
Collision Resistant Hashing for Paranoids:
Dealing with Multiple Collisions

Ilan Komargodski1(B), Moni Naor2, and Eylon Yogev2

1 Cornell Tech, NewYork, NY 10044, USA
komargodski@cornell.edu

2 Weizmann Institute of Science, 76100 Rehovot, Israel
{moni.naor,eylon.yogev}@weizmann.ac.il

Abstract. A collision resistant hash (CRH) function is one that com-
presses its input, yet it is hard to find a collision, i.e. a x1 �= x2

s.t. h(x1) = h(x2). Collision resistant hash functions are one of the
more useful cryptographic primitives both in theory and in practice and
two prominent applications are in signature schemes and succinct zero-
knowledge arguments.

In this work we consider a relaxation of the above requirement that we
call Multi-CRH: a function where it is hard to find x1, x2, . . . , xk which
are all distinct, yet h(x1) = h(x2) = · · · = h(xk). We show that for
some of the major applications of CRH functions it is possible to replace
them by the weaker notion of a Multi-CRH, albeit at the price of adding
interaction: we show a constant-round statistically-hiding commitment
scheme with succinct interaction (committing to poly(n) bits requires
exchanging Õ(n) bits) that can be opened locally (without revealing the
full string). This in turn can be used to provide succinct arguments for
any NP statement.

We formulate four possible worlds of hashing-related assumptions (in
the spirit of Impagliazzo’s worlds). They are (1) Nocrypt, where no one-
way functions exist, (2) Unihash, where one-way functions exist, and
hence also UOWHFs and signature schemes, but no Multi-CRH func-
tions exist, (3) Minihash, where Multi-CRH functions exist but no CRH
functions exist, and (4) Hashomania, where CRH functions exist. We
show that these four worlds are distinct in a black-box model: we show
a separation of CRH from Multi-CRH and a separation of Multi-CRH
from one-way functions.

I. Komargodski—Supported in part by a Packard Foundation Fellowship and AFOSR
grant FA9550-15-1-0262. Most work done while the author was a Ph.D. student at the
Weizmann Institute of Science, supported in part by a grant from the Israel Science
Foundation (no. 950/16) and by a Levzion Fellowship.
M. Naor and E. Yogev—Supported in part by a grant from the Israel Science Foun-
dation (no. 950/16). Moni Naor is the incumbent of the Judith Kleeman Professorial
Chair.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 162–194, 2018.
https://doi.org/10.1007/978-3-319-78375-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_6&domain=pdf

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 163

1 Introduction

In any function that compresses its input, say from 2n bits to n bits, there are
many collisions, that is, pairs of distinct inputs whose image is the same. But
what is the complexity of finding such a collision? Families of functions where
this collision finding task is hard are known as collision resistant hash (CRH)
functions.1 CRH functions have many appealing properties, such as preservation
under composition and concatenation. The presumed hardness of finding colli-
sions in such functions is the basis for increased efficiency of many useful crypto-
graphic schemes, in particular signature schemes and succinct (zero-knowledge)
arguments, i.e., methods for demonstrating the correctness of a statement that
are much shorter than the proof or even the statement itself (see Kilian [37] and
Barak and Goldreich [4]). The latter is achieved via a hash tree commitment2

scheme whose opening is local i.e., opening a bit does not require revealing the
full string (known as a “Merkle tree”). Results of this sort enable the construc-
tion of efficient delegation of computation where the goal is to offload significant
computation to some server but also to verify the computation.

Such a task (“breaking a collision resistant hash function”) is indeed hard
based on a variety of assumptions such as the hardness of factoring integers, find-
ing discrete logs in finite groups or learning with errors (LWE). There are popular
functions (standards) with presumed hardness of collision finding such as SHA-2
and SHA-3 (adopted by NIST3 in 2015). These functions can be evaluated very
quickly; however, their hardness is based on more ad hoc assumptions and some
former standards have been shown to be insecure (such as MD4, MD5, SHA-1).
On the other hand there is no known construction of CRHs based solely on the
existence of one-way functions or even one-way permutations and, furthermore,
they were shown to be separated in a black-box model (see Simon [50]).

