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Abs t rac t  

When several objects are moved about by computer ani- 

marion, there is the chance that they will interpenetrate. This 
is often an undesired state, particularly if the animation is 
seeking to model a realistic world. Two issues are involved: 

detecting that a collision has occurred, and responding to it. 

The former is fundamentally a kinematic problem, involving 

the positional relationship of objects in the world. The latter 

is a dynamic problem, in that it involves predicting behavior 

according to physical laws. This paper discusses collision 

detection and response in general, presents two collision 

detection algorithms, describes modeling collisions of  arbi- 
trary bodies using springs, and presents an analytical collision 

response algorithm for articulated rigid bodies that conserves 

linear and angular momentum. 

CR Categories and Subject Descriptors: 1.3.5: [Computer 
Graphics]: Computational Geometry and Object Modeling - 

Geometric algorithms; 1.3.7: [Computer Graphics]: Three Di- 

mensional Graphics and Realism - Animation. 

Key W o r d s  and Phrases: computer animation, collision 

detection, collision response, analytical solution, dynamical 

simulation. 

1. O V E R V I E W  

Computer animation provides a number of  methods for 

controlling object motion.[28] The object 's  positions and 

orientations as functions of time may be interpolated from 

keyframes or parameter specification,[27] or may be the out- 

put of  special computer programs written by the user,[23] or 

may be produced by physical simulation of the effect of  inter- 

nal, model-derived, and user-specified forces and 

torques.J1, 12, 16,29, 32] In any such scheme, the main ques- 

tions when animating a single object are how to achieve real- 

istic motion and how to economize on the human animator 's  

time. When several objects are animated at once, the addi- 
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tional problem of detecting and controlling object interactions 

is encountered. When no special attention is paid to object in- 
teractions, the objects will sail majestically through each oth- 

er, which is usually not physically reasonable and produces a 
disconcerting visual effect. Whenever two objects attempt to 

interpenetrate each other, we call it a collision. 

The most general requirement that arises from this is an 

ability to detect collisions. Most animation systems at present 

do not provide even minimal collision detection, but require 

the animator to visually inspect the scene for object interac- 

tion and respond accordingly. This is time-consuming and 

difficult even for keyframe or parameter systems where the 

user explicitly defines the motion; it is even worse for pro- 

cedural or dynamical animation systems where the motion is 

generated by subroutines and laws defining their behavior. 
Though automatic collision detection is somewhat expensive 

both to code and to run, it is a considerable convenience for 

animators, particularly when more automated methods of  mo- 
tion control, such as dynamics or behavioral control, are 

used.[24, 31] This paper describes two collision detection al- 

gorithms. One algorithm deals with triangulated surface 

representations of  objects, and is appropriate for flexible or ri- 

gid surfaces. The other algorithm applies to objects modeled 

as rigid polyhedra. Both algorithms are simple, robust, and not 

dreadfully expensive. 

The related issue is response to collisions once they are 

detected. Even keyframe systems could benefit from automat- 
ic suggestions about the motion of objects immediately fol- 

lowing a collision; animation systems using dynamical simu- 

lation inherently must respond to collisions automatically and 

realistically. Linear and angular momentum must be 

preserved, and surface friction and elasticity must be reason- 

able. This article presents two methods that satisfy these cri- 

teria. One is the obvious method, based on temporary springs 

introduced at collision points. The other method is an analyti- 

cal linear system solution. The former method is more gen- 

eral, working equally well for flexible, rigid, and articulated 

bodies. The latter, limited to rigid and articulated objects, is 

typically faster. Furthermore, while the spring solution as- 

sumes the ability to use the dynamics equations of  motion to 

predict the motion immediately after impact, the analytical 

solution could be used within a kinematic animation system. 

@1988 AC M-0-89791-275 -6/88/008/0289 $00.75 

289 



SIGGRAPH '88, Atlanta, August 1-5, 1988 

2. C O L L I S I O N  D E T E C T I O N  

Collision detection involves determining when one ob- 

ject penetrates another. It is clearly an expensive proposition, 

particularly when large numbers of objects are involved and 

the objects have complex shapes. Collision detection has been 

extensively pursued in the fields of CAD/CAM and robot- 

ies,[2, 3, 6,7, 11, 30] and it is with some diffidence that we 

offer any more algorithms. Some published algorithms[2, 3] 

solve the problem in more generality (and at higher cost) than 

we have found to be necessary for computer animation. Oth- 
ers[6] do not easily produce the collision points and normal 

directions necessary if  collision response is to be calculated. 

VoxeI-based methods have also been used,J30] but would not 

be appropriate for all applications. Finally, many collision 

detection algorithms are quite intricate and must deal with 

many special cases, which we wished to avoid for software 

engineering reasons. Two collision algorithms are discussed 

here: the first is designed to test the interpenetration of  sur- 

faces modeling flexible objects; the latter is designed to test 

for interpenetration of  convex polyhedra. 

