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Abstract

This paper studies motion planning from one zero velocity state to another for a three-joint robot
in a horizontal plane with a passive revolute third joint. Such a robot is small-time locally con-
trollable on an open subset of its zero velocity section, allowing it to follow any path in this subset
arbitrarily closely. However, some paths are “preferred” by the dynamics of the manipulator in
that they can be followed at higher speeds. In this paper we describe a computationally efficient
trajectory planner which finds fast collision-free trajectories among obstacles. We are able to
decouple the problem of planning feasible trajectories in the robot’s six-dimensional state space
into the computationally simpler problems of planning paths in the three-dimensional configura-
tion space and time scaling the paths according to the manipulator dynamics. This decoupling is
made possible by the existence of velocity directions, fixed in the passive link frame, which can be
executed at arbitrary speeds. We have demonstrated the motion planner on an experimental un-
deractuated manipulator. To our knowledge, it is the first implementation of a collision-free motion
planning algorithm for a manipulator subject to a second-order nonholonomic constraint.
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1 Introduction

Two goals of recent work on underactuated robotic manipulators are to build robots which exploit
nonholonomic effects to controln robot degrees-of-freedom with fewer thann actuators, saving
in weight and cost, and to control robots experiencing free-swinging joint failures. Examples
of this work include the design of ann joint robot controlled by just two motors via nonholo-
nomic gears (Sørdalenet al. [37]); control of underactuated robots in a gravity field, such as the
Acrobot (Hauser and Murray [15]; Spong [38]; Berkemeier and Fearing [9]), a high bar robot
(Takashima [41]), and a brachiation robot (Saitoet al. [32]); and control of robots in zero grav-
ity with brakes (Arai and Tachi [3]; Bergermanet al. [7]) and without brakes (Suzukiet al. [40];
De Lucaet al. [12]; Nakamuraet al. [28]; Mareczeket al. [25]; Arai et al. [4]). This research has
focused on the design and control of underactuated manipulators, but there has been little work
on planning fast, feasible trajectories among obstacles. In this paper we consider the problem of
planning fast collision-free trajectories for a planar 3-DOF underactuated manipulator.

Except in special cases (see Oriolo and Nakamura [29]), each passive, free-swinging joint of
an underactuated manipulator introduces a second-order nonholonomic constraint of the form

F(Θ;Θ̇; Θ̈) = 0; (1)

whereΘ is then-vector of generalized coordinates. This constraint is called second-order non-
holonomic because it cannot be integrated to give a velocity or configuration constraint. Planning
collision-free trajectories for an underactuated manipulator is therefore a constrained motion plan-
ning problem in the robot’s 2n-dimensional state space. If the robot can be shown to be small-time
locally controllable on an open subsetO of its zero velocity section, however, then any path in
O can be followed arbitrarily closely. This establishes the existence of a trajectory between zero
velocity states in a connected component ofO.

In this paper we study the particular case of collision-free motion planning between zero ve-
locity states for a three-joint robot in a horizontal plane with a passive revolute third joint. Because
there is a single passive joint, the robot is subject to a single second-order nonholonomic constraint
of the form (1). We focus on the following aspects of the system:

� Controllability of the robot.It is straightforward to show that the robot is small-time locally
controllable at zero velocity states. The robot can follow any path arbitrarily closely, and
therefore is sufficient for most planar pick-and-place tasks.

� Decoupling trajectory planning into kinematic path planning followed by time scaling.This
is a common strategy for motion planning for fully actuated robots. Path planning in configu-
ration space is generally not possible for manipulators subject to second-order nonholonomic
constraints, however, because the feasible motion directions are a function of the current ve-
locity as well as the configuration. The ability to decouple the trajectory planning problem
for the three-joint robot is based on the identification of two special velocity vector fields of
the third (passive) link: translation along the length of the link and rotation about the center
of percussion of the link with respect to the joint. A path following one of these body-fixed
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“decoupling motions” can be executed at any speed while satisfying the nonholonomic con-
straint. Using these velocity vector fields we are able to adapt a configuration space path
planner developed for systems with first-order body-fixed nonholonomic constraints, such
as kinematic mobile robots (Barraquand and Latombe [6]) and quasistatic robotic pushing
(Lynch and Mason [24]). The velocity of the robot need only be brought to zero at switches
between the two velocity vector fields, so the planner minimizes the number of switches.
The path returned by the planner can then be time-scaled according to the actuator limits to
find the time-optimal trajectory along the path (Shin and McKay [35]; Bobrowet al. [10];
Pfeiffer and Johanni [30]; Slotine and Yang [36]; Shiller and Lu [34]). This approach de-
couples the problem of collision-free trajectory planning into the computationally simpler
problems of path planning and time scaling.

� Fast trajectories.Although local controllability implies that the robot is capable of following
any free path closely, most paths require the robot to remain near zero velocity. On the other
hand, the trajectories found by our planner can be executed at high speeds. The trajectories
are not globally time-optimal, however; that is precluded by the decoupling of the planning
problem.

� Implementation.We have implemented our motion planner on an experimental underac-
tuated manipulator. Using nonlinear feedback control (Araiet al. [4]) to stabilize the tra-
jectories, we have demonstrated examples of motion planning among obstacles. To our
knowledge, this is the first implementation of a collision-free motion planning algorithm for
a manipulator subject to a second-order nonholonomic constraint.

