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Abstract

In this paper, we propose to study deformable necklaces — flexible chains of balls, called

beads, in which only adjacent balls may intersect. Such objects can be used to model macro-

molecules, muscles, ropes, and other linear objects in the physical world. We exploit this

linearity to develop geometric structures associated with necklaces that are useful for collision

detection in physical simulations. We show how these structures can be implemented efficiently

and maintained under necklace deformation. In particular, we study a bounding volume hierar-

chy based on spheres which can be used for collision and self-collision detection of deforming

and moving necklaces. As our theoretical and experimental results show, such a hierarchy is

easy to compute and, more importantly, is also easy to maintain when the necklace deforms.

Using this hierarchy, we achieve a collision detection upper bound of ✝✟✞✡✠☞☛✍✌✏✎✑✠✓✒ in two dimen-
sions and ✝✟✞✔✠✖✕✘✗✙✕✛✚✛✜✢✒ in ✣ -dimensions, ✣✥✤✧✦ . To our knowledge, this is the first subquadratic
bound proved for a collision detection algorithm using predefined hierarchies. In addition, we

show that the power diagram, with the help of some additional mechanisms, can be used to

detect self-collisions of a necklace in a way that is complementary to the sphere hierarchy.
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1 Introduction

In many applications objects are hierarchically organized into groups and the motions of objects

within the same group are highly correlated. For example, though not all points in an elastic bounc-

ing ball, elongating muscle, or folding rope follow exactly the same rigid motion, the trajectories

of nearby points are similar and the overall motion is perhaps best described as the composition

of a global rigid motion with a small local deformation. Similarly, the motion of an articulated

figure, e.g., a man walking or a protein deforming, is most succinctly described as a set of relative

motions of limbs or parts against other parts. Motivated by such applications, we study a simple

model for deformable linear objects such as protein backbones, muscles, and ropes. We represent

such an object as a sequence of spheres. We call the linear object a necklace, and its spherical ele-

ments beads. Spheres are widely used as primitive elements in engineering modeling [6], and they

are obviously the appropriate choice for proteins. (See Figure 1 for a few examples of necklaces.)

Spheres also simplify substantially the basic geometric calculations and allow us to focus on the

combinatorial issues that form our main interest. In this paper we study how to track different ge-

ometric attributes of a necklace, such as its power diagram or a bounding sphere hierarchy, which

are useful in detecting collision between two necklaces or self-collision within a single necklace.

Though a necklace lives in ✮✰✯ , it has an essential one-dimensional character, which allows us to
develop simpler algorithms.1

(i) (ii) (iii)

Figure 1. A few necklaces: (i) Protein 1a4yA0, (ii) a fragment of a protein, and (iii) a helix.

The exact way in which a necklace moves and deforms depends on the physical model used

and is application dependent. Since we do not model the physics, we take a black box view of the

physical simulation. We assume that at certain times (the time steps of the simulation) an oracle

moves the beads forming the necklace according to the underlying physics and reports their new

positions back to us. Though in general every single bead moves at each step, we assume that the

time steps chosen by the simulator are such that the motion of each bead at every step is small, when

compared to the overall scale of the simulation. Thus the basic problem we address is how to repair

a geometric structure after small displacements of its defining elements.

1It is worth noting that, though modeling some aspects of linear objects is simpler than modeling surfaces or solids,

linear objects can come into self-proximity and self-contact in more elaborate ways than their higher-dimensional coun-

terparts. So from a certain point of view, dealing with collisions for deformable linear objects is the hardest case.
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Related work. A commonly used approach to expedite the collision detection between complex

shapes is based on hierarchies of simple bounding volumes surrounding each of the objects. To

build such a hierarchy, a specific geometric shape is selected as the bounding volume of choice.

Common choices are axis-aligned bounding boxes (AABBs) [19, 2], arbitrarily oriented bounding

boxes (OBBs) [14], ✱ -DOPs [23], and spheres [29, 19]; see [24] for a survey. For a given placement
of two non-intersecting objects, their respective hierarchies are refined only to the coarsest level

at which the primitive shapes in the two hierarchies can be shown to be pairwise disjoint. The

choice of a bounding shape usually presents a trade-off between the ease of testing for intersection

two such shapes, and the total number of bounding volume checks required for detecting collision.

Recent work by Zhou and Suri [34] provides a theoretical framework that suggests why bounding-

volume hierarchies work so well for collision detection in practice. Following the publication of

the preliminary version of this paper, Erickson [11] showed that hierarchic collision detection is✲✴✳✶✵✸✷✡✹✻✺✼✵✾✽
for a broad class of practical geometric model and bounding volumes.

Motion in the physical world is in general continuous over time. Since the exact motion is hard

to predict, most systems sample the motion at discrete time steps and repeatedly test for collisions.

Instead of performing a full collision check ab initio at each time step, in many cases an attempt is

made to expedite collision checking by exploiting temporal coherence (see e.g. [27]). In the context

of bounding-volume hierarchies, the hierarchy is locally refined or coarsened at each time step, as

objects move closer or further apart. Though fixed time-sampling is customary for motion inte-

gration, collisions tend to be rather irregularly spaced over time, which makes the choice of time

step hard—a large time step will miss some of the collisions, and a short time step will generate

unnecessary computation. Basch et al. [12] and Erickson et al. [12] presented kinetic data struc-

tures for detecting collision between two rigidly moving polygons using the kinetic data structure

(KDS) framework, which was originally proposed by Basch et al. [3] (see [15] for a survey of results

on kinetic data structures). Their algorithms avoid many of the problems that arise in the fixed-

step time-sampling method by focusing at discrete events when the the structure must be updated.

Roughly speaking, these methods maintain a hierarchical representation of each polygon and derive

from that a set of geometric conditions on when the hierarchy should be refined/coarsened. Un-

fortunately, the bounding-volume-hierarchy based methods are not directly amenable to detecting

collision between multiple moving objects. Agarwal et al. [1] and Kirkpatrick et al. [21, 22] pro-

posed global approaches for detecting collision between many moving polygons in the plane, by

maintaining a tiling of the common exterior of the polygons into flexible cells, so that the polygons

are known to be disjoint until one of the cells self-collides. It is not clear, however, how to extend

these techniques to ✿ -space.
Most of the work to date on bounding-volume hierarchies has focused on collision detection

between rigid objects. Very little is known about maintaining such hierarchies for deformable ob-

jects. Motivated by applications in indexing spatio-temporal databases, there has been some recent

work on maintaining a bounding-volume hierarching of a set of independently moving points. For

example, R-trees, which are basically axis-aligned bounding box hierarchies, have been proposed

for moving points [31, 28]. The bounding box at each node of the hierarchy changes as the points

move. Since these hierarchies aggregate bounding volumes based on spatial proximity, they are
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expensive to maintain as the objects undergo large deformations, even if one does not maintain the

minimum bounding box at each node.

Our results. In this paper we propose a different approach for maintaining a bounding-volume

hierarchy of a necklace, which is easy to maintain and leads to fast collision-detection algorithms.

First of all, we define in Section 2 a hierarchy that relies only on topological proximity in the object

(as opposed to physical proximity in space), since this notion of proximity is better preserved under

deformation. For our linear necklaces this gives us an especially simple rule for aggregation: we

build a balanced binary tree on the sequence of beads, with the intermediate aggregates correspond-

ing to sets of leaves that are descendants of internal nodes in the tree. Each node is associated with

a sphere containing all the beads that are stored at the leaves of subtree rooted at that node. We

present two different ways of forming the hierarchy. The first, called the the wrapped hierarchy,

stores at each node the smallest sphere containing all beads in the subtree rooted at the node. The

second, called the layered hierarchy, stores at each internal node the smallest sphere containing the

two spheres stored at the children of that node. We compare the two hierarchies and discuss pros

and cons of each of them. Surprisingly, it turns out that, in any dimension, a bounding sphere in the

layered hierarchy is at most a factor of ❀ ✷✡✹✻✺❁✵ bigger than the corresponding one in the wrapped
hierarchy, and this bound is tight in the worst case. We present efficient algorithms for constructing

and maintaining the wrapped hierarchy as the necklace deforms, exploiting the relative stability of

a combinatorial description of this hierarchy. In other words, we maintain a description of the hi-

erarchy in an implicit combinatorial form, instead of an explicit geometric form. But unlike KDS

based methods, we can update the wrapped hierarchy after small motions of the defining beads,

without a need for explicit motion plans. Thus our approach is better suited for incorporation into a

physics-based motion integrator in which only sampled states of the system are generated.

Next, in Section 3, we analyze the well-known methods for detecting collision and self-collision

using sphere hierarchies. While these methods work well in practice, no nontrivial, subquadratic,

bound is known on their running time. The quadratic bound arises in the case in which both hier-

archies are traversed completely and all leaves of one have to be checked for intersection against

all leaves of the other. We show that a slight variant of the folklore self-collision checking method,

using the wrapped sphere hierarchy and local refinement as necessary, achieves subquadratic time

bounds:
✲❂✳✶✵✸✷❃✹✻✺❁✵✾✽

in two dimensions, and
✲✴✳✶✵❅❄❇❆✓❄❉❈✛❊❋✽

in ● -dimensions for ●■❍❏✿ — to our knowl-
edge, this is the first subquadratic worst-case bound for collision-detection algorithms using bound-

ing volume hierarchies2 . Collision-detection based on bounding-volume hierarchies can still be

expensive, however. Time ❑ ✳✶✵❅❄❇❆✓❄❉❈✛❊❋✽ is required, when the necklace is tightly packed. We there-
fore propose another method, based on power diagrams (see [7] and Section 3.2 for the definition),

which is especially fast in this case, since the size of the power diagram is linear in all dimensions

for packed configurations [10]. Our method basically keeps track of the shortest edge of the power

diagram. While it was known that the closest pair of a set of disjoint balls defines an edge in the

2A similar bound was reported concurrently with our work for oriented bounding boxes in [25]. They studied kine-

matic chains analogous to our necklaces, although with a different motivation. They were interested in Monte-Carlo

simulations of proteins in which a single torsional bond rotates at each time step, possibly by a large angle
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power diagram [17], that result does not apply directly to our problem since we allow adjacent beads

of a necklace to overlap.

Finally, we present and discuss experimental results, which validate our claims and prove the

effectiveness of our methods. Our simulations show that the wrapped hierarchy is much more

stable under motion than the power diagram, one of the alternatives for collision detection. For

typical data the tightness of fit of the layered and wrapped hierarchies are fairly close. Furthermore,

when the layered and wrapped hierarchies are used in their entirety, the greater simplicity of the

bounding volume calculations for the layered hierarchy makes it faster. However, we can exploit

the combinatorial structure of the wrapped hierarchy to perform much faster collision detection tests

between disjoint objects.

2 Necklaces and Bounding-Sphere Hierarchy

2.1 Necklaces

A necklace consists of a sequence of
✵
closed balls ▲◆▼P❖✏◗✴❘✢❙❉◗ ❄ ❙✢❚✢❚✢❚❯❙❉◗❲❱✖❳ , called beads, in the

Euclidean space ✮ ❊ . We assume that only adjacent balls along the necklace may intersect and no
ball is fully contained in another set of balls. We also assume the beads satisfy the following two

properties:

uniformity: there is a constant ❨❩❍❭❬ such that the ratio of the radii of any two balls in a necklace
is in the interval ❪❫❬✏❴❋❨✓❙❵❨❜❛ ; and

connectivity: the beads form a connected set — in other words, any two consecutive beads along

the necklace have a point in common.

We refer to the polygonal path connecting the centers of the beads (in order) as the backbone of

the necklace. Whatever conditions we adopt, we assume that they are maintained by the underlying

physics causing a necklace to move or deform. We remark that similar “necklace conditions” were

studied for establishing the optimality of tours in the plane [8]. As mentioned in the introduction,

these conditions capture the properties of a large family of shapes such as proteins and ropes. The

following lemma is a simple yet useful property implied by the necklace conditions.