2.1. Collision Detection for Flexible Surfaces 

Surfaces are modeled as a grid of  points connected to 

form triangles.[19] Collisions between surfaces axe detected 
by testing for penetration of  each vertex point through the 

planes of  any triangle not including that vertex (thus, self- 

intersection of surfaces is detected). The surfaces are assumed 

to be initially separate. For  each time step of  animation, the 

positions of  points at the beginning and the end of the time 

step must be compared to see i f  any point went through a tri- 

angle during that time step. If so, a collision has occurred. 

The algorithm is O (nm) for n triangles and m points. 

A correct test must consider edges and triangles, as po- 
lyhedral objects can collide edge-on without any vertices be- 

ing directly involved. However, in many cases merely testing 
points versus triangles produces acceptable results. This algo- 

rithm only tests points versus triangles. It is worth noting that 

the mathematics for testing intersection of  a moving point 
with a fixed triangle is the same as for testing a fixed edge 

versus a fixed triangle. Thus the fully general edge versus tri- 

angle tests could be done at fixed instants in time, with the 

same advantages and disadvantages that will be discussed for 

the second collision detection algorithm. 

The question of  whether a moving point has intersected a 

surface can be divided into two cases. The easy ease requires 

the surface to be fixed in space, whereas the hard case allows 

the surface to be moving also. When the surface triangle is 

fixed, the parametric vector equation 

P + (P" - P )  t = Po + (Pi-Po) u + (P2---Po) v 

where P and U a.re the beginning and ending positions of  the 

point and the Pi's  define the triangle, is set up and solved for 

the variables u,v,t ,  u and v are parametric variables for the 

plane defined by the triangle, whereas t is a time variable 

which is 0 at the beginning of the simulation step in question, 

and 1 at the end. The left hand side is the parametric equation 

for the path of  the point, and the right hand side is the 

parametric equation for any point on the plane. This vector 

equation represents three scalar equations in three unknowns 

and is solved by matrix inversion. If  0,St_<l and u:20 and v:20 

and u+v_<l, then the point has intersected the triangle during 

the time step. 

The hard case is solved by setting up the parametric vec- 

tor equation 

P + V  t =Po+Vo t +((PI-Po)+(VI-Vo)  t )u  

+ ((P2-Po) + (V2-V0) t ) v 

where P is the point (with velocity V per time step), the Pi s 

define the triangle vertices (with velocity V i per time step), 

and t,u,v are the parametric variables. Rearranging, we can 

write this as three linear equations in three unknowns. 

a u +b v +c t = d  
e u + f v + g t = h  
i u + j v + k t = l  

where 

a = ( P 1 , - P a x ) + t ( V l x - V a x )  

b = (Pz~- Pax) + t(Vz~- Vax) 

C ~ - - V  x 

d =Px -(Pax + tVox) 

e = ( P l y - P o y ) + t ( V t y - V o y )  

f = (P2y- Coy) + t(V2y- roy) 

g =-Vy 

h =ey - (eoy  +tVoy) 

i = (P l , - P a x )  + t ( V l , -  Vo,) 

J = ( P ~ -  Po,) + t ( V ~ -  Vo,) 

k = - V  z 

t = P ,  -(P0= +tVoD 

The Pw s and Vws are the position and velocity components of  

the point, and the Piw S and Viw s are the position and velocity 

components of  the triangle vertices. The velocities are per 

t ime step. 

The linear system above can be solved for t and expand- 

e d t o  

0 = a Ua- /b  ) (ha-ca)  - a (da-ib)(ga --cc ) t 

+ (fa -eb )(ka-ic ) t - (la-id)ffa--eb) 

Substitution of  the actual expressions for a through l gives a 

5 ' th  order polynomial  in t.  I f  further substitutions were made, 

the equations could be written in the form 

C 5t5 .l- c 4t4 -1-c 3 t3 -I-c2t2-I-Cl t l  -I- C o=  O 

Polynomials of  order 5 and above cannot be solved 

analytically,[10] so a binary search technique is used to find 

approximate values for t.[5] Binary search is used because it 

is guaranteed to converge, and because, using economizing 

techniques described below, this algorithm is not used often 

enough to warrant large efforts at optimization. The interval 

from t=0 to t=l is subdivided into a number of sub-intervals, 

and the left-hand side is evaluated at each dividing point. If  

the sign of  that value is different for the two endpoints of  

some subinterval, then some t for which the equation is true 

must lie within that interval. A binary search of  values of  t 

within that interval brings the brackets around that value of  t 
closer together, until a limit is reached (after 10 iterations, in 

our system) and an approximate value of  t is found. Each 

value of t thus arrived at is used to get values for u and v by 

back substitution, and then the standard 0<_t<_l and u~0 and 
v~0 and u+v~l  test is used to determine whether a collision 

has occurred. 
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To minimize the cost of executing the above calcula- 

tions, a preliminary step is used. Every point is compared to 

every triangle. The perpendicular distance of the point from 

the plane defined by the triangle is first derived, by substitut- 

ing into the plane equation,[25] for the beginning and the end 

of the time step. If the sign of  the perpendicular distance has 

not changed intersection is assumed not to have occurred. If  

the sign has changed, then the more expensive tests outlined 

above must be done, but in practice this test eliminates most 

point-triangle pairs. 