This paper builds on previous work establishing the global controllability of a passive third
link (Arai [2]) assuming no obstacles or other constraints on the motion of the third joint. The
constructive proof outlined a set of maneuvers to move the link from any state to any other state.
In particular, any zero velocity state can be achieved from any other by at most three segments:
rotation about the center of percussion of the link, translation along the length of the link, and ro-
tation. Later work addressed feedback control to stabilize the rotational and translational segments
(Arai et al.[4]). In this paper we show that these motions uniquely satisfy a “decoupling property,”
and we use them to construct free trajectories in the presence of obstacles, joint limits, workspace
limits, and actuator constraints.

The position of the center of percussion of the passive link has been recognized as adifferen-
tially flat output(Fliesset al. [14]; Murray et al. [27]; Martin et al. [26]; Faiz and Agrawal [13]).
The angle and angular velocity of the link can be expressed as a function of higher-order deriva-
tives of the position of the center of percussion, so that the trajectory of the center of percussion
uniquely specifies the control inputs and the trajectory of the entire passive link, except when the
center of percussion is not accelerating. The trajectory planning problem for the link subject to
the nonholonomic constraint is then as simple as finding any trajectory of the center of percussion
satisfying the endpoint constraints set by the initial and terminal configurations. While this is com-
putationally simple, the difficulty is in incorporating obstacle constraints, joint limits, workspace
limits, and actuator constraints. The computational simplicity of the original problem is lost. Work
is underway to begin to address these issues in differentially flat linear systems (Agrawalet al.[1]).
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Bergerman and Xu [8] have previously outlined an approach to motion planning for underac-
tuated manipulators with brakes at the passive joints. The idea is to switch between controlling the
active joints, when the brakes are engaged, and the passive joints, when the brakes are released. In
this paper we study trajectory planning among obstacles for a particular underactuated robot with-
out a brake, show that the problem can be decoupled into path planning followed by time scaling,
and demonstrate the approach on an experimental underactuated manipulator. Although we focus
on the 3-DOF robot, the idea of decoupling the trajectory planning problem can be applied to any
system for which we can identify “decoupling” velocity vector fields (Bullo and Lynch [11]).

The trajectory planner we describe is also potentially useful for fully actuated 3-DOF robots
with a weak actuator at the third joint. By designing trajectories which nominally require zero
torque at the third joint, we let the dynamics of the motion assist the third joint. This is analogous
to the way that a weightlifter executing a “clean” (lifting a barbell from the ground to rest on the
shoulders) initially generates momentum of the barbell with the large muscles of the lower body
to assist the weaker muscles of the upper body.

Section 2 provides some definitions. The controllability of the robot is demonstrated in Sec-
tion 3 and the decoupling velocities used in the trajectory planner are derived in Section 3. The
trajectory planner is described in Section 5. Section 6 shows the result of a trajectory implemented
on our experimental underactuated manipulator. We conclude in Section 7.

2 Definitions

We defineR to be a three-joint robot with a revolute third joint operating in a zero gravity plane.
For concreteness, we assume the first two joints ofR also are revolute to correspond with our
experimental manipulator. (Our approach only requires that the third joint be able to translate
freely on an open subset of the plane.)R may be subject to joint limits. We define the fully
actuated version ofR to beRA. The underactuated robotRU is identical toRA except the third joint
is unactuated.

The configuration spaceC of the robotR is the three-dimensional joint spaceT3, with joint
anglesΘ = (θ1;θ2;θ3)

T . The state space is the tangent bundleTC and the state of the robot is
written (ΘT; Θ̇T)T . The zero velocity section of the state spaceTC is Z = f(ΘT ;0T)T jΘ2 Cg.

We define a fixed world frameF at the first joint and a body frameFb fixed to the third link
of RU at the joint. Thexb-axis ofFb passes through the center of mass of the third link (Figure 1).
The mass of the link ism3 and its inertia isI3 about its center of mass. The center of mass lies a
distancer3 > 0 from the joint. The center of percussion (also known as the center of oscillation
and the center of impact) of the link with respect to the joint is at(λ;0) in the frameFb, where
λ = (r2

3 + I3=m3)=r3.
The manipulator dynamic equations (given in detail in the Appendix) are written

M(Θ)Θ̈+C(Θ; Θ̇)Θ̇= τ; (2)

whereM(Θ) is the 3�3 inertia matrix,C(Θ; Θ̇)Θ̇ is the 3� 1 vector of centrifugal and Corio-
lis torques, andτ = (τ1; τ2; τ3)T is the 3�1 vector of joint torques. Sinceτ3 = 0 for a passive
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Figure 1: Notation for the underactuated robot with a passive third joint.

third joint, the third element of the vector equation (2) can be simplified to yield the second-order
nonholonomic constraint

�ẍ sinφ+ ÿcosφ+λφ̈= 0; (3)

where x= (x;y;φ)T 2R2�S1 is the configuration of the link frame Fb in the world frame F , given
by

x = l1 cosθ1+ l2 cos(θ1 +θ2)

y = l1 sinθ1 + l2 sin(θ1 +θ2)

φ = θ1+θ2+θ3:

The velocity of Fb in F is written ẋ = (ẋ; ẏ; φ̇)T . The velocity of Fb relative to F as viewed in the
current Fb is called the body velocity ẋb = (ẋb; ẏb; φ̇b)

T . The two velocities are related by ẋ = T ẋb,
where

T =

0
@ cosφ � sinφ 0

sinφ cosφ 0
0 0 1

1
A : (4)

Making the substitution ẍ = Ṫ ẋb +T ẍb (where ẍb = d(ẋb)=dt), the nonholonomic constraint (3)
can be written in body coordinates as

ẋbφ̇b + ÿb+λφ̈b = 0: (5)

Obstacles are stationary and known. Joint limits and obstacles define a closed subset of C of
collision configurations, leaving an open set of free configurations. We restrict the robot to avoid
the kinematic singularity at sinθ2 = 0, so we divide C into the two open sets given by θ2 2 (0;π)
and θ2 2 (�π;0), the RIGHTY and LEFTY configuration spaces. (There are no singularities if the
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first two joints are prismatic.) The free space C free of the robot R is the open subset of C satisfying
the obstacle, joint limit, and singularity constraints.