Lemma 2.1 Suppose that the minimum radius of the beads is ❬ . Then any ball with radius ❝
contains

✲✴✳ ❨ ❊ ❝ ❊✏✽ beads, and any ❞ consecutive beads are contained in a ball with radius ✲❂✳ ❨❡❞ ✽ .
2.2 Bounding sphere hierarchy

Given a sequence of beads, we can construct a bounding volume hierarchy by iteratively grouping

the beads into larger and larger sets. The grouping can be represented as a (binary) hierarchy tree
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where each leaf corresponds to a bead, and each internal node corresponds to a subset of the beads

underneath the node. For each internal node, we compute a sphere, which we call a cage, that

encloses all the beads represented by the leaves underneath the node.

Typically, the grouping should be done in a way such that the cages have small size. Although

this approach is good for rigid objects [30], a sophisticated grouping may incur high cost when

the necklace deforms because it has to be re-computed whenever the beads move. Because of the

uniformity and connectivity of the necklaces, we group the beads by simply constructing a balanced

binary tree on top of the beads according to their order in the necklace. Although this may not be the

best way to construct the hierarchy as two beads far away in the sequence may be spatially close, the

benefit is obvious: we never need to change the topology of the tree when the necklace is deforming,

and such grouping results in reasonably compact bounding cages by the necklace properties.

For each node ❢ in the hierarchy tree, let ▲❤❣❥✐❦▲ be the set of beads stored at the leaves of the
subtree rooted at ❢ . ▲ ❣ is a contiguous subchain of the original necklace. A cage ❧ ❣ , stored at ❢ ,
is a sphere that contains all the beads in ▲✸❣ . This is one instance where we heavily use the a priori
known structure of the type of object we are modeling. We define the level of a node in the tree to

be the maximum distance to a leaf node under it. By definition, the leaves are at level ♠ . Define the
height of a tree to be the level of its root.

Given the hierarchy tree, we still need to decide how the cages are computed. We consider two

different methods for computing the cages. In one method, the cage is defined as the minimum

enclosing sphere (MES) of the beads underneath the corresponding node. The resulted hierarchy,

denoted as ♥ ▼♦♥ ✳ ▲ ✽ is called the wrapped hierarchy. The cages of the children of a node in♥ ✳ ▲ ✽ can stick out of the cage of its parent; see Figure 2 (i). In the other method, where the resulted
hierarchy is called layered hierarchy [29] and denoted as ♣q▼q♣ ✳ ▲ ✽ , each cage is computed as the
MES of the cages of its two children; see Figure 2 (ii). Though the wrapped hierarchy is slightly

more difficult to compute than the layered hierarchy, it is tighter fitting and most importantly it can

be maintained more easily under deformation — a fact that at first seems counter-intuitive. We will

therefore mostly focus on the wrapped hierarchy.

(i) (ii)

Figure 2. Wrapped (left) and layered (right) sphere hierarchies. The base beads are black. Notice that each cage in the

wrapped hierarchy is supported by 2 or 3 beads.

For a set r of spheres in ✮ ❊ , let s ✳ r ✽ be the smallest sphere that contains all the spheres in r .
The basis of r , denoted as t ✳ r ✽ , is the smallest subset ✉◆✐✈r so that s ✳ ✉ ✽ ▼✈s ✳ r ✽ . It is well
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known that ✇ ✉①✇✓②③●⑤④⑥❬ in ✮ ❊ . The following well-known property of minimum enclosing spheres
will be crucial for our algorithm.

Lemma 2.2 Let r be a set of spheres, and let ✉⑦✐❭r . If all spheres in r are contained in s ✳ ✉ ✽ ,
then t ✳ ✉ ✽ ▼❦t ✳ r ✽ .
For the wrapped hierarchy, ❧⑧❣✴▼⑨s ✳ ▲❲❣ ✽ . Let t✑❣⑩▼⑨t ✳ ❧✖❣ ✽ . The key property of the wrapped

hierarchy that is of interest to us is that ❧❶❣ is fully determined by t✾❣ , a set of at most four spheres
from ▲✟❣ for ●①▼❷✿ .
2.3 Construction and maintenance of the hierarchy

The wrapped hierarchy ♥ ✳ ▲ ✽ can be constructed by computing s ✳ ▲❸❣ ✽ at each node of the hierar-
chy. There is a complex linear-time deterministic algorithm for computing the minimum enclosing

sphere of a set of congruent spheres [26], and there is a simple randomized algorithm with linear

expected time [32]. If the beads have different radii, the randomized algorithm is slightly more

complicated but with the same overall running time [20]. Therefore, it takes
✲✴✳✶✵✸✷❃✹✻✺✼✵✾✽

time to

construct ♥ ✳ ▲ ✽ of a necklace ▲ with ✵ beads.
Next we describe how we maintain the wrapped hierarchy as the necklace deforms. As the

necklace deforms, ❧⑧❣ at all nodes ❢ of the hierarchy changes continuously, but t❹❣ remains the same
for a period. At certain discrete events t ❣ changes typically by a pivoting step in which
(i) an old basis bead leaves the basis, and

(ii) a new bead from the enclosed subnecklace enters the basis.

At times only one of these events happens (i.e., the size of the basis reduces by one or increases

by one), but the total number of basis beads will always remain at most four for ●❷▼❺✿ . This
combinatorialization of a continuous phenomenon is an insight analogous to what is exploited in

kinetic data structures.

Figure 3. A combinatorially defined sphere hierarchy is stable under deformation. Only the top level cage differs between

the two conformations.

We expect that under smooth deformation the combinatorial description of the cages (i.e. their

basis beads) will stay unchanged for a fairly long time, and when finally the basis of a cage needs
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to change, that change will be easy to detect and the basis update simple to perform. For instance,

in Figure 3 we show a 2-D example of the upper layers of such a hierarchy in two quite different

configurations of a deforming necklace. It so happens that all the hierarchy cages except for the root

cage continue to have the same combinatorial description at all intermediate configurations.

Recall that our goal is to update the wrapped hierarchy at each time step. Let ▲ ✳✶❻❉✽ denote the
configuration of the necklace at time

❻
. Similarly define ▲❸❣ ✳✶❻❉✽ , ❧✖❣ ✳✶❻❉✽ , t❯❣ ✳✶❻❉✽ , and ♥ ✳✶❻❉✽ ▼❦♥ ✳ ▲ ✳✶❻❉✽❵✽ .

At time step
❻
, we need to verify the correctness of the hierarchy, i.e., determine whether t ❣ ✳✶❻❽❼ ❬ ✽

is still the basis of ❧⑧❣ ✳✶❻❉✽ , for all nodes ❢ in the hierarchy, and update those which are no longer
correct.

The verification is done in a hierarchical manner, bottom up with a top down pass from each tree

node; we call this method the cascade verification. Suppose that we have checked the validity of the

descendants of a node ❾ . We first compute the minimum enclosing sphere ❿➀▼qs ✳ t❁➁ ✳✶❻❁❼ ❬ ✽❵✽ . By
Lemma 2.2, it is sufficient to check that all the beads in ▲ ➁ are contained in ❿ . This can be either
done directly in linear time, which we call naive verification, or indirectly as follows. Maintain

a frontier, ➂ , initially containing the children of ❾ . At each step we take a node ❢ out of ➂ and
determine whether ❧⑧❣ ✳✶❻❵✽ ✐q❿ . If the answer is yes, we move to the next node in ➂ . If ❧❶❣ ✳✶❻❵✽✴➃✐q❿
and ❢ is an internal node, then we add its children to ➂ . Finally, if ❧➄❣ ✳✶❻❉✽①➃✐❷❿ and ❢ is a leaf, then
we conclude that the bead ◗⑤❣ has escaped from ❿ and t✾➁ ✳✶❻➅❼ ❬ ✽ is no longer valid and needs to
be updated. If we can continue the above process until ➂ becomes empty without encountering an
escaped leaf node, we know that t ➁ ✳✶❻❵✽ ▼❏t ➁ ✳✶❻❅❼ ❬ ✽ .
If beads escape from an enclosing cage ❧ ➁ , a basis update must be performed. At least one of

the escaped beads must be a basis bead for the new cage ❧➄➁ . The LP-type algorithm [32] allows easy
exploitation of this knowledge in a natural manner, as well as easy use of other heuristic information

about which beads are likely to be basis beads. The cost of the update is expected to be linear in the

number of beads enclosed by the cage.

Remark. It is tempting to try to accelerate the above process by noting that the geometry

belonging to a cage must be contained in the intersection of the cages on the path from that node to

the root, and checking to see whether this volume is contained in the cage being verified. However,

in practice the extra complexity of this check more than outweighs its benefits. While in the worst

case, the above procedure may take ❑ ✳✶✵✸✷❃✹✻✺✼✵✾✽ time if all paths need to be traversed, our experiments
suggest than in most instances the actual time is closer to linear, as only paths to the basis beads

need to be checked.

2.4 Tightness of layered hierarchy

While the wrapped hierarchy is always tighter than the layered hierarchy, it is interesting to know

exactly how much difference there can be between the two. The radius of a cage ❧❯❣ in the wrapped
hierarchy is only determined by the set ▲❤❣ On the other hand, the radius of ❧⑧❣ in the layered
hierarchy depends on how the beads in ▲❤❣ are ordered. In the following, we show that no matter
how we order the beads, the radius of the cage at the root of the layered hierarchy is at most ❀ ➆ ④➇❬
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times the that of the wrapped hierarchy, where ➆ is the height of the hierarchy tree and is ➈ ✷❃✹✻✺✼✵➄➉ for
the balanced hierarchy tree we use in this paper.3 This bound is almost tight in the sense that there

exist a sequence ▲ of spheres (points actually) such that the radius of cage at the root of ♣ ✳ ▲ ✽ is❀ ➆ larger than the radius of s ✳ ▲ ✽ .
Theorem 2.3 Let ▲ be a necklace with ✵ beads in ✮ ❊ , and let ➊ be a hierarchy tree of ▲ whose
height is ➆ . If we denote by ➋❋➌➍❙❉➋✢➎ the radii of the root spheres for the wrapped and layered
hierarchies of the point set, respectively, then

➋ ➎ ②➏➋ ➌ ❀ ➆ ④➇❬➐❚
This bound is almost tight in the worst case.

The following lemma proves the upper bound.

Lemma 2.4 Let ▲ be a necklace, let ✲ and ❝ be the center and the radius of s ✳ ▲ ✽ , and let ✲⑤➑ and❝ ➑ be the center and the radius of a cage on level ➒ in the layered hierarchy of ▲ . Let ● ➑ ▼➓✇ ✲❤✲➔➑ ✇ .
Then ❝ ❄➑ ② ✳ ➒✰④❦❬ ✽→✳ ❝ ❄ ❼ ● ❄➑ ✽ ❚
Proof. Without loss of generality, let us assume that ❝✈▼⑦❬ . We prove the lemma by induction on➒ . We should emphasize that ✲ and ❝ are fixed throughout the induction.
For ➒⑤▼➣♠ , a ♠ -th level cage ◗ is a bead in ▲ . Since ◗P✐❷↔ ✳ ▲ ✽ , we have that ❝❸↕✸▼➣❝ ✳ ◗ ✽ ②❬ ❼ ●➙↕ where ●➙↕⑤②❷❬ . Therefore

❝ ❄↕ ② ✳ ❬ ❼ ●❡↕ ✽ ❄ ②q❬ ❼ ● ❄↕ ❚
Now, we assume that the lemma holds for all spheres at level ➒ ❼ ❬ in the layered hierarchy and
show that the lemma still holds for spheres at level ➒ .
Let ➛ and ➜ be the center and the radius of a cage ❧ stored at a node ❢ whose level is ➒ in the

layered hierarchy, and let ➛✟❘→❙➝➛ ❄ and ➜❜❘➞❙❵➜ ❄ the centers and radii of the cages ❧✾❘✢❙→❧ ❄ stored at the two
children of ❢ . Let ●✴▼➟✇ ✲ ➛❂✇ , ● ❘ ▼➟✇ ✲ ➛ ❘ ✇ , and ● ❄ ▼➟✇ ✲ ➛ ❄ ✇ , see Figure 4. By induction hypothesis,➜ ❄❘ ②❦➒ ✳ ❬ ❼ ● ❄ ❘ ✽ and ➜ ❄❄ ②❦➒ ✳ ❬ ❼ ● ❄❄ ✽ . We will show that ➜ ❄ ② ✳ ➒➅④q❬ ✽→✳ ❬ ❼ ● ❄ ✽ . This is clearly true
when ❧ is identical to one of ❧❯❘ and ❧ ❄ , so assume that ➛ is bigger than both ❧✾❘ and ❧ ❄ .
Let ➠✓❘➅▼✈✇➡➛❤➛➢❘❋✇ , ➠ ❄ ▼✈✇➡➛❤➛ ❄ ✇ , ➤✟▼ ✳ ➜✻❘❅④➥➜ ❄ ✽ ❴➐➦ , and ➠✥▼ ✳ ➠✓❘❅④✧➠ ❄ ✽ ❴➐➦ , as in Figure 4. Then

