellular Subdivision Techniques,"
IEEE Computer Graphics and Applications, vol. 7, pp.
44-55, Computer Society of the IEEE, Los Alamitos,
CA, May 1987.

5. Brice Carnahan and James O. Wilkes, Digital Computing
and Numerical Methods, John Wiley and Sons, Inc., New
York, 1973.

6. Scott E. Fahlman, "A Planning System for Robot Con-
struetion Tasks," Artificial Intelligence, vol. 5, pp. 1-49,
1974.

7. Wm. Randolph Franklin, "Efficient Polyhedron Intersec-
tion and Union," Proceedings of Graphics Interface
1982, pp. 73-80, 1982.

8. C. William Gear, Numerical Initial Value Problems in
Ordinary Differential Equations, Prentice-Hall, Engle-
wood Cliffs, NJ, 1971.

9. Jeffrey Goldsmith and John Salmon, "Automatic Crea-
tion of Object Hierarchies for Ray Tracing," IEEE Com-

puter Graphics and Applications, vol. 7, pp. 14-20, Com-
puter Society of the IEEE, Los Alamitos, CA, May 1987.

10. I .N. Herstein, Topics in Algebra, Xerox College Publish-
ing, Lexington, MA, 1964.

11. J.E. Hopcroft, J.T. Schwartz, and M. Sharir, "Efficient
Detection of Intersections among Spheres," The Interna-
tional Journal of Robotics Research, vol. 2:4, pp. 77-80,
Winter 1983.

12. Paul M. Isaacs and Michael F. Cohen, "Controlling
Dynamie Simulation with Kinematic Constraints," Com-
puter Graphics, vol. 21, no. 4. Proceedings of SIG-
GRAPH'87 (Anaheim, CA, July 27-31, 1987)

13. Donald Knuth, Fundamental Algorithms, Addison-
Wesley Publishing Co., Reading, MA, 1975.

14. Donald Knuth, Searching and Sorting, Addison-Wesley
Publishing Co., Reading, MA, 1975.

15. Tomas Lozano-Perez and Michael A. Wesley, "An
Algorithm for Planning CoUision-Free Paths Among
Polyhedral Obstacles," Communications of ACM, vol.
22, no. 10, pp. 560-570, October, 1979.

16. Richard V. Lundin, "Motion Simulation," Proceedings

of Nicograph 1984, pp. 2-10, November, 1984.

17. William D. MacMillan, Dynamics of Rigid Bodies,
Dover Publications, Inc, New York, 1936.

18. W.G. McLean and E. W. Nelson, Engineering Mechan-
ics: Statics and Dynamics, Shaum's Outline Series,
McGraw-Hill Book Co., New York, 1978.

19. Matthew Moore, "A Flexible Object Animation Sys-
tem," Masters Thesis, University of California, Santa
Cruz, Computer & Information Sciences, Santa Cruz,
California, March, 1988.

20. Ole Osterby and Zahari Zlatev, Direct Methods for
Sparse Matrices, Springer-Verlag, Berlin, 1983.

21. Sergio Pissanetsky, Sparse Matrix Technology,
Academic Press, London, 1984.

22. William H. Press, Brian P. Flannery, Saul A. Teukolsky,
and William T. Vetterling, Numerical Recipes, Cam-
bridge University Press, Cambridge, England, 1986.

23. Craig W. Reynolds, "Computer Animation with Scripts
and Actors," Computer Graphics, vol. 16, no. 4, pp.
289-296, Association for Computing Machinery, July,
1982. Proceedings of SIGGRAPH'82

24. Craig W. Reynolds, "Flocks, Herds, and Schools: A Dis-
tributed Behavioral Model," Computer Graphics, vol.
21, no. 4, pp. 25-34, Association for Computing
Machinery. Proceedings of SIGGRAPH'87 (Anaheim,
CA, July 27-31, 1987)

25. David F. Rogers, Procedural Elements for Computer
Graphics, McGraw-HiU Book Company, New York,
1985.

26. Robert Skinner, U Cal. Santa Cruz, CIS Dept. personal
communication.

27. Scott N. Steketee and Norman I. Badler, "Parametric
Keyframe Interpolation Incorporating Kinetic Adjust-
ment and Phrasing Control," Proceedings of SIGGRAPH
'85, vol. 19, no. 4, pp. 255-262, July, 1985.

28. David Sturman, A Discussion on the Development of
Motion Control Systems, Association for Computing
Machinery, July 1987. SIGgraph '87 Course 10 Notes:
Computer Animation: 3-D Motion Specification and
Control.

297

SIGGRAPH '88, Atlanta, August 1-5, 1988

29. Demetri Terzopoulous, John Platt, Alan H. Barr, and
Kurt Fleischer, "Elastically Deformable Models," Com-
puter Graphics, vol. 21, no. 4. Proceedings of SIG-
GRAPH'87 (Anaheim, CA, July 27-31, 1987)

30. Tetsuya Uchild, Toshiaki Ohashi, and Mario Tokoro,
"Collision Detection in Motion Simulation," Computers
& Graphics, vol. 7:3-4, pp. 285-293, 1983.

31. Jane Wilhelms, "'Towards Automatic Motion Control,"
IEEE Computer Graphics and Animation April, 1987,
vol. 7, no. 4, pp. 11-22, April, 1987.

32. Jane Wilhelms, "Using Dynamic Analysis for Anima-
tion of Articulated Bodies," IEEE Computer Graphics
and Applications, vol. 7, no. 6, June, 1987.

Example 1: early stage rockpile

Example 2: man sitting
positioned with collision detection

Examples 3-5: foiling domino movie

298