A special kind of  bounding box can also be used to 

minimize computation. This bounding box includes the be- 

ginning and ending position of  the triangle. This box is then 

grown by the distance between the beginning and ending posi- 

tions of  the point being tested. (This is necessary to avoid the 

point passing unnoticed completely through the box during the 

time step. A similar growth technique is used in the Lozano- 

Perez path planning algorithm.)[15] 

The basic algorithm is O (nm), for n triangles and m 

points. Use of  an octree[19] and bounding boxes can reduce 

the time to O (mlogm) to construct the octree, and O (n logm) to 

search it (assuming that the tree is almost balanced and that 

the bounding boxes are small compared to the space covered 

by the tree). 

The search finds all point - bounding box pairs that must 

be examined more closely for possible intersection. All of the 

points in the model are inserted into an octree, which is creat- 

ed anew for each round of  collision detection. This octree is 

based on the points themselves, with each point P having up 

to 8 subtrees containing points in each of the octants of space 

defined by the P's position. This is an obvious generalization 

of the well known binary search tree.[13, 14] A pseudo- 

random number generator is used to scramble the order of  

insertion; in this way, Knuth assures us, J13] the tree will be al- 

most balanced, i.e. the height of  the octree will be O (logm) al- 
most always. 

Each triangle's bounding box is grown by the distance 

between the starting and ending positions of  the fastest point 

being tested. Each bounding box is then recursively compared 

against the octree to find the points inside it. If  a point is in- 
side the box, all of  its subtrees must be searched recursively. If 

a point is outside the box, at least half of its subtrees do not 

need to be searched. I f  a point is found to be inside a box, then 

the algorithm above must be run to determine if  the point in- 

tersected the associated triangle during the time step. 

r . . . . . . . . . . . . . . . . .  D 

' 

Figure 1 

Searching a Quadtree 

Figure 1 illustrates a two-dimensional version of  this pro- 

cedure. The points A through 1 were inserted into an initially 

empty quadtree in alphabetical order, so that A is the root ele- 
ment of  the tree. The tree is to be searched for all points inside 

the dotted box. A is inside, so all of  i t 's  subtrees must be 

searched. B is above and to the right of the dotted box, so only 

its lower left subtree must be searched. This finds C, which is 

inside the box. If C had subtrees, they would all have to be 

searched. The next subtree of A starts with F. F is above the 

bounding box, so both of  its lower subtrees must be searched. 

One is empty, and the other contains only I, which is also out- 

side the box. A ' s  third subtree contains only E, which is below 
the box. If E had subtrees, only the upper ones would need to 

be searched. A ' s  fourth and last subtree contains only G, 

which is outside the box. If  G had subtrees, only the two fight 

hand ones would be searched. A large, bushy quadtree would 

be very fast to search (if the dotted box were small relative to 

the area covered by the tree) because the unsearched subtrees 

would often contain large numbers of  points. 

2.2. Collision Detection for  Convex Polyhedra  

The detection of collisions between solids (or closed sur- 

faces) can be treated somewhat differently, for the objects 

have a distinguishable inside and outside. The problem is 
somewhat more complex than might be initially thought. 

Edges as well as vertex points may be involved in collisions. 

This method for detecting collisions is based on the 

Cyrus - Beck clipping algorithm.[25] Collisions of articulated 

objects can be detected by applying this algorithm to all pairs 

of  the polyhedra making up the two objects. The two polyhe- 
dra are assumed to be convex; concave polyhedra can be 

decomposed into collections of convex ones. The basic algo- 

rithm is O(n2m 2) for n polyhedra and m vertices per po- 

lyhedron. Methods for reducing these exponents are discussed 
below. 

The two-dimensional Cyrus - Beck algorithm[25] tells 

whether a point is inside a convex polygon. It takes the dot 

product of  each side's outward normal vector (n) with a vector 

from some point (v) on the side to the point in question (p). If 

that dot product is negative for all edges of the polygon, then 

the point is inside; if  not, it is outside (see Figure 2). 

dot pro.duct 
negative, 

~ p 

n l 

V 

Figure 2 

Cyrus - Beck Clipping 

291 



¢ SIGGRAPH '88, Atlanta, August 1-5, 1988 

The collision detection algorithm is developed as a 

three-dimensional analogy to Cyrus - Beck clipping. The al- 

gorithm works by testing whether representative points of one 

polyhedron are inside the other polyhedron. First points from 

polyhedron B are tested against polyhedron A, and then the 

process is reversed and points from A are tested for inclusion 

in B. These two steps combine to cover all special cases and 

give a reliable answer. The algorithm given below terminates 

when a single point of  interpenetration is found, which is 

sufficient for collision detection. If  collision response is also 
required, the algorithm below should be modified to find all 

points of  interpenetration. The rest of  this section describes 

the test of  points from B against A. 

Let  A consist of  a set of  planar polygonal faces (Pi). Each 

polygon contains a set of  vertices (uii) and an outward point- 

ing normal vector ni. Let B consist of a set of vertices (vD, a 

set of  edges (el), and a set of  planar polygonal faces ffi). Al l  

coordinates of  B have been transformed into the reference 

frame of  A. 