➜❤▼❦➜ ❘ ④✧➠ ❘ ▼❦➜ ❄ ④➥➠ ❄ ▼⑥➤➅④➧➠✓❚
Let ➨➩▼ ✳ ➠ ❄ ❼ ➠✓❘ ✽ ❴➐➦➫▼ ✳ ➜❜❘ ❼ ➜ ❄ ✽ ❴➐➦ . Since ➭ ✹❜➯❋✳➳➲➢✲ ➛❤➛➵❘ ✽ ▼ ❼ ➭ ✹❜➯➸✳➳➲➺✲ ➛❸➛ ❄ ✽ , using the law of
cosines, we obtain:

➠ ❄ ❘ ④✧● ❄➔❼ ● ❄ ❘➦➐➠✓❘✘● ▼ ❼ ➠ ❄❄ ④✧● ❄➔❼ ● ❄❄➦➐➠ ❄ ● ❚
3All logarithms are taken base ➻ in this paper.
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➼✢➽ ➼➝➾➚ ➪ ➾➪➪ ➽➚ ➽ ➚ ➾
➶

Figure 4. A sphere in the layered hierarchy and its two children. Lemma 2.4 proves that the farther the centers of the

children are from the center of their parent, the smaller their radii must be in comparison.

That is,

● ❄ ▼ ➠ ❄ ● ❄ ❘ ④✧➠✖❘✘● ❄❄➠✓❘❅④✧➠ ❄ ❼ ➠ ❘ ➠ ❄ ❚ (1)

Using Equation (1) we have

● ❄ ② ✳ ➠⑤④➧➨ ✽→✳ ❬ ❼ ➜ ❄ ❘ ❴✏➒ ✽ ④ ✳ ➠ ❼ ➨ ✽→✳ ❬ ❼ ➜ ❄❄ ❴✏➒ ✽➦➐➠ ❼③✳ ➠ ❼ ➨ ✽→✳ ➠✸④➧➨ ✽
▼ ➦➐➠ ❼ ➠ ✳ ➜ ❄ ❘ ④✧➜ ❄❄ ✽ ❴✏➒ ❼ ➨ ✳ ➜ ❄ ❘ ❼ ➜ ❄❄ ✽ ❴✏➒➦➐➠ ❼③✳ ➠ ❄ ❼ ➨ ❄ ✽
▼ ❬ ❼ ❬➦❋➒ ✳ ➜ ❄❘ ④➥➜ ❄❄ ✽❽❼ ➨➦➐➠❡➒ ✳ ➜ ❄❘ ❼ ➜ ❄❄ ✽❽❼③✳ ➠ ❄ ❼ ➨ ❄ ✽
▼ ❬ ❼ ➤ ❄ ④➧➨ ❄➒ ❼ ➦✻➤➸➨ ❄➠❡➒ ❼③✳ ➠ ❄ ❼ ➨ ❄ ✽ ❚

Thus,

✳ ➒✼④➇❬ ✽→✳ ❬ ❼ ● ❄ ✽❅❼ ➜ ❄ ❍ ✳ ➒✼④➇❬ ✽➵➹ ➤ ❄ ④✧➨ ❄➒ ④ ➦✻➤❋➨ ❄➠❡➒ ④ ✳ ➠ ❄ ❼ ➨ ❄ ✽➴➘✴❼③✳ ➤☞④✧➠ ✽ ❄ ❚
Simplifying the right hand side of the above inequality, we get:

✳ ➒✼④➇❬ ✽→✳ ❬ ❼ ● ❄ ✽❅❼ ➜ ❄ ❍ ✳ ➒→➠ ❼ ➤ ✽ ❄ ➠✖❘❉➠ ❄ ④ ✳ ➤☞④✧➠ ✽ ❄ ➨ ❄➒→➠ ❄ ❍③♠☞❚
Thus, ➜ ❄ ② ✳ ➒✰④➇❬ ✽→✳ ❬ ❼ ● ❄ ✽ . This completes the inductive proof. ➷
The above lemma immediately implies the upper bound in Theorem 2.3 since

➋ ➎ ② ✳ ➆ ④➇❬ ✽→✳ ❝ ❄ ❼ ● ❄ ✽ ② ✳ ➆ ④⑥❬ ✽ ❝ ❄ ❚
9



The proof of Lemma 2.4 extends to higher dimensions as Equation (1) holds in any dimensions.

In what follows, we show that the inequality in Lemma 2.4 can be made almost tight, and we can

construct a set of points to attain the upper bound.

Lemma 2.5 For any ➆➮➬ ♠ , there is a set of ➦❡➱ points in the plane such that ➋ ➎ ❍➣➋ ➌ ❀ ➆ , where➋ ➌ ❙❉➋ ➎ denote the radius of the root sphere in the wrapped and layered hierarchy, respectively.
Proof. We construct a collection of points in the plane such that their wrapped hierarchy has radius❬ and their layered hierarchy has radius ❀ ➆ . The construction is done incrementally. We first fix
any point

✲
and place a point at

✲ ↕ such that ✇ ✲❸✲ ↕ ✇❡▼⑨❬ . Let r ↕ ▼q❖ ✲ ↕ ❳ .

O O0

O1

O2O3

Root ball�

of wrapped�

hierarchy

Root ball�

of layered�

hierarchy

Figure 5. The construction of a set of ✃✛❐ points on a circle of radius ✃ such that the root circle of their layered hierarchy has
radius ❒ ❮Ï❰❇Ð✾✃✛❐➅Ñ⑩➻ . The point Ò❅Ó is chosen arbitrarily. Right triangles Ò❹Ò❽Ó❵Ò ➽ , Ò❹Ò ➽ Ò ➾ , Ò❹Ò ➾ Ò✾Ô are then constructed
such that Õ Ò❅Ó❉Ò ➽ Õ➝ÑÖÕ Ò ➽ Ò ➾ Õ➝ÑÖÕ Ò ➾ Ò❅Ô✢Õ➝ÑÖ✃❵×❇➻ . The point set is constructed as the closure of the singleton set Ø✘Ò❽Ó➝Ù with
respect to the reflections over the lines Ò❹Ò ➽ , Ò❹Ò ➾ , Ò❹Ò Ô , and the reflection over the point Ò . The other circles in the
layered hierarchy are also shown.

Suppose that we have constructed the set r ➑ the first ➦ ➑ points for ➒➫② ➆ ❼ ➦ . Let ✲➺➑ be the
center of the sphere covering r ➑ in the layered hierarchy. To construct the set r ➑ÛÚ ❘ , we first find the
point

✲➔➑ÛÚ ❘ such that (1) ➲➺✲❤✲➺➑ÛÚ ❘ ✲➔➑ ▼➣Ü➐♠❜Ý , and (2) ✇ ✲➔➑➝✲➔➑ÛÚ ❘ ✇➙▼Þ❬✏❴ ❀ ➆ . We can then construct r❹ß➑
by flipping all the points in r ➑ about the line ✲❤✲➺➑ÛÚ ❘ . We then set r ➑➴Ú ❘ ▼❭r ➑❅à r ß➑ . Finally, we flipr ➱ ❆ ❘ about the center ✲ to obtain r❹ß➱ ❆ ❘ and set r ➱ ▼qr ➱ ❆ ❘ à r❅ß➱ ❆ ❘ . See Figure 5.
First, we show that the above construction is valid as

✲✟➑
’s are well defined. Since ✇ ✲❸✲➢➑ÛÚ ❘ ✇⑧▼á ✇ ✲❸✲☞➑ ✇ ❄ ❼ ❬✏❴ ➆ , it is easy to derive, by induction, that ✇ ✲❤✲❲➑ ✇✙▼ á ❬ ❼ ➒➞❴ ➆ . Therefore, as long as➒⑤② ➆ ❼ ➦ , we have that ✇ ✲❸✲➺➑ ✇ ➬ ❬✏❴ ❀ ➆ and thus ✲➔➑ÛÚ ❘ always exists.
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In the above construction, since each flipping is either about a line passing through the center
✲

or about
✲
itself, the distance from the points to

✲
remain the same, i.e. all the points are on the unit

circle centered at
✲
. Thus, the radius of s ✳ r ➱ ✽ is ❬ . Now, we show that in the above construction,

the sphere ◗ ➑ covering r ➑ in the layer hierarchy has radius ➒➞❴ ❀ ➆ . This is done by induction on ➒ .
Clearly, it is true when ➒✸▼â♠ . Suppose that it is true for ➒ . According to the construction, ✲✸➑ÛÚ ❘ is
the center of ◗ ➑ÛÚ ❘ because the line segment ✲➢➑✘✲ ß➑ is perpendicular to the line ✲❤✲➵➑➴Ú ❘ at the point✲➔➑ÛÚ ❘ . Thus,

❝ ➑ÛÚ ❘ ▼➇❝ ➑ ④ ✇ ✲➔➑✘✲ ß➑ ✇➦ ▼ ➒❀ ➆ ④❷✇ ✲➔➑❇✲☞➑ÛÚ ❘ ✇❜▼ ➒✼④➇❬❀ ➆ ❚
The radius of the root sphere in the layered hierarchy of r ➱ is therefore ➆ ❴ ❀ ➆ ▼ ❀ ➆ , while the

radius of s ✳ r ➱ ✽ is ❬ .
Theorem 2.3 is the combination of Lemmas 2.4 and 2.5. ➷
Remark. We should remark that in Theorem 2.3, the upper bound applies to any grouping by

which we construct the layered hierarchy while the lower bound construction is only valid for that

particular hierarchy tree. If we group the points constructed in Lemma 2.5 differently, e.g. by

grouping antipodal points at the first level, then we may obtain a layered hierarchy in which all the

spheres have radius ❬ .
3 Collision Detection

Let ▲ã▼ äå◗❸❘➞❙✢❚✢❚✢❚❯❙❉◗❲❱çæ be a necklace with ✵ beads. We describe algorithms for determining
whether any two nonadjacent beads in ▲ intersect. As we will see below, we can easily modify
these algorithms to detect collision between two necklaces. We first describe an algorithm based

on the wrapped hierarchy of ▲ , which works well when the necklace is not tightly packed. Next,
we describe an algorithm based on the power diagram of ▲ , which is efficient for tightly packed
necklaces.

