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We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic

collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike

standard memoryless CMs, we endow the bath with memory by introducing interancillary collisions between

next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous

interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the

continuous limit one can derive a general master equation, which, while keeping such features, is guaranteed to

describe an unconditionally completely positive and trace-preserving dynamics. We apply our theory to an atom

in a dissipative cavity for a Lorentzian spectral density of bath modes, a dynamics which can be exactly solved.

The predicted evolution shows a significant improvement in approaching the exact solution with respect to two

well-known memory-kernel master equations.

DOI: 10.1103/PhysRevA.87.040103 PACS number(s): 03.65.Yz, 03.67.−a, 42.50.Lc

Introduction. In open system dynamics the focus is on

a system S in contact with an environment. Typically, the

goal is to seek a master equation (ME) where the degrees of

freedom (DOF) of S are the only explicit variables. Hence, the

environmental interactions should be accounted for through an

effective but reliable description. When it comes to quantum

objects, this problem turns out to be especially thorny [1–4].

Within this context, “reliable” means that the ME to be

worked out should give rise to a completely positive and trace-

preserving (CPT) dynamics. It is well assessed that Markovian,

i.e., memoryless, environments are described by MEs in the

so-called Lindblad form [1] entailing unconditionally CPT dy-

namics. Markovianity is in most cases only an approximation,

though: In general, the environment is not forgetful and there

is indeed a broad variety of actual phenomena featuring strong

non-Markovian (NM) effects [5]. Yet, a general systematic

framework for describing these has yet to be developed. Rather,

many different approaches have been proposed. Typically, they

rely on phenomenological assumptions and/or approximations

(testifying the formidable hurdles to cope with). Thereby,

non-CPT—i.e, unphysical—dynamics can occur in certain

regimes [6]. Among these descriptive tools are the so-called

memory-kernel MEs, e.g., those in Refs. [7,8]. These are

integrodifferential MEs featuring a history integral, where

past states of S are weighted through a certain memory-kernel

function (MKF). There exist regimes in which such MEs can

fail to be CPT [9–15]. Moreover, it was recently tested [16]

whether MEs in Refs. [7,8] are non-Markovian through a

non-Markovianity indicator proposed by Breuer et al. [17].

It turned out that this is null [16], suggesting that such

MEs should rather be regarded as time-dependent Markovian.

This means that when they entail a CPT dynamics this is

anyway very close to the purely Markovian regime (weak

non-Markovianity).

Here, we tackle the problem to derive a NM ME through

a suitable collision model (CM) [18–25]. This allows us to

identify a class of MEs featuring two attractive properties that

rarely hold simultaneously. First, they unconditionally fulfill

the CPT condition. Second, they nicely allow to interpolate

between the purely Markovian regime and the strongly non-

Markovian situation where S is continuously interacting with

a low-dimensional, hence nonforgetful, bath. Also, the model

applies regardless of the dimensionality of S and the form of

the system-ancilla coupling. We recall that in standard CMs

the bath is modeled as a large collection of noninteracting

identical ancillas. By hypothesis, S “collides” with each

of these one at a time and, importantly, is not allowed to

interact more than once with a given ancilla. Demonstrably,

such a process gives rise to an irreversible dynamics for S

corresponding to a Lindblad-type [1], i.e., Markovian, ME

[21]. This can be expected since, as stressed, at each step

S comes into contact with a fresh ancilla which is still in

its initial state. Hence, there is no way for the bath to keep

track of the system’s past history. Although they are somewhat

fictitious, the latest research is unveiling the potential of

CMs as effective theoretical tools for tackling open system

dynamics [24,25]. First, they are conceptually intuitive, hence

potentially easier to cope with: A complex coupling to a large

environment is decomposed as a succession of elementary

interactions with its subparts. A key feature is that CMs lead

to Lindblad-type MEs without demanding any approximation:

Only the passage to the continuous limit is needed [21].

This is in contrast to standard microscopic system-reservoir

models [1], where Markovianity must be somehow enforced

through drastic assumptions such as the requirement of small

coupling and short enough bath correlation time (Born-Markov

approximation). Should such a feature be maintained in a

NM generalization of a CM, this would be quite appealing:

As stressed above, approximations and phenomenological

assumptions can lead to unphysical predictions. Progress along

this line was made recently [22,24,25]. In particular, it was

shown [25] that, by taking the ancillas initially in a nontrivial

quantum-correlated state, any indivisible channel [1] (thus

highly NM) can be simulated when S is a qubit [26]. Here,

we tackle the problem from quite a different perspective:

Following physical intuition, we describe the memory effects

as arising directly from the bath internal dynamics itself.