The first step tests for the presence of vertices of B inside 

of  A. Each vertex of  B is compared to every face of A ; if any 

vertex is on the inward side of  all such faces, it is inside A and 

the algorithm terminates having detected a collision. For each 

vertex i of  B and for each face j of  A,  form the dot product 

(v i -u j l )  • nj .  I f  this dot product is negative the vertex is on the 

inward side of  the face. 

The second step tests for penetration of the edges of B 

through the faces of A. Each edge of B is divided into a 

number of  smaller line segments by intersecting it with the 

infinite planes corresponding to every face o fA .  See Figure 3. 

This subdivision is done as follows. Let some edge of  B con- 

nect the vertices vi and vy, and let us compare it against some 

face of  A that has an outward pointing normal n, and a vertex 

point u~l. First the perpendicular distance of each vertex from 

the plane defining the face is calculated, by substitution into 

the plane equation.[25] If  the perpendicular distances differ in 

sign, then the edge intersects the plane, and the intersection 

point P can be calculated. 

di  = (v i  - Uk l ) "  nk  

a j  = (v j  - a k ~ ) '  n ,  

td~t 
t - -  

mail + IdyE 

P =v~ + t  (vy -v~) 

V2 

planes seen edge-on 

Figure 3 

Edge Subdivision 

This will result in a collection of intersection points P ly- 

ing along the edge. Intersection points with t < 0 or t > 1 do 

not lie on the actual edge and are discarded. The remaining in- 

tersections are sorted into order according to their t values, 

forming a sequence of points from one vertex to the other 

along the edge. Each adjacent pair of  points in this sequence, 

including those made by the vertices and the first and last sub- 

division points, defines a sub-segment of  the edge. The mid- 

point of  each resulting line segment is checked for being in- 

side A by the same method that was used for vertices, above. 

Again, if  any of these midpoints is inside A the algorithm ter- 

minates with a detected collision. 

The third step tests for the infrequent case where two 

identical polyhedra are moving through each other with faces 

perfectly aligned. Here, the centroid point of  each face of  B is 

tested against A by the method used for vertices, above. If 
any of  these centroids is inside A the algorithm terminates 

with a detected collision. 

If the algorithm survives the above three steps without 

detecting a collision, and also does not detect one when rev- 

ersing and comparing A against B, then the two polyhedra do 

not interpenetrate. 

The above algorithm can be speeded up by a variety of  

tricks. A bounding box or bounding sphere test can be applied 

to every pair of  polyhedraa, yielding an immediate "no colli- 

sion" result in most cases. Many of these bounding box tests 

can even be eliminated by octree or voxel methods. [4,9] 

When a point is to be tested against a polyhedron, it chn first 

be compared to the polyhedron's  bounding box, which will 

probably eliminate the need to compare it against all of  the 

faces. The bounding box can be aligned with the coordinate 

axes of  the polyhedron's  local frame to make this point elimi- 

nation test particularly fast. 

It should be noted that this algorithm, or indeed any algo- 

rithm which point samples the positions of  objects over time, 

could fail if one object moved entirely through another during 
a single time step. This is a rather unusual occurence in pro- 

cedural or dynamic animation because simulation time steps 

are normally small relative to the velocities of  the objects. The 

correct solution to this problem is to generalize to four dimen- 

sions;J3] the starting and ending positions of the polyhedra 

define 4-D hyper-polyhedra which are checked for interpene- 

tration by higher-dimensional analogues to the algorithm 

given above. The more practical approach is either to ignore 

the problem (as we do) or to restrict the animation step size so 

that the change in any object 's  position in any step is small re- 

lative to the object 's  size. 

3. C O L L I S I O N  RESPONSE 

In keyframed and procedural animation systems, colli- 

sion detection is the main requirement; collision response usu- 

ally consists of  informing the animator or the motion control 

program that a collision has occurred, and trusting them to 

handle it. In animation systems using dynamics to generate 

motion, the system itself must respond to a collision by deter- 

mining new linear and angular velocities for the colliding ob- 
jects. These new velocities must conserve linear and angular 

momentum, or else the resulting "funny bounce" will be very 

obvious to viewers of the animation. The elasticity of  the sur- 
faces must also be taken into account, as this determines how 

much kinetic energy is lost in the collision; no-one will be- 
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lieve that a bean bag should bounce off of  a hard surface as i f  

it were a golf ball. 

3.1. Collision Response Using Springs 

The most intuitive way to handle collisions is with 

springs. Dynamic simulation systems must already have a 

method for applying external forces to objects. Thus, when a 

collision is detected, a very stiff spring is temporarily inserted 

between the points of closest approach (or deepest interpene- 

tration) of  the two objects. The spring law is usually K / d ,  or 

some other functional form that goes to infinity as the separa- 

tion d of  the two objects approaches 0 (or the interpenetration 
depth approaches some small value). K is a spring constant 

controlling the stiffness of  the spring. The spring force is ap- 

plied equally and in opposite directions to the two colliding 

objects. The direction of  the force is such as to push the two 

objects apart (or to reduce their depth of  interpenetration). 