3.1 Collision detection with the wrapped hierarchy

The following algorithm, shown in Figure 6, is the standard framework for collision detection using

bounding volume hierarchies, adapted to necklaces. We use ➊ to denote the wrapped hierarchy of▲ , with ❨ being its root. Let è ✳ ❾ ✽ (resp. ➜ ✳ ❾ ✽ ) denote the left (resp. right) child of a node ❾ . The
algorithm traverses ➊ in a top-down manner and maintains a queue é of node pairs ✳ ❾❯❙❵❢ ✽ so that❧✖➁ and ❧✖❣ intersect. The algorithm either finds a pair of intersecting cages or deduces that there are
no intersecting pair of nonadjacent beads in ▲ .
The correctness of the above algorithm is obvious. The running time largely depends on how the

SPLIT procedure is implemented. There are numerous heuristics for deciding which node to split.
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Algorithm: BVH-COLLISION-DETECT ( ➊ )
é = ❖ ✳ ❨✓❙❵❨ ✽ ❳
while é ➃▼❷ê do✳ ❾❯❙❵❢ ✽ = DELETE-FRONT ( é )
if ❧✖➁➵ë➫❧✖❣ ➃▼⑥ê then
if

✷❃ì➞í➐î✏✳ ❾ ✽✾ï⑩✷❃ì➞í➐î✏✳ ❢ ✽ then
if ❾ ➃ð ❖➞❢✓❙ í✻ñ➸ò❋✳ ❢ ✽ ❳ then
return (COLLISION)

fi

else if ❾ = SPLIT ( ❾ , ❢ ) then
INSERT (

✳ è ✳ ❾ ✽ ❙❵❢ ✽ , é ), INSERT ( ✳ ➜ ✳ ❾ ✽ ❙❵❢ ✽ , é )
elseINSERT(

✳ ❾✾❙❉è ✳ ❢ ✽❵✽ , é ), INSERT ( ✳ ❾❯❙❵➜ ✳ ❢ ✽❵✽ , é )
fi

fi

fi

end-while

Figure 6. The collision-detection algorithm for two necklaces using their sphere hierarchy. SPLIT ( ó , ô ) procedure
determines whether the algorithm should recursively explore the children of ó or of ô .
But no subquadratic worst-case bounds were obtained for general objects. We show that we can use

a simple heuristic so that the above algorithm runs in subquadratic time for necklacs, in particular,

in
✲❂✳✶✵✸✷❃✹✻✺✼✵✾✽

time in ✮ ❄ and in ✲❂✳✶✵➄õ✘❈ ✯ ✽ time in ✮ ✯ .
We now consider the above collision-detection algorithm from a different perspective, by view-

ing it as trying to derive a non-intersection proof by finding a sufficient set of separating bounding

volume pairs while walking down the hierarchy. The algorithm reports a collision if it fails to pro-

duce such a set of pairs. Although the framework can be stated in a more general setting, we focus

on self-collision for necklaces. More precisely, suppose that ▲➟▼öäå◗❂❘➞❙❉◗ ❄ ❙✢❚✢❚✢❚✑❙❉◗❲❱✖æ is a necklace
with

✵
beads, and ➊ is a bounding sphere hierarchy built on ▲ . Each internal node ❢ in ➊ stores

a cage ❧✖❣ on the subset ▲✟❣ of spheres stored at the leaves of the subtree rooted at ❢ . A family÷ ▼❭❖ ✳ ❧ ➁❋ø ❙→❧ ❣❵ø ✽ ❳ , where ❾⑧ùú❙❵❢➐ù are nodes of ➊ , is called a separating family for ◗ if:
(S1) for any û , ❧✓➁✏ø and ❧✓❣✛ø are disjoint, and
(S2) for any û❉❙➴ü , where ✇ ü ❼ û❇✇ ➬ ❬ , there exists a ✱ so that ◗ ù ð ❧✖➁❋ý and ◗➔þ ð ❧✖❣❉ý .
The size of

÷
is the number of pairs in the family.

A separating family
÷
serves as a proof of non-collision between the nonadjacent beads of ▲ .

The minimum size of a separating family is crucial as it provides a lower bound on the cost of any

collision-detection algorithm that uses the hierarchy ➊ and follows the general approach described
in Figure 6. We analyze the size of the separating for the wrapped hierarchy of ▲ .
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There has been some prior research on constructing separating families for a set of balls—

construct a family ÿ of “canonical subsets” of ▲ and compute a separating family of ▲ using the
canonical subsets in ÿ . If we are allowed to define ÿ arbitrarily, i.e., it is not the set of cages stored
at the nodes of a bounding-volume hierarchy on ▲ , there always exists a set of ✲✴✳✶✵✾✽ separating
pairs for

✵
disjoint balls [18, 4]. However, to our knowledge, the separating families based on prede-

fined hierarchical structures have not been studied combinatorially. Here, we will show that for the

wrapped hierarchy in ✮ ❊ , there always exists a separating family of size ✲❂✳✁�✴í✄✂ ❖ ✵✸✷❃✹✻✺❁✵ ❙ ✵ ❄❇❆✓❄❉❈✛❊ ❳ ✽
if there is no collision between any pair of two non-adjacent beads.

Theorem 3.1 Let ▲⑥▼➣❖❋◗❥❘✢❙❉◗ ❄ ❙✆☎✆☎✆☎✑❙❉◗❲❱✓❳ be a sequence of ✵ beads in ✮ ❊ , satisfying the uniformity
assumption. Then there exists a separating family for ▲ of size ✲✴✳✁�❂í✄✂ ❖ ✵✸✷✡✹✻✺❁✵ ❙ ✵❹❄❇❆✓❄❉❈✛❊ ❳ ✽ in its
wrapped hierarchy. This bound is asymptotically tight in the worst case.

Proof. We assume that the minimum radius of the beads is ❬ . By Lemma 2.1, there are at most✲✴✳ ❝ ❊ ✽ beads contained in any ball with radius ❝ . We now give an algorithm for constructing a
separating family

÷
.

✝✟✞✝ ý ✠ ✞

Figure 7. Separating pairs in ✡ ø✞ .
Fix an integer ♠ ②âû❸② ✷✡✹✻✺✼✵Ö❼ ❬ . Set ➜ ù ▼ ➦ ù . Let ❧➙þ be the cage in the wrapped hierarchy

that encloses the beads ◗☞☛ þ ❆ ❘✍✌ ➪ ø Ú ❘ ❙✢❚✢❚✢❚❯❙❉◗➔þ ➪ ø . Clearly, the radius of ❧çþ is at most ❝ ù ▼ ✲❂✳ ➜ ù ✽ ,
by Lemma 2.1. Let ✎ ù ▼ ❖✻❧➄❘→❙→❧ ❄ ❙✢❚✢❚✢❚✡❳ be the resulting set of spheres; ✇ ✎ ù ✇✼②✑✏ ✵ ❴➐➦ ù✁✒ . For each❧➙þ ð ✎ ù , let ✓❸þ be the set of points that are at most ✔➐❝ ù distance away from a point in ❧ þ , i.e.,✓❥þ➵▼❭❖✖✕Ö✇✘✗✚✙ ð ❧➙þ✰✇ ✕✛✙✑✇✙②✜✔➐❝ ù ❳❜❚✓ þ is a ball of radius at most Ü➐❝⑤ù concentric with ❧ þ . For any ball ❧✣✢ ð ✎ ù so that ❧✛✢■✐✤✓ þ✦✥ ❧ þ ,
we add the pair

✳ ❧✙þ✻❙→❧✛✢ ✽ to the separating family. Let ÷ ùþ be the set of pairs added to the family for❧➙þ . We repeat this process for all balls in ✎ ù , and set ÷ ù ▼★✧ þ ÷ ùþ . Set
÷ ▼

✩✫✪✭✬ ❱ ❆ ❘✮
ù✰✯ ↕ ÷ ù ❚
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We claim that
÷
is a separating family for ▲ . It is obvious from the construction that all the

pairs in
÷
are disjoint. We need to argue that it covers all the pairs of beads. Consider a pair of

disjoint beads
✳ ◗ ➑ ❙❉◗✲✱ ✽ . Denote by ❧ ù➑ and ❧ ù✱ the û -th level (the level increases bottom up starting

from ♠ ) cages that contain ◗ ➑ and ◗✳✱ , respectively. Let ✴ ▼ �✴í✄✂✶✵ û➔✇❡❧ ù➑ ë➍❧ ù✱ ▼⑥ê✸✷ . It is easy to
see that every point in ❧✺✹➑ is within distance ✻❜❝ ✹ Ú ❘➅▼★✔➐❝ ✹ from the center of ❧✺✹✱ because ❧ ✹ Ú ❘➑ and❧✛✹ Ú ❘✱ intersect. Therefore

✳ ❧✺✹➑ ❙→❧✛✹✱ ✽ ð ÷ . Hence, ÷ is a separating family.
Next, we bound the size of

÷
. Note that✩✫✪✭✬ ❱ ❆ ❘✼

ù✰✯ ➽✽ ✩✫✪✭✬ ❱ Ú ❘ ✇ ✎ ù ✇✻▼ ✩✫✪✭✬ ❱ ❆ ❘✼
ù✾✯ ➽✽ ✩✫✪✭✬ ❱ Ú ❘ ✿ ✵➦ ù❁❀ ▼ ✲❂✳✶✵ ❘ ❆ ❘ ❈✛❊ ✽ ❚

Since ✇ ÷ ù ✇✙②❃❂❅❄ ❆ ø ❄❄❈❇ , ✩✫✪✭✬ ❱ ❆ ❘✼
ù✰✯ ➽✽ ✩✫✪✭✬ ❱ Ú ❘ ✇ ÷ ù ✇✻▼ ✲✴✳✶✵ ❄❇❆✓❄❉❈✛❊ ✽ ❚

It thus suffices to bound ✇ ÷ ù ✇ for ♠✴②➧û✼② ✳ ❬✏❴➸● ✽✙✷❃✹✻✺☞✵ .
Every pair

✳ ❧✙þ✻❙→❧✛✢ ✽ in ÷ ùþ “covers” ➜ ❄ù ▼ ➦ ❄ ù pairs of beads. For any pair of beads ✳ ◗✸➁ç❙❉◗❲❣ ✽
covered by this pair, their centers are within distance Ü➐❝ ù because ❧✣✢❂✐❉✓❸þ . Therefore, ÷ ù covers➦ ❄ ù ✇ ÷ ù ✇ pairs of beads. By a packing argument, there are at most ✲❂✳❵✳ Ü➐❝ ù ✽ú❊❋✽ ▼ ✲✴✳ ➦ ❊ ù ✽ beads whose
centers are within distance Ü➐❝ ù from the center of the bead ◗⑤➁ . Hence, ➦ ❄ ù ✇ ÷ ù ✇ç▼ ✲❂✳✶✵ ➦ ❊ ù ✽ , which
implies that ✇ ÷ ù ✇✻▼ ✲✴✳✶✵ ➦ ☛ ❊→❆✓❄ ✌ ù ✽ . Therefore,

✇ ÷ ✇⑦▼ ✲✴✳✶✵ ❄❇❆✓❄❉❈✛❊ ✽ ④
➽✽ ✩✫✪✭✬ ❱✼
ù✰✯ ↕ ✲❂✳✶✵ ➦ ☛ ❊→❆✓❄ ✌ ù ✽▼ ✲✴✳✁�✴í✄✂ ❖ ✵✸✷❃✹✻✺✰✵ ❙ ✵ ❄❇❆✓❄❉❈✛❊ ❳ ✽ ❚

This completes the proof of the upper bound.