A path Θ(s) from Θ0 to Θ1 is a continuous map Θ : [0;1]! C , where Θ(0) = Θ0 and Θ(1) =
Θ1. A trajectory Θ(s(t)) from (ΘT

0 ;0
T )T to (ΘT

1 ;0
T )T is obtained from a path by a time-scaling

function s : [0;T ]! [0;1] which assigns a configuration on the path to each time t 2 [0;T ]. s
is a twice-differentiable function such that s(0) = 0; s(T ) = 1; ṡ(0) = ṡ(T ) = 0, and ṡ(t) > 0 for
all t 2 (0;T). (Note that for a trajectory to be physically feasible, it must also satisfy torque
constraints.) A free path from Θ0 to Θ1 is defined as Θ : [0;1]! C free;Θ(0) = Θ0;Θ(1) = Θ1, and
any feasible time scaling is a free trajectory from (ΘT

0 ;0
T )T to (ΘT

1 ;0
T)T . Our definition of free

space precludes paths passing through θ2 = 0 and θ2 = π; while this is a natural restriction for the
Cartesian motions of the third link which are used in this paper, this restriction is artificial for joint
space motion planning (e.g., Lozano-Pérez and Wesley [22]).

3 Controllability of the Robot

The following proposition establishes the existence of free trajectories for the underactuated robot.

Proposition 1 If Θ0 and Θ1 lie in the same connected component of C free, then there exists a
free trajectory from (ΘT

0 ;0
T )T to (ΘT

1 ;0
T)T for the robot RU . Equivalently, if there exists a free

trajectory from (ΘT
0 ;0

T )T to (ΘT
1 ;0

T )T for the fully actuated robot RA, then there exists a free
trajectory from (ΘT

0 ;0
T )T to (ΘT

1 ;0
T)T for RU with a passive third joint.

Remark: Proposition 1 also holds when the third link carries a payload such that the center of
mass of the combined link and payload does not coincide with the third joint. Thus the robot RU

can be used as a point-to-point pick-and-place robot. When the mass or inertia of the payload, or
its configuration within the gripper, is unknown, it is necessary to estimate (e.g., Atkeson et al. [5])
the center of percussion of the free link and payload to apply the motion planning and control
scheme described in this paper.

Proof: To prove the proposition, we begin by ignoring the first two links of the robot and demon-
strate small-time local controllability at zero velocity of the third link when control forces can
be applied through the passive joint (the origin of Fb) along the xb and yb axes. We then show
that this property implies small-time local controllability at zero velocity of the entire robot at any
configuration Θ2 C free. Proposition 1 follows directly from small-time local controllability.

Consider the dynamics of the third link written in the control form

ż = f(z)+u1g1(z)+u2g2(z); u1;u2 2 [�δ;δ];δ> 0 (6)

where z = (xT ; ẋT )T is the state of the link and u1 and u2 are the control forces (normalized by
dividing by the mass of the link m3) applied through the passive joint along the xb and yb axes,
respectively. The corresponding control vector fields are g1 = (0;0;0;cosφ; sinφ;0)T and g2 =
(0;0;0;� sinφ;cosφ;�1=λ)T . The drift vector field is f = (ẋ; ẏ; φ̇; φ̇2r3 cosφ; φ̇2r3 sinφ;0)T . The
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centrifugal acceleration terms in f arise from our choice of reference point at the joint of the third
link, not at the center of mass.

It is a simple matter to show that the system (6) satisfies Sussmann’s [39] conditions for local
controllability at zero velocity provided r3 6= 0, i.e., the joint is not coincident with the center of
mass (see, for example, Reyhanoglu et al. [31]; Lewis and Murray [21]; Arai et al. [4]; Lynch [23]).
Briefly, the vector fields g1, g2, and the Lie bracket terms [g1; f]; [g2; f]; [g2; [g1; f]]; [f; [g2; [g1; f]]]
span the six-dimensional tangent space at any state (xT ;0T )T , and the “bad” bracket terms [g1; [f;g1]]
and [g2; [f;g2]] are neutralized. (See Sussmann [39] for a description of bad brackets and neu-
tralization.) The Lie bracket term [g2; [g1; f]] = (0;0;0;�(sinφ)=λ; (cosφ)=λ;0)T corresponds to
translation of the link along the body yb-axis. Approximate motion in this direction is generated by
switching between g1 and g2, and is therefore slow relative to motion in g1 and g2. This is similar
to a car’s parallel-parking motion.