Our particular implementation handles variable elasticity 

by making a distinction between collisions where the objects 

are approaching each other and collisions where the objects 

are receding from each other. For e = 1, i.e. perfectly elastic 

(hard) collisions, the spring constant K will be the same 

whether the objects are approaching or receding. For e = 0, i.e. 

totally inelastic (soft) collisions, the spring will act as noted 
above as long as the objects are approaching each other, but as 

soon as they start to move apart the spring force will decrease 

to 0. For elasticities between 0 and 1, the two spring constants 

will be related by K,e,,d~ = e Kot, p r ~ h .  

The spring method is easy to understand and easy to pro- 

gram. It applies equally well to rigid bodies (articulated or 

not) and to flexible bodies, whether modeled as point masses 

connected by springs, or by energy of deformation tech- 

niques.[29] The main problem with this method is that it is 
computationally expensive; stiffer springs mean stiffer equa- 

tions, which require smaller time steps for accurate numerical 

integration. [8] The numerical effort required goes up with the 

violence of the collision; as the springs are compressed more 

and more, the equations become stiffer and stiffer, and smaller 

and smaller time steps are needed. This was the motivation for 

seeking a better method of  collision response. 

3.2. Collision Response Using an Analytical Solution 

An analytical solution for the collision of two arbitrary 

articulated rigid objects is available. The analytical solution 

depends upon the conservation of momentum during a colli- 

sion, and results in a new angular and linear velocity for each 

body. Thus, the solution bypasses the question of collision 

forces and can be used independent of dynamic simulation, as- 

surning information concerning the bodies mass and mass dis- 

tribution can be provided. 

Some combination of  spring and analytical collision 

response may be desirable for a dynamic animation system. 

Analytical solutions are typically faster for strong collisions, 

because the solution need only be found once. However, for 

gentle collisions, such as a body resting quietly atop another 

body, springs may be desirable.[26] In such a case, gravity 

may eonsistently cause the two objects to interpenetrate and, 

thus, the analytical solution would have to be applied time and 

time again. A simple spring that counteracts gravity will be 

faster and more stable in this case. 

This section develops the solution in stages. First, an 
analytical solution for the collision of  two rigid bodies is 

presented; this result is due to MacMillan.[17] MacMil lan 's  
solution is extended to tree-like articulated rigid objects with 
revolute joints. Then, the restriction to wee-like objects is re- 

moved, and finally the method is extended to encompass joints 

with one or two sliding degrees of  freedom. 

3.2.1. Single Rigid Bodies 

MacMillan gives a general solution for the collision of  

two arbitrary rigid objects. Each object has a linear velocity 

vector v i,  an angular velocity vector toi, a mass m i,  a center of  

mass vector cl, and an inertial tensor matrix Ii which is rela- 

tive to the center of  mass. All  of these quantities, for both ob- 

jects, are expressed in the same inertial reference frame. In 

addition, each object has a vector Pi which points from its 

center of mass to the collision point~ The solution also re- 
quires three orthogonal unit vectors i ,j,k that define the "colli- 

sion frame", k will be perpendicular to the plane of collision 

and i and j will be in that plane. The definition of the plane of 
collision is somewhat arbitrary; for convenience we will 

define it as follows. If  a vertex of  one object is colliding with 

a face of the other, then that face defines the plane of  collision. 

I f  an edge of  one object is colliding with an edge of the other, 

these two'edges define the plane of collision. If  two vertices 

are colliding, k is directed along the line joining them. See 

Figure 4. 

"q ot 

C2 

Figure 4. 

Collision Problem - Two Rigid Objects 

It is desirable to assume that there is only one collision 

point in any given collision; this restriction is not totally 
necessary, but it simplifies the formulations given below. It is 

reasonable to say that whenever two objects collide in the real 

world, there is one point at which they collide first (other col- 

lisions may follow within microseconds). Thus, the collision 

detection algorithm must furnish a single collision point 
between two objects. Because of  the time-stepped nature of 

dynamics simulations, this will only be an approximate colli- 

sion point; a good heuristic is to take the point of  greatest in- 
terpenetration of  any two objects in the simulation, provided 
that the relative velocities of  the two objects at that common 
point are such that the interpenetration depth is increasing. If 

adaptive step size control is available, this heuristic can be 
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refined by stating that interpenetration to greater than some 

threshold depth iz unacceptable, and causes backtracking and 

reduction of the step size. This allows the simulation to close 

in on a collision point very close to the surfaces of the objects 

by a process similar to binary search. Multiple collision 

points can be handled by a straightforward extension to the al- 

gorithms given below, by inventing multiple collision im- 

pulses and incorporating them into the matrix. 

The solution involves solving a set of  15 linear equations 

in 15 unknowns. The fifteen unknowns are: the new linear 

velocity vector for each object (~1, V2); the new angular velo- 

city vector for each object (c01, o2); and the impulse vector R. 

An impulse has units of  momentum and can be thought of as a 

huge force applied for a tiny time. Because the collision is as- 

sumed to occur in a negligible time (approximately instan- 
taneous), only the collision impulse itself matters; any other 

forces being applied to the objects will be too small to have an 

effect. By convention, the impulse is directed from object 2 to 
object 1. 