To show the bound tight in the worst case, consider an
✵ ❘ ❈✛❊❋❊ ☎✆☎✆☎ ❊✸✵ ❘ ❈✛❊ ● -dimensional grid. We

can form a necklace ▲ by tracing and connecting the segments parallel to the ✕ -axis in the grid. By
the construction, ▲ contains ✵ ❘ ❆ ❘ ❈✛❊ ✕ -axis aligned segments, each of length ✵ ❘ ❈✛❊ . We claim that any
separating family of ▲ in its wrapped hierarchy has size ● ✳✁�✴í✄✂ ❖ ✵✸✷❃✹✻✺✰✵ ❙ ✵ ❄❇❆✓❄❉❈✛❊ ❳ ✽ . First we show
that for two parallel segments, each with ❞ beads, at distance ❍ where ❍ ð ❪ û❉❙❵û❉④❂❬ ✽ , we need ● ✳ ❞➫❴❋û ✽
pairs to cover the beads on them. Suppose that ✉✥❘✢❙❉✉ ❄ ❙✢❚✢❚✢❚✾❙❉✉■✱ and ◗❥❘➞❙❉◗ ❄ ❙✢❚✢❚✢❚✾❙❉◗✲✱ are the beads
on the two parallel segments. Consider the ● ✳ ❞➫❴❋û ✽ pairs ❏✈▼ ✵ ✳ ✉ ù▲❑ þ✻❙❉◗ ù▲❑ þ ✽ ✇✍❬✸② ü■②◆▼ ✱ ù✣❖ ✷ . Since
the two segments are at most û✖④➏❬ away from each other, it is impossible to separate two pairs in ❏
using the same pair of cages. Thus, it requires ● ✳ ❞➫❴❋û ✽ pairs to separate the two segments.
On the other hand, if we project each line segment to the subspace orthogonal to the ✕ -axis, then

each line segment becomes a lattice point in ● ❼ ❬ dimensional space. The bound on the number
of lattice points in spherical shells implies that there are ● ✳ û ❊→❆✓❄ ✽ lattice points in the distance range
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❪ û❉❙❵û✼④➟❬❇❛ from a lattice point in ✮ ❊→❆ ❘ . Therefore, there are ● ✳✶✵ ❘ ❆ ❘ ❈✛❊ û ❊→❆✓❄✏✽ pairs of segments at
distance ❍ apart for ❍ ð ❪ û✘❙❵û✻④ ❬ ✽ . Further, we can pick the segments so that any cage containing two
beads on different segments has radius comparable to the minimum enclosing sphere of the whole

necklace. For example, in two dimensions, we pick all the line segments corresponding to the odd

rows. Since there are ● ✳✶✵ ❘ ❈✛❊❋✽ beads on each segment, the number of pairs in any separating family
is ❱ ➽◗P ✽✼

ù✾✯ ❘ ●❙❘ ✵ ❘ ❆ ❘ ❈✛❊ ☎➞û ❊→❆✓❄ ✵ ❘ ❈✛❊û❯❚ ▼ ❱ ➽◗P ✽✼
ù✰✯ ❘ ● ✳✶✵ û ❊→❆ ✯ ✽ ▼❱● ✳✁�❂í✄✂ ❖ ✵✸✷❃✹✻✺✰✵ ❙ ✵ ❄❇❆✓❄❉❈✛❊ ❳ ✽ ❚

➷
¿From Theorem 3.1, it follows that there always exists a collection of subquadratically many

(
✲✴✳✶✵✸✷❃✹✻✺✰✵✾✽

for ● ▼ö➦ and ✲❂✳✶✵ ❄❇❆✓❄❉❈✛❊ ✽ for ●✧❍➓✿ ) separating pairs if any two non-adjacent beads
are disjoint. The above constructive proof also suggests the following simple balancing heuristic

in deciding which node to split: we always split the node that contains more beads and break the

ties arbitrarily. Then in the process of the algorithm, the cages we compare always contain similar

number of beads. Therefore, the proof of Theorem 3.1 applies — the number of pairs examined

by the algorithm is bounded by the quantity given in Theorem 3.1. Therefore, we conclude the

following that

Theorem 3.2 Let ▲ be a necklace in ✮ ❊ with ✵ beads. Using its wrapped hierarchy ♥ ✳ ▲ ✽ , we can
determine in time

✲❂✳✁�✴í✄✂ ❖ ✵✸✷✡✹✻✺✼✵ ❙ ✵✾❄❇❆✓❄❉❈✛❊ ❳ ✽ time whether two nonadjacent beads in ▲ intersect.
If we wish to determine whether two necklaces ▲ ❘ and ▲ ❄ intersect, we invoke the algo-

rithm BVH-COLLISION-DETECT by inititializing the queue to
✳ ❨➄❘➞❙❵❨ ❄ ✽ , where ❨ ù is the root of

the wrapped hierarchy of ▲ ù . The same analysis implies the following.
Corollary 3.3 Let ▲①❘➞❙❉▲ ❄ be two necklaces in ✮ ❊ with ✵ beads each. Using their wrapped hierar-
chies, we can determine in time

✲✴✳✁�✴í✄✂ ❖ ✵✸✷❃✹✻✺✰✵ ❙ ✵✾❄❇❆✓❄❉❈✛❊ ❳ ✽ time whether ▲❥❘➞❙❉▲ ❄ intersect.
Remark. We can also use layered hierarchy for collision detection between two necklaces, but no

subquadratic bound on the size of a separating family based on the layered hierarchy is currently

known. However, we believe combining the separating set bound for the wrapped hierarchy, The-

orem 3.1, with cage radius ratio bound, Theorem 2.3, should yield a subquadratic bound for the

layered hierarchy.

3.2 Using power diagrams

Theorem 3.1 gives us a subquadratic algorithm for collision detection between two necklaces, using

the wrapped hierarchy. While the bound is
✲✴✳✶✵✸✷✡✹✻✺✼✵✾✽

in ✮ ❄ , it is ❑ ✳✶✵➄õ✘❈ ✯ ✽ in ✮ ✯ . The algorithm
takes ● ✳✶✵ õ✘❈ ✯ ✽ time when the necklaces are tightly packed (e.g. globular proteins) since many cages
in the hierarchy overlap with each other and the algorithm has to traverse deep down the hierarchy

before being able to locate disjoint cages. A recent result by Erickson [10] shows that the Delaunay
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triangulation has linear complexity for a dense set of points. Although that result does not directly

apply to the power diagrams (see below for the definition), we may still expect that a similar result

holds for the power diagram of a dense set of balls with comparable sizes. Guibas et al. [17] had

shown that the closest pair of balls are neighbors in the power diagram if the balls are pairwise

disjoint. Therefore we may use the power diagram for detecting collision between a set of pairwise-

disjoint balls. We, however, allow consecutive beads to overlap, so that result no longer applies.

We first show that we can still use the power diagram to perform collision detection between two

necklaces, and then discuss how to maintain the power diagram under our motion model. We prove

our result about the power diagram in a more general setting.

Let ▲✈▼Þ❖✏◗❸❘✢❙✢❚✢❚✢❚❯❙❉◗❲❱✓❳ be a collection of balls in ✮ ❊ , and let ❲ ù ❙❵➜ ù be the center and radius of◗ ù , respectively. The power of a point ✕ ð ✮ ❊ to ◗ ù , denoted as ❳ ✳ ✕❯❙❉◗ ù ✽ , is❳ ✳ ✕✾❙❉◗❲ù ✽ ▼❩❨❅✕ ❼ ❲❇ù❁❨ ❄ ❼ ➜ ❄ù ❚
The power cell of ◗ ù is❬ ✳ ◗❲ù ✽ ▼❭❖✖✕ ð ✮ ❊ ✇✄❳ ✳ ✕✾❙❉◗➵ù ✽ ②✜❳ ✳ ✕❯❙❉◗ þ ✽❪❭ ❬⑤②➧û✼② ✵ ❳❜❚
The power cells of spheres in ▲ cover ✮ ❊ . The power diagram of ▲ is the decomposition of the❫❵❴❫❫ ❫❵❴➪ ❴➪ ❛ ❴❛ ❜❞❝ ↕➪❛ ❛ ❴➪ ❴

(i) (ii)

Figure 8. (i) Two orthogonal balls, (ii) two balls farther than orthogonal from each other.

space induced by these power cells and their boundaries. The dual of the power diagram of ◗ is
called the weighted Delaunay triangulation of ▲ . Assuming that the spheres are in general position,
a simplex ➭ ✹✘❡❣❢❯✳ ✉ ✽ , for ✉♦✐➣▲ and ✇ ✉✥✇❅②⑨●❸④❭❬ , is in ❤✴➊ ✳ ▲ ✽ if ✐ ❫ ø❦❥✄❧ ❬ ✳ ◗ ù ✽❂➃▼➓ê . See [7] for
details on power diagrams and weighted Delaunay triangulations. Two balls ◗ and ◗ ß of radius ➜
and ➜✻ß and centered at ❲ and ❲→ß are called orthogonal if❳ ✳ ◗■❙❉◗ ß ✽ ▼♠❨♥❲ ❼ ❲ ß ❨ ❄ ❼ ➜ ❄ ❼ ➜ ß ❄ ▼➇♠ ❙
i.e., they intersect and the angle between their tangent planes at any of their intersection points isÜ➐♠❜Ý . We say that ◗ is farther than orthogonal from ◗❂ß is ❳ ✳ ◗ ❙❉◗❥ß ✽ ➬ ♠ (i.e., the angle between
their tangent planes is less than Ü➐♠ Ý ); see Figure 8. It can be checked that if a ball centered at a point✕ ð ✮ ❊ is orthogonal to both ◗ ù and ◗➔þ , then ❳ ✳ ✕❯❙❉◗ ù ✽ ▼◆❳ ✳ ✕✾❙❉◗➔þ ✽ . The following well-known
lemma will be useful for our purpose:

Lemma 3.4 A subset ✉♣♦✈▲ form a simplex in ❤❂➊ ✳ ▲ ✽ if there is a ball ◗ that is orthogonal to
every ball in ✉ and every ball in ▲ ✥ ✉ farther than orthogonal from ◗ .
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Let ÿ♣♦ ▲ ❊ ▲ be a family of pairs of balls. ▲ is disjoint with respect to ÿ if every pair
of distinct balls in ▲ ❊ ▲ ✥ ÿ is disjoint. For example, a necklace is disjoint with respect to the
set ÿ ▼ ❖ ✳ ◗ ù ❙❉◗ ù Ú ❘ ✽ ✇ç❬⑤②➧û✰② ✵ ❼ ❬✻❳ . We define the closest pair of balls in ▲ to be a pair of
distinct balls

✳ ◗ ù ❙❉◗➔þ ✽ ð ▲ ❊ ▲ ✥ ÿ so that ● ✳ ◗ ù ❙❉◗➔þ ✽ ②➏● ✳ ◗q✢❡❙❉◗qr ✽ for all ✳ ◗q✢➙❙❉◗qr ✽❲➃ð ÿ ; recall that● ✳ ◗ ù ❙❉◗➔þ ✽ ▼✈✇ ❲ ù ❲❵þ➙✇ ❼ ➜ ù ❼ ➜➝þ .
For any given ÿ , a ball ✉ is a neighbor of ◗ if the pair ✳ ✉❤❙❉◗ ✽ is in ÿ . A ball ✉ is a neighbor of

a pair
✳ ◗ ❙➝➛ ✽ if ✉ is a neighbor of either ◗ or ➛ . A ball ◗ is called a proper connector if for every

neighboring ball ✉ of ◗ , there is another neighbor ➛ of ◗ such that ✉ and ➛ are disjoint. Balls that
are not proper connectors are called improper. If the balls are disjoint, then there are no improper

balls. Only the first and the last beads are improper in a necklace. We have the following result.

Theorem 3.5 The closest pair
✳ ◗⑤ù✛❙❉◗ þ ✽ ð ▲ ❊ ▲ satisfies at least one of the following properties:

(DT1)
✳ ◗ ù ❙❉◗➔þ ✽ is an edge in ❤✴➊ ✳ ▲ ✽ ,

(DT2) ◗ ù and ◗➔þ have a common neighbor, or
(DT3) ◗ ù or ◗➔þ has an improper ball as a neighbor.