Now consider the Cartesian forces which can be applied at the third joint of RU , (JT
a )

�1τa,
where Ja is the Jacobian relating the angular velocities of the actuated joints 1 and 2 to the velocity
(ẋ; ẏ)T of the third joint, and τa = (τ1; τ2)T is the torque of the actuated joints. Ja is nonsingular
away from θ2 = 0;π. Therefore, for any Θ 2 C free and any set of joint torques ϒ containing a
neighborhood of (0;0)T in the τa space (e.g., the symmetric joint torque limits ϒ= f(τ1; τ2)

T jjτij �
τi;max; τi;max > 0; i= 1;2g), we can choose a sufficiently small δ> 0 in (6) such that the set of forces
F = f(JT

a )
�1τajτa 2 ϒg is a superset of the forces in (6). Therefore, the third link of RU is locally

controllable at all robot configurations Θ2 C free.
Finally, small-time local controllability of the third link directly implies small-time local con-

trollability of the robot RU at all zero velocity states (ΘT ;0T )T ;Θ2 C free. (The inverse kinematics
mapping r�1 : x! Θ is smooth and one-to-one when restricted to the RIGHTY or LEFTY con-
nected component of C free, and r�1(x) 2 int(r�1(B(x))), where B(x) is any neighborhood of x
and r�1(B(x)) = fr�1(x0)jx0 2 B(x)g.) Small-time local controllability implies that for any state
(ΘT ;0T )T ;Θ 2 C free and any neighborhood W of (ΘT ;0T )T , (ΘT ;0T)T is interior to the set of
states reachable by trajectories remaining in W . In particular, there is an open accessible set of the
zero velocity section Z with (ΘT ;0T )T in the interior. These open sets form a finite subcover of
any path from Θ0 to Θ1 in C free, so the path can be followed arbitrarily closely.

For any free trajectory of RA from (ΘT
0 ;0

T )T to (ΘT
1 ;0

T)T , the corresponding path lies in C free.
Because RU is small-time locally controllable on C free, RU can follow the path from Θ0 to Θ1

arbitrarily closely. 2

Proposition 1 implies that any path in C free can be followed arbitrarily closely. Arbitrary paths
may make extensive use of Lie bracket motions, however, requiring RU to stay near the zero ve-
locity section, resulting in slow execution times (see Figure 2). To find paths that can be executed
quickly, we prefer to minimize the use of Lie bracket motions.

4 Decoupling Motions

Our goal is to develop a collision-free trajectory planner which (1) is computationally efficient and
(2) yields trajectories which can be executed quickly. Our approach is based on the existence of
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Figure 2: A conceptual representation of two collision-free trajectories between the same start
and goal configurations for a small-time locally controllable system. The planes represent the
configuration space, and the normal direction represents speed along the path. The figure on the
left shows an example path and a tube of free space around it. To approximately follow the path
and stay within the configuration tube, the system must return to the zero velocity section often,
resulting in slow motion. This is the case for trajectories that make extensive use of Lie bracket
motions. The path on the right can be executed much more quickly—the system can move far from
the zero velocity section.

body-fixed “decoupling” motions for the third link subject to the second-order nonholonomic con-
straint (3). These decoupling motions allow the trajectory planning problem to be decoupled into
the computationally simpler problems of collision-free path planning in the configuration space
followed by time scaling. By the nature of the decoupling motions, the paths found by the path
planner can be followed at high speeds.

We will consider decoupling motions for a second-order mechanical system

M(q)q̈+C(q; q̇)q̇ =

�
Ma(q)
Mu(q)

�
q̈+

�
Ca(q; q̇)
Cu(q; q̇)

�
q̇ =

�
u
0

�
; (7)

where q 2 ℜ n is the configuration and u 2 ℜ m is the control. Let M be an open subset of the
configuration space, and let (7) be equilibrium controllable on M . Equilibrium controllability is
a weaker condition than small-time local controllability at zero velocity (Lewis and Murray [21]).
The k = n�m second-order nonholonomic constraints are written Mu(q)q̈+Cu(q; q̇)q̇ = 0.

Consider a trajectory q(s(t)) of (7), where s is a time-scaling function. The velocity and accel-
eration of the system are written

q̇ =
∂q
∂s

ṡ = v(q)ṡ

q̈ = v̇(q)ṡ+v(q)s̈ =
∂v
∂q

v(q)ṡ2 +v(q)s̈;

where v(q) = ∂q
∂s is a velocity vector field for which q(s(t)) is an integral curve. ṡ and s̈ are the

velocity and acceleration along the integral curve, respectively.

Definition 1 The velocity vector field v(q) on ℜ n is called a decoupling motion on M for the
system (7) if and only if Mu(q)( ∂v

∂q v(q)ṡ2 +v(q)s̈)+Cu(q;v(q)ṡ)v(q)ṡ = 0 for all q 2M and any
time scaling s(t).
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In other words, if v(q) is a decoupling motion, then for any integral curve of v(q), the system
can travel at any speed ṡ along the curve, with any acceleration s̈ along the curve, while satisfying
the nonholonomic constraints.

Definition 2 The system (7) is locally kinematically controllable on M if there exists a set of
decoupling motions v1(q); : : :;vp(q) on M such that the kinematic system

q̇ =
p

∑
i=1

wivi(q); (w1; : : :;wp) 2 f(�1;0; : : :;0); (0;�1;0; : : :;0); : : :; (0; : : :;0;�1)g; (8)

is small-time locally controllable at all q 2M .

If the system is locally kinematically controllable on its configuration space, we can employ a
path planner for the kinematic system (8), and any time-scaling of the resulting path will satisfy
the second-order nonholonomic constraints. This is the case for the underactuated robot RU .

Proposition 2 The underactuated robot RU is locally kinematically controllable on C free by the
decoupling motions v1(x) = (cosφ; sinφ;0)T and v2(x) = (� sinφ;cosφ;�1=λ)T , expressed in the
coordinates of the third link. These motions are fixed in the frame Fb, and can be written as
ẋb = (1;0;0)T (translation along the length of the link) and ẋb = (0;1;�1=λ)T (rotation about the
center of percussion), respectively.