Twelve linear equations can be written down immediate- 

ly, expressing the change in linear and angular momentum 

that each object experiences as a result of the collision im- 
pulse R. 

rnlv- 1 = r n l v  1 + R  

ra2V2 = rnxvz - R 

I101 =ll001 + Pl ×R 

12~2 = 12002 - Pa × R 

The last three linear equations come from some assump- 

tions about the collision conditions; the assumptions that we 

will use are that the elasticity, e, is zero (so that the two collid- 

ing objects come to rest relative to each other, at least at the 
collision point) and that the surfaces are frictionless (so that 

the impulse must be perpendicular to the collision plane). Oth- 

er assumptions are possible and are discussed below. Our as- 

sumptions require the dot products of  R with the collision 

frame unit vectors i and j to be zero, and the difference in the 

velocity of  the collision point, as seen from each of  the two 
objects, to be zero in the k direction. We can write: 

R . i = O  

R " j = 0  

(V2 + 02 x p 2 - V l - ~ l  x p l )"k  = 0  

These equations can be solved by standard Gauss-Jordan 
elimination with maximal pivoting,[5] LU-decomposition,[22] 

or by more advanced sparse matrix methods.[20, 21] It is pos- 
sible at this point in the algorithm to find the solution for an 

elastic collision. The actual elasticity of  the collision can be 

taken as the lower of  the elasticities of  the two colliding sur- 

faces. A new collision impulse Rae~l Can then be calculated 

as Ractual = ( l + e a a u a t ) R .  This new collision impulse is then 

plugged back into the defining equations above, to solve for 

the ~ and ~i vectors that are required. The ~ vectors come 

out easily; the oi vectors require inverting the I i inertial tensor 

matrices. 

Next consider including friction. If the objects axe 

infinitely rough and e = 0, the collision condition requires that 
the objects come to rest (relative to each other) at the collision 

point. This corresponds to the vector equation: 

V 2 + ~ x p 2 - ~ l - ~  l x p l = 0  

In between perfectly smooth and perfectly rough colli- 

sions lies the great middle ground of partially rough friction. 

Modeling partial (i.e. realistic) friction can become quite com- 

plex; the simple treatment given here is from MacMillan[17] 

and McLean[18] and is sufficient to produce visually reason- 
able results. 

The coefficient of  friction, 7, is the maximum allowed ra- 
tio of  force parallel to the collision plane versus force perpen- 

dicular to that plane. Although properly speaking, y is a pro- 

perty of  pairs of  surfaces, we assign a y value to each surface, 

and then use the larger of  the 77 values of the colliding objects. 

When the two objects have finite 77 and e = 0, the collision can 
be solved in two steps. First the collision is solved as if it were 

infinitely rough. Then the resulting collision impulse, R, is 

examined. I f  the allowed ratio, 77, of  the components of  R 

parallel and perpendicular to the collision plane is not exceed- 

ed (i.e. if77R, k ~ I R - k (R  - k )  I), all is well and the solution 
stands, because the objects should stick. 

Otherwise, the objects should slide. The system of  equa- 

tions must be set up and solved again with different collision 

conditions. These new conditions will give a smaller restrain- 

ing parallel force, because only a limited amount of friction 

earl act against sliding motion. Two constants ct and 13 are cal- 

culated, such that the collision impulse will exactly fulfill 

77R - k = I R - k  (R • k) I, or in other words such that the ratio 

of  the parallel and perpendicular components of  R is exactly y, 

and the direction of the parallel component of  R is the same as 

before. This gives the maximum parallel force allowed by the 

necessary perpendicular force and the coefficient of  friction. 

The collision conditions axe then: 

R -i  =txR -k 

g -j  = ~ R  -k 

(V2 + ~2 x p2 - Vl - ~ l  x pl) " k = O 

ct and ~ are calculated as follows, with Q the component 
of R perpendicular to the collision plane, and P the unit direc- 

tion vector of  the component of R parallel to the collision 

plane: 

Q = k ( R  . k )  

R - Q  
P 

t R - Q t  

ct = 77(P . i )  

~=77 (P - j )  

To reiterate, the full algorithm for solving a general colli- 

sion of  two rigid objects is to transform the required quantities 

(incoming velocities, tensor matrices, Pi, etc) from the ob- 

jects '  local coordinate frames to a common inertial frame, 

define the collision frame's orthogonal unit vectors i ,  j ,  and k, 

choose appropriate collision conditions, set up and solve the 

system of equations as outlined above, and transform the new 

linear and angular velocities back to the objects '  local frames. 

This may seem like a drastic amount of  work when compared 

with inserting a simple spring between the two objects, and it 

does require more lines of computer code, but this method is 
usually applied only once for each collision, whereas springs 
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generally must be applied over a large number of  very small 

t ime steps. This analytical method is cheaper computationally 

unless the collision is very gentle indeed, and the cost of  this 

collision solution does not depend upon the violence of  the 

collision, certainly a desirable property. 