❊ ø ý
❊ ø❛ ø ❛ ✞❛ ý

❛➪ ➪
❊ ý ❫ ✞❊ ✞ ý

❫❫ ø
➪❫ ý ➪ ý ❛ts ❫ s➪ s

✉✇✈②①✇③⑤④ ①
Figure 9. The power diagram can be used for collision detection in necklaces. The ball ⑥ ý cannot intersect ball Ò more
than orthogonally, certifying the power diagram edge ⑥ ø ⑥ ✞ . ⑦ is the distance between ⑥ ø and ⑥ ✞ .
Proof. Suppose that

✳ ◗ ù ❙❉◗➔þ ✽ is the closest pair of balls in ▲ with respect to ÿ . Assume that ✳ ◗ ù ❙❉◗➔þ ✽
does not satisfy (DT2) and (DT3). We would like to show that ◗ ù ◗➔þ is an edge in ❤✴➊ ✳ ▲ ✽ .
Let ◗ be the smallest ball orthogonal to both balls ◗ ù and ◗➺þ , and let ➜ and ❲ be the radius and

center of ◗ , respectively, see Figure 3.2. Consider another ball ◗✶✢ , where ✱ ➃▼❦û❉❙➴ü , in ▲ . We would
like to show that ◗⑧✢ does not intersect ◗ more than orthogonally. According to [17], it is sufficient
to consider those balls intersecting either ◗ ù or ◗➔þ . Since ◗ ù and ◗➔þ do not share common neighbor,
we assume, without loss of generality, that ◗⑨✢ intersect ◗ ù but disjoint from ◗➺þ . For a ball ◗❲➁ ð ▲ ,
let ●❡➁❸▼♠❨♥❲⑩❲❇➁❵❨ , and for any pair of balls ◗⑤➁ç❙❉◗❲❣ ð ▲ , let ●❡➁➞❣⑤▼❃❨♥❲➝➁❶❲➝❣✛❨ . By construction,

● ù þ➵▼➇● ù ④➧●❋þ✻❚
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We list the following conditions that various distances have to satisfy:

(C1) By orthogonality, ● ❄ù ▼❦➜ ❄ ④➥➜ ❄ù ❙ and ● ❄þ ▼❦➜ ❄ ④➥➜ ❄þ ❚
(C2) Since ◗➺þ and ◗q✢ are disjoint and ✳ ◗ ù ❙❉◗➔þ ✽ is the closest pair, the distance between ◗ ù and ◗➔þ

is not more than that between ◗➢þ➅◗q✢ , i.e.,
● þ ✢❤❍➏● ù þ ❼ ➜ ù ④➥➜✇✢❡❚

(C3) The triangle inequality ● ù ✢❸❍③● þ ✢ ❼ ●❡ù þ and (C2) imply
● ù ✢①❍➧➜❷✢ ❼ ➜ ù ❚

(C4) since ◗⑧✢ is proper, there is another neighbor ball ◗⑨r of ◗q✢ so that ◗ ù ❙❉◗qr are disjoint. Since✳ ◗ ù ❙❉◗➔þ ✽ is the closest pair, ● ù þ ❼ ➜ ù ❼ ➜➝þÖ②⑦● ù r ❼ ➜ ù ❼ ➜✇r . On the other hand, ◗⑧✢ and ◗qr
intersect, therefore ● ù ✢☞④➥➜❷✢ ➬ ● ù r ❼ ➜✇r . Hence,

● ù ✢❸❍③● ù þ ❼ ➜❇þ ❼ ➜✇✢❡❚
Given the above relations, we derive that the ball ◗⑨✢ is farther than orthogonal from ◗ , i.e.

● ❄✢ ❍➧➜ ❄✢ ④➥➜ ❄ ❚
¿From Equation (1) in the proof of Lemma 2.4 (substituting ➠✑❘❩▼ ● ù , ➠ ❄ ▼ ●❋þ , ●ç❘❩▼ ● ù ✢ , and● ❄ ▼⑥● þ ✢ ) and condition (C2) above, we obtain

● ❄✢ ▼ ●➸þ➞● ❄ù ✢ ④✧● ù ● ❄þ ✢●❡ù þ ❼ ● ù ●➸þ✸❍ ●➸þ✢● ❄ù ✢ ④✧● ù ✳ ● ù þ ❼ ➜ ù ④➥➜✇✢ ✽ ❄●❜ù þ ❼ ● ù ●❋þ❁❚
There are two cases to consider, depending on which of ➜✘✢ ❼ ➜ ù and ● ù þ ❼ ➜➝þ ❼ ➜❷✢ is larger. We
substitute the larger of the two with ● ù ✢ :
1. If ➜✇✢ ❼ ➜ ù ❍➏● ù þ ❼ ➜➝þ ❼ ➜✇✢ , i.e., ➜❷✢❥❍ ✳ ● ù þ✰④✧➜ ù ❼ ➜➝þ ✽ ❴➐➦ , we obtain

● ❄✢ ❍ ● þ ✳ ➜❷✢ ❼ ➜✏ù ✽ú❄ ④✧●❡ù ✳ ➜❷✢➔④➥●❡ù þ ❼ ➜➞ù ✽ú❄●❜ù þ ❼ ● ù ●➸þ
▼ ➜ ❄✢ ④ ➦➸➜✇✢● ù þ ✳✛❼ ● þ ➜✏ùç④✧●❡ù ✳ ●❡ù þ ❼ ➜✏ù ✽❵✽ ④ ❬● ù þ ❂ ● þ ➜ ❄ù ④✧●❜ù ✳ ●❡ù þ ❼ ➜➞ù ✽ ❄ ❇ ❼ ●❡ù✶● þ▼ ➜ ❄✢ ④➏➦➸➜✇✢ ✳ ● ù ❼ ➜ ù ✽ ④➥➜ ❄ù ④➧● ù ● ù þ ❼ ➦➐● ù ➜ ù ❼ ● ù ●❋þ▼ ➜ ❄✢ ④➏➦➸➜✇✢ ✳ ●❡ù ❼ ➜➞ù ✽ ④ ✳ ●❜ù ❼ ➜➞ù ✽ ❄❍ ➜ ❄✢ ④ ✳ ● ù ❼ ➜ ù ✽→✳ ● ù þ✰④✧➜ ù ❼ ➜➝þ ✽ ④ ✳ ● ù ❼ ➜ ù ✽ ❄▼ ➜ ❄✢ ④ ✳ ●❜ù ❼ ➜➞ù ✽→✳ ●❜ù✓④➥➜➞ù ✽ ④ ✳ ●❡ù ❼ ➜➞ù ✽→✳ ● þ ❼ ➜ þ ✽ ④ ✳ ●❡ù ❼ ➜➞ù ✽ ❄▼ ➜ ❄✢ ④✧➜ ❄ ④ ✳ ● ù ❼ ➜ ù ✽→✳ ●❋þ ❼ ➜➝þ ✽ ④ ✳ ● ù ❼ ➜ ù ✽ ❄❍ ➜ ❄✢ ④✧➜ ❄ ❚
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2. When ➜❷✢⑨❸ ✳ ● ù þ✰④➥➜ ù ❼ ➜❇þ ✽ ❴➐➦ , similarly, we get
● ❄✢ ❍ ●❋þ ✳ ● ù þ ❼ ➜➝þ ❼ ➜❷✢ ✽ ❄ ④✧● ù ✳ ● ù þ ❼ ➜ ù ④➥➜❷✢ ✽ ❄● ù þ ❼ ● ù ●➸þ

▼ ➜ ❄✢ ④ ➦➸➜✇✢● ù þ ✳ ● ù ✳ ● ù þ ❼ ➜ ù ✽❅❼ ●❋þ ✳ ● ù þ ❼ ➜➝þ ✽❵✽ ④●❋þ ✳ ● ù þ ❼ ➜➝þ ✽ú❄ ④✧● ù ✳ ● ù þ ❼ ➜ ù ✽ú❄● ù þ ❼ ● ù ●➸þ
▼ ➜ ❄✢ ④ ➦➸➜✇✢● ù þ ✳ ● ù ✳ ● ù ❼ ➜ ù ✽❽❼ ●❋þ ✳ ●➸þ ❼ ➜❇þ ✽❵✽ ④✳ ● ù ④✧●➸þ ✽ ❄ ❼ ➦ ✳ ●➸þ➞➜❇þ✼④✧● ù ➜ ù ✽ ④ ●➸þ✢➜ ❄þ ④✧● ù ➜ ❄ù●❜ù✓④✧● þ ❼ ● ù ●❋þ❁❚

Note that ●❋þ➞➜ ❄þ ④➧● ù ➜ ❄ù● ù ④✧●❋þ ▼ ●❋þ ✳ ● ❄þ ❼ ➜ ❄ ✽ ④✧● ù ✳ ● ❄ù ❼ ➜ ❄ ✽● ù ④✧●➸þ▼ ● ❄ù ❼ ● ù ●➸þ✰④✧● ❄þ ❼ ➜ ❄▼ ➜ ❄ù ❼ ● ù ●❋þ✰④✧➜ ❄þ ④➥➜ ❄ ❙
and thus,

● ❄✢ ❍➧➜ ❄✢ ④➥➜ ❄ ④ ➦➸➜✇✢●❜ù þ ✳ ● ù ✳ ● ù ❼ ➜ ù ✽❽❼ ●➸þ ✳ ●❋þ ❼ ➜➝þ ✽❵✽ ④ ✳ ● ù ❼ ➜ ù ✽ ❄ ④ ✳ ●➸þ ❼ ➜➝þ ✽ ❄ ❚
If ● ù ✳ ● ù ❼ ➜ ù ✽ ❍➏●➸þ ✳ ●➸þ ❼ ➜❇þ ✽ , it is clear that ● ❄✢ ❍➧➜ ❄✢ ④❩➜ ❄ . If not, using ➜✄✢ ➬ ✳ ● ù þ✑④⑩➜ ù ❼ ➜➝þ ✽ ❴➐➦ ,
we have that

● ❄✢ ➬ ➜ ❄✢ ④➥➜ ❄ ④ ❬● ù ④✧●➸þ ✳❵✳ ● ù ④✧➜ ù ✽ ④ ✳ ●❋þ ❼ ➜➝þ ✽❵✽→✳ ● ù ✳ ● ù ❼ ➜ ù ✽❽❼ ●❋þ ✳ ●❋þ ❼ ➜➝þ ✽❵✽
④ ✳ ● ù ❼ ➜ ù ✽ ❄ ④ ✳ ●❋þ ❼ ➜➝þ ✽ ❄ ❚

Using the fact that ● ❄ù ❼ ➜ ❄ù ▼➇● ❄þ ❼ ➜ ❄þ , we can simplify✳❵✳ ● ù ④➥➜ ù ✽ ④ ✳ ●❋þ ❼ ➜➝þ ✽❵✽→✳ ● ù ✳ ● ù ❼ ➜ ù ✽❽❼ ●➸þ ✳ ●➸þ ❼ ➜➝þ ✽❵✽▼ ● ù ✳ ● ❄þ ❼ ➜ ❄þ ✽❽❼③✳ ● ù ④➥➜ ù ✽ ●❋þ ✳ ●➸þ ❼ ➜❇þ ✽ ④ ✳ ●➸þ ❼ ➜❇þ ✽→✳ ● ù ✳ ● ù ❼ ➜ ù ✽❅❼ ●❋þ ✳ ●➸þ ❼ ➜❇þ ✽❵✽▼ ✳ ●❋þ ❼ ➜➝þ ✽→✳ ● ù ●❋þ✰④➧● ù ➜➝þ ❼ ● ù ●➸þ ❼ ●➸þ✢➜ ù ④✧● ❄ù ❼ ● ù ➜ ù ❼ ● ❄þ ④➧●❋þ✢➜❇þ ✽▼ ✳ ●❋þ ❼ ➜➝þ ✽→✳ ● ù ④✧●❋þ ✽→✳ ● ù ❼ ➜ ù ❼ ●❋þ➅④➥➜ ù ✽ ❚
It follows that

● ❄✢ ➬ ➜ ❄✢ ④➥➜ ❄ ④ ✳ ● ù ❼ ➜ ù ✽ ❄ ④ ✳ ●➸þ ❼ ➜➝þ ✽→✳ ● ù ❼ ➜ ù ✽ ❚
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In all cases, ● ❄✢ ❍➧➜ ❄✢ ④➥➜ ❄ . ➷
Theorem 3.5 gives us a way to check self-collision for a necklace: we can first compute the

power diagram of all the beads and then check every pair for each power diagram edge. In addition,

we check those pairs which share common neighbors, i.e. pairs
✳ ◗ ù ❙❉◗ ù Ú ❄ ✽ for ❬❥②❦û✦❸ ✵⑩❼ ❬ , and

those pairs involving ◗ ❄ or ◗❲❱ ❆ ❘ (the only beads having an improper neighbor in the necklace).
Clearly, the number of additional pairs is

✲✴✳✶✵✾✽
, and the cost of the checking is dominated by the

complexity of power diagram, which we expect to be linear for a densely packed necklace.

Under the KDS motion model, it is easy to maintain the power diagram [16]. For the discrete

time step model, however, it can be too expensive to recompute the power diagram at each time

step. We have a variety of techniques for updating the diagram. One simple and, in practice, fast,

solution is to remove some subset of the balls such that the power diagrams of the remaining balls

before and after the time step are combinatorially identical, move the balls to the final locations,

and then reinsert the removed balls. Such subsets can be found in a variety of manners, the simplest

one being to repeatedly remove a point incident on each failed certificate, or repeatedly remove the

point incident on the most failed certificates.