But a sufficiently compressing function also assures us that there are multi-
ple collisions, i.e., k distinct values whose image under the function is equal.
What about the problem of finding a k-collision? Assuming such hardness is
a weaker computational assumption than hardness of finding a single pair of
colliding inputs and the question is whether it yields a useful primitive.

In this paper we deal with multiple collision resistant hash (MCRH) functions
and systematically investigate their properties and applications. We show that
for some of the major applications of CRH functions it is possible to replace
them by an MCRH, albeit at the price of adding some rounds of interaction:

1 The function h ∈ H can be sampled efficiently, it is easy to compute h(x) given h
and x, however, given h it is hard to find x1 �= x2 s.t. h(x1) = h(x2).

2 A commitment scheme is a protocol where a sender commits to a string x in the
“commit” phase and that later can be revealed at the opening phase. The two
properties are binding and hiding: in what sense is the sender bound to the string x
(computationally or information theoretically) and in what sense is x hidden from
the receiver before the opening - statistically or computationally.

3 NIST is the National Institute of Standards and Technology, a US agency.

164 I. Komargodski et al.

a constant-round4 commitment scheme with succinct communication
that can be opened locally (without revealing the full string) (see Theorem2).
This implies that it is possible to effectively verify the correctness of computa-
tion much more efficiently than repeating it. As an application we get universal
arguments [4] (and public-coin zero-knowledge argument systems for NP [3])
with an arbitrary super-constant number of rounds based on MCRH functions.
We also provide a constant-round statistically-hiding scheme and thus we can
get constant-round statistical zero-knowledge arguments [8].5

On the other hand, we show various black-box separation results concern-
ing MCRH. First, we separate them from one-way permutations. This follows
from the lower bound of Haitner et al. [23] on the number of rounds needed
to build a statistically-hiding commitment from one-way permutations. Further-
more, we show a black-box separation from standard CRH: there is no fully
black-box construction of a k-MCRH from a (k + 1)-MCRH for all k with poly-
nomial security loss (see Theorem 4). These results yield an infinite hierarchy
of natural cryptographic primitives, each two being separated by a fully black-
box construction, between one-way function/permutations and collision-resistant
hash function.6

One motivation for investigating MCRH functions is the progress in find-
ing collisions in the hash function SHA-1 (that has long been considered inse-
cure [53]) and recently an actual meaningful collision has been found [51].
In general, finding a collision with arbitrary Initialization Vector (IV) allows
finding multiple collisions in an iteration of the function (say in a Merkle-
Damg̊ard lopsided tree), as shown by Joux [35] (see also Coppersmith and Girault
et al. [9,15] for older attacks). However, for the compression function of SHA-1
(or other such functions) there is no non-trivial algorithm for finding multi-
collisions.7 Also, multi-collision resistance is sometimes useful for optimizing
concrete parameters, as shown by Girault and Stern [16] for reducing the com-
munication in identification schemes. So the question is what can we do if all
we assume about a given hash function is that multi-collision are hard to find,
rather than plain collisions.

Our interest in MCRH functions originated in the work of Komargodski
et al. [39], where MCRHs were first defined in the context of the bipartite
Ramsey problem. They showed that finding cliques or independent sets in
succinctly-represented bipartite graphs (whose existence is assured by Ramsey
Theory) is equivalent to breaking an MCRH: a hard distribution for finding these

4 By “constant-round” we mean that for a c ∈ N to commit to a string of length nc

using a compression function from 2n to n bits the number of rounds is a constant
that depends on c.

5 For constant values of k, we give a 4-round computationally-binding commitment
scheme with succinct communication (see Theorem 3).

6 This hierarchy translates to an infinite hierarchy of natural subclasses in TFNP. See
the full version [38] for details.

7 Beyond the “birthday-like” algorithm that will take time 2n· k−1
k [35], where 2n is

the size of the range. See [30] for very recent work in the quantum case.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 165

objects implies the existence of an MCRH and vice-versa (with slightly different
parameters).8

Families of CRHs compose very nicely, and hence domain extension is rela-
tively simple, that is, once we have a CRH that compresses by a single bit we
can get any polynomial compression (i.e., from poly(n) to n bits). In contrast,
we do not know how to construct a k′-MCRH on very large domains from a fixed
k-MCRH, where k′ is not much larger than k. Nevertheless, in Sect. 6, we show
how to get such a construction with k′ = kO(log n).