3.2.2. Ar t i cu la ted  Rig id  Bodies  - Tree -Structured ,  Revo-  

lute Joints  

Now we extend MacMillan 's  solution to tree-like articu- 

lated rigid objects with revolute joints. The various rigid ob- 

jects that make up the tree-like linkages will be numbered 

from 1 to n. Objects 1 and 2 will be the colliding objects, and 
the rest will be linked to one or both of  them, either directly or 

through some number of  intermediaries. Note that this solu- 

tion allows the links of  an articulated object to collide with 

other links of  the same object or with another object entirely. 

Each rigid object will again have a linear velocity vector v i , an 

angular velocity vector toi, an inertial tensor mawix li, a mass 

mi, and a center of  mass ci, all expressed in a common inertial 

reference frame. 

The revolute joints connecting the various rigid objects 

will be assumed to be ideal, that is, perfectly elastic and with 

no mechanical tolerance. The single joint that connects object 

i to object j will be described by the vector Pij that points 

from c i to the joint, and the vector Pji that points from cj to 

the joint. As well as the collision impulse R, this solution will 

calculate an attachment impulse Rij for each joint. Unlike the 

collision impulse, the attachment impulses Rij are uncon- 

strained as to direction. By convention, the attachment im- 

pulse Rij points from object j to object i ,  and Rij =-Rji .  Rij 

will be (0,0,0) i f  objects i and j are not connected by a joint. 

See Figure 5. 

. . . .  collision 
~',,,,. point 

Figure 5. 

Articulated Collision Problem 

For a collision involving n rigid objects there are 6n 

unknowns corresponding to the resulting linear and angular 
velocities of  the objects, 3 unknowns for the collision impulse, 
and either 3 (n - l )  unknowns corresponding to the attachment 

impulses i f  the objects are all part of one articulated linkage, 

or 3(n-2) unknowns if two different articulated objects are 

colliding. Thus, the total size of  the linear system to be solved 

is approximately 9n for n rigid objects involved in the coUi- 

sion. The sparsity of  the matrix increases as n increases, so 
that if  sparse matrix methods are used the solution should be 

around O (n).[20, 21] 

Once again, the unknowns to be solved for are g. and ~i 

for i = 1...n, R, and Rq for all pairs of objects i and j connect- 

ed by a joint. The equations for objects 1 and 2, and for the 

collision impulse, still look familiar. The extra summation 

terms reflect the change in linear and angular momentum 

resulting from any attachment impulses felt by those objects. 

n 

m l ~ t = m l v l  +R + ~ R l i  
iffil 

n 

m2V2 =m2v 2 - R  + ~ R ~  
i=1 

n 

1 1 ~ 1  = I 1 0 9 1  + p l  x R  + ~ P l i  ×Rli 
i=1 

n 

12~2 =12(.022 -- P2 × R + ~ 92i ~R2i 
i=1 

The conditions on the collision impulse R are still the 

s a m e .  

R "i = 0  

R ' j = 0  

(V2+~xp2-VI-~I x Pl)" k = 0  

For the objects that are not directly colliding (for object 
i = 3..n ), the momentum conservation equations are 

n 

rrti~. =miv i + ~Rij  
j= l  

n 

lif-Oi =liOOi + ~Pij  ×Rij 
j=t 

Each joint requires three more linear equations to make 

the system of equations complete and solvable. These are 

derived from the basic requirement of a revolute joint: the 

velocity of  the joining point, when seen as part of either of the 

rigid objects which it connects, must be the same. Otherwise, 

the joint would tend to pull apart. For each joint connecting 

objects i and j ,  three more equations can be written. 

~ +~ xpu =~ +~j xp~ 

Once again, the algorithm requires that the necessary in- 
formation about all of the objects be transformed from their 

local reference frames to a common inertial reference frame. 
The collision frame orthogonal unit vectors i ,  j ,  and k must 

be determined. The (potentially rather large) linear system is 

set up and solved for the variables V/, 0~ i, R, and Rij, by stan- 

dard methods.[5, 22, 20, 21] The actual elasticity of the colli- 

sion is determined as above, and actual impulses are deter- 

mined by multiplying R and the Rq ' s  by (1 + I~aa.al). The ac- 

tual impulses are then put back into the equations above to get 

the final solution for linear and angular velocities. The last 

step is to transform the solution back to the object 's  local 
frames. 
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3.2.3. Articulated Rigid Bodies - Revolute Joints 

The above solution for tree-like articulated rigid objects 
can be extended by removing the requirement for tree-like 
linkage. Since the two articulated objects that are colliding are 

defined to be connected objects, some subset of the attachment 
points will define tree-like linkages. The first step is to set up 

the problem as above for the objects and for those joints. Then 
the extra joints are added; each contributes another attachment 
impulse Rij, and thus adds three variables to the problem. 

Each joint also allows three more linear equations to be writ- 
ten down, the familiar velocity matching condition. 

This larger system once again contains as many variables 

as equations, and so can be solved by standard techniques. 
The actual collision and attachment impulses are calculated 
and applied in the same way as above, and the solution values 
are transformed back to the objects' local coordinate systems. 