Proof: The second-order nonholonomic constraint (3) can be rewritten

(� sinφ;cosφ;λ)(
∂v
∂x

v(x)ṡ2 +v(x)s̈) = 0:

For this constraint to hold for all ṡ; s̈, we must separately have

(� sinφ;cosφ;λ)(
∂v
∂x

v(x)) = 0 (9)

(� sinφ;cosφ;λ)v(x) = 0: (10)

Equation (10) is only satisfied by linear combinations of v1(x) and v2(x). Plugging v(x) =
αv1(x)+βv2(x) into Equation (9), after some simplification we get

αβ = 0:

In other words, one of α;β must be zero, and the other is unconstrained. Hence the velocity vector
fields v1(x) and v2(x) (and their scalar multiples) are the only decoupling motions for RU . Small-
time local controllability of the kinematic system on C free follows easily (see, for instance, the
proof of controllability of the kinematic car in Latombe [18]). 2

Remark: In the presence of gravity, the underactuated robot remains differentially flat (Martin et
al. [26]) but is no longer locally kinematically controllable.

We have constructed a computationally efficient collision-free trajectory planner for RU based
on the following three observations:
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� Trajectory planning in the six-dimensional state space can be decoupled into path planning
in the three-dimensional configuration space followed by time-optimal time scaling of the
path. For the underactuated robot, the decoupling vector fields correspond to body-fixed
motions, allowing us to adapt path planners for car-like mobile robots with a body-fixed
nonholonomic constraint (Barraquand and Latombe [6]; Laumond et al. [19]). In the result-
ing paths, the velocity of the third link need only be brought to zero when switching between
v1 and v2. Therefore, we design the planner to minimize the number of switches, implicitly
minimizing the use of Lie bracket motions.

Decoupling trajectory planning into path planning followed by time scaling greatly reduces
the computational complexity.

� If the path planner is complete, then a trajectory will be found for any two configurations
in the same connected component of C free. We are using a modification of a path planning
algorithm designed for mobile robots (Barraquand and Latombe [6]) and robotic pushing
(Lynch and Mason [24]). This algorithm is resolution-complete, meaning that if a free path
exists, the planner will find a free path for a sufficiently small choice of a parameter to the
planner.

� The paths found by the kinematic motion planner can be executed at high speeds. The
nonholonomic constraint does not constrain the speed of motion along paths following v1 or
v2. Limits on execution speed arise solely from actuator limits.

5 The Trajectory Planner

5.1 Path Planning

The path planner is a simple best-first search in the configuration space along the vector fields v1
and v2. Starting from the initial link configuration x init (and corresponding initial joint configura-
tion Θinit), the planner integrates forward along each of +v1;�v1;+v2;�v2 for a time δt, yielding
four new link configurations. Each new collision-free configuration xnew (and corresponding joint
configuration Θnew) is added to a search tree T and to a sorted list OPEN of configurations in T
whose successors have not yet been generated. Configurations in OPEN are sorted by the costs of
their paths. The first configuration in OPEN is then expanded. This process continues until a path
is found to a user-specified goal neighborhood G(xgoal) or until OPEN is empty (failure). The
planner is not exact, as it only finds a path to a goal neighborhood. An exact planner, which could
also be applied to this problem, is described by Laumond et al. [19].

Because the robot must be brought to zero velocity to switch between velocity directions, the
cost function is the number of switches in the velocity direction. If δt is set small enough, the
planner will find a path when one exists.
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program path planner
initialize T , OPEN with link start configuration xinit

while OPEN not empty
x first in OPEN, remove from OPEN
if x is in the goal region

report success
if x is not near a previously occupied configuration

mark x occupied
for each of +v1;�v1;+v2;�v2

integrate forward a time δt to xnew

calculate Θnew by inverse kinematics
if path to Θnew is collision-free

make xnew a successor to x in T
compute cost of path to new config xnew

place xnew in OPEN, sorted by cost
report failure

end

5.1.1 Collision Detection

The robot links and obstacles are represented as polygons, and collision detection in the current
implementation consists of polygon intersection at each new configuration Θnew. (To make colli-
sion detection conservative, we could grow the links or obstacles.) A link configuration x is also
considered to be in collision if there is no solution to the inverse kinematics or if j sinθ2j � ε, where
ε > 0 is a design parameter specifying how close the robot may approach the singularity.

The planner also prunes configurations that are sufficiently near another configuration reached
with the same or lower cost and the same motion direction. In the current implementation, two con-
figurations x1 and x2 are considered sufficiently near if they occupy the same cell of a predefined
grid on the three-dimensional link configuration space R2�S1.

5.1.2 Parameters

The user must specify the size of the goal region, the integration step δt, and the resolution of the
R2�S1 grid used to check for prior occupancy. These parameters are interdependent. In particular,
the step size δt and the dimensions of the grid cells should be proportional to the dimensions of
the goal region. Each step should always take the configuration out of the current grid cell, and the
step should not be so large as to easily jump across the goal region G(xgoal).
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5.1.3 Complexity

The size of the R2� S1 grid for pruning is c3, where c is the number of discretization intervals
along the x, y, and φaxes. (x and y are confined to a rectangular subset of R2 covering all possible
positions of the joint of the third link. The number of discretization intervals along each axis need
not be equal, but here we assume it for simplicity.) Each configuration must undergo a collision-
check which takes time mn in our implementation, where m and n are the number of vertices in
the robot and the obstacles, respectively. Because path costs are always integral (the number of
switches), the sorted list OPEN is represented by a 1-d array of linked lists, where each array index
represents the cost of the paths to the configurations in its linked list. Inserting a new configuration
into OPEN consists of simply appending it to the end of the appropriate linked list, and therefore
takes constant time. All other operations (including incremental computation of path cost) take
constant time, giving a time complexity of O(mnc3). The volume V of the goal region G(xgoal)
should be proportional to c�3, so the running time is inversely proportional to V , O(mnV �1).