Another approach is to convert the discrete-time-step situation to the kinetic data structure

framework by creating a motion which interpolates between the initial and final locations of the

balls and then apply the kinetic data structure technology. Since the motion is artificial, we can

design the motion so that the certificate failure times are easy to compute, or the number of events

is small. For example, Edelsbrunner et al. [5] describe a motion so that each sphere moves along a

straight line in the standard lifting space. We do not elaborate on these options here as they are not

the focus of this paper.

4 Experimental Results

We conducted a variety of experiments to test the static and dynamic properties of the wrapped

hierarchy and to compare it with the layered hierarchy and the power diagram. The properties of

interest were:

1. the cost of construction—in terms of the time taken (Table 1),

2. the cost of verification the hierarchy, using both the naive method (direct verification of bead

inclusion in the cages) and the cascade verification—in terms of both the time taken and the

number of intersection tests performed (Table 5),

3. the cost of collision detection—in terms of time, the size of the set of separating pairs, and

the number of intersection tests performed (Tables 3, 4, 7), and

4. the frequency of basis changes as the shape deforms and the cost of updating the hierarchies

(Tables 5 and 6).
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Name Picture

Necklace

size

Wrapped

time (ms)

Layered

time (ms) ❹❻❺❦❼ ✬ ❹❷❽❋❾✫❿
Power

diagram

time

(ms)

grill 89 ♠ ❚ ➦✄✻ ♠ ❚Ï♠✘✔ ❚ Ü➀✔ ❚➁✔➐♠ ✿ ❚ ➦
1a4yA0 1380 ➂✙❚Ï♠✻♠ ❬➐❚✫✻❜♠ ♠ ❚ Ü✻➦ ♠ ❚➁➂➀➃ ➦✘➄➸♠ç❚Ï♠
1cem00 1089 ➦✙❚➁✔➐♠ ❬➐❚✡❬✢♠ ♠ ❚ Ü✻➦ ♠ ❚➁➂✄✻ ➦ ❬✢♠ç❚Ï♠

10 ♠ ❚Ï♠❜➦ ♠ ❚Ï♠ç❬ ♠ ❚ Ü✘➄ ♠ ❚➁✔➀➃ ♠ç❚✡❬
spline 50 ♠ ❚✡❬➞➦ ♠ ❚Ï♠✘➂ ♠ ❚ Ü✻Ü ♠ ❚➁✔ ❬ ➦ ❚✫✻

100 ♠ ❚ ➦➀➂ ♠ ❚Ï♠❜Ü ❬➐❚Ï♠✻♠ ♠ ❚➁✔➐♠ Ü ❚ ✿
static

10 ♠ ❚Ï♠❜✿ ♠ ❚Ï♠ç❬ ♠ ❚➁✔✻Ü ♠ ❚➅➄➸♠ ♠ç❚Ï♠
helix

640 ➦✙❚Ï♠✻♠ ♠ ❚➁➃➐♠ ♠ ❚ Ü➀✔ ♠ ❚✫✻❣➃ ✿ ❬✢♠ç❚Ï♠
10240 ✿➀➂ ❚Ï♠✻♠ Ü✙❚✡❬✢♠ ❬➐❚Ï♠✻♠ ♠ ❚✫✻❣➂ 8.8

❊ ❬✢♠ õ
scaling

10 ♠ ❚Ï♠❜✿ ♠ ❚Ï♠ç❬ ♠ ❚ Ü✻✿ ♠ ❚➁➃ ❬ ♠ç❚✡❬
helix

640 ➦✙❚✡❬✢♠ ♠ ❚➁➃➐♠ ♠ ❚ Ü➀✔ ♠ ❚✫✻❣➃ ➦✻➦➐♠ç❚Ï♠
10240 ✿➀✔ ❚Ï♠✻♠ Ü✙❚Ï♠✻♠ ♠ ❚ Ü✻Ü ♠ ❚✫✻❣➂ 1.8

❊ ❬✢♠ õ
straight 1000 ➦✙❚➁✔➐♠ ❬➐❚Ï♠✻♠ ❬➐❚Ï♠✻♠ ❬➐❚Ï♠✻♠ ➦ ❚➁➃
spiral 1000 ✿✙❚Ï♠✻♠ ❬➐❚Ï♠✻♠ ♠ ❚ Ü✻Ü ♠ ❚➁➂➐♠ ✿➀➂➐♠✖❚Ï♠
curled 1000 ➦✙❚ Ü➐♠ ♠ ❚ Ü➐♠ ❬➐❚Ï♠✻♠ ♠ ❚➁➂➐♠ ➦✄✻❡✿ç❚Ï♠

108 ♠ ❚ ➦✘➄ ♠ ❚✡❬✢♠ ♠ ❚ Ü✘➄ ♠ ❚➁✔✻✿ Ü ❚➁✔
villin 108 ♠ ❚ ➦✻Ü ♠ ❚✡❬✢♠ ♠ ❚ Ü✻✿ ♠ ❚➁➃✻✿ Üç❚Ï♠

108 ♠ ❚ ✿ ❬ ♠ ❚✡❬✢♠ ♠ ❚ Ü✻✿ ♠ ❚➁➃✻✿ ❬✢♠ç❚✡❬
random

300 ♠ ❚➁✔ ❬ ♠ ❚ ➦✘➄ ♠ ❚ Ü✘➄ ♠ ❚➁✔✻✿ ✻✖❬✻❚Ï♠
protein

300 ♠ ❚➁✔✻✿ ♠ ❚ ➦✘➄ ♠ ❚ Ü➀➂ ♠ ❚➅➄➸♠ ➦✻Ü ❚Ï♠
300 ♠ ❚➁✔➀➂ ♠ ❚ ➦✘➄ ♠ ❚ Ü✄✻ ♠ ❚➁➃➀✔ ✻✖❬✻❚Ï♠

Table 1. Construction costs for the wrapped and the layered hierarchy and the power diagram; ➆✆➇◗➈✍➉ (resp. ➆✟➊➌➋ ➍ ) is the
average (resp. minimum) value of the ratio of the radii of the cages in the two hierarchies, taken over all the nodes in the

tree.
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We used three different types of inputs for our experiments:

PROTEINS. taken from PDB files [33] (1a4yA0 and 1cem00) or from smaller models (random

protein and Villin headpiece); the latter were used for molecular simulations.

SPLINES. A simple quadratic spline with five control points.

HELICES. All helices used for our experiments are contained in a cubical bounding box. We used

two types of helices: the first one, called the constant helix, had a constant number of turns,

and the second one, called the scaling helix, had a number of turns that scaled with the number

of points sampled from the helix. This shape is a bad case for the power diagram [9].

SPIRALS AND GRILLS. The spiral series was an animation of a straight segment rolling up in to an

18 turn logarithmic spiral. The grill had six parallel straight segments connected by parabolic

arcs.

Table 1 provides pictures of the models used for our experiments.

All the experiments were conducted on a Dell PC with a 2.4 GHz Pentium 4 CPU and 1 gigabyte

of RAM, and we used the CGAL library [13] for computing the minimum enclosing sphere of a set

of spheres.

4.1 Static properties

In this subsection we discuss our experimental results on the construction and verification of the

hierarchy and on collision detection using these hierarchies.

Construction cost. Empirically, the cost of construction depends solely on the number of beads

used. It took approximately 35ms to build the wrapped hierarchy for a necklace with 10,240 beads.

In general, the time dependence on the number of beads agrees well with the expected
✲✴✳✶✵✸✷❃✹✻✺❁✵✾✽

cost, and the running time depends very little on the shape of the necklace. Although the construc-

tion cost of the wrapped hierarchy is significantly better than that of the power diagram (88s for a

helix with 10,240 beads), the greater simplicity of the layered hierarchy makes its construction even

faster (9ms for the same helix).

On average the wrapped and layered hierarchies produced very similar sized cages (Table 1,

columns 3 and 4), generally withing 5%. For each node ❢ in the hierarchy tree, let ➜❡❣ ✳ ♥ ✽
(resp.➜➞❣ ✳ ♣ ✽ ) be the radius of the cage stored at ❢ in the wrapped (resp. layered) hierarchy, and let ❹ ❣✴▼➜➞❣ ✳ ♥ ✽ ❴❋➜✏❣ ✳ ♣ ✽ . We compute ❹❻❺t❼ ✬ (resp. ❹✄❽❋❾✫❿ ), the average (resp. minimum) value of ❨ç❣ over all

nodes ❢ of the tree. As expected, the ❹ ❺t❼ ✬ was most different for the protein backbones—the most
curved necklaces tested—where ➜➸❣ ✳ ♥ ✽

was 8% smaller. The value of ❹✘❺t❼ ✬ is heavily biased toward
the numerous nodes of the tree near the leaves, where the wrapped and layered hierarchies hardly

differ. This explains why the value of ❹❣❺t❼ ✬ is close to ❬ . A few of the wrapped hierarchy cages were
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much smaller (often a factor of two) than their respective layered cage. These tended to be near the

root and so are more important for collision detection of disjoint objects. The value ❹➎❽❋❾✫❿ illustrates
this phenomenon.

Name

Lazy update

(ms)

Cascade ver-

ify (ms)

Naive verifi-

cation (ms)

Average

frontier size

spline

10 ♠ ❚Ï♠✻♠✘➂ ♠ ❚Ï♠❜✿ ❬ ♠ ❚Ï♠❜➦➀✔ ❬➐❚➁➂
100 ♠ ❚Ï♠❻✻ ♠ ❚ ✿ ❬ ♠ ❚ ✿✄✻ ✿✙❚Ï♠
1000 ✻ç❚Ï♠✻♠ ✿✙❚✡❬✢♠ ✻ç❚➁➃➐♠ ➦✙❚Ï♠
helix

10 ♠ ❚Ï♠ç❬ ♠ ❚Ï♠❜✿ ♠ ❚Ï♠❜✿ ➦✙❚Ï♠
10240 ✻ç❚Ï♠✻♠ ➂✄✻✖❚Ï♠✻♠ ➂ ❬✻❚Ï♠✻♠ ✻ç❚Ï♠
1a4ya0 ♠ ❚➁➃ ❬ ➃✙❚Ï♠✻♠ ➃✙❚✫✻❜♠ ➦✙❚➁✔
1cem00 ♠ ❚➁➂✻✿ ✻ç❚➁➃➐♠ ✻ç❚ Ü➐♠ ➦✙❚➅➄
grill ♠ ❚Ï♠❻✻ ♠ ❚ ✿ ❬ ♠ ❚ ✿✻✿ ➦✙❚➁➂

Table 2. Verifying and updating the wrapped hierarchy using various approaches. The verification frontier of

a node is the self collision separating set for the leaves of the subtree rooted at the node. The average frontier

size is the size of such sets averaged over all nodes in the tree.

Verification cost. Surprisingly, the two methods of verification—naive and cascade—performed

very similarly over the models tested. The largest difference found was on extremely highly sampled

spline curves. In this case the cascade verification was 25% faster than the naive method. This

improvement stems from the fact that all the bounding spheres in such a curve are diametrical,

i.e., they touch the subnecklace at its endpoint, and only the descendants that contain the two basis

beads need to be checked. Another advantage of the cascade method is that the frontier can be

cached and reused in later time steps. The average frontier size stayed a small constant for even the

most convoluted curves; it was below 10 per node in the tree for all curves tested. These figures can

be seen in Tables 5, 2.

Collision detection. We used the static models to investigate the performance of the self-collision-

detection algorithm. The cascade based algorithms performed much better than the brute force

quadratic algorithms, as expected. The performance of the two hierarchies was quite similar under

cascade collision detection for all of the models except for the large protein backbones. There the

smaller sphere sizes of the wrapped cages resulted in a modest speed increase (Table 3).