Specifically, in the spirit of standard CMs, a natural memory
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mechanism to devise is adding interancillary (AA) collisions

between next system-ancilla (SA) ones. This way, quantum

information received from S can be conveyed across the bath

and returned to S in the next SA collisions (information

backflow): we introduce a CM with memory precisely built

upon this idea.

Model. In a standard (Markovian) CMs [see Fig. 1(a)]

collisions S-1, S-2, S-3, etc., occur in succession. As each

ancilla is still in the initial state before colliding with S,

memory effects cannot take place. Differently [see Fig. 1(b)],

between collisions S-i and S- (i + 1), we assume an extra AA

collision involving ancillas i and (i + 1). This way, before

colliding with S, the ith ancilla is in a state depending

on S’s past history. Any collision is described by a CPT

quantum map. Specifically, an SA collision is defined by

the map σ → USi[σ ] = ÛSiσ Û
†
Si with ÛSi = e−iĤSiτ a unitary

operator depending on the collision time τ and the interaction

Hamiltonian ĤSi (we set h̄ = 1 throughout). Instead, an AA

collision between ancillas i and (i + 1) is defined as the

nonunitary map Si+1,i which, with probability p, exchanges

their states. This reads

σ → Si+1,i[σ ] = (1 − p)σ + pŜi+1,iσ Ŝi+1,i, (1)

where Ŝi+1,i is the swap operator [26] on ancillas i and i + 1.

Different AA collision mechanisms can be selected [27]: The

one in Eq. (1) yet has the advantage to allow for simple treat-

ment while fully capturing the idea of environment-mediated

information backflow. Here, p plays the role of a knob

for tuning the bath memory. The nth-step overall state thus

reads σn = (USn ◦ Sn,n−1 ◦ · · · ◦ US2 ◦ S2,1 ◦ US1)[σ0], where

“◦” represents the superoperator composition and will be

henceforth omitted, and σ0 = ρ0|0〉B〈0| is the system-bath

initial state [28] with ρ0 being the input density matrix of S and

|0〉B = |0〉1|0〉2 · · · the initial ancillary state [29]. Exploiting

the properties of the swap operator and the translational

symmetry of B’s initial state, σn can be straightforwardly cast

as a sum of terms involving {σm<n}. For n ! 2, this reads [30]

σn = (1 − p)

n−1
∑

j=1

pj−1U
j

Sn[σn−j ] + pn−1Un
Sn[σ0], (2)

FIG. 1. (Color online) First steps of the process in the memoryless

case (a) and in the NM one (b). Next steps are obtained by a mere

iteration.

where U
j

Sn[σ ] = e−iĤSijτσeiĤSijτ . Note that this map corre-

sponds to a coherent interaction between S and the nth ancilla

only, which continued for a time jτ . This and the fact that in

Eq. (2) eachU
j

Sn is applied to σn−j (with n still in |0〉n) entail the

attractive property that an expansion for ρn = TrB σn similar

to Eq. (2) holds. Tracing this over B indeed yields

ρn = (1 − p)

n−1
∑

j=1

pj−1Ej [ρn−j ] + pn−1En[ρ0], (3)

where a transformation Ej is a CPT map on S only defined in

terms of the unitary map U
j

Sn and the initial bath state as

Ej [ρ] = TrB
{

U
j

Sn[ρ ⊗ |0〉B〈0|]
}

. (4)

Interestingly, the structure of Eq. (3) shares features with the

discrete model used by Shabani and Lidar (SL) [8] to derive

their ME (there, in particular, Ej is the dynamical map in the

absence of measurements performed on the bath). Two major

differences occur, though. First, Eq. (3) cannot be written as

a single sum due to the missing (1 − p) factor in the last

term, which in fact means that here we deal with a time-

inhomogeneous MKF. Second, map Ej is in general strongly

NM: It describes the reduced dynamics of S for a continuous

coherent interaction between S and a single ancilla (e.g.,

once can think of two coupled spins periodically exchanging

an excitation). Indeed, as anticipated, our model interpolates

between two extreme regimes depending on p. When p = 0,

AA collisions are absent [cf. Eq. (1)]: Eq. (3) reduces to ρn =

E1[ρn−1] and we retrieve a standard Markovian CM [18–21].

Quite differently, for p = 1, Eq. (3) yields ρn = En[ρ0], i.e., S

behaves as if it interacts with a single ancilla all the time. This

is because for p = 1 Eq. (1) reduces to a perfect swap: Once

S has collided with i, the final state of i is fully transferred to

i + 1 (with i returning to |0〉i).
Master equation. As our next goal, we work out the ME

corresponding to Eq. (3) in the continuous limit and prove

that (i) it is still capable to interpolate between the two

aforementioned opposite limits and (ii) it unconditionally

satisfies the CPT condition. For this aim, we first subtract

from Eq. (3) the analogous identity for n − 1. This yields

the equation for the variation of ρn between two next steps

$ρn = ρn − ρn−1,

$ρn = q

n−2
∑

j=1

pj−1Ej [$ρn−j ] + qpn−1En−1[ρ1]

+$(pn−1En)[ρ0],

with q = 1 − p. This can now be transformed into a dif-

ferential equation for the continuous-time evolved S state

ρ(t) by taking the limit of infinite collisions (n,j → ∞)

while sending the collision time to zero (i.e., τ → 0) in

such a way that the times t = nτ and t ′ = jτ remain finite.

Also, when j becomes very large, the probability pj of

multiple AA collisions clearly must not vanish. We thus set

p = exp[−Ŵτ ], where Ŵ = −(ln p)/τ is interpreted as the

memory rate. We require that, when τ → 0, p approaches 1

in a way that Ŵ stays finite. This allows to express each power

of p as a decaying exponential pj = (p
1
τ )jτ = e−Ŵt ′ . Note

that in the continuous limit τ should be far shorter than any

040103-2



RAPID COMMUNICATIONS

COLLISION-MODEL-BASED APPROACH TO NON- . . . PHYSICAL REVIEW A 87, 040103(R) (2013)

characteristic time, in particular, Ŵ−1. Hence, we have Ŵτ ≪ 1

and 1 − p = 1 − e−Ŵτ ≃ Ŵτ . Using this, the sum over j in

Eq. (5) becomes a time integral as τ → 0. By identifying

$ρn/τ → ρ̇(t) = dρ(t)/dt , after a few steps [30] we end up

with

ρ̇(t) = Ŵ

∫ t

0

dt ′e−Ŵt ′E(t ′)[ρ̇(t − t ′)] + e−Ŵt Ė(t)[ρ0], (5)

where the CPT mapE(t) is the continuous analog of Eq. (4) (the

dot stands for the total derivative). This is an integrodifferential

ME in ρ(t) featuring a history integral term with an associated

MKF Ŵe−Ŵt ′ and, notably, a term ∼ρ0. The latter is a strong

signature of NM behavior. Indeed, in the infinite-memory-time

limit Ŵ → 0, it is the only term surviving in Eq. (5) yielding

ρ̇(t) → Ė(t)[ρ0], i.e., ρ(t) → E(t)[ρ0] in full analogy with the

discrete model (we address the opposite limit Ŵ → ∞ later

on). Next, we derive the solution of Eq. (5), ρ(t) = &(t)[ρ0],

and prove that the dynamical map [1] &(t) is always CPT

[&(0) = I with I the identity superoperator]. Clearly, &(t)

obeys Eq. (5) under the formal replacement ρ → &. Taking

its Laplace transform (LT), such an equation is easily solved

as [30]

&̃(s) =
Ẽ(s + Ŵ)

I − Ŵ Ẽ(s + Ŵ)
, (6)

where &̃(s) and Ẽ(s) are the LTs of &(t) and E(t), respectively.

Expanding Eq. (6) in powers of Ŵ gives &̃(s) =
∑∞

k=1[Ẽ(s +

Ŵ)]kŴk−1, whose inverse LT is

&(t) = L−1[&̃(s)](t) =

∞
∑

k=1

Ŵk−1 L−1[Ẽk(s + Ŵ)](t). (7)

The basic properties of LT allow to write [30]

L−1[Ẽk(s + Ŵ)] = e−Ŵt

∫ t

0

dt1

∫ t1

0

dt2 · · ·

∫ tk−2

0

dtk−1

×E(tk−1)E(tk−2 − tk−1) · · · E(t − t1). (8)

We have thus expressed &(t) as a weighted series of multiple

autoconvolutions of the CPT map E(t). The integrand in

Eq. (8) is evidently a composition of CPT E maps, thus it

is CPT itself. Hence, we see that &(t) in Eq. (7) is in fact

a combination of CPT maps with positive weights [factors

Ŵk−1 and e−Ŵt in Eqs. (7) and (8) are all positive]. This

proves that map &(t) is completely positive. Also, the state

obtained by applying the integrand in Eq. (8) (a CPT map as

discussed) to ρ0 has evidently a unitary trace. As is easily

checked [30], this entails Tr{&(t)[ρ0]} = 1. We conclude

that, since E(t) is CPT, &(t) is CPT. We finally prove that,

in line with Eq. (3) for p = 0, the Markovian behavior

arises from Eq. (5) for Ŵ → ∞. Indeed, Eq. (5) is such

that for Ŵ high enough we can approximate E(t) ≃ I + F t ,

where F = Ė(0). Under LT, this becomes Ẽ(s) = 1/(s + Ŵ) +

F/(s + Ŵ)2, which, once plugged into Eq. (6) and for Ŵ →
∞, yields &̃(s) = (s + Ŵ + F)/[s2 + Ŵ(s − F)]|Ŵ→∞ =

1/(s − F). Transforming back, we end up with &(t) = eF t

entailing that the semigroup property is fulfilled and thus,

necessarily, F is a Lindbladian superoperator [1] with Eq. (5)

reducing to the Lindblad form ρ̇(t) = F[ρ]. Interestingly,

unlike the SL ME [8], Eq. (5) can yield a Markovian dynamics

even for finite Ŵ with a proper choice of map E(t). Indeed, if

E(t) = eF t , then &(t) = eF t is the exact solution of Eq. (5) for

any Ŵ.

An application. To test the predictive power of our

approach, we consider the dynamics of a two-level atom

[whose ground (excited) state is denoted by |0〉S (|1〉S)]

coupled to a continuum of electromagnetic modes in the

rotating-wave approximation [1]. The case in which the field

spectral density J (ω) is a Lorentzian centered on the atomic

frequency can be solved exactly [31], which makes it a useful

benchmark to assess the effectiveness of a ME [11]. This

solution can be expressed in terms of an amplitude damping

channel (ADC) [26] as ρ(t) = AG(t)[ρ0], where Aη[ρ0] =

(1 − p|η|2)|0〉S〈0| + p|η|2|1〉S〈1| + {r η|0〉S〈1| + H.c.} is the

general form of an ADC (p and r are the atom’s ini-

tial populations and coherences). Specifically [1], G(t) =

e−λ/2t [cosh(dt/2) + λ/d sinh(dt/2)] with d =
√

λ2 − 2γ0λ.

Here, λ is the width of J (ω), while γ0 is related to the

strength of the coupling [1]. The ratio γ0/λ in fact rules the

occurrence of NM effects [32]. For λ ≫ γ0, J (ω) becomes

about flat and G(t) → e−γ0/2t : The atom undergoes standard

spontaneous emission at a rate γ0 and ρ̇ → L[ρ], namely, the

Markovian regime occurs (L is the usual zero-temperature

atomic Lindbladian [1] with associated rate γ0). For λ <

γ0/2, instead, damped oscillations take place as a signature

of non-Markovianity. In particular, in the regime λ ≪ γ0,

G(t) ≃ e−λt cos(+t) with + =
√

γ0λ/2 showing that the atom

undergoes damped Rabi oscillations at a rate + due to its

coupling to the cavity protected mode. For λ ≃ 0 (ideal cavity)

we would thus obtain AG(t)[ρ0] ≃ Acos(+t)[ρ0]. This strongly

suggests to regard the cavity protected mode as a generic

ancilla in our CM framework and thus set E(t) ≡ Acos(+t)

and, additionally, Ŵ ≡ λ. Indeed, we have shown that if Ŵ = 0

(namely, λ = 0), S behaves as if interacting all the time with

one ancilla, namely, the protected mode. On the other hand,

we have seen that when Ŵ is very large (Markovian limit) at

each collision the system interacts with a fresh ancilla still in

the initial state. Note that even this case can be viewed as an

effective single-ancilla process if one supposes such ancilla to

be reset to its initial state between two next collisions with S.

Correspondingly, in the atom-field model, for very large λ the

cavity is bad: The protected-mode leakage is so effective that

the atom in fact keeps “seeing” such a mode in its vacuum state

at any time. With the above settings [E(t) ≡ Acos(+t) and Ŵ ≡
λ] the dynamical map &(t) can be calculated exactly through

Eqs. (6)–(8) [33]. Figure 2 shows the atomic excitation, i.e.,

the excited-state population, and coherences (normalized to

the respective initial values) versus time as given by the exact

solution (ES) and our CM. For comparison, we also report the

corresponding functions predicted by the phenomenological

ME (PME) [7] and the SL ME [8] for the MKF k(t ′) = λe−λt ′

(a similar study appeared in Ref. [11]). For large λ/γ0 the

Markovian regime occurs: All the models basically yield the

same purely exponential behavior [see Figs. 2(a) and 2(d)].

As λ becomes low, significant deviations arise. The SL model

keeps predicting exponential decays [cf. Figs. 2(b), 2(c), 2(e),

and 2(f)] in contrast to the damped oscillations predicted by

the ES. The PME predicts coherences matching the ES [cf.

Figs. 2(e) and 2(f)], yet positivity is drastically violated [7,11]
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FIG. 2. (Color online) Dynamics of an

atom in contact with a bath of Lorentzian spec-

tral density. (a)–(c) [(d)–(f)] show the excited-

state population (coherences) vs the rescaled

time λt predicted by the ES (black solid line),

our CM (blue dashed), the SL ME (red dotted),

and the PME (green dotted-dashed) for different

values of γ0/λ. All the plotted quantities are

normalized to the respective initial values.

[see Figs. 2(b) and 2(c)]. Our ME Eq. (5) yields a substantial

improvement on both the above models. As the PME, it

accurately reproduces the exact coherences [see Figs. 2(e) and

2(f)]. Quite differently, though, in line with our general proof

it is positive [see Figs. 2(b) and 2(c)], a feature shared with

the SL ME. Yet, unlike this, the CM captures the physics of

the process far better: Damped oscillations for populations

rather close to the exact ones are predicted (the discrepancy

decreases as λ/γ0 → 0). In Figs. 2(b) and 2(c), while the ES

minima are zero, the corresponding CM minima are small but

strictly positive. This is likely to stem from the incoherent

mixture of identity and swap entering Eq. (1). Using a unitary

partial swap, zero minima can indeed occur [27].

Conclusions. We introduced a NM microscopic CM, where

the bath memory is added dynamically through simple inter-

ancillary collisions each modeled as a swapping operation.

The model interpolates between two extreme situations: a

fully Markovian regime and a strongly NM one (where a

continuous interaction with a single ancilla occurs). The

continuous limit yields an unconditionally CPT ME. To

test our approach, we applied it to an atom coupled to a

bath of modes featuring a Lorentzian spectral density and

compared the outcomes with the analytical solution and

two known memory-kernel MEs. While all the advantageous

features of such MEs simultaneously occur in ours, this in

addition succeeds to capture distinctive traits of the NM

dynamics.
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[15] D. Chruściński and A. Kossakowski, Phys. Rev. Lett. 104,

070406 (2010); Europhys. Lett. 97, 20005 (2012).

[16] L. Mazzola, E.-M. Laine, H.-P. Breuer, S. Maniscalco, and J.

Piilo, Phys. Rev. A 81, 062120 (2010).

[17] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,

210401 (2009).

[18] J. Rau, Phys. Rev. 129, 1880 (1963).

[19] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and

Applications, Lecture Notes in Physics Vol. 717 (Springer,

Berlin, 1987).

[20] M. Ziman et al., Phys. Rev. A 65, 042105 (2002); V. Scarani,
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12, 81 (2005).

[22] S. Attal and Y. Pautrat, Ann. Inst. Henri Poincaré 7, 59 (2006).

[23] C. Pellegrini and F. Petruccione, J. Phys. A: Math. Theor. 42,

425304 (2009).

[24] V. Giovannetti and G. M. Palma, Phys. Rev. Lett. 108, 040401

(2012); J. Phys. B 45, 154003 (2012).

[25] T. Rybar, S. N. Filippov, M. Ziman, and V. Bužek, J. Phys. B
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