A well-known relaxation of CRHs are Universal One-way Hash Functions
(UOWHF) or second pre-image resistance: first the target x is chosen (perhaps
adversarially), then a function h ∈R H is sampled and the challenge is to find
x′ �= x s.t. h(X) = h(x′). Such families are good enough for signatures (at least
existentially) and can be used for the hash-and-sign paradigm, if one chooses h
per message (see Naor and Yung [46] and Mironov [43]). It is known how to get
such family of functions from one-way functions, but the construction is rather
involved and inefficient (and there are some inherent reasons for that, see [14]).
We show how to go from any interactive commitment protocol where the com-
munication is shorter than the string committed to (a succinct commitment) to
a UOWHF (see Theorem 5). Together with our commitment schemes, this gives
new constructions of UOWHFs on long inputs based on MCRHs with a shorter
description than the ones known starting from a UOWHF on fixed input length.

The Four Worlds of Hashing. Impagliazzo’s five worlds [32] are a way to char-
acterize the strength of a cryptographic assumption. The worlds he defined are:
Algorithmica (where P = NP), Heuristica (where NP is hard in the worst case
but easy on average, i.e., one simply does not encounter hard problems in NP),
Pessiland (where hard-on-the-average problems in NP exist, but one-way func-
tions do not exist), Minicrypt (where one-way functions exist), and Cryptomania
(where Oblivious Transfer exists). (Nowadays, it is possible to add a sixth world,
Obfustopia, where indistinguishability obfuscation for all programs exists.)

In the spirit of Impagliazzo’s five worlds of cryptographic assumptions, we
define four worlds of hashing-related primitives:

Nocrypt: A world where there are no one-way functions. There are no crypto-
graphic commitments of any kind in this world [34].

Unihash: A world where one-way functions exist (and so do UOWHFs), but
there are no MCRH functions. Therefore, signatures exist and hashing appli-
cations such as the hash-and-sign paradigm [46]. Also, statistically-hiding
commitments exist (albeit with a linear number of rounds) [23,24,26,45].
There are no known short commitment (where the communication is much
shorter than the string committed to).

8 In the bipartite Ramsey problem, the goal is to find a bi-clique or bi-independent set
of size n/4 × n/4 in a bipartite graph of size 2n × 2n. The work of [39] showed that
if this problem is hard, then there exists an (n/4)-MCRH from n bits to n/2 bits.
Conversely, If a

√
n-MCRH mapping n bits to

√
n/8 bits exists, then this problem

is hard.

166 I. Komargodski et al.

Minihash: A world where MCRH exists but there is no CRH: that is, for some
polynomial k(n) there exists a k-MCRH that compresses 2n to n bits. In
this work we give a protocol for short and statistically-hiding commitments
with a constant number of rounds. Furthermore the string can be opened
locally, with little communication and computation, without requiring the
full opening of the string.

Hashomania: A world where CRH exists. There is a short commitment pro-
tocol that requires only two rounds (i.e., two messages) with local opening.
This is the famed Merkle-tree.

Note that our separation results imply that these four worlds have black-box
separations. Unihash and Minihash are separated by the separation of MCRH
from one-way permutations, and Minihash and Hashomania are separated by
the separation of CRH from MCRH. Moreover, the separation in Sect. 7 actually
implies that the world Minihash can be split further into sub-worlds parameter-
ized by k, the number of collisions it is hard to find.

Multi-pair Collision Resistance. A different way to relax the standard notion
of collision resistance is what we call multi-pair-collision-resistance, where the
challenge is to find arbitrary k distinct pairs of inputs that collide (possibly
to different values). One may wonder what is the difference between these two
notions and why we focus on the hardness of finding a k-wise collision rather
than hardness of finding k distinct colliding pairs. The answer is that the notion
of k-pair-collision-resistance is existentially equivalent to the standard notion of
collision resistance (see the full version [38] for details).

Concurrent work
In parallel to this work, MCRH functions were studied by two other groups that
obtained various related results [6,7] with different motivation and perspective.

Berman et al. [6] showed how to obtain MCRH functions from a spe-
cific assumption. Concretely, they construct an n2-MCRH function compressing
inputs of length n to outputs of length n − √

n from the average-case hardness
of the min-max variant of the entropy approximation problem. This variant is a
promise problem where the YES inputs are circuits whose output distribution has
min-entropy at least κ, whereas NO inputs are circuits whose output distribution
has max -entropy less than κ.9 Berman et al. also show how to get a constant-
round statistically-hiding (computationally-binding) commitment scheme from
any k-MCRH that compresses n bits into n−log k bits (which implies a black-box
separation of MCRH from one-way permutations). However, their commitment
scheme is not short and does not support local opening10.

9 The original entropy approximation problem is the one obtained by replacing the
min- and max-entropy with the Shannon entropy. It is known to be complete for
the class of languages that have non-interactive statistical zero-knowledge proofs
(NISZK) [17].

10 Starting out with such a weak primitive our methods will not yield a succinct com-
mitment either.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 167

Bitansky et al. [7] replace the CRH assumption with a k-MCRH in several
applications related to zero-knowledge and arguments of knowledge for NP with
few rounds. They rely on either MCRH that compresses by a polynomial factor
(say n2 bits into n), or alternatively on an MCRH that compresses by a linear
factor but lose a quasi-polynomial factor in security. Their main technical com-
ponent is a two-round (i.e., two-message) short commitments with local opening
but with weak computational-binding. The latter means that the sender may be
able to open the commitment to more than one value, but not to too many val-
ues. Their construction of the commitment scheme is related to our construction
presented in Theorem 3 but they design a specific code that allows them to get
local opening.

Summary of Results and Paper Organization
Our main results are:

1. Any k-MCRH can be used to get a constant round short commitment scheme
which is computationally-binding, statistically-hiding and support local open-
ing (à la Merkle commitments). This result in Sect. 5.

2. Any k-MCRH, where k is constant, can be used to get a 4 round short commit-
ment scheme which is computationally-binding and statistically-hiding open-
ing. This appears in Sect. 6.

3. We prove a fully black-box separation between standard collision resistant
hash functions and multi-collision resistant ones. This appears in Sect. 7.

4. We present a generic and direct construction of UOWHFs from any short
commitment schemes (and thereby from any multi-collision resistant func-
tions). See Sect. 8.

In Sect. 2 we provide an overview of our main ideas and techniques. In Sects. 3
and 4 we provide preliminary standard definitions used throughout the paper
and the definition of MCRH functions, respectively.

2 Our Techniques

In this section we present some of our main ideas and techniques used in the
construction of the commitment scheme and in the black-box separation result.

2.1 The Main Commitment Scheme

A commitment scheme is a two stage interactive protocol between a sender and
a receiver such that after the first stage the sender is bound to at most one value
(this is called “binding”). In the second stage the sender can open his commit-
ted value to the sender. There are a few security properties one can ask from
such a protocol: have statistical/computational binding, and have the committed
value of the sender be statistically/computationally hidden given the commit-
ment (this is called “hiding”). Our commitment scheme satisfies computational
binding and statistical hiding. In this overview we will mostly focus on obtaining
computational binding and briefly discuss how we obtain hiding towards the end.

168 I. Komargodski et al.

There is a trivial commitment protocol that is (perfectly) binding: let the
sender send its value to the receiver. Perhaps the most natural non-trivial prop-
erty one can ask is that the commitment is shorter than the committed string.
There are additional useful properties one can require such as local-opening
which allows the sender to open a small fraction of its input without sending the
whole string (local opening is very important in applications of such commit-
ment schemes, e.g., to proof systems and delegation protocols). In our protocol
the commitment is short and it supports local-opening; we will focus here on the
former and shortly discuss the latter towards the end.

Our goal now is to construct a commitment scheme which is computationally
binding and the commitment is shorter than the value of the sender. If we had
a standard collision resistant hash function mapping strings of length 2n to
strings of length n, this task would be easy to achieve: the receiver will sample
a hash function h and send it to the sender which will reply with h(x∗), where
x∗ ∈ {0, 1}2n is its value. The commitment thus consists of (h, h(x∗)) and its
size is n bits.11 It is easy to verify that for a sender to cheat during the opening
phase it actually has to break the collision resistance of h (i.e., come up with a
value x �= x∗ such that h(x) = h(x∗)).

When h is only a k-MCRH for k > 2, the above protocol is clearly insecure:
the sender can potentially find two inputs that collide to the same value and cheat
when asked to open its commitment. The first observation we make is that even
though the sender is not bound to a single value after sending h(x∗), it is bound
to a set of values of size at most k−1. Otherwise, at least intuitively, he might be
able to find k inputs that map to the same output relative to h, which contradicts
the security of the k-MCRH. Our first idea is to take advantage of this fact by
adding an additional round of communication whose goal is to “eliminate” all
but one possible value for the sender. Specifically, after the receiver got h(x∗),
it samples a random universal hash12 function, g, mapping strings of length 2n
to strings of length m. and sends it to the sender. The sender then responds
with g(x). The commitment thus consists of (h, h(x∗), g, g(x∗)). To open the
commitment the sender just sends x∗ (just as before).

One can show that this protocol is binding: Out of the k−1 possible values the
sender knows that are consistent with h(x∗), with probability roughly k2 · 2−m

there will be no two that agree on g(x∗). Conditioning on this happening, the
sender cannot submit x �= x∗ that is consistent with both h(x∗) and g(x∗). To
formally show that the protocol is binding we need to show how to find a k-
wise collision using a malicious sender. We simulate the protocol between the
malicious sender and the receiver multiple times (roughly k times) with the same
h but with freshly sampled g, by partially rewinding the malicious sender. We
show that with good probability, every iteration will result with a new collision.

11 For simplicity of presentation here, we ignore the cost of the description of h, so it
will not significantly affect the size of the commitment.

12 A universal hash function is a function of families G = {g : {0, 1}n → {0, 1}m} such
that for any x, y ∈ {0, 1}n such that x �= y it holds that Prg←G [g(x) = g(y)] ≤ 2−m.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 169

The protocol consists now of 4 rounds, but is the commitment short? Well, it
depends on m and on the description size of g. The description size of a universal
function is proportional to the input size (2n in our case), which totally ruins
the shortness of the protocol. We fix this by sampling g from an almost universal
family and apply the above protocol. We obtain a 4-round protocol in which the
commitment size is of the order roughly n + m + log(1/δ), where δ is related
to the error probability of the almost universal function. Choosing m and δ
appropriately we obtain a protocol with short (<2n) commitments.

Handling Longer Inputs. How would we commit on a longer string, say of 10n
bits or even n10 bits? (Recall that all we have is a hash function mapping 2n bits
into n bits.) One well-known solution is based on a standard collision resistant
hash function, and what is known as a Merkle tree (the tree structure will be
useful later for a local opening). The input x ∈ {0, 1}2dn (for simplicity think of
d as either a large constant or even O(log n)) is partitioned into 2d blocks each
of size n. These blocks are partitioned into pairs and the hash function is applied
to each pair resulting in 2d−1 blocks. Then, the remaining blocks are partitioned
into pairs and the hash function is applied on each pair. This is repeated d times
resulting in a binary tree of hash values of depth d. The value associated with
the root of the tree is called the root-hash.

If h is a standard CRH sent by the receiver, then it is known that sending the
root-hash by the sender is actually a commitment on the input x∗ [37,41]. Can
we apply the same trick from before to make this a commitment protocol even
when h is only a k-MCRH? That is, after sending the root-hash, let the sender
sample a good-enough combinatorial hash function g : {0, 1}2dn → {0, 1}m and
send it to the sender that will reply with g(x∗). Is this protocol binding? The
answer is “no”, even for large values of m. Observe that for every node in the
Merkle tree, the sender can potentially provide k − 1 valid inputs (that hash to
the same value). Since the tree is of depth d, one can observe that by a mix-
and-match method of different colliding values on different nodes of the tree
the sender might be able to come up with as many as (k − 1)2

d

valid inputs
x whose corresponding root-hash is h(x∗). Thus, to satisfy that no two have
the same value under g, we have to choose m ≈ 2d · log(k − 1), in which case
the almost uniform hash function has a pretty long description. Nevertheless,
it is less than 2dn (the input length) so we might hope that some progress has
been made. Is this protocol computationally-binding? Not quite. Using the proof
technique from above (of partially rewinding and “collecting” collisions) would
require running the malicious sender more than (k − 1)2

d

times until it has to
present more than k − 1 collisions for some value. This is, of course, way too
expensive.

The bottom line of the above paragraph is that “mix-and-match” attacks are
very powerful for a malicious sender in the context of tree hashing by allowing
him to leverage the ability of finding few collisions into an ability to find expo-
nentially many collisions. The reason why this happens is that we compose hash
functions but apply the universal hash function on the whole input as a single

170 I. Komargodski et al.

string. Our next idea is to apply a “small” hash function g : {0, 1}2n → {0, 1}n

per node in the Merkle tree. That is, after the sender sends the root-hash h(x∗),
the receiver samples g and sends it to the sender. The sender computes g(·, ·) for
every pair of siblings along the Merkle tree, concatenates them all and sends this
long string back to the receiver. This protocol is more promising since, in some
sense, we have a small consistency check per node in the tree which should rule
out simple “mix-and-match” attacks. This is our construction and the proof of
security works by partially rewinding a malicious sender and “collecting” colli-
sions until we get k collisions with respect to some internal node in the tree (we
need to collect roughly 2dk collisions overall so that such a node exists, by the
pigeonhole principle). How efficient is the protocol? Details follow.

The protocol still consists of 4 rounds. A commitment consists of the hash
function h, the root hash h(x∗), a universal hash function g : {0, 1}2n → {0, 1}m

and the value of g on every internal node of the tree. The overall size is thus
of order n + 2dm. Notice that n + 2dm � 2dn whenever d is not too small, so
we have made progress! We reduced the size of the commitment by a factor of
m/n. The final step is to really get down to a commitment of size roughly n.
To achieve this, we apply our protocol recursively : Instead of sending the hashes
(with respect to g) of all internal nodes, we run our commit protocol recursively
on this string. Notice that this string is shorter (2dm compared to 2dn) so the
recursion does progress. The base of the recursion is when the string length is
roughly n bits, then the sender can simply send it to the receiver.

Choosing the parameters carefully, we get various trade-offs between the
number of rounds, the commitment size, and the security of the resulting proto-
col. For example, setting m = n0.99, results with a O(1)-round protocol in which
the commitment size is O(n) (here the big “O” hides constants that depend on
logn(|x∗|) which is constant for a polynomially long x∗), and whose security is
worse than the security of the k-MCRH by an additive factor of exp(−n0.99).

Local Opening. Due to the tree structure of our commitment protocol, it can
be slightly modified to support local opening. Recall that the goal here is to
allow the receiver to send an index i of a block to the sender, who can reply
with the opening of the block, with communication proportional to n but not to
the number of blocks 2d. The idea here is, given an index i of a block, to open
the hash values along the path corresponding to the i-block along with the tree
sibling of every node in the path. Then, i′ is defined to be the index of the block
in the shorter string (the string committed to in the next step of the recursion)
which containing all the g(·, ·) values of the nodes on the path (we make sure
that such a block exists). Then, we add the hash values of the path for block i′

and continue in a recursive manner.

Statistical Hiding. We show how to transform any short commitment scheme
that is computationally binding (but perhaps not hiding) to a new scheme that
is short, computationally binding and statistically hiding. Moreover, if the origi-
nal scheme admits a local-opening, then the new scheme admits a local-opening

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 171

as well. Our transformation is information theoretic, adds no additional assump-
tions and preserves the security, the number of rounds and communication com-
plexity of the original scheme (up to a small constant factor). The transforma-
tion is partially based on ideas originating in the work of Naor and Yung [46,
Sect. 5.2] and the follow-up works of