The separating sets produced by the cascade algorithm were much smaller than the number

of edges in the power diagram (its effective separating set size), with the exception of the highly

sample scaling helix. The results on constant and scaling helices (Table 3) illustrate the dependence

of the separating set on packing. When the number of points in a static helix increased by a factor
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Wrapped Layered Power

dia-

gram

edgesName

Necklace

size

Quadratic

collision

time ( ➏ s) cascade

col. time

( ➏ s) separating

set size

cascade

col. time

( ➏ s) separating

set size

grill 89 ✻✖❬✢♠ ➄➸♠ 293 71 291 264

1a4yA0 1380 ➃✻✿➐♠✻♠ ➄➀➄➸♠ 2759 950 2759 8500

1cem00 1089 ➃✻✿➐♠✻♠✻♠ ➂✻✿➐♠ 2177 700 2177 8600

10 ❬✢♠ ➦ 9 2 9 27

spline 50 ❬➞✿➐♠ ❬➞✿ 52 13 52 147

100 ➂✄✻❜♠ ➦➀➃ 103 26 101 297

10 ❬✢♠ ➄ 27 7 27 40

static helix 640 ➦ ❬✢♠✻♠✻♠ ✿➀➃➐♠ 1500 360 1500 57000

10240 5.6
❊ ❬✢♠✘➐ ✿➐♠✻♠✻♠ 11000 3000 11000 2.0

❊ ❬✢♠❣➐
10 ❬✢♠✻♠ ✿ 11 3 11 55

scaling helix 640 3.1
❊ ❬✢♠❣➑ ✻❣➂➐♠ 1500 450 1500 45000

10240 5.6
❊ ❬✢♠ ➐ ❬✻❬✢♠✻♠✻♠ 4.7

❊ ❬✢♠ õ 11000 4.7
❊ ❬✢♠ õ 5.6

❊ ❬✢♠ ➑
Table 3. Detecting self-collision using various approaches. The naive methods tests collision between all pairs of beads,

the power-diagram based algorithm tests the beads that share an edge, and the hierarchy based method tests pairs of cages

that are in the separating set.

Wrapped Layered Power

dia-

gram

edgesName

Necklace

size

Quadratic

collision

time ( ➏ s) cascade

col. time

( ➏ s) separating

set size

cascade

col. time

( ➏ s) separating

set size

spiral, straight 1000 53000 240 1000 250 1000 3000

1000 53000 720 2400 740 2400 3000

curled 1000 53000 280 6400 270 7200 3000

108 610 28 110 28 110 731

villin 108 620 31 120 38 150 719

108 620 35 140 38 150 708

300 480 76 310 78 315 2200

random protein 300 470 83 600 100 600 2100

300 490 93 380 106 420 2000

Table 4. Applying self-collision-detection algorithm from scratch at each step as the necklace deforms. We use molecular

dynamic simulations and the rolling of a spiral as the test sets.
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of 16 from 640 to 10240, the size of the separating set per bead of the necklace decreased from 2.34

to 1.07. This can be attributed to the fact that as the sampling increased, the curve became locally

straighter and straighter (on the scale of the bead separation). On the other hand, when the scaling

helix necklace size was similarly increased from 2 to 4, reflecting the greater curvature and packing

in the neighborhood of each bead, the separating set increased from 2.34 to 4.58.

4.2 Dynamic properties

We used three data sets for testing the dynamic properties of the wrapped hierarchy: we performed

molecular dynamics simulation on Villin and random protein, using large time steps ( ➦✙❚Ï♠ ❊ ❬✢♠ ❆ ❘ õ
s)

in order to cover greater conformational changes of the respective proteins. We also simulated the

rolling of a straight line into a spiral; the spiral was evenly sampled along its length.

The wrapped hierarchy was very stable under the deformations of the underlying necklace in our

tests. As illustrated in Table 5, there were only a couple basis changes per time step in the wrapped

hierarchy for molecular dynamics simulation, whereas the power diagram had over 100 differing

tetrahedron at each step of the same simulation. The cascade verification performed significantly

better than the naive verification over all the simulations (despite their similar performance in the

artificial test cases). Finally, we looked at the effect of varying the length of the time-step in Table 6.

The wrapped hierarchy flattens out at around 15 basis changes for any time-step between 2 and 32

frames, while the amount of damage to the power diagram increased approximately logarithmically.

4.3 Taking advantage of the wrapped hierarchy

The great simplicity of the layered hierarchy makes its computation from scratch (which has to be

done at each time step of a simulation) faster than updating the wrapped hierarchy. As a result, we

have to to modify our techniques to properly take advantage of the wrapped hierarchy.

One advantage of the wrapped hierarchy over the layered hierarchy is that it provides an approx-

imate bounding hierarchy when the beads are allowed to move (even if no verification is performed).

Assuming all the beads in a cage move rigidly, the minimum enclosing sphere of the basis before a

time-step is the minimum enclosing sphere after the time step. When the beads do not move rigidly

but move coherently, the cage is still approximately valid. We call experiments which exploit this

property (and make the assumption of its correctness) lazy. The update computation can be 10 times

cheaper than the verification computation, as shown in Table 5. In addition, a cage in the wrapped

hierarchy is defined without reference to any other cages, so individual cages can be computed

independently.

Exploiting these two properties in some situations can yield simulations that are much faster than

can be achieved with the layered hierarchy. Such an example of such a situation is shown in Table 7.

There, two disjoint copies of the spiral were rolled independently, while checking for collisions

between them (but not internal collisions). The cascade collision detection algorithm starts looking

at cages from the top of the tree and cascades down until a separating set is found. Only the
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Wrapped Hierarchy

Name Picture

Power

diagram

cell

changes

basis

changes

lazy

update

(ms)

cascade

verify

(ms)

naive ver-

ify (ms)

❬✖➃ ♠ ♠ ❚➁➃✻Ü ❬➐❚➅➄ ➦✙❚Ï♠❬✻❬✢♠✻♠ Ü ♠ ❚➅➄➐✿ ➦✙❚Ï♠ ➦✙❚ ✿
spiral ❬⑩✻❜♠✻♠ ❬✖➃ ♠ ❚➅➄➐➦ ➦✙❚Ï♠ ➦✙❚ ➦

❬✖➃ ❬⑩✻ ➦➀➃ ♠ ❚➅➄➐➦ ➦✙❚Ï♠ ➦✙❚✡❬
❬✖✔➐♠✻♠ ✻❡✿ ♠ ❚➅➄➐✿ ➦✙❚✡❬ ➦✙❚ ➦
❬✇➄➐➦ ♠ ♠ ❚Ï♠✘✔ ♠ ❚ ➦➐♠ ♠ ❚ ➦
❬➞➦➀➂ ✻ ♠ ❚Ï♠✘✔ ♠ ❚ ➦ ❬ ❚ ➦

villin
❬➞✿➀➂ ✻ ♠ ❚Ï♠✘✔ ♠ ❚ ➦ ❬ ♠ ❚ ➦
❬➞✿➐♠ ✻ ♠ ❚Ï♠✘✔ ♠ ❚ ➦✻✿ ♠ ❚ ➦
❬✖➂➀➂ ✻ ♠ ❚Ï♠✘✔ ♠ ❚ ➦✻➦ ♠ ❚ ➦
❬➞✿➀➃ ➃ ♠ ❚Ï♠✘✔ ♠ ❚ ➦✄✻ ♠ ❚ ➦➃ ❬✻❬ ♠ ♠ ❚ ➦✻➦ ♠ ❚➁➃➐♠ ♠ ❚➁➃✻❡➦➀✔ ✻ ♠ ❚ ➦ ❬ ♠ ❚➁➃➀➃ ♠ ❚➁➃

random

protein

✻❣➃ ❬ ❬✻❬ ♠ ❚ ➦✻➦ ♠ ❚➁➃➀➃ ♠ ❚➁➃✻❡✿➀➃ ➄ ♠ ❚ ➦✻➦ ♠ ❚➁➃✻✿ ♠ ❚➁➃✻❡✿➀✔ ❬✻❬ ♠ ❚ ➦✻➦ ♠ ❚➁➃➀➃ ♠ ❚➁➃✻❣✔➐♠ ❬✻❬ ♠ ❚ ➦✻➦ ♠ ❚➁➃✻✿ ♠ ❚➁➃
Table 5. Maintaining the changes in the wrapped hierarchy and the power diagram as the necklace deforms. For the

spiral, there are 50 evenly spaced frames as it rolls up from a straight line to a 16 turn spiral, and in the molecular

simulations, the adjacent frames are ➻✖➒ ➓■➔❸✃✭➓✇→ ➽↔➣ s apart. We measure the changes in the structure at each time step and
the cost of updating it at each time step.
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Wrapped
Number

of

frames changes

lazy update

(ms)

cascade verify

(ms)

naive verifica-

tion (ms)

Power

diagram

changes

1 7 ♠ç❚ ➦➀➂ ♠ ❚➁➃➀➃ ♠ ❚➁➃✻➦ ✻❣➃✻➦
2 15 ♠✖❚ ➦✻➦ ♠ ❚➁➃➀➃ ♠ ❚➁➃✻➦ ➃➐♠✘✔
4 12 ♠✖❚ ➦✻➦ ♠ ❚➁➃✻✿ ♠ ❚➁➃ ❬ ✔➀➃✻Ü
8 16 ♠✖❚ ➦✻➦ ♠ ❚➁➃➀➃ ♠ ❚➁➃✻✿ Ü✘➄❷✻
16 15 ♠✖❚ ➦✻➦ ♠ ❚➁➃➀➂ ♠ ❚➁➃✻✿ ❬✢♠❜Ü➐♠
32 14 ♠✖❚ ➦✻➦ ♠ ❚➁➃➀➃ ♠ ❚➁➃✻✿ ❬➞➦✻✿➀✔

Table 6. Stability of the collision-detection techniques over varying number of frames. The random protein model is

used and all frame pairs start with frame 900 of 1000 in the simulation.

Layered Wrapped

Conformation
seperating

set

time

(ms)
seperating

set

lazy

time

(ms)

full update

time (ms)

Average

frontier

6 0.9 ➃ ♠ ❚Ï♠✻♠✘➃ ♠ ❚➅➄ ❬❜❚➅➄
6 1.0 ➂ ♠ ❚Ï♠✻♠✘➃ ♠ ❚➁➃ ➦ç❚✡❬
6 1.0 ➃ ♠ ❚Ï♠ç❬ ♠ ❚➅➄ ➦ç❚ ✿

2400 2.0 ❬✖➃➐♠✻♠ ❬➐❚Ï♠ ➦✙❚Ï♠ ➦ ❚➅➄
3700 2.1 ➦✻✿➐♠✻♠ ➦✙❚Ï♠ ➦✙❚Ï♠ ✿ ❚Ï♠

Table 7. Collision detection between two rolling spirals, using the wrapped and layered hierarchies. The entire layered

hierarchy is updated at each time step. In the wrapped hierarchy, at each time step, we either update all the cage bases

that become invalid (full update) or we update only at those nodes that are visited by the collision-detection algorithm

(lazy update). We also show the average size of the cascade verification frontier over all the nodes in the tree.
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cages touched were recomputed for the wrapped hierarchy, resulting in a factor of 200 speedup

when the curves we relatively far away from one another (as they were when fully extended). As

the curves wound up they got closer, so the wrapped advantage decreased until the wrapped and

layered computation times were nearly equal when the two spirals were almost touching.

5 Conclusions

This paper raises a new set of issues in geometric computing, by posing the problem of how to

repair and maintain geometric structures under small motions or deformations of their defining

elements. Efficient geometric structure repair is essential in complex physical simulations, virtual

reality animations, as well as when tracking moving real world objects. More generally, additional

research is needed on how to better integrate geometric algorithms with physical models of objects.

Even for our simple example of a deforming necklace, several basic questions remain open:↕ Can we prove bounds on the number of combinatorial changes in the wrapped hierarchy,
assuming a physical model of deformation and a given ‘deformation energy budget’ that limits

the overall bending nd oscillations that can occur?↕ How can we best integrate the power diagram and the sphere hierarchy so as to get the advan-
tages of each?↕ What properties of a physical model can be exploited to make hierarchy updates faster?

We hope to address some of these issues in the near future.
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