5.2 Time Scaling

Each rotational or translational motion segment specifies a path Θ(s) where Θ(0) =Θ0 and Θ(1) =
Θ1. For each segment, we would like to find the time-optimal time scaling of the path s(t) satis-
fying actuator limits. The minimum-time trajectory for the entire path found by the planner is the
concatenation of the time-optimal motion segments.

The motion of the third link is always a translation or a rotation about the center of percussion,
so we choose the path parameter s for each motion segment to be the translation distance or rotation
angle, normalized so that the full motion is unit. The configuration of the free link x(s) during
translation from x(0) = xi = (xi;yi;φi)T to x(1) = x f = (x f ;y f ;φi)T is given as

φ(s) = φi

x(s) = s(x f � xi)+ xi

y(s) = s(y f � yi)+ yi;

and during rotation from x(0) = x i = (xi;yi;φi)T to x(1) = x f = (x f ;y f ;φf )
T (φi and φf defined

such that φ(s) is continuous)

φ(s) = s(φf �φi)+φi

x(s) = xc� r3 cosφ(s)
y(s) = yc� r3 sinφ(s);

where (xc;yc) is the stationary center of percussion expressed in the world frame F .
The robot’s forward kinematics are given by x = r(Θ), yielding the following expressions for

Θ; Θ̇; Θ̈ as a function of s; ṡ; s̈:

Θ = r�1(x) (11)

Θ̇ = (rΘ)
�1xsṡ (12)

Θ̈ = (rΘ)
�1(xss̈+xssṡ2� ((rΘ)

�1xs)
T rΘΘ((rΘ)

�1xs)ṡ2); (13)
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where the subscripts s and Θ denote derivatives with respect to the scalar s and the vector Θ, with
rΘ the manipulator Jacobian and rΘΘ the 3�3�3 Hessian. (The term
((rΘ)

�1xs)T rΘΘ((rΘ)
�1xs)ṡ2 can be written ṙΘΘ̇2.) Since the paths found by the planner are

confined to either the RIGHTY or LEFTY subset of free space, these expressions yield unique
solutions for Θ; Θ̇; Θ̈.

Substituting Equations (11)–(13) into the manipulator dynamics (2) yields a set of dynamic
equations of the form

a(s)s̈+b(s)ṡ2 = τ:

We assume the actuator torques are bounded by constants

τmin
i � τi � τmax

i ; i = 1;2:

(The constraint τ3 = 0 is satisfied automatically by any time scaling of paths found by the path
planner.) These torque constraints place bounds on s̈ for a given state (s; ṡ). The problem is to find
the fastest trajectory in the (s; ṡ) phase plane from (0;0) to (1;0) satisfying the torque constraints.

The minimum-time time scaling problem has been solved by algorithms proposed by Bobrow et
al. [10], Shin and McKay [35], Pfeiffer and Johanni [30], Slotine and Yang [36], and Shiller and
Lu [34]. The idea is illustrated in Figure 3. At a state (s; ṡ), the set of possible path accelerations
[s̈min; s̈max] defines a cone of possible motion directions in the (s; ṡ) phase plane. The minimum-
time trajectory is given by the curve from (0;0) to (1;0) that maximizes the area underneath it
while maintaining the tangent within the cone at all points on the curve. A consequence of this
is that the curve always follows the upper or lower bound of the cone (maximum or minimum
acceleration).1 The heart of the time-scaling problem is to find the switching points between
maximum and minimum acceleration.

In this paper we use a modification of the algorithm of Bobrow et al. [10] to find the optimal
time scaling. We do not give the details of the algorithm; details on this and similar algorithms can
be found in the references above.

5.3 Results

The planner and time-scaling algorithm are implemented in C on a Sun Ultra 30. A graphical
interface written in Tcl/Tk was developed to allow the user to easily create problems to test the
planner.

Figure 4 shows a result of the planner applied to a robot with the kinematic and dynamic
parameters listed in Table 1. The robot is confined to the sinθ2 > 0 connected component of C free.
We set the goal region to �1:7� and �6% of the length of the third link. The R2� S1 grid cell
dimensions are 1:7� and 6% of the length of the third link, so the volume of G(xgoal) is 8 times
that of a grid cell. The step length is chosen just large enough that a step will always take the link
out of the current cell.

We applied the time-scaling algorithm to obtain the time-optimal trajectory following the path
of Figure 4. The results are shown in Figure 5. During the time-optimal motion, at least one of

1Except at dynamic singularities; see Shiller and Lu [34].
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s

s

0.0 1.0
max accel min accel max accel min accel

Figure 3: At each point (s; ṡ) in the phase plane we can draw a motion cone defined by the minimum
and maximum accelerations s̈ satisfying the torque constraints. The time-optimal trajectory from
(0;0) to (1;0) is the curve that maximizes the area underneath it while remaining on the minimum
or maximum boundary of the motion cones. In this example, the trajectory switches between
minimum and maximum acceleration three times. The heavy curve indicates the states where the
cone collapses to a single tangent vector, and the gray region represents states where the cone
disappears—no feasible torques will keep the manipulator on the path.

