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Nils Bäckman

March 13, 2011

Master’s Thesis in Computing Science, 30 ECTS credits
Supervisor at CS-UmU: Daniel Sjölie
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Abstract

Collision detection in physics engines often use primitives such as spheres and boxes
since collisions between these objects are straightforward to compute. More complicated
objects can then be modeled using compounds of these simpler primitives.

However, in the pursuit of making it easier to construct and simulate complicated objects,
triangle meshes are a good alternative since it is usually the format used by modeling tools.

This thesis demonstrates how triangle meshes can be used directly as collision objects
within a physics engine. The collision detection is done using triangle mesh models with
tests accelerated using a tree-based bounding volume hierarchy structure.

OpenCL is a new open industry framework for writing programs on heterogeneous
platforms, including highly parallel platforms such as Graphics Processing Units(GPUs).
Through the use of OpenCL, parallelization of triangle mesh collision detection is imple-
mented for the GPU, then evaluated and compared to the CPU implementation.
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Chapter 1

Introduction

Objects such as spheres, boxes and planes are easily described mathematically in three
dimensions. They are also straightforward, if not always simple, to test for collision.

To simulate and test more complex objects for collision, there are numerous ways to
represent objects and use these representations.

One way is to build a more complex object of above mentioned geometric primitives put
together, commonly called compounds. A car can for example be modeled with spheres as
wheels and a box can form the body. This is an efficient and simple solution, but it can
take time to build more complex objects in this way. It is also nearly impossible to create
arbitrary objects, as round sides are bound to be spheric and intricate objects require many
primitives to keep the detail of the object.

There are also efficient algorithms to determine collision between convex objects. Any
non-convex object can be subdivided into convex parts, making this another alternative for
complex objects. However, these algorithms have some artifacts that can make physical
simulations jittery when they ideally should come to a rest.

Other implementations take advantage of a more mathematical representation, such as
using splines or being able to add, subtract and take the union of simple mathematical
shapes. These are very good for designing models and visualizing them, but determining
collision and appropriate reaction are difficult.

Using triangle meshes for collision detection and testing every triangle of one object for
collision against every triangle of the other object will be the focus of this thesis. With
an appropriate first-step approximate collision method, such as a tree-based structure, the
implementation scales well with the complexity of the objects, potentially making it fast
enough for use in real-time environments.

General collision detection can be divided into two steps, intersection test and intersec-
tion find. An intersection test answers the question whether two objects are in collision
or not. For a physics simulation, only intersection test is usually not enough, because to
simulate the collision we need to know more about it. This is the more complex part, com-
monly called intersection find or contact generation. A collision find algorithm returns the
depth, point and normal of a collision. The contact normal is the vector that specifies in
which direction the two objects should be separated. The depth is the minimal distance
to move one of the two objects along the contact normal to separate them. The contact
point specifies a point where the two objects are intersecting. An intersection find algorithm
should in many cases return more than one contact to ensure a stable simulation.

1



2 Chapter 1. Introduction

Figure 1.1: Collision of a sphere into a plane, resulting in a normal vector, a contact point and
a scalar depth value.

1.1 Algoryx Simulation

The thesis was done at Algoryx Simulation, a company from Ume̊a, Sweden, whose main
product is a physics engine named AgX Multiphysics[2], geared towards use in scientific
research and training simulators. For these use cases, as opposed to game physics engines,
physical correctness of the simulations is vital.

As more complicated shapes in AgX Multiphysics today are constructed using com-
pounds of simple primitives such as spheres, boxes and cylinders, Algoryx were very inter-
ested in examining the possibility of using triangle meshes as collision primitives for their
physics engine.

1.2 Problem Statement

The purpose of this project was to implement, test and evaluate different algorithms and data
structures used in triangle mesh collision detection with regard to efficiency and stability.

Implementing and evaluating triangle mesh collision detection on GPUs using OpenCL
was another important aspect. As GPUs nowadays are getting more and more advanced,
with better and better capabilities for performing general programming, evaluating whether
the massively parallel architecture of GPUs could lead to speedups versus a CPU imple-
mentation was an important aspect.

Like any algorithm that is to be used in a general environment, it is important that it
meets certain requirements on stability, robustness, memory efficiency and scalability.

No data should cause the algorithm to hang, cause infinite loops or return invalid data.
This not only means that the algorithm should be stable and robust, but also that the
validity of the data used by the algorithm should be confirmed. Verification of a valid mesh
should thus be covered in the project.
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1.3 Thesis Report Outline

The layout of the report is such that theory applicable to the thesis work is covered first,
followed by implementation details, and lastly the results of the implementation is discussed.

Chapter 2 covers background information such as the general structure of a physics
engine.

In the following chapters 3 and 4 theory and knowledge needed to understand the im-
plementation are described.

Chapter 3 covers collision detection specifics, such as different ways to implement middle
phase collision detection and an important theorem often used for collision detection of
convex objects (such as triangles).

In chapter 4 general purpose programming on GPUs is discussed. An introduction to
OpenCL follows, describing its uses as well as the programming layout. One section covers
optimization, a very important aspect for achieving satisfying results while programming
for GPUs.

Implementation details are covered in chapter 5. The chapter is further divided into one
section for the CPU implementation and one for the GPU implementation.

In chapter 6 the results of the implementation are discussed. Here various performance
graphs as well as other important observations can be found.

Finally, chapter 7 contains conclusions and thoughts on the project, such as restrictions,
limitations and future work.
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Chapter 2

Background

2.1 Physics Engine Pipeline

Collision detection is part of the physics engine pipeline. Here follows a brief description of
such a pipeline in order to describe in which context collision detection is used.

Collision detection between objects in a scene needs to determine whether objects collide
with each other, and if they do, give information that can be used in the next step to resolve
the collision.

When the collision detection step is done, it is time to solve the collisions for the next
iteration. Here it is common to apply forces to the objects in order to solve the collision
overlaps found. The forces are contact forces based on the information from the collision
detection as well as other forces, e.g. gravity.

The last step is time integration, where the simulation is moved to the next discrete time
step (assuming discrete time integration). Objects properties, such as position, velocity and
rotation, are updated to reflect their new states.

When this is done the simulation has moved from one time step to the next. For a
continued simulation, these steps are repeated over and over again.

2.2 Collision Detection Pipeline

For n objects in a scene, determining collisions between all these objects against each other
means O(n2) separate collision checks.

Because of this bad complexity, a first step of coarse but fast tests are usually executed,
returning objects that are close but not necessarily colliding. This step is usually called broad
phase collision detection and can be heavily accelerated because of temporal coherence (or
in other words, that objects are not likely to move very far in little time).

Now that several obviously non-colliding pairs have been pruned away, a precise collision
detection routine can be executed. This is usually called near phase collision detection.

This thesis will focus on near phase collision detection as that is where triangle meshes
differ from other collision primitives.

2.2.1 Continuous versus Discrete Collision Detection

The most widely used way of simulating physics is to discretize time by dividing it in time
steps. Objects are tested for collision at every time step and, if they intersect, actions are

5



6 Chapter 2. Background

Figure 2.1: An outline of what a collision detection pipeline might look like.

taken to solve the intersection. This means that in between time steps, objects can ”tunnel”
through each other without a collision being noticed. This puts restraints on velocity, object
size and time step size, as small object sizes and/or large velocities and time steps easily
cause the tunneling effect. Because of the discretization of time, collisions between objects
can be deep when they are found. This can cause problems, as knowing where the initial
collision of the objects was is not always clear.

Continuous Collision Detection tries to solve these problems by finding the exact time of
impact between two objects colliding[27]. This means each object’s trajectories are calcu-
lated, and collisions are found just as they happen, enabling simulations of non-penetrating
objects. Finding the time of impact is time-consuming, and the more objects there are in a
scene, the more difficult it is to run a non-penetrating simulation in real-time. Because of
this, continuous models are often abandoned for discrete ones.

2.3 General Polygon Meshes

Triangles have the benefits of always being convex and always defining a plane. Because of
this, intersection tests between triangles are straightforward and inexpensive to compute.

Conversion from general polygon meshes to triangle meshes is simple and can be done
as a pre-processing step by modeling software such as Blender[1]. For convex objects,
triangulation can trivially be done by creating edges from one vertex to all other vertices.
For concave objects, it is not as trivial but still straight-forward. Different algorithms exist,
but the one perhaps most easily understood is called the Subtracting Ears Method[7]. By
noticing that a polygon always contains a triangle with two edges being edges of the polygon,
this triangle can be removed from the polygon, which will still contain at least one such
”ear”. By iterating over the polygon in this manner, it will eventually be fully triangulated.



Chapter 3

Collision Detection for Triangle

Meshes

For simple objects such as spheres and boxes, collision detection is straightforward. Repre-
sentation of a box can differ in size and rotation, but its corners always have the same angles
and it always has six faces. A triangle mesh on the other hand can consist of thousands of
faces or just a few, and it can be both convex and concave. Still the algorithm is expected
to be generic and handle all cases in an efficient manner.

This chapter covers areas in collision detection that are of interest both for general
collision detection and for collision of triangle meshes.

3.1 Complex Object Collision Detection Techniques

For objects of complex structure there are different techniques to solving collisions. Complex
objects, as opposed to simple objects such as spheres, boxes and planes, can adopt many
different forms. They can be described as triangle meshes, but also by e.g. splines or
general polygon meshes instead of only triangles. The techniques to solve collision of these
objects differ vastly, and the reason so many have been developed is likely because there is
not yet a perfect solution that takes care of everything. Below, the different techniques to
solve collisions of complex objects are covered and their advantages and disadvantages are
discussed.

3.1.1 Triangle-Triangle Collision Detection

For triangle mesh objects, one can use the fact that they consist of triangles by testing each
triangle of one object against every triangle of the other object. If two triangles, one from
each object, intersect we know that the two objects are in collision.

As a brute force solution of testing every triangle n of one object against the all triangles
m of another object are of complexity O(nm) and scale extremely badly for more detailed
meshes, objects can be divided in a tree hierarchy to cull non-colliding triangles faster. More
on these hierarchies can be found in Section 3.3 of this chapter.

As physics engines using a collision detection library generally are interested in simulating
the collision (as opposed to e.g. removing an object if collision is true), contact information
must also be supplied. Because of this, we cannot stop the computation when two triangles

7



8 Chapter 3. Collision Detection for Triangle Meshes

are found to be colliding, but we must find all colliding triangles. From these triangles,
contact information is gathered for the physics engine to use in its simulation.

3.1.2 Signed Distance Fields

A signed distance field is a grid representation of an object. Voxels in the grid (or pixels
in case of two dimensions) are estimates of how far away from the surface of the object the
voxels are located. A negative value means the voxel is inside the object, and a positive sign
means it is outside.

The grid representation can cause flat surfaces to be aliased because of the static positions
of each voxel, and the amount of aliasing depends on the resolution of the grid.

When colliding two objects represented by signed distance fields, voxels of the two objects
covering the same space are added together. The sums of these additions determine the
penetration at each voxel, and from this information along with the grids, contacts can be
generated.

Signed distance fields have been used for collision detection in several articles and
papers[12][6], but implementations actually used by 3D physics engines are sparse.