It is even possible to have more than one joint connecting two 

objects i and j ,  although in that case the notation used above 
would have to be expanded slightly. If two joints connect ob- 

jects i and j ,  the objects will have only one degree of  freedom 
of motion relative to each other; they will be able to twist 

around the line connecting the two joints. If a third joint is ad- 

ded connecting i and j ,  which is not colinear with the other 
two, the two objects will be locked in position relative to each 

other, and will form in effect a single rigid object. This is 

probably not a desirable state of affairs, but the solution algo- 

rithm does permit it. 

3.2.4. Articulated Bodies - Sliding Joints 

A sliding joint is one in which the joining points on the 

two objects are allowed to move freely with respect to each 

other in one or two dimensions, but are at the same time con- 
strained to a fixed relationship in the other dimensions. A 
linear sliding joint allows sliding motion in one degree of free- 
dom, while controlling two others; a planar sliding joint con- 
trois one degree of freedom, allowing sliding motion in the 

other two. For now, assume that these joints allow three revo- 
lute degrees of freedom as well. 

For a linear sliding joint, assume that objects i and j are 
connected, and that a joint coordinate system is defined by 

three orthogonal unit vectors di, dj, and dk. These vectors are 

stated in the local coordinate system of object i and rotate 

with it. Further assume that the attachment point on object j is 

allowed to move freely in the d; direction, but must maintain 

some particular value for its position along dj and d k as seen 

from object i .  Note that the "attachment point" on object i is 

in fact a line; this requires us to calculate P0, the actual attach- 

ment point on object i ,  separately for each collision. Note also 
that the joint coordinate system orthogonal unit vectors must 
be rotated into the common inertial frame. 

Notice that the attachment impulse R V is required to lie 
in the dj, dk plane. As it is possible to write down three linear 
constraining equations about this joint, such a joint can be 

treated within the linear systems described above. One equa- 
tion expresses the constraint that Rij must lie in a plane; the 

other two equations constrain the attachment point velocities 
to match in two of the three joint coordinate system directions. 

R U "d i =0 

(vj +~j X Pji -v'i -~ j  X pij)'dj =0 

(~ +~j xpj~-~ - ~ j  xpv)-ak =o 

The argument for a planar sliding joint is similar. In this 

case the attachment point on object j is allowed to move free- 

ly in the d~ and dj directions, constraining the collision im- 

pulse to exactly the dk direction, but leaving its magnitude 

unknown. The attachment point velocities must still match in 

the d k direction, but are allowed to vary in the other two direc- 

tions. The equations are as follows. 

n~ i .d~ =o 

eli .dj =o  

(~j + ~ x p j i - ~  - ~ j  ×P0) '  dk =0  

The sliding joints described above allow the two objects 
that they connect either 4 (linear) or 5 (planar) degrees of free- 

dom of movement relative to each other. Sliding joints that 

provide fewer degrees of  freedom can be constructed by ad- 
ding one or more extra joints of the above types. For instance, 

suppose that a planar sliding joint is desired such that one ob- 

ject can slide relative to the other, but the objects cannot rotate 
relative to each other. This can be accomplished by defining 

three planar sliding joints (all using the same plane) with the 

sliding points not colinear. A piston type joint (one degree of 

translational freedom and one degree of rotational freedom) 
can be described by two linear sliding joints of the above type, 

with the connection points constrained to slide along the same 
line. 

3.3. Collisions of Dynamic Objects with Non-Dynamic 

Objects 

A complication seems to arise when dynamically con- 
trolled objects collide with objects that are controlled in other 

ways (such as keyframe interpolation). In these cases the velo- 
cities of  the non-dynamic objects  involved in the collision 

cannot change. Thus, ~ =vi andtoi =o)i for the objects that 
are not under dynamic control, and V/ and o01 are not variables 

in the linear system formulations above. The systems can be 

reformulated with fewer rows and columns, and the solution 
proceeds just as before. The result is collisions that do not 

conserve linear or angular momentum. The keyframe or pro- 
cedurally controlled objects move along their assigned paths 

with lordly disdain, brushing aside the dynamically controlled 

objects as if they had negligible mass. 

More complex responses from the non-dynamic objects 

are possible. Programs that control objects could be written to 

take the results of  dynamic collisions into account. In effect, 

the procedural object could become dynamic for the duration 
of the collision, and its velocity could change. The program 

would have to be alert to this possibility. This would be fairly 
simple to implement using the analytic solution, which does 
not require setting up and solving the complete dynamics 

equations of motion. Altematively, collisions between 
dynamic and keyframed objects could be defined as excep- 
tional events that require that the human animator be notified. 
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4. CONCLUSIONS 

Collision detection is important for any animation sys- 
tem. The coding requirements are not excessive, and, while a 
naive approach to collision detection can consume large 
amounts of computer time, several tricks are available to keep 
the cost reasonable. 

Dynamical simulation systems must resolve collisions 
after detecting them. The obvious method of inserting tem- 
porary springs is general and easy to program, but exacts a 
severe execution time penalty, particularly for violent colli- 
sions. This makes an analytical collision resolution algorithm 
attractive. On the other hand, for objects resting against each 
other but encouraged by forces to interpenetrate, the spring 
solution is more appropriate. A dynamical simulation system 
should have a combination of both methods available. 
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