Joint li ri mi Ii λ τmax
i τmin

i
i (m) (m) (kg) (kg-m2) (m) (N-m) (N-m)

1 0.3 0.15 2.0 0.02 20 -20
2 0.3 0.15 1.0 0.01 10 -10
3 0.15 0.5 0.004125 0.205 0 0

Table 1: Kinematic parameters, inertial parameters, and actuator limits for the simulated robot.
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Figure 4: A four segment path for a robot with no joint limits.
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Figure 5: Results of time scaling the path of Figure 4. The first, third, and fourth motion segments
contain only one switching point; the second segment has three.
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Figure 6: The MEL underactuated manipulator.

the robot’s two actuators is always saturated. In this example, the actuator limits are given by
jτ1j � 20 N-m, jτ2j � 10 N-m. The time-optimal trajectory following the first motion segment of
Figure 4 takes 0.227 s; the second segment takes 0.219 s; the third segment takes 0.258 s; and the
fourth segment takes 0.186 s, for a total motion time of 0.890 s.

In this example we chose ε = 0:15, giving the configuration constraint j sinθ2j > 0:15. Small
values of ε allow the Jacobian rΘ to become nearly singular, implying large joint velocities Θ̇ for
fixed Cartesian velocities ẋ. If we would like the robot to be able to operate near singularities,
the step size δt should be decreased to enforce a bound on joint motions during a step. This
increases the computational complexity, which is proportional to (δt)�3. An alternative approach
is to choose δt based on the principal axes of the manipulability ellipsoid (Yoshikawa [42]) at the
current configuration, similar to adaptive stepsizing in numerical integration.

It remains an open issue how to best choose a step size δt given a goal region size and some
characterization of the “ tightness” of the space (a function of the obstacles, joint limits, and ε).

The planning time for the example here was about 20 seconds, with time scaling taking a
negligible fraction of the time. Typical planning time is between 10 and 120 seconds.

6 Experiment

We tested a planned motion on the experimental three degree-of-freedom planar manipulator of
Figure 6. The length of each link is 0.3 m. The first and second joints are actuated by 35 W and
20 W DC servo motors, respectively. The third joint is passive and has neither an actuator nor a
brake. The angle of each joint is measured by a rotary encoder. A personal computer (80486 CPU,
50 MHz) is used as the controller. The distance λ between the center of percussion of the free link
and the passive joint is 0.205 m, as with the simulated robot of the previous section.

Because time-optimal trajectories cause actuators to saturate, they allow no margin for error-
recovery in feedback control of the nominal trajectories. One possibility is to use a conservative
estimate of the available torque in the time-scaling phase to ensure that some torque remains for
error correction. In our experiments, however, we empirically chose times for each motion segment
for fast but robust performance.

When a planned motion is executed on the real manipulator, trajectory error accumulates due
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to initial position error, model error, etc. This error can be reduced by nonlinear feedback control
(Arai et al. [4]). During translation the third link acts either as a pendulum or an inverted pendulum,
depending on the current direction of acceleration. Exact linearization is used to find a linear
state feedback controller which stabilizes the link to the trajectory. During rotation, two separate
linear controllers are used to stabilize the trajectory, one during phases of low angular velocity and
another during phases of high angular velocity. These controllers calculate the desired acceleration
of the passive joint (ẍ; ÿ). This acceleration is integrated to yield the virtual reference velocity
(ẋm; ẏm) and virtual reference position (xm;ym). These references are commanded to the servo
system. The desired acceleration (ẍ; ÿ) is also used as a feedforward term. This method, known
as virtual internal model following control (Kosuge et al. [17]), suppresses unknown disturbance
forces such as friction.

To accommodate any remaining error, we grow the obstacles in the planner by the maximum
estimated position error of any point on the robot. We also choose joint limits to artificially restrict
the robot’s motion, so the real joint limits will not be encountered during execution.

Figure 7 shows an 11 segment path found by the planner and the actual path executed by the
robot under feedback control. The square 0.26 m� 0.26 m obstacles in the real scene (right side of
Figure 7) have been grown by 0.02 m in each direction to yield the 0.3 m � 0.3 m obstacles used
in the planner (left side of Figure 7). We also limited the joint angles to �1:17rad< θ1 < 1:17rad
(where 0 is vertical on the page) and 0:5rad < θ2 < 1:95rad (i.e., ε = sin0:5). The manipulator’s
real joint limits are �1:57rad < θ1 < 1:57rad, θ2 < 2:356rad.

As Figure 7 shows, the robot follows the planned path fairly closely. Execution times of the
segments were chosen experimentally to make control robust. For reference, motion segments 1
and 2 were executed in approximately 0.36 s and 2.4 s, respectively. A pause of 0.2 s was also in-
serted between motion segments. The path was executed without the obstacles; the obstacles have
been superimposed on the data. In this example, the 0.02 m error estimate is a bit optimistic—the
robot nearly brushes an obstacle in the fourth and fifth motion segments. A video of an experiment
is available at http://lims.mech.northwestern.edu/~lynch/research/videos.

This example path was fairly challenging to implement, as it consists of many motion segments
and moves the robot over a large portion of its workspace. Small out-of-plane motion of the third
link contributes to errors in control, and currently the controller is not robust for all paths that
the planner generates. Nevertheless, this example demonstrates the ability to plan and execute
collision-free motions for an underactuated manipulator among obstacles.