3.1.3 Image-Space Algorithms

Algorithms using the rendering properties of GPUs for collision detection are called image-
space algorithms[21]. By rendering both objects to a 2D-surface and examining their area
of intersection, we can find that for an intersection with zero area, the objects are separated,
while if there is an area they can still be intersecting. By rendering the objects from many
different angles, a good estimation to whether the objects intersect or not can be made.
However, as objects that intersect in all 2D projections made can still be non-intersecting,
another pass will likely have to be made for a reliable intersection test.

A problem with image-space implementations is the resolution of the viewport. It puts
a limit to the precision of the intersection tests, and because of this objects that actually
collide can be reported as non-colliding.

3.1.4 Convex Collision Detection and Convex Decomposition

For non-intersecting convex objects, a plane separating the objects can always be found.
The convex property of the objects also means that if a point in one object is closer to
the other object than its neightbouring points in the first object (such as a vertex and its
neighbouring vertices), then that local minimum is also a global minimum, see Figure 3.1.
This makes recursive algorithms searching for such a minimum the primary way of testing
general convex objects for intersection[8][29]. A negative aspect of these algorithms is that
they only generate one contact point. This makes it difficult to obtain stable simulations,
as objects most likely will alter between several possible contact points over time instead of
maintaining a resting contact on several of the contact points.

These algorithms also only apply to convex objects. To be able to use them for concave
objects, a concave object can be divided into several convex objects. This is called convex
decomposition. Any concave object can be divided into convex pieces[3], but dividing an
arbitrary object into the least possible number of convex pieces has proven to be NP-
hard[26]. Fortunately, we do not need the least possible number of convex pieces. Also,
convex decomposition only has to be done once for each object in a pre-processing step.
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Figure 3.1: Two convex objects in intersection test. The vertex v1 is closer to the other object than
its neighbouring vertices v0 and v2. The convexity of the objects means that the smallest distance
between the two objects must be in this area.

3.1.5 Splines

A spline is a function defined by polynomial parts. Its main property is that smooth curves
can be generated with relatively small data. Splines are very popular in CAD and design of
3D models because of this.

However, for collision detection, testing objects defined by such curves is time consuming.
Most implementations use a middle step where the objects are converted into meshes, moving
away from the splines. Collision detection using splines and not converting to meshes has
been implemented[10], but not by any widely used collision detection library.

3.2 Bounding Volumes

A bounding volume is an object enclosing another object. It is useful e.g. when testing
two highly detailed objects for collision. By initially bounding complex object with simple
volumes such as spheres, the simpler objects can be used in a first step intersection test. As
the spheres fully contain the detailed objects, two non-intersecting spheres means the con-
tained objects are also non-intersecting, and an expensive intersection test can be skipped.
On the other hand, two intersecting bounding volumes do not mean their contained objects
are colliding. In this case, a more detailed collision detection has to be done.

There are many different bounding volumes, each having its own positive and negative
sides. For a bounding volume to be effective, the two most important factors are that
intersection tests between bounding volumes should be cheap, and that the area around
the contained object is as small as possible. Being able to quickly compute the bounding
volume as well as small memory footprint are also valuable factors. No bounding volume is
good in all these areas. In general, a bounding volume with a cheap intersection test has
more excess volume, where tightly fitted bounding volumes are more expensive to intersect.
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As mentioned above, bounding volumes are useful for cheap rejection tests when testing
for intersection. For triangle-triangle collision detection, a hierarchy of bounding volumes
is used (covered in Section 3.3). Although not covered in this thesis, bounding volumes are
also commonly used in the broad phase collision detection of the collision detection pipeline.

3.2.1 Bounding Spheres

The sphere is the simplest of the bounding volumes. It has very low memory footprint as
it only requires a centre point and radius to be described. Intersecting two spheres is very
cheap, and is done by determining whether the distance between them is less than the sum
of the radii.

Algorithm 3.1 boolSphereSphereIntersect(Spheres1, Spheres2)

print return s1.radius + s2.radius < ComputeDistance(s1.centre, s2.centre)

However, the tightness of a bounding sphere is generally bad, and false intersections will
be more numerous than if using bounding volumes with a tighter fit.

3.2.2 Bounding Boxes

Bounding boxes are probably the most used bounding volumes today, as they are easy to use,
position and intersect. There are two different variations of bounding boxes, Axis Aligned
Bounding Boxes (AABBs) and Oriented Bounding Boxes (OBBs).

AABBs

AABBs are called this because the axes of a box is aligned to the axes of the world coordi-
nates. When it comes to storage, this means that each bounding box can be described by
a position and the length of the box along each axis.

Colliding AABBs is cheap, as they both are aligned to the world axes. It is merely a
matter of checking for every axis, if the two objects intersect. If that is the case for all axes,
the two boxes fully intersect.

As objects move and rotate in a simulation, an AABB will have to be recalculated every
time-step in order to fully include the bounded object and still ensure a tight bound.

OBBs

OBBs are bounding boxes with arbitrary orientations. This enables boxes to bound objects
with a potentially tighter fit than AABBs, and in worst case have the same bound as AABBs.
Because of the orientation of the box, it must be represented by either a rotation matrix or
a quaternion, as well as the position and span of the box as with AABBs.

An intersection test of OBBs can cost quite a bit more than AABBs, but with the usage
of the Separating Axis Theorem (described in Section 3.4) introduced by Gottschalk et al[9]
it can be done efficiently.

As OBBs can be rotated with the object, the box does not have to be recomputed every
step as with AABBs, but the rotation of the OBB will have to be updated with respect to
the rotation of the object. This is generally cheaper than recomputing the box, especially
when bounding very complex objects.
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Figure 3.2: Example of two AABBs in intersection test in two dimensions. As can be seen, they
are separated on one axis, which means the two boxes are not intersecting.

Non-Updated AABBs

Something which I have not found in any litterature are what I would like to call non-updated
AABBs. However, they appear in many different collision detection implementations[31][17].
Non-updated AABBs are essentially a mix of AABBs and OBBs. At object creation, the
bounding box is created as an AABB, and does not need its rotation stored. Instead, the
rotation of the box is the rotation of the objects it bounds. This means, just as with OBBs,
that the box does not need to be recomputed for every step.

While the non-updated AABBs might not seem very smart because the memory usage
is the same as for an OBB but with a less tight bound, it is good if many boxes share the
same rotation. This can be useful while constructing bounding volume hierarchies, which is
further covered in Section 3.3.

3.2.3 Other Bounding Volumes

Other bounding volumes worth mentioning are k-DOPs and convex hulls.

A k-DOP (Discrete Oriented Polytope) is a bounding volume that encloses the object
within the half-spaces of k planes (a half-space being one of the two parts of space divided by
a plane)[16]. I.e. an AABB is a 6-DOP, with the 6 planes being axis aligned. More planes
can be used to tighten the bound, with 10-DOPs, 18-DOPs and 26-DOPs being popular
choices (beveling all corners, all edges or all corners and edges).

In two dimensions, the convex hull of an object can be described by imagining a tight
rubber band around the object. For the general dimensional case, the convex hull is the min-
imum convex volume bounding the object. This is the bounding volume with the tightest fit
of all the described bounding volumes, the downsides being a possibly expensive intersection
test and high memory usage.
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3.3 Bounding Volume Hierarchies

While bounding volumes are likely to speed up intersection tests, especially when bounding
detailed objects, the same number of tests are still performed as without using bounding
volumes. By creating a tree structure for the bounding volumes, logarithmic time complexity
can be achieved. These tree structures are called Bounding Volumes Hierarchies.

In such a hierarchy, the root node is a bounding volume containing all the original
bounding volumes. The root nodes children divide the objects into two or more bounding
volumes, and this goes on recursively until the bounding volumes bound only one object
each.

Figure 3.3: An example of a hierarchy of AABBs bounding four circles. The root of the hierarchy
is the top AABB bounding all circles, while its children are bounding smaller parts.

By traversing such a hierarchy of bounding volumes, colliding them against another
hierarchy, whole sets of bounding volumes can be pruned early. In worst case, if all objects
of the hierarchy collide with the object it is tested against, performance is worse than with
no hierarchy at all because of the intermediate step of the traversal. In reality this never
happens, and bounding volume hierarchies are the primary way of speeding up large sets of
objects colliding.

The issue with these hierarchies is that if the objects within a hierarchy move, the
hierarchy has to be recalculated. This makes hierarchies very suitable for objects that are
static in relation to each other, e.g. a non-deformable mesh of triangles.
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3.3.1 Construction

Construction of a bounding volume hierarchy can be done in several different ways, but
the most important factor is that the result is a hierarchy where traversal is quick for the
general case. For this to be true, objects within the same bounding volume should be close
to each other, reducing the size of the volume. Also, it is important that the objects, when
divided into children, are divided evenly into sub-bounding volumes (in other words, that
the tree is balanced). This allows for the largest number of objects possible to be pruned
when a branch of the hierarchy is not traversed.

Building Strategies

When constructing a bounding volume hierarchy, there are three main ways to do this.
These are top-down, bottom-up and by insertion.

When using top-down construction, the root node is first created, containing all objects.
The children of the root are then created by splitting the objects based on their position.
This goes on recursively for bounding volumes consisting of fewer and fewer objects, until
no more splitting can be done.

The bottom-up technique takes the opposite route, by starting with the leaves of the
hierarchy (each object and its bounding volume). The hierarchy is then built by finding
bounding volumes that are close to each other and pairing them up, repeated recursively
until the root is created.

With the insertion technique, the bounding volume hierarchy is created by inserting
one object at a time. The tree is then partially recomputed at every insertion. The main
advantage of using insertion is that objects can be added after the hierarchy is constructed
for the first time, re-using most of the hierarchy.

From the study of previous collision detection engines, described further in Section 5.2,
top-down construction seems to be the most widely used construction technique, probably
because it is easier to implement and behaves well, although it might not be the best
behaving technique.

3.3.2 Traversal

There are three main methods of traversing bounding volume hierarchies, breadth-first,
depth-first and or a more intelligent traversal where traversal is prioritized based on some
criterion. As the traversal never exits early when using bounding volume hierarchies for
collision detection (or contacts will be lost), there is little to gain by using an intelligent
traversal method. The most common method used is depth-first, as breadth-first requires a
stack of nodes to traverse while depth-first relies on the program’s call stack.

Descent Rules

When the root nodes of two bounding volume hierarchies collide, both hierarchies are tra-
versed. There are several different ways of descending these hierarchies The most important
ones are covered in the list below.

– Descend one before the other - Fully descend one hierarchy before descending the
other. This can be a bad idea if a hierarchy of small volumes is descended first. The
larger volume will then have to be traversed many times and the number of bounding
volume intersection tests quickly increases.
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– Descend the larger volume first - Here a comparison of the two volumes to be descended
is made, and the larger one is descended first.

– Descend the hierarchies alternatingly - This rule is not as optimal as descending the
larger volume first in terms of bounding volume intersection tests, but the cost of
volume testing is spared.

– Descend both hierarchies simultaneously - Instead of descending one hierarchy at a
time, both hierarchies can be descended simultaneously. In the case of binary trees,
this means going directly to four new intersection tests, the two leaves of each volume
against each other.

It is difficult to name any of these rules as better than the others, as it is highly dependant
on the properties of the hierarchies colliding.

3.3.3 Bounding Volumes and Bounding Volume Hierarchies

Different preparations have to be made to hierarchies of different bounding volumes.
For AABBs, every bounding volume used in an intersection test has to be recomputed

to keep its alignment to the world coordinate axes.
OBBs do not have to recalculate their bounds as they are rotated along with the object,

but when colliding two arbitrarily aligned boxes, it is cheapest to temporarily rotate them
so that one of the boxes is aligned to the world coordinate axes. This rotation has to be
done for every pair of volumes being tested for intersection.

Non-updated AABBs have the advantage of not having to update their bounding vol-
umes. As opposed to OBBs having to calculate a rotation for every intersection test, with
non-updated AABBs this is necessary only once for the two hierarchies, and it can be re-
used in all intersection tests since all bounding volumes in one hierarchy are aligned to the
same axes.

3.4 Separating Axis Theorem

The Separating Axis Theorem follows from the more general Separating Hyperplane Theo-
rem in the case of three dimensions.

The Separating Axis Theorem states that for two convex objects, there exists a plane
separating the objects if and only if they are not intersecting. From this follows that on an
axis perpendicular to this plane, the projections of the two objects will not overlap if and
only if they are not intersecting. This axis is called the separating axis.

For an implementation using the Separating Axis Theorem, there is an unlimited number
of possible separating axes. However, for convex polyhedra, there is a limited number of
separating axes that covers all possible cases of intersection. These cases are edge-edge,
edge-face and face-face collisions. For face-face and face-edge collisions, testing the normals
of the faces as separating axes are enough. For the case of a possible edge-edge collision,
the cross products of all edges of one object and all edges of the other object will cover all
possible intersections.

For testing two boxes, there are fifteen different axes to be tested to be sure of an
intersection, three for each objects normals and nine for the cross products of the edges
(where edges and normals are the same in this case).

If a separating axis is found, it follows that a separating plane exists and the test can
exit early without testing the rest of the possible separating axes. Because of this, it is a
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Figure 3.4: The projections on the separating axis do not overlap if and only if the convex objects
are not intersecting.

good idea to test the axes that are most likely to be a separating axis first. These are often
the normals of the faces, but one can also test the axis that was the separating axis in an
earlier test, as temporal coherency makes it likely that this is a separating axis this time
too.

3.5 Triangle-Triangle Intersection

The triangle-triangle intersection test is vital to triangle mesh collision detection and is
covered here in more detail.

Triangle-triangle intersection can be tested by using the Separating Axis Theorem, but
it can be unnecessarily expensive if no early exit is found, as eleven possible separating axes
have to be tested.

The intersection test described by Möller[19] is much faster in the worst case but also has
some early rejection tests that makes it very good. This intersection test will be described
further below.

The early rejection test is performed by testing the three vertices of one triangle against
the plane of the other triangle. If all vertices are on the same side of the plane, the triangles
must be separated. If they are on both sides, the same test is done but vice versa.

If intersection has not yet been rejected by the above tests, the line defined by the
intersection of the two planes is computed. Because of the earlier tests, the two triangles
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are guaranteed to intersect this line. The intervals of both triangles along this line are
calculated. If and only if these intervals overlap, the triangles are intersecting.

Figure 3.5: The line L defined by the intersection of the two planes the triangles lie in. The two
possible situations are shown, one where the intersections of the triangles on the line overlap each
other and the other where they do not.

The two triangles can also be co-planar, meaning that they lie in the same plane. This
will be noticed in the early rejection test if all vertices of one triangle lie in the plane of the
other. If this is the case, a simple two-dimensional intersection test can be executed.



Chapter 4

General Purpose Programming

on GPUs and OpenCL

Imagine a series of frames being rendered, i.e. a movie being played or a game running. For
this, the GPU has to compute millions of pixels every frame. This very much conforms to
the SIMD (Single Instruction Multiple Data) architecture, and this is what the GPU excels
at.

Figure 4.1: A comparison of peak floating point operations per second between Nvidia GPUs and
Intel CPUs over time.

Since the computing power of a GPU is much higher than that of a CPU (see Figure 4.1),
it has been the interest for many years now to take advantage of that power outside of the
traditional graphics area. This is called General Purpose GPU programming (or GPGPU)
and has evolved very strongly with the massively parallel architectures of the GPUs.

It started with more advanced programmable shaders, where one could bend the graphics
pipeline to do other computations than graphics. Although it was still not focused on doing

17
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general programming, it was now possible. The latest addition to GPGPU programming
is OpenCL[11], a standard focusing on general purpose parallel programming in hetero-
geneous environments. Other resembling languages for GPGPU programming include C
for CUDA[22], developed by Nvidia for use with their GPUs, and DirectCompute[18] from
Microsoft included in DirectX11.

This chapter is divided into two parts, the first part is a general introduction to OpenCL
and the second part deals with optimization of code for use with GPUs using Nvidias CUDA
architecture.

4.1 OpenCL

Since the dawn of computing, most progress on processors has come from increased clock
rate. Due to heat generation, power consumption and hardware design issues, this progres-
sion is no longer possible to the extent it has been before. Instead, more compute units are
added, making parallel programming an issue for most software developers today.

Writing parallel programs for the CPU and GPU can differ a lot, with specific technolo-
gies available only for CPUs, and vendor-specific languages for GPUs.

OpenCL is a new standard for general purpose parallel programming in heterogeneous
environments developed by the Khronos Group.

The Khronos Group is an industry-driven consortium focused on creating and main-
taining free APIs related to graphics and multimedia among other things. Specifications
maintained include ones such as OpenGL, a cross-platform graphics API, and COLLADA,
a file-format for specifying 3D scenes and models.

Initially, Apple started development of OpenCL, but since they wanted a standard ac-
cepted by the industry, they went to the Khronos Group that formed a group consisting of
representatives from the major CPU-, GPU- and software companies. Together they worked
on and constructed the OpenCL Specification [15].

The specification is written with heterogeneity in focus, allowing OpenCL code to compile
on many different devices. A device is hardware with the possibility of running OpenCL
programs, it could be CPUs, GPUs or something in between (such as Intels new Larrabee
architecture [28]).

The goal with OpenCL is to provide a way to write code for any of these hardware
platforms without the need for different languages or other specific tools. It should also
be possible to easily interact with and work concurrently on CPUs and GPUs or multiple
GPUs.

It is up to the companies behind the OpenCL devices to add support for their own
device, as what is given by Khronos is just a specification of the API that must be followed.
This provides an abstraction of the underlying hardware that has not been available to both
GPUs and CPUs before.
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4.1.1 Programming Models

OpenCL is designed for two different programming models, data parallel and task parallel.
The data parallel model is the primary programming model of OpenCL and means that

the same set of instructions are applied to a sequence of data in memory. SIMD (Single
Instruction Multiple Data) is one way of achieving data parallelism, which is the technique
GPUs are based on.

Figure 4.2: Execution following a data parallel model.

The task parallel programming model is a model where different tasks are executed on the
same or separate data. An example is two CPU threads working concurrently on different
tasks. OpenCL implementations do not have to support the task parallel programming
model, but for devices such as CPUs it is the native parallel model.
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4.1.2 Platform Model

The OpenCL platform model consists of a host and possibly multiple devices. An OpenCL
application runs on the host, the host submits commands for the device(s) to execute.

A device can have many compute units, and each compute unit can have many processing
elements.

Figure 4.3: The OpenCL platform model, showing one host with one or more devices, each device
having one or more compute units that in turn each have one or more processing elements.

For a general OpenCL program running on GPU, the CPU is the host that issues com-
mands to the GPU. Todays GPUs have multiple compute units working more or less sepa-
rately.
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4.1.3 Execution Model

A kernel is a function executed on an OpenCL device that is reachable from the host. The
host program specifies for the kernel which data to operate on and manages the kernel’s
execution.

When the host tells a device to execute a kernel, it specifies a work range. The kernel
execution consists of different work-items, each with its own global ID. These global IDs
are specified in either one, two or three dimensions, and they range from zero to the work
range in that dimension minus one. Each work-item executes the same code, but possibly
with different data and possibly with a different execution path in branches and loops.

The work-items are divided into work-groups. Each work-group consists of one or more
work-items, and all work-items in the same work-group must execute on the same compute
unit. This enables efficient sharing of compute unit specific memory. Work-groups are, just
as work-items, specified by a unique ID in the same number of dimensions as the work-items.

The work-items of a work-group are given local IDs, unique for their work-group and
together with the work-group ID unique for all work-items.

Figure 4.4: The OpenCL execution model, showing work-items with their global and local IDs
specified in two dimensions.

4.1.4 Memory Model

Work-items have access to four different memory regions. How these regions are imple-
mented by the OpenCL implementation may differ, but it maps very well to how most
GPUs natively store their data in hardware. The different memory regions are global, local,
constant and private memory.

Global memory can be reached by all work-items of a kernel, as well as by the host
application. This means read and writes from the host are usually done through this memory
region.

Local memory is memory that is only reached by the work-items of a work-group. As
all work-items in a work-group must be executed on the same compute unit, local memory
usually resides close to the compute unit and is thus faster than global memory. The host
can not access local memory.
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Constant memory is much like global memory but must remain constant during kernel
execution. This means caching can be implemented efficiently. Only the host can initialize
data in constant memory.

Private memory is memory that is only accessible by a single work-item. Private memory
is usually located close to each processing element, making it very fast for storing data soon
to be used by the same work-item.

Figure 4.5: The OpenCL memory model and its relation to the platform model. The processing
elements (PEs) have access to private, local, global and constant memory, with differences being
where it is located and who else has access to it.

As can be seen in Figure 4.5 memory regions strongly relate to the division of the platform
model.

4.1.5 OpenCL Programming Language

The OpenCL programming language is a subset of ISO C99 with some extensions, which
makes it familiar to most programmers. As it is a subset, there are some restrictions such
as recursion and function pointers not being supported. The extensions to OpenCL are for
parallelism as well as some built-in data types such as vectors and built-in functions that
are not part of ISO C99.

Listing 4.1 shows an example of the elements of two arrays being added together.

Listing 4.1: OpenCL kernel code adding elements of two arrays together

k e r n e l void add ( g l o b a l const ∗ vector1 ,
g l o b a l const ∗ vector2 , g l o b a l ∗ r e s u l t )

{
int g l o b a l i d = g e t g l o b a l i d ( 0 ) ;
r e s u l t [ g l o b a l i d ] = vector1 [ g l o b a l i d ] + vector2 [ g l o b a l i d ] ;

}
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For a device to execute something like this, the host needs to create a kernel from the
source code and then specify the arguments before commanding the device to execute the
kernel. The host can also specify size of the work-groups before executing.

4.2 Nvidia CUDA Architecture and Optimization

OpenCL is designed for heterogeneous environments, and written code complying to the
specification should compile and run for any hardware that supports OpenCL. However, as
different devices’ hardware work differently, writing optimized code can differ a lot depending
on the hardware to optimize for.

This section will be dedicated to Nvidias CUDA architecture and optimizing OpenCL
code for it[23][25]. CUDA is the GPU architecture used in Nvidias latest graphics cards,
from the GeForce 8 series and onwards. It is not to be confused with C for CUDA, which is
Nvidias programming language utilizing CUDA for development of GPGPU applications.

A brief introduction to the CUDA architecture is first presented, allowing the reader to
get an understanding of why the then presented optimization techniques work and how they
work.

4.2.1 CUDA Architecture

The CUDA architecture maps very well to the OpenCL architecture. A CUDA device con-
sists of a number of Streaming Multiprocessors (SMs), corresponding to OpenCL compute
units.

Each multiprocessor consists of a number of smaller processors able to execute lightweight
threads. One thread handles one OpenCL work-item, and one OpenCL work-group is exe-
cuted as a thread block. The thread blocks are in turn divided in what is called warps. A
warp is a fundamental part of the CUDA architecture, and consists of thirty-two threads.
Warps will be covered further below.

When a thread block executes, all its threads run concurrently on one multiprocessor, but
they are not implicitly synchronized, so if data needs to be shared and synchronized a barrier
instruction needs to be executed. After a thread block is completed, a new block can take its
place on the multiprocessor. As thread blocks are required to be able to run independently,
the scheduler can schedule thread blocks to run on any number of multiprocessors and in
any order. This makes writing code that scales with the number of multiprocessors very
simple.

A multiprocessor consists of eight scalar processors, two special function units, local
memory and, on newer cards, a double precision unit. A scalar processor handles instructions
like add, multiply etc., while the special function units execute instructions such as square
root, sine and cosine. On the multiprocessor there also resides a set of registers, a constant
cache and a texture cache.

Because of the traditional use of GPUs as pure graphics accelerators where floating point
operations are used mostly for pixel operations, blending and such, there has never been a
need for double precision floating point operations. Because of this, scalar processors can
only handle single precision floating point operations. While newer cards have support for
double precision, it is still not nearly as fast as the scalar processors, making speed increases
versus a double precision CPU implementation very difficult to achieve. This might change
in the future, as the coming CUDA architecture, named Fermi, is said to have better support
for double precision arithmetics[24].
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As mentioned above, threads are bundled in groups of thirty-two called warps. A mul-
tiprocessor can only execute one instruction from one warp at a time, but it can handle
multiple warps concurrently by very fast context switching between threads. This allows
the multiprocessor to hide delays such as memory reads/writes. E.g. when issuing a read
instruction, the multiprocessor can switch to another warp while waiting for the read in-
struction to complete.

There are different versions of the CUDA architecture, categorized by a what Nvidia
calls Compute Capability. In general the differences are changes to number of available
registers or multiprocessors, and these do not affect programming much except some pos-
sible fine-tuning. There is however one change in how data is accessed which makes the
newer architectures a bit more forgiving when it comes to optimizing programs. In section
4.2.2 CUDA optimization will be discussed, and CUDA architectures using this newer way
of accessing data will henceforth be referred to as architectures with high compute capa-
bility, while the older architecture versions will be referred to as low compute capability
architectures.

4.2.2 CUDA Optimization

The speed of an implementation on a parallel platform depends entirely on how parallel the
algorithms to be implemented are. This of course holds true for OpenCL as well, and easily
parallelizable algorithms will see the greatest performance benefits.

Amdahl’s law is used in computing to find the maximum possible speedup by parallelizing
a sequential program.

S =
1

(1 − P ) + P

N

(4.1)

Here S is the maximum speedup, N is the number of processors and P is the fraction of
total serial time of the part of the code that can be parallelized. Speedup is defined as

SN =
T1

TN

(4.2)

where T1 is the execution time of the sequential algorithm and TN is the execution time of
the parallel algorithm using N processors.

By approxating N as a very large number, Amdahl’s law can essentially be written as

S =
1

1 − P
(4.3)

It is now easy to see that the greater P is, the greater is the speedup. It can also easily be
seen that even if N is large and P is small, very little speedup can be achieved. Increasing
N in this case also does not affect speedup notably. Thus, to effectively implement an
algorithm using OpenCL, much thought should go into making sure as many parts of the
algorithm as possible are parallelizable.

PCI Express

Today, data between the host CPU and device GPU is being sent over the PCI Express bus.
Unfortunately for us, the PCIe bus bandwidth is low compared to GPU memory bandwidth.
For the best possible performance of the application, it is important to minimize the amount
of data being sent. This may mean running an intermediate part of the application on
GPU instead of sending data to CPU, doing the computation and then sending it back,
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even though the CPU implementation is much faster. Another factor that is important to
overcome the PCIe bandwidth bottle neck is that the more complex the computations on
the data are, the less impact the data transfer part has on the total time. In general one
wants applications with heavy computational complexity and many threads working at the
same time.

Global Memory

With a global memory access comes a 400-600 clock cycle latency [23]. While most other
operations are handled in less than a clock cycle, it is easy to understand that global memory
accesses can play a big role in performance. There are several ways to minimize the role of
these accesses and these will be covered below.

Because threads in the CUDA architecture are very lightweight, switching between
threads is very time efficient. If threads of a warp have started accessing global mem-
ory, the multiprocessor can switch to other warps and switch back when the memory access
has completed. By doing this, the latency of a global memory access can efficiently be
hidden. This is one reason why a big problem set is important, as even though all threads
cannot be serviced at once, you want enough threads to hide as much of this latency as
possible.

Because of the way a CUDA GPU accesses its global memory, there is much to be gained
by making sure the data is accessed in a way that is optimal for the GPU. This is called
coalescing of global memory access, and in short means that threads of a warp that access
data that are close in the global memory can do it in one or a few big memory transactions.
If the data is spread out however, the GPU must do a separate transaction per data object.

First of all, when reading a word, the GPU wants the data to be aligned to either 4, 8 or
16 bytes in the memory. This means that data sent to the global memory should sometimes
be padded in order to achieve this alignment. E.g. a struct of three floats takes 12 bytes
of memory, but to meet the requirement of alignment it should be padded with another 4
bytes that are not used.

Secondly, the highest bandwidth is achieved when memory accesses by threads of a
half-warp (upper or lower 16 threads of a warp) can be coalesced into one access. The
requirements of coalescing access differ between GPUs of high and low compute capability.
Cards with higher compute capabilities can coalesce accesses that low compute capability
cards cannot.

For a data transaction by a card with a CUDA architecture having low compute capa-
bility to be coalesced, the threads must access words of size 4, 8 or 16 bytes. Also, the
k-th thread in a half-warp must access the k-th word in a segment aligned to 16 times the
size of the words being accessed. This can be illustrated in Figure 4.6 , notice that not
all threads need to participate. If above conditions cannot be satisfied it will result in 16
separate transactions.

For GPUs with high compute capability, coalescing can happen more often. The algo-
rithm for accessing memory by threads of a half warp looks like the following:

1. For the lowest numbered active thread, find the memory segment containing the ad-
dress it wants to access. Segment size varies between 32 and 128 bytes depending on
the size of the word to be accessed.

2. Find all other active threads whose address lies in the same segment

3. If the segment is 128 bytes and only the lower or upper part is used, reduce segment
to 64 bytes
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Figure 4.6: Sequential data in global memory being accessed in one coalesced transaction.

4. If the segment is 64 bytes and only the lower or upper part is used, reduce segment to
32 bytes

5. Carry out the access and mark the threads as done

6. Repeat until all threads of a half-warp are done

This means that a permutation of the accesses in Figure 4.6 would result in one coalesced
access for GPUs of high compute capability.

Access to memory by a half-warp that is sequential but not perfectly aligned (an access
with offset) will result in one or more coalesced accesses for a GPU with high compute
capability, while with a low compute capability GPU it will result in a separate access per
thread.

Figure 4.7: Sequential data in global memory being accessed with an offset, resulting in two
coalesced transactions on devices with high compute capability.

Strided accesses (accesses to data that are separated by a number of steps) can also be
coalesced when the compute capability is high, but the longer the stride is between data,
the less coalescing is made and the lower the bandwidth is. An example of a strided access
can be seen in Figure 4.8

All in all it is recommended to design one’s code for low compute capability as that also
benefits high compute capability, but if that is not possible then the extra versatility of high
compute capability can help coalescing of memory access somewhat.
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Figure 4.8: Data in global memory being accessed with a stride of 2. For devices with high compute
capability, the transaction is coalesced, but notice that half the data is not used. The longer the stride
is, the smaller the effective bandwidth becomes.

Local memory latency is much lower than global memory, so under some circumstances,
pre-loading the data into local memory can be more efficient than loading it directly from
global memory. As local memory is shared between a work-group, this holds true when
multiple threads of a work-group want to access the same memory objects repeatedly.

Another time that pre-loading data to local memory might be beneficial is if loads from
global memory cannot be coalesced. By reading the data to local memory in a coalesced
way, and then sorting it in local memory where latency is much lower, faster reads can be
achieved. However, one has to remember that the size of local memory is much smaller than
the size of global memory, and only threads of the same work-group can access the same
local memory, which limits the situations where this can be useful.

Local Memory

As local memory has the limitation of only being usable by threads of the same work-group,
it can be situated close to each multiprocessor, and because of this it is very fast. It can be
as fast as registers if no bank conflicts arise. Being aware of what banks and bank conflicts
are and how to avoid the conflicts is the key to local memory optimization.

To achieve the high bandwidth that local memory has, the memory is divided into banks.
Each bank can be accessed simultaneously, so an access using n banks yields a bandwidth
n times as high as an access using only one bank. If two addresses of a memory access lie
in the same bank, the accesses have to be serialized, resulting in a bank conflict.

Todays CUDA GPUs use 16 banks, and sequential 32-bit words are assigned to sequential
banks. An example of this can be seen in example 4.1

Example 4.1: Sequentials 32-bit words and their assigned banks

word 0 → bank 0
word 1 → bank 1
...
word 15 → bank 15
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word 16 → bank 0

A warp accessing local memory divides the access into two, one for each half-warp. As
a half-warp consists of 16 threads, the same as the number of banks, all threads of a half-
warp can access local memory simultaneously as long as they use separate banks. Another
consequence is that there can be no bank conflicts between two threads that are not in the
same half-warp.

Coalescing is straightforward if data to be accessed is aligned and each word is 32 bits.

Figure 4.9: Sequential data in local memory accessed, resulting in each thread using separate
memory banks.

However, it is common to access data using a stride, for example in any tree based
algorithm. In Figure 4.10 can be seen that the larger the stride is, the more bank conflicts
there are.

Figure 4.10: Data in local memory accessed with a stride of 2, even numbered banks are now
servicing two threads while odd banks are idle, resulting in a two-way bank conflict.

Fortunately, the bank conflicts in Figure 4.10 can be resolved by padding the local
memory by one for every 16 words. Every thread of a warp will now use a separate bank.
This solution works well for any algorithm using striding. An example of strides of 2 can
be seen in Figure 4.11. For an access of local memory of stride 3 or any other odd number,
every threads access will be handled by a separate bank without any further intervention.
A stride of 4 creates a bank conflict where only 4 banks out of the 16 are used. Padding
every 16 words with a seventeenth word will solve the conflicts as all threads are serviced
by separate banks

Figure 4.11: Data in local memory accessed with a stride of 2, data is now padded so that for
every 16th word a padding is inserted, resulting in slightly more memory usage but resolving bank
conflicts.
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The exception to the rule of bank conflicts is when all threads of a half-warp access
the same 32-bit word (and thus the same bank). A broadcast is then issued, servicing all
threads simultaneously.

Constant memory

Constant memory is accessible to all threads of an OpenCL application, so it has the same
bandwidth as global memory. However, it is cached, which means that this cost is only
applied in case of a cache miss, otherwise a read from the constant cache is executed.
Constant cache lies on each multiprocessor and is much faster than global memory.

The downside is that constant memory is very small, a total of 64KB on todays CUDA
architectures, so one must be aware of how much data can be placed here.

Texture memory

Texture memory resides in global memory, but as with constant memory, it is cached on the
multiprocessor so a global read is only issued on a cache miss. The texture cache is optimized
for 2D locality, and it will boast very good performance compared to global memory if there
is such locality in the data.

Texture memory is of course primarily used for textures and images, and has a few
special abilities for use in those areas such as image filtering and normalized coordinates,
but it can also be valuable for use with more general data.

Data exhibiting the 2D locality that texture memory is optimized for will likely receive a
big increase in bandwidth. Texture memory can also be used to hide the issues of uncoalesced
access to global memory, but the improvement here depends heavily on whether any locality
can be exposed, and one would likely have try to both approaches to find which one is the
best.

The texture cache is not kept coherent between consecutive reads and writes during the
same kernel call. This means that reads occurring after a write might be dirty, and the
result of a read of the same address as the previous write is undefined. Sometimes an extra
buffer texture can be utilized to write to. Another solution is to divide the kernel into
smaller kernels.

Occupancy

Calibrating arguments such as work-group size to balance the work-load of each multipro-
cessor and making sure the multiprocessors always have something to do is very important.

Occupancy is the ratio of active warps per multiprocessor to the maximum number of
active warps. As mentioned before, there are latencies in memory accesses. There is also a
latency in register usage if one wants to read from a register directly after writing to it. Both
these latencies can be hidden by switching to another warp that is waiting to be executed,
which makes a high occupancy desired.

Occupancy depends on the number of threads, registers and shared memory used per
work-group. The scheduler will try to place as many work-groups per multiprocessor as
possible. Unless occupancy is 100% (and thus the maximum number of threads per multi-
processor is reached), it is limited by either a work-group size that makes adding another
work-group to the multiprocessor impossible, or registers/shared memory that will not be
enough for another work-group.

Occupancy can easily be calculated from knowledge of the GPU’s maximum threads per
multiprocessor, available registers and shared memory as well as specifics of the program



30 Chapter 4. General Purpose Programming on GPUs and OpenCL

such as registers used, shared memory used and threads per work-group. Nvidia provides an
occupancy calculator in the form of an excel spreadsheet, that not only calculates occupancy
for the current setup but also for other values of the variable arguments, making it easier
to find an optimal balance to use the most of the hardware’s resources.

Work-Group Size

Choosing an appropriate work-group size is mostly a matter of testing in order to find what
works best for the particular execution, but a few rules of thumb can be given. Work-group
size should always be a multiple of warp size (where warp size is 32 in the current CUDA
architectures), this is because threads of a warp work very closely together, and not filling
up a warp will leave computational power untapped. A bigger work-group size is generally a
good idea, unless occupancy takes a big hit from it, but if the problem size is not big enough,
one could end up with very few work-groups per multiprocessor, or even multiprocessors
not assigned to any work-group. Naturally, a smaller work-group size would then result
in more work-groups per multiprocessor. The reason why work-groups per multiprocessor
should be more than one is because a whole work-group might be waiting for some execution
to complete. In that case, letting other work-groups execute will ensure making use of all
possible executional power.

Instructions

There are many alternative instructions to use when speed is preferred over accuracy. Usage
of these can give a very good performance boost, but since these optimizations are quite
minor in terms of what is changed, it is recommended to postpone them until the more
high-level optimizations above are done.

Not all of these optimizations will be named, rather a few are presented as examples of
what can be optimized.

One such optimization lets the compiler group an instruction such as a ∗ b + c into
one instead of a separate multiply followed by an addition instruction. However, in this
optimized instruction, the result of the multiply is truncated and possibly valuable precision
might be lost.

Costly operations such as integer division and modulo operations should be avoided if
possible, and they can sometimes be replaced by bitwise operations.

There is a native math library for operations such as native sin, native cos and
native pow. These operations are much faster than their normal versions, but do not have
the accuracy that the standard ones do.

Warp branching

As mentioned briefly above, threads within the same warp work together. All threads of
a warp work in a SIMD (Single Instruction Multiple Data) fashion, letting one instruction
at a time execute. The data used by the instruction can differ, but the instruction must
be the same. This means that if a branch (such as an if statement or while loop) results
in two threads of the same warp diverging into different execution paths, one thread has to
idle while the other one executes its instruction and vice versa, until they converge onto the
same path again.

Different execution paths of threads belonging to the same warp can severely hamper
performance and as such, code should be designed to avoid branching as much as possible.
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Implementation

5.1 Methods

As a first step, before deciding on any implementation specifics, existing implementations
of collision detection engines were analysed. This gave us knowledge about how others had
made their designs and how they had overcome problems, which was helpful when deciding
on upcoming design choices.

In order to get a good understanding of the problems ahead, numerous articles, papers
and parts of books were read, covering fields of interest to the project such as bounding
volume hierarchies, triangle-triangle intersection tests, GPU programming and contact re-
duction.

An implementation on CPU using C++ was built for use with AgX, the physics engine
developed at Algoryx Simulations. Finally, a GPU implementations, also integrated with
AgX, was implemented using OpenCL and optimized for Nvidia CUDA architectures. The
implementations of near phase and middle phase collision detection on GPU were integrated
into AgX (running on CPU) as stand alone modules with no direct interaction between
them. Any interaction is done via the OpenCL host running in AgX. This enables the user
to choose between using any combination of CPU and GPU implementations, e.g. running
middle phase on CPU and then near phase on GPU.

Because of a lack of experience with GPU programming, tutorials and examples on
OpenCL and general GPU programming were first studied before starting on the actual
GPU implementations.

The study of existing collision detection engines and the CPU implementation was done
in collaboration with an employee at Algoryx Simulation.

5.2 Study of Previous Work

As triangle mesh collision detection has been implemented in several other physics engines
and stand-alone collision detection engines, the first step was to examine and compare
available implementations.

A listing of physics engines and collision detection engines were collected, ranging from
small one man hobby projects to university research projects to big commercial engines.

The purpose of the first step was to narrow the number of engines down to a number of
engines that should undergo more rigorous testing. It was essentially a quick way of seeing
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which engines were mature enough to actually merit a deeper study.

Test Phase 1

As a first test, a simple scene of two triangulated spheres (spheres made up of small triangles,
so not exactly spherical) with a slight intersection was defined. The scene was implemented
in all engines, and the results were examined.

The interesting observations from such a simple test was seeing how many contacts were
returned, what the contact data looked like (position, normal and distance) and a quick
glance at the structure and maturity of code in the cases where this was possible.

Collision engines using continuous collision detection (CCD) were also included in the
test. They rely on information such as linear and angular velocity of non-colliding objects to
calculate the time of impact[27]. Because of these requirements, the above test scene with
two triangulated spheres in intersection could not be used. Instead a similar scene was used,
starting with two non-colliding spheric shapes and information about their movements. In
the end, the decision was taken to not use CCD for collision detection. This was based on
the fact that there are known problems with scalability of CCD implementations when more
objects are included and that AgX would need large structural changes for CCD to be a
viable option when implementing the triangle mesh collision detection.

Test Phase 2

As a second test phase, a number of more complex test scenes were defined in order to test
bounding volume traversal performance, bounding volume buildup performance, contact
reduction, contact quality and scaling.

These tests focused mostly on performance, and thus, timings of the different stages in
the different test scenes were compared. As different engines used different techniques in
terms of bounding volumes, triangle-triangle collision tests etc., only a rough estimate on
performance of the different techniques could be made.

Examination of source code for the engines where possible also revealed information
about how the bounding volume hierarchy was structured, if and how contact reduction was
implemented as well as structuring of data and how contacts were created.

Results

Since the tests described above were mostly for getting an understanding of what was out
there in terms of both products and behaviour of commonly used algorithms in an actual
implementation, no results will be published. They do not contain enough conclusions to be
appropriate for a scientific report, as, e.g., different engines put computations in different
parts of code and some engines use double precision floats while others use single precision.

Despite these facts, some of the tests and observations gave good indications of possible
solutions. Inspection of algorithms used by well-performing engines with an open source
code was especially useful.

5.3 CPU Implementation

The CPU implementation of the triangle mesh collision detection was implemented as a part
of the collision detection library in AgX, the physics engine developed at Algoryx Simulation.

This resulted in a number of benefits such as easy to use visualization of both objects
and debug data (contact normals and positions) as well as a physics engine that could use
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the information from the collision detection so that one could test the collision detection
in a running simulation environment. Also, things like data types and the ability to load
object files was available and easy to use.

There were however some disadvantages to using AgX. The core design of the engine
was static, and changing things here would require a lot of time to make sure everything
still worked in other parts of the engine that were not involved in this project. This became
apparent when considering using more than one thread in middle and near phase collision
detection. AgX utilizes parallelization using CPU threads, but on a per object-object col-
lision level. This would mean that multiple triangle mesh objects colliding would result in
a significant speedup, while two large triangle mesh objects colliding would only use one
thread.

The advantages however heavily outweighed the disadvantages, as it lead to much faster
development and testing, resulting in time that could be used for more development and
fine tuning.

5.3.1 Triangle Mesh Validation

For a simulation to work properly, center of mass, volume and inertia tensor is calculated
for each object. For an accurate calculation of this, it is important that the meshes used
are manifold. A manifold mesh is a mesh where each edge must be shared by exactly two
triangles. This means that the mesh must be closed (that it must have an inside and outside
and that there can be no holes). If a mesh is not closed, there are edges that are only used by
one triangle. There can also be more than two triangles sharing an edge in a non-manifold
mesh, having an impact on the calculation of mass properties.

By noticing that each face has exactly three edges and that each edge is shared by exactly
two faces, the relationship E = 3F/2 should hold for all edges(E) and faces(F ). If this is
not true, the mesh cannot be a manifold.

Another important test that must be done is to make sure that all faces span a plane, i.e.
that no face has all its vertices on a line. The collision detection requires the computation
of the triangles planes to calculate a normal and penetration depth, which will of course fail
if the triangles planes cannot be calculated.

5.3.2 Bounding Volume Hierarchy Construction

The bounding volumes used are non-updated Axis Aligned Bounding Boxes. When the
Bounding Volume Hierarchy is constructed, every triangle of the object is enclosed by its
own bounding volume.

The bounding volume hierarchy is built top-down by dividing this set of bounding vol-
umes into smaller and smaller parts. This is not a novel approach, it and alternative
approaches are described in Christer Ericsons book[5] Section 6.2.

1. Create a bounding volume for each triangle, resulting in a set of bounding volumes.
This is the bounding volume set for the root node of the hierarchy.

2. If the set of bounding volumes has more than one member, it does not correspond to
a leaf node and we continue splitting.

(a) Calculate a bounding volume enclosing the whole set. This will be the bounding
volume used in the hierarchy for this node.

(b) Calculate splitting axis chosen as the coordinate axis with greatest variance.
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(c) Calculate splitting position chosen as the mean value of the bounding volume
centers.

(d) Sort the set of bounding volumes based on splitting position into two sets.

(e) For the two subsets, go back to 2.

Unless the set of bounding volumes are just one, which means it is a leaf node, a splitting
axis is calculated along which the split should be made. The splitting axis is chosen as the
one of the three primary axes with the greatest variance of bounding box position.

For the next step, a splitting position on the axis is chosen. The splitting position is the
position where boxes positioned on one side become one subtree and boxes on the other side
become another. This splitting position is chosen as the mean value of the boxes positions
along the previously selected axis.

Now the tree is enclosed by a bounding volume, and both subtrees created earlier are
divided in the same way as described above. This goes on recursively until only one of the
original boxes that enclose a single triangle are part of every subtree.

5.3.3 Middle Phase Collision Detection

From the initial study of existing collision detection engines, appreciation for the engine
GImpact[17], nowadays developed and integrated with Bullet Physics engine[4], was found.
The speed, design choices and relatively good looking code were the three primary advan-
tages.

This appreciation, along with a license that enabled its usage in commercial products
and no intentions to re-invent the wheel, led to the decision to make use of parts of GImpact
for collision detection. More specifically for middle phase collision detection.

Integration of GImpact

Integration of GImpact was mostly about understanding the GImpact code in order to
integrate it as effectively as possible, both considering time taken to do the integration and
the quality of the final result.

As the integration of GImpact within Bullet Physics was coupled quite hard, effort had
to be put into only porting exactly what was needed and make it work without Bullet
Physics.

Because we did not use GImpact as a library but integrated the code for middle phase,
it more or less resulted in writing our own implementation, heavily inspired by GImpact.

Hierarchy and Hierarchy Traversal Implementations

For the hierarchy traversal, three different ways to implement and traverse the hierarchy
were tested. These three implementations have previously been tested and discussed in a
paper by Terdiman[31]. The first two were available in GImpact, but the third had to be
implemented before being tested.

The first one can be called the standard implementation. Pseudocode of this algorithm
can be seen in algorithm 5.1. The implementation proceeds down the hierarchy by traversing
both objects. In the first iteration, two bounding volumes (the bounding volumes enclosing
each object) are tested against each other. If they do not collide, no triangles inside the
two bounding volumes can collide with a triangle in the other volume. If they do collide
however, one moves down one level in the objects binary hierarchy trees. We now have two
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bounding volumes for each object, and they should be tested against the bounding volumes
of the other object. This results in four new collision tests.

For each collision of bounding volumes, there are two possible paths to execute. If the
collision returns a negative result, no triangles inside the two bounding volumes can collide,
and as such, no further testing of the bounding volumes children is necessary. If the collision
however is positive, the nodes status has to be examined.

There are three different execution paths when examining the two nodes statuses de-
pending on whether they are leaf nodes or not.

1. If the two nodes are both leaf nodes, each node represent one triangle and the triangles
are added to the list of triangles possibly colliding by the middle phase algorithm.

2. If one of the two nodes is a leaf node but the other is not, traversing of the node that
is not a leaf must continue. Two new collision tests are issued, with the leaf node
colliding with the two children of the non-leaf node.

3. If none of the two nodes are leaf nodes, both children of the two nodes are tested
against each other, resulting in four new collision tests.

The algorithm continues recursively until the traversing of the tree returns.

Algorithm 5.1 FindCollisionPairs(bvh1, bvh2)

if not BoxBoxCollide(bvh1, bvh2) then

print return

end if

if IsLeafNode(bvh1) then

if IsLeafNode(bvh2) then

AddCollisionPair(bvh1, bvh2)
else

FindCollisionPairs(bvh1, GetRightNode(bvh2))
FindCollisionPairs(bvh1, GetLeftNode(bvh2))

end if

else

if IsLeafNode(bvh2) then

FindCollisionPairs(GetRightNode(bvh1), bvh2)
FindCollisionPairs(GetLeftNode(bvh1), bvh2)

else

FindCollisionPairs(GetRightNode(bvh1), GetRightNode(bvh2))
FindCollisionPairs(GetRightNode(bvh1), GetLeftNode(bvh2))
FindCollisionPairs(GetLeftNode(bvh1), GetRightNode(bvh2))
FindCollisionPairs(GetLeftNode(bvh1), GetLeftNode(bvh2))

end if

end if

The second implementation is algorithmically identical to the standard implementation,
but varies some in how data is stored and accessed. It is called quantized bounding volume
hierarchy, and is based on bounding volumes being quantized to short integers when created,
which saves space in memory. This improvement in memory effectiveness can overcome the
extra cost of unquantizing the data when used for collision detection.

The third implementation’s algorithm differs from the standard implementation. The
idea is that by not having bounding volumes for leaf nodes, memory footprint can be halved
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(as the size of every depth doubles in the binary tree). Instead, the triangles are used in
collision checks. This means that if two leaf nodes are to be tested for collision, we skip
the box-box test that would occur in the standard implementation, and move straight on
to triangle-triangle test. In the case of a leaf node being tested against a non-leaf node, a
box-triangle test has to be issued.

For the final implementation, the standard algorithm was chosen based on results found
in chapter 6.

5.3.4 Near Phase Collision Detection

After middle phase collision detection, a list of pairs of possibly colliding triangles is returned.
These triangles have a high probability of colliding as their bounding volumes are colliding,
but an exact test has to be made. During this exact test, contact information (points,
normals and depths) also has to be calculated and returned.

As described in chapter 2, the near phase collision detection can be divided into two
categories, intersection test and intersection find. This implementation uses both. As the
intersection test step provides many possible early-outs in case there is no intersection, it is
executed first and then contact information is gathered only if the two triangles intersect.

Triangle-Triangle Intersection Test

The intersection test used was an implementation of the algorithm described in Section 3.5.

Generating Contacts

Generating contacts for triangle-triangle intersections was the most difficult part, and a lot
of time was spent on getting this working. For a general collision of two convex shapes,
contact point, normal and depth are well defined. The contact point is the point at the time
of impact where collision occurs first and the normal is the normal of a plane separating
the two objects so that they lie on each side of the plane. Contact depth at impact is zero.
For discretized collision detection, contact point, normal and depth are not as well defined.
When you cannot monitor the collisions continuously, objects are bound to be reported
colliding after the initial time of impact. Contact depth is therefore used to report how
much the objects are colliding, and is generally defined as the depth of the collision along
the contact normal. Because of this discretization of the collision detection, contact point
and normal cannot be computed as per definition. They must instead be estimated, and
this can be an issue if the penetrations are large.

It is in the area of contact generation that most triangle-triangle collision detection
engines struggle. As a consequence of bad contacts the behaviour of the physics simulation
using them becomes error prone, resulting in misbehaving simulations.

The problem is that, as collision detection is computed on a per triangle pair basis, they
do not have any information about the structure of the rest of the object. These problems
are described more thorougly below.

To generate a contact, the two triangles normals are first computed. These triangles are
considered to have one side that is in and one side that is out, otherwise the sign of the
normal cannot be decided. The distance to move one triangle out of collision along the other
triangle’s normal is then measured for both triangles. We want to separate the triangles
moving them as little as possible, so the triangle moving the least length along the other
triangle’s normal is chosen. This length is used as depth of the contact, while the other
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triangle’s normal is used as contact normal and a point shared by the triangles are chosen
as the contact point.

Figure 5.1: 2-dimensional simplification of two triangles intersecting. The depths for both triangles
are calculated as the distance to move the triangle along the other triangles normal to separation.
Here it can be seen how depth1 is smaller than depth2, which means depth1 is chosen as the depth
together with normal2 as the normal.

To remove unnecessary and possibly misleading contacts, the distance to separate the
triangles in the direction of the line they share (see the intersection in Figure 5.1, in three
dimensions this is a line) is also computed. If this distance is smaller than the depth of the
already computed contact, the contact is discarded. This way triangle intersections that
most likely do not tell much about the overall collision state of the objects are ignored,
letting neighbouring intersections handle it instead.

Problems of Contact Generation

Soon after implementing a first version of near phase collision detection, we saw that finding
contact points that would solve a collision between two generic triangle mesh objects based
on information from triangle-triangle contacts would be very difficult.

In Figure 5.2 one can see a couple of contacts pointing to the right. For a box colliding
on a plane like this, by seeing it on an object level, the fastest way out of the collision would
be upwards. However, a few triangle-triangle collisions are easiest separated by moving
the triangle belonging to the box to the right. This inconsistency of contacts is a difficult
problem to solve, and many different solutions where considered.

Looking at normals and giving all normals the value of the most common one would give
a satisfactory result in the example from Figure 5.2, but for objects with non-flat surfaces
this would do more harm than good, as we want to keep the different normals such objects
would generate.

Continuous collision detection was also considered (see Section 2.2.1). This means that
the state of the colliding objects in the last frame is compared to the current state. The
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Figure 5.2: A triangulated box colliding with a triangulated plane. Due to the placement of
individual triangles, some normals point to the right while they ideally should point downwards.

trajectory of the objects can then be computed and positions of the object at the time of
collision can be found. By doing this on a triangle-triangle level, one could find the entry
point of the collision and more easily compute a correct normal. However, in order to
implement this, it would need big changes to many core parts of AgX. As AgX allows small
penetrations, and generally does not solve them in less than three iterations, there would
be times where the last frame already was in collision, and then this method would not be
able to help.

Another possible solution would be using an algorithm for solving collisions between
convex objects. However, as we do not want to be restricted to convex objects, these
algorithms can not be applied directly. One solution to this is dividing a non-convex objects
into several smaller convex objects. This is called convex decomposition (see Section 3.1.4).
Once the object is divided into convex pieces, an algorithm for convex objects can be applied.
However, these algorithms only return one contact per collision, and will when used in a
physics engine result in objects having big difficulties to reach a resting state. To counter
this, the idea that came up was to first divide objects into convex pieces and collide these
convex objects. After this, the objects would be collided on a triangle-triangle level, but
now with the normal of the convex collision detection as the direction in which to separate
the triangles. This, however, would result in a very complex implementation that would
take a lot more time to execute. Other drawbacks of this idea was that problems like those
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depicted in Figure 5.3 would occur, and on top of that, the collision algorithms for convex
objects that are available are highly recursive and thus not suitable for parallelization.

Figure 5.3: By dividing the concave object into convex pieces, the fastest way to separate the box
and the convex piece is along the normal of the newly created side. This results in a contact that
while attempting to solve the collision with one of the convex pieces, it does so in a direction that
should not be possible.

In the end, the solution implemented first and described above, where triangles are tested
individually against each other to generate contact data, was used. It proved to be stable
and correct for the most cases, and in the cases of returning unwanted contacts they did
not result in big flaws in the simulations.

5.3.5 Contact Reduction

Reducing the number of contacts to a smaller number that can still represent the collision
can be very important. The physics engine solves a collision by doing complicated matrix
computations. Some of these matrices grow exponentially with the number of collisions, and
so does the time to solve them. As few contacts as possible is very important for solvers.
They can even fail to solve a collision if they are fed too many contacts.

Although contact reduction is not a part of triangle mesh collision detection, such col-
lisions can result in a huge number of contacts. Contact reduction is needed for triangle
mesh collision detection to be of any use to the physics engine of a real time simulation.

The ideal solution is that the reduced contacts form the minimal convex cone of all
contacts. A convex cone is a subset of a vector space that is closed under linear combinations
with positive coefficients, closed meaning that any such linear combination will also lie in
the same subset. In our problem, the minimal convex cone consists of the reduced contacts.
The contacts removed in the reduction are all linear combinations of the set of reduced
contacts.

To solve this problem in real time proved to be an incredible challenge, and in the end
we could not find a solution that created the minimal convex cone. However, we came up
with an algorithm that we call binning, and it is a time efficient replacement at the loss of
some accuracy. The algorithm puts contacts in different bins in a 6-dimensional hypercube,
allowing only one contact per bin. The idea is a modification of a binning method described
in Game Programming Gems 4[20], but where it was used in three dimensions for normals
only. The six dimensions of the cube corresponds to the positions and normals of contacts.
The bin resolution decides how fine-grained the reduction should be, a higher resolution
means more bins and reduces less contacts than a cube with lower bin resolution.

If two contacts land in the same bin, the one with the longest distance to the origin
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Figure 5.4: A 3-dimensional cube with a bin resolution of 3 in each dimension. For contact
reduction a 6-dimensional cube is used, but is more difficult to visualize. Contacts are assigned to
bins, where only one contact can be present in each bin.

is chosen and the other one is discarded. The contact that remains most likely dominates
the discarded contact, meaning that the discarded contact has no impact on the simulation
with the other one present. While normals are vectors and because of this can be said to
always start from the origin, this is not true for positions. These had to be scaled so that
all positions fit in a unit cube. This way both the contacts and normals are centered around
the origin and the 6-dimensional cube can be used efficiently.

The outcome is a contact reduction algorithm where contacts with similar positions and
normals are reduced significantly. Although it is not a perfect reduction of contacts in theory
because contacts affecting the simulation can be discarded while contacts not affecting it
are likely to be included, it behaves very well in practice.

5.4 GPU Implementation

An important aspect of this project was evaluating whether an implementation of triangle
mesh collision detection could be implemented to run on a GPU with favourable speeds as
a result.

This was done using OpenCL and optimized for Nvidia GPUs using the CUDA archi-
tecture. The decision to use Nvidia hardware was simple. OpenCL is still very new, and at
the start of the project the only implementation of OpenCL supporting GPUs was Nvidia’s.

Although the optimization is very much oriented at Nvidia GPUs, the general ideas and
algorithms should work well and be applicable to any modern massively parallel architecture.

The following sections 5.4.1 and 5.4.2 are presented in the order of implementation rather
than in the order of execution in the collision detection pipeline.
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5.4.1 Near Phase

With no prior experience to GPU programming, we chose to implement near phase collision
detection first. As near phase consists of a number of triangle pairs where each pair is going
through the same computations with no interaction between different pairs, it is easily
parallelized and was thus a good starting point.

Algorithm 5.2 Near Phase on CPU

for each pair of triangles do

TriangleTriangleTest(pair)
end for

Algorithm 5.3 Near Phase on GPU

for all pairs of triangles in parallel do

TriangleTriangleTest(pair)
end for

The near phase calculations are almost identical to the ones of the CPU implementation
in Section 5.3.4, and because of that only the differences will be covered here.

The main problem with implementation of an algorithm like near phase for triangles
is that it contains many branches and early exits. These branches will result in different
threads running different execution paths. As can be recalled from chapter 4.2.2, threads of
the same warp running different execution paths will result in serial execution. This means
that, as different branching between intersection test and intersection find is very likely,
triangle pairs that are quickly found not to be colliding will still take up computational
power when other threads of the same warp keeps executing.

Because of this, the decision was made to completely skip the initial parts of the triangle-
triangle intersection test. Instead, the computation of contact points to be added to the
simulation is done for all triangle pairs, where this would only be done for triangles that
have been flagged as intersecting in the CPU implementation. The contact generation
routine is the same as in the CPU implementation, and in the case of a triangle-triangle
pair not intersecting, it will not find any contacts. The reason you do not use only this
contact generation routine for CPU is because it is much more costly than starting with
the relatively cheap intersection test. On the GPU however, with the branching of threads,
executing only this routine is favourable unless all 32 threads of a warp are non-intersecting,
something that seems highly unlikely to be true for a majority of warps, given that the
triangles bounding volumes are intersecting.

For fetching triangle data to the triangle-triangle intersection routine, two different de-
signs were possible. One was to send all triangle data once to the GPU at initialization of
the program. When running the intersection kernel, only the indices of the triangles to be
tested have to be sent via the slow PCI Express bus. On the downside, triangle data reads
will most likely be uncoalesced, as there will be no correlation in where the triangle data is
located and which indices are sent. Also, GPU memory is a hard constraint, and the number
of triangles that can be stored on the GPU will quite quickly be reached if many detailed
objects are used in the simulation, especially if the GPU is also used for other computations
that need memory. Because of these issues, the decision was made to send only the triangles
used in every time step to the GPU. This enables easy coalescing of memory access and
GPU memory usage is lowered, at the cost of having to send more data via the PCI Express
bus.
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After triangle-triangle intersection, the results are sent to the host CPU to be used by
the physics engines solver.

5.4.2 Middle Phase

Implementing tree traversal in a parallel environment required quite a lot of time, as it is
not a parallel algorithm by default and it is not simple to make parallel. As detailed in
Section 5.3.3, the algorithm executes one bounding volume intersection test at a time and
continues recursively until the two bounding volume hierarchy trees have been traversed.

In order to parallelize this, the idea was to divide the algorithm into one step for each
depth of the hierarchies, as the bounding volume intersections of each depth can be computed
independently of the other bounding volume intersections on the same depth.

Figure 5.5: Two bounding volume hierarchies colliding in a way so that triangle t3 in object A
intersects with triangle t5 in object B. Note how node A5 reports as possibly colliding with node B2.
This is a false intersection that will be handled by near phase, and is generated because the triangles
bounding volumes intersect.

The main issue behind why the structure of the GPU solution looks like it does, is that
after testing two arrays of bounding volumes for intersection, we must fill these arrays with
new bounding volumes to intersect in the next iteration. As a single thread has no explicit
way of knowing the result of other threads, it means the implementation does not know
where in the arrays to put the bounding volumes for the next iterations.

This is where prefix sum comes in. It is used in the implementation to sort data based
on a binary condition. E.g. when preparing for the next iteration, some threads have pro-
cessed bounding volumes that are not intersecting and should therefore not spawn any new
intersection tests of its children, while other threads have processed intersecting bounding
volumes and should. In this situation, the thread n will not know where in the array of
bounding volumes to be executed in the next iteration to put its data without knowing how
many of the previous threads also wants to spawn new tests. To get this knowledge, some
kind of sorting has to be done. If thread n knows that all threads with an id lower than its
own id also had intersecting bounding volumes and want to execute new tests in the next
iteration, it will know where to put its data. Prefix sum can be used here instead of a more
complex sort algorithm because the sorting is done based on a condition that is true or false
rather than on data having a wide range of possible values.



5.4. GPU Implementation 43

Prefix Sum

The prefix sum algorithm takes an array of elements and calculates a new array containing
elements that are the sum of all elements of the original array with an index lower than its
own (exclusive prefix sum) or lower or equal to its own (inclusive prefix sum). The prefix
algorithm is not restricted to the add operation, but can be used with e.g. logical AND too.

p = [a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + a2 + . . . + an] (5.1)

Example: Inclusive prefix sum of array

[1 2 3 4 5 6 7 8]

returns
[1 3 6 10 15 21 28 36]

A sequential implementation of prefix sum is simple, just iterate over the input array
and keep adding the elements together, storing the intermediate results in a results array.
A parallel implementation must work a bit differently because it cannot use the results of
the previous iteration as the sequential implementation does[14].

Algorithm 5.4 Parallel prefix sum

for d = 0 to log2n − 1 do

for all k in [0, n − 1] in parallel do

if k ≥ 2d then

x[k] = x[k − 2d] + x[k]
end if

end for

end for
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Figure 5.6: An example of parallel prefix sum using algorithm 5.4.

The algorithm described in algorithm 5.4 was implemented in OpenCL and an example
is depicted in Figure 5.6. For better performance, data was copied from global memory
to local memory before computations, and then copied back before returning the results.
Usage of local memory is generally preferred over global memory when multiple accesses are
made, as in this case with log2n iterations.

Because local memory is local to the work-group, the maximum size of the work-group
limited the number of elements that could be summed. This was solved by dividing the
prefix sum calculation in several passes. By first dividing the elements in groups that were
not limited by work-group size, you can then do another pass of prefix sum of the last
elements of each group. The resulting elements of the second prefix sum pass can then be
added to all the elements in the corresponding groups (depicted in Figure 5.7).
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Figure 5.7: An example of parallel prefix sum limited by a work-group size of 4, making two passes
needed. For the second pass, the last element of each work-group is taken and the result is added to
all elements of work-group e + 1.

Prefix Sum Usage

By initializing an array with zeros and ones, depending on a binary condition, i.e. bounding
volumes intersecting or not, and then doing inclusive prefix sum over said array, data can
be sorted depending on whether they fulfill the condition or not.

An example of this can be seen in Figure 5.8. Notice how a comparison of element e and
e − 1 can tell whether the initial value was a zero or one. Together with this information
and the value of element e, elements originally having a one will know how many ones are
preceding itself.

Figure 5.8: An example of how the parallel prefix sum implemented can be used in our application.
From the output of this prefix sum sorting the ones and zeros is possible in one iteration.

Middle Phase Algorithm

The bounding volume hierarchy traversal was implemented as one iteration for every depth
in the bounding volume hierarchy trees. Each iteration consists of many small steps, imple-
mented as separate kernels.
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The initial data is two arrays of bounding volumes, one array for each bounding volume
hierarchy. Every element is to be tested for intersection against the corresponding element
of the other array. There are also two arrays for results, one for each hierarchy. They
will, during the execution of the algorithm, be filled with triangles whose bounding volumes
intersect. Below is a list of the steps to complete the bounding volume hierarchy traversal.

1. Test bounding volumes for intersection.

2. Compute prefix sum of results from bounding volume intersection.

3. Move data of colliding bounding volumes to front of input arrays.

4. Test if both bounding volumes are leaf nodes or not.

5. Compute prefix sum of results from leaf-leaf test.

6. Move leaf-leaf data to results arrays and move non leaf-leaf data to front of input
arrays.

7. Test if both bounding volumes are noleaf nodes.

8. Compute prefix sum of results from noleaf node test.

9. Prepare for next iteration by adding new bounding volumes to input arrays. Noleaf-
noleaf data spawns four new tests while noleaf-leaf data spawns two new tests.

10. Return if input arrays are empty, otherwise go to top again.

For this implementation to realize full speeds, a big problem set with thousands of simul-
taneous bounding volumes possibly intersecting at each depth is important. The starting
iteration only contains the two root nodes, and in best case they grow by a factor of four
for every step. To remove this waste of computational power, the two hierarchies are first
traversed down a number of steps without being tested. On a set depth, all nodes on said
depths are tested against the nodes of the other hierarchy, e.g starting with 4096 intersection
tests at depth 6. Intersection tests of this first iteration will have much lower intersection
rates as their parent nodes have not been tested, but this is outweighed by skipping the first
couple of iterations where the problem size has not yet grown.

Data Handling

As with the near phase implementation, there is the decision to either store the data used
in every step of the simulation permanently on the GPU or send it via the PCI Express bus
for every step. In this case, the data is the bounding volume hierarchies for every object.
In contrast to the near phase algorithm, one can not know which parts of the data that
are needed, as this is decided when traversing the hierarchies. Thus, coalescing of memory
access will not be possible. Instead the decision lies entirely on whether you want to favour
speed or smaller memory footprint. For this implementation, the choice was to favour a
smaller memory footprint.

The result of middle phase, indices of triangles to collide in near phase, is sent to the
host CPU. This is done to facilitate the choice of near phase algorithm, either run on CPU
or GPU.
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Results

To compare the different implementations relative to each other a number of tests were
defined. Two Stanford armadillos[30] were positioned to be colliding. Both objects were
specified as static, meaning that they do not move in between the time steps. This makes it
possible to achieve more accurate timings by taking the average of a number of iterations.

Figure 6.1: An example of a test scene with two armadillo objects colliding. These two objects are
armadillo 3 objects, each consisting of 27 674 triangles.

To test for different scaling of problem sizes, armadillo objects built by different number
of triangles were used. They originate from the same object but with varying quality.

The results below were acquired from test runs on a system consisting of an Intel Core2

47
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Object name Number of triangles
armadillo 345 944
armadillo 2 138 376
armadillo 3 27 674
armadillo 4 2766

Table 6.1: Objects used in the tests and the number of triangles they are made of.

6420 CPU running at a clock rate of 2.13GHz, 3.25 GB RAM and a Nvidia GeForce 8800
GTS. The operating system was Windows XP.

6.1 General Result

All in all, collision detection algorithms for colliding triangle meshes against each other
were implemented both for CPU using C++ and GPU using OpenCL. Both were integrated
with AgX. The visual result is triangle mesh objects interacting in a physical environment.
Simulation in real time can be achieved for scenes with sufficiently few objects or objects
with low number of triangles. Putting numbers on what can be done in real time or not is
difficult, since it depends on hardware used, how the objects used are designed and the type
of interaction between objects. Generally, a dozen objects with around a thousand triangles
each should be able to interact in real time. For the GPU implementation, these numbers
are a little bit lower, especially for multiple objects.

6.2 Middle Phase

The two implementations were compared to each other by timing collisions in four different
scenes. Every scene consisted of two armadillo objects colliding, the difference between the
scenes being the resolution of the armadillos.

Scene CPU time (ms) GPU time (ms) Speedup
armadillo 4 2.12 10.16 0.21
armadillo 3 20.02 18.36 1.09
armadillo 2 113.06 48.86 2.31
armadillo 277.64 88.76 3.12

Table 6.2: Comparison between middle phase CPU and GPU implementations.

In table 6.2 one can see how the middle phase of collisions of smaller objects is faster on
CPU for objects with less triangles, while for objects consisting of more triangles, the GPU
implementation is superior. Unfortunately, the break point where the GPU implementation
becomes faster than the CPU implementation is at simulations that are too big to be run in
real time. However, it is promising for future hardware which will most likely be even more
parallel than today’s GPUs. The GPU implementation is also suitable for offline simulations
where real time is not an issue.

The timings for both the CPU and the GPU version are taken just before the execution
branches to the separate versions until just after they are back at the same branch. This
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means that the timing of the GPU implementation includes the CPU sending the bounding
volume hierarchy for both objects, and after computations are done receiving the results. It
should be taken into consideration that a timing of an implementation storing all bounding
volume hierarchies on GPU memory will not include that initial memory transfer as it
happens only once when the object is initialized.

Intersection tests executed per depth
Depth armadillo armadillo 2 armadillo 3 armadillo 4
6 4 096 4 096 4 096 4 096
7 332 348 396 456
8 536 624 704 848
9 1 040 1 176 1 400 2 000
10 2 020 2 476 3 012 4 080
11 4 236 5 132 6 364 6 136
12 9 872 12 760 16 032 1 648
13 22 016 29 040 38 768 84
14 56 792 77 560 66 320 0
15 138 360 192 696 29 732 0
16 366 040 390 780 1 364 0
17 824 020 252 912 0 0
18 332 704 19 560 0 0
19 58 190 376 0 0
20 2 890 0 0 0
21 66 0 0 0
Total 1 823 210 989 536 168 188 19 348

Table 6.3: Intersection tests executed each depth during the GPU middle phase algorithm while
colliding armadillo objects of different quality.

For a parallel implementation of middle phase, a big problem set of many parallel exe-
cutions is important. The first iterations of the algorithm is the crucial part, as in the first
iteration there is just one bounding volume intersection test, and at best they can grow
by a factor of four for each iteration. As can be seen in table 6.3 the algorithm starts at
a depth of six to avoid these first few iterations where full parallelism cannot be achieved.
However, as clearly non-intersecting bounding volumes have not been removed by testing
for their parents collision, it can be seen that the number of positive intersections in the
next iteration is much lower. Despite this, starting at a later depth is beneficial relative to
starting at depth zero.

For the best parallel performance, an execution where as much time as possible is spent
in iterations with enough elements to maximize the performance of the GPU is the key.
From table 6.3 one can see that for the scenes with more detailed objects (and also the
scenes exhibiting the most speedup compared to CPU), most of the elements computed
are in iterations with large arrays of elements. How many elements (or how large global
work-size) there should be to get the maximal performance varies for different GPUs. The
GeForce 8800 GTS for example, has 12 multiprocessors. They can each serve one warp
simultaneously. That results in 384 threads executed in parallel. However, to hide latencies
from memory and register access, Nvidia recommends a work-group size of at least 64
threads, and a total of at least 192 or 256 threads per multiprocessor. This results in at
least 2304 - 3072 threads, and more will certainly not hurt.
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Figure 6.2: Time consumption of the different parts of GPU middle phase for various test scenes,
shown as a 100% stacked column.

In Figure 6.2 the different parts of the algorithm and the relative time those parts take
in execution of the test scenes are shown. Here can be seen that prefix sum is the most
costly part, as it takes up to 30-50% of the execution time. Sending the bounding volume
hierarchies from CPU to GPU every time the kernel executes is time consuming, and one
can see that for larger objects the time relative to the total time increases considerably.
The intersection tests of the bounding volumes, being the main part of the algorithm, takes
relatively little time to execute. Instead it is the traversal of the hierarchies that is the most
time consuming.

6.3 Near Phase

Scene Triangle pairs
armadillo 12430
armadillo 2 9372
armadillo 3 4746
armadillo 4 1421

Table 6.4: Number of triangle pairs being tested for collision in the test scenes

Scene CPU time (ms) GPU time (ms) Speedup
armadillo 4 1.51 1.90 0.79
armadillo 3 5.18 4.23 1.22
armadillo 2 10.78 6.69 1.61
armadillo 15.62 8.29 1.89

Table 6.5: Comparison between near phase CPU and GPU implementations.
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In table 6.5 it can be seen that for intersections of objects made of fewer triangles,
the CPU implementation is the fastest. The more detailed the objects get, the better the
GPU implementation becomes compared to the CPU implementation. As can be seen, the
speedup of GPU compared to CPU even for very detailed objects is not that big. One
reason for this is that register usage is high. This tends to happen for longer kernels where
intermediate results has to be stored. The high register usage limits the occupancy of
the graphics card, limiting the number of simultaneous threads the kernel can keep active.
Another big hit to performance that happens when register usage is high, is that the compiler
cannot put new data in registers. Instead, for CUDA devices, it is put in off-chip memory
where access times are the same as for global memory. The difference in access time is huge
compared to register access. In the finding of a contact for a triangle-triangle intersection,
there are some loops where the number of iterations depend on earlier steps. This causes
branches to diverge, hampering performance. The final issue with this implementation is
that before sending data to GPU, the memory must be allocated and filled with the triangles
corresponding to the ones to be tested.

Figure 6.3: Time consumption of the different parts of GPU near phase for various test scenes,
shown as a 100% stacked column.

Figure 6.3 shows how the execution of the intersection kernel is by far the largest influence
on performance, but both sending triangles to the GPU and returning the resulting contacts
play a significant role.

Parallelizing near phase of several triangle mesh objects together was not implemented,
but is very simple. It only requires a pipeline accommodated to it by first executing middle
phase for all intersections and then work on all the resulting triangle pairs. This will
minimize the potential impact on performance of doing many kernel executions with smaller
work sizes.

6.4 Importance of Middle Phase

Without a proper middle phase algorithm, the number of exact triangle-triangle tests would
be n1 ∗n2 where n1 and n2 are the number of triangles for each object. For our tests scenes,
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this takes the number of exact triangle-triangle intersections down from 1.2∗1011 to 1.2∗104

for the most detailed armadillo objects colliding and from 7.7 ∗ 106 to 1.4 ∗ 103 for the least
detailed armadillos. This reduction is accomplished by only executing around 1.8 ∗ 106 and
1.9 ∗ 104 bounding volume intersection tests (see table 6.3) for the two scenes, a very good
tradeoff.

As can be seen from inspection of tables 6.2 and 6.5, middle phase is by far the most
time consuming phase. Thus, it is of high importance to have a quick and accurate middle
phase algorithm, where accurate means returning as few false intersections as possible, as
that will unnecessarily impact the time in near phase.
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Conclusions

7.1 Restrictions

Because graphics processors have not had a need for double precision floats historically, even
though general programming on GPUs have grown much the last years, the hardware is not
yet there in terms of performance for double precision floats. Because of this, the user is
restricted to single precision floating points.

As for all primitives used in a discrete physics simulation, a small object of high speed
can tunnel through another object between two discrete time steps, which leads to a correct
impact collision being impossible to find. This can be a problem for the triangle mesh colli-
sion detection algorithm implemented in the thesis work, since a detailed mesh can consist
of very small triangles. If such triangles tunnel through an object, there is a possibility that
objects get stuck in each other, since there are triangles generating contacts on each side of
the tunneled object, all pointing ”away” from the object.

Also, as mentioned in Section 5.3.1, manifold triangle meshes must be used for collision
detection.

7.2 Limitations

The solution presented here and developed during the period of the thesis work had its focus
on triangle meshes colliding with other triangle meshes. For a physics engine to be versatile
and broad, one wants contact information in the case of triangle meshes colliding with any
other primitive, such as plane, box or sphere. The limited time prevented development of
such colliders. Before having triangle meshes fully usable in AgX, such colliders have to be
done.

7.3 Future work

There are a number of things that can be further developed that were outside of the scope
of the thesis work or that had to be dropped due to time limitations or priorities; the most
important of these being the, in above section mentioned, lack of colliders between triangle
meshes and other primitives.

Other areas where more work is possible is developing better interaction between the
CPU and GPU solutions. For smaller problems where the parallel aspect of the GPU is not
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fully utilized, the program could decide whether to use the CPU or the GPU implementation.
To fully utilize both the CPU and the GPU, support for using them both simultaneously,
dividing the work between them in an efficient way, can also be investigated.

For the GPU implementation to be effective in its current state, large problem sets
are needed. This is a concern especially for the middle phase GPU implementation, as
there is a big difference between several collisions involving less detailed objects and one
collision involving two higher detailed objects. Because each collision is solved sequentially,
the GPU can not make full use of its parallel structure in the case of several collisions of
less detailed objects. A segmented middle phase implementation, where several collisions
are solved simultaneously, would therefore be interesting to evaluate. Extra data and more
computations would be needed to keep track of what belongs to which segment, but it
is very likely that a successful implementation of segmented middle phase would cut the
computation times of many possible scenarios.

For the GPU near phase implementation, the main bottleneck is register shortage. A
complete rewrite of the near phase implementation, with focus on lowering the register
count, could prove extremely effective for performance. Dividing the implementation into
several smaller kernels would also most likely lead to a more restricted usage of registers at
the cost of kernel initialization time, a tradeoff that could prove to be very effective.

The time spent of the middle phase implementation in the prefix sum algorithm was
quite extensive. Although the implementation of prefix sum done during this thesis work
was optimized for parallel execution, it could most likely be even more effective with small
corrections and improvements. By porting the implementation of prefix sum included in
CudPP[13] (a C for CUDA library) to OpenCL, it is likely that a speedup during the prefix
sum phase can be achieved.
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