7 Conclusion

We have demonstrated that a free trajectory exists between any two zero velocity states in the same
connected component of the free space for a three degree-of-freedom robot with a passive joint.
We have shown that motion planning for this system can be decoupled into path planning and time
scaling, and we have presented a motion planner that is resolution-complete—for a sufficiently
small step size δt, the planner will find a path when one exists. The planner minimizes the number
of times the robot velocity must come to zero, producing a fast trajectory when time-scaled accord-

18



Figure 7: The planner found the 11 segment path on the left using grown obstacles. The right side
shows the results of executing the path on the experimental manipulator under feedback control.
The dashed lines show the borders of the grown obstacles used in the planner.
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ing to the manipulator dynamics. Finally, we have demonstrated the feasibility of the approach by
implementing a planned path on an experimental underactuated manipulator. The capability to
automatically plan and execute collision-free trajectories makes it possible to eliminate an actuator
from a planar three joint robot used for point-to-point tasks such as pick-and-place.

There are several ways this work can be extended:

� Adaptive control could be used to estimate the location of the center of percussion of the free
link to make path planning and control robust to changes in the payload.

� By analyzing and bounding control errors, an estimate could be obtained of the fastest time
scaling that can be followed robustly.

� The basic approach can be generalized to other systems with second-order nonholonomic
constraints admitting the decoupling into path planning and time scaling.

� This paper has presented a reduced complexity approach to finding sub-time-optimal collision-
free trajectories in the robot’s 2n-dimensional state space. Nonlinear optimization or other
techniques could be used to search for a time-optimal trajectory directly, instead of decom-
posing the problem into path planning and time-scaling problems. However, brute force
search has high computational complexity and gradient-descent approaches are limited to
finding local optima and tend to encounter convergence problems. Some combination of
search and optimization may provide an efficient way of finding globally optimal trajec-
tories, similar to the approach employed by Shiller and Dubowsky [33] for fully actuated
robots.

The very different approach of randomized motion planning (e.g., Hsu et al. [16]; LaValle
and Kuffner [20]) shows promise for fast trajectory planning directly in the system state
space. Future work could adapt the approach to underactuated manipulators. Current imple-
mentations require a discretization in the control space and often search only for a feasible
solution, rather than an efficient solution. These planners tend to produce solutions with
discontinuous controls, and a method for smoothing the solutions subject to second-order
nonholonomic constraints would be desirable.

Appendix

The dynamic equations of motion for a three joint revolute robot in a horizontal plane, ignoring
joint friction, are:

M(Θ)Θ̈ + Θ̇T Γ(Θ)Θ̇ = τ;

where

M =

0
@ M11 M12 M13

M21 M22 M23

M31 M32 M33

1
A
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M11 = I1+ I2+ I3+m1r2
1 +m2l2

1 +m2r2
2 +m3l2

1 +m3l2
2 +m3r2

3

+2m2l1r2c2 +2m3l1l2c2+2m3l2r3c3 +2m3l1r3c23

M12 = M21 = I2+ I3+m2r2
2 +m3l2

2 +m3r2
3 +m2l1r2c2+m3l1l2c2 +2m3l2r3c3+m3l1r3c23

M13 = M31 = I3+m3r2
3 +m3l2r3c3 +m3l1r3c23

M22 = I2+ I3+m2r2
2 +m3l2

2 +m3r2
3 +2m3l2r3c3

M23 = M32 = I3+m3r2
3 +m3l2r3c3

M33 = I3+m3r2
3

and c2 = cosθ2;c23 = cos(θ2 +θ3); s2 = sinθ2; s23 = sin(θ2 +θ3), mi is the mass of link i, li is the
length of link i, ri is the distance from joint i to the center of mass of link i, and Ii is the inertia of
link i about its center of mass. Link masses and inertias include actuator masses and inertias. Γ is
the 3�3�3 matrix of Christoffel symbols given by

Γi jk =
1
2
(
∂Mi j

∂θk
+

∂Mik

∂θ j
�

∂Mk j

∂θi
):

For the three joint planar robot, we have

Γ111 = 0

Γ112 = Γ121 = �m2l1r2s2�m3l1l2s2�m3l1r3s23

Γ113 = Γ131 = �m3l2r3s3�m3l1r3s23

Γ122 = �m2l1r2s2�m3l1l2s2�m3l1r3s23

Γ123 = Γ132 = �m3l2r3s3�m3l1r3s23

Γ133 = �m3l2r3s3�m3l1r3s23

Γ211 = m3l1l2s2 +m2l1r2s2 +m3l1r3s23

Γ212 = Γ221 = 0

Γ213 = Γ231 = �m3l2r3s3

Γ222 = 0

Γ223 = Γ232 = �m3l2r3s3

Γ233 = �m3l2r3s3

Γ311 = m3l2r3s3 +m3l1r3s23

Γ312 = Γ321 = m3l2r3s3

Γ313 = Γ331 = 0

Γ322 = m3l2r3s3

Γ323 = Γ332 = 0

Γ333 = 0:

The equations can also be written in the form

M(Θ)Θ̈ +C(Θ; Θ̇)Θ̇= τ;
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where C is the 3�3 Coriolis matrix of elements Ci j = Σn
k=1Γi jkθ̇k.

C =

0
@ Γ111θ̇1 +Γ112θ̇2 +Γ113θ̇3 Γ121θ̇1 +Γ122θ̇2 +Γ123θ̇3 Γ131θ̇1 +Γ132θ̇2+Γ133θ̇3

Γ211θ̇1 +Γ212θ̇2 +Γ213θ̇3 Γ221θ̇1 +Γ222θ̇2 +Γ223θ̇3 Γ231θ̇1 +Γ232θ̇2+Γ233θ̇3

Γ311θ̇1 +Γ312θ̇2 +Γ313θ̇3 Γ321θ̇1 +Γ322θ̇2 +Γ323θ̇3 Γ331θ̇1 +Γ332θ̇2+Γ333θ̇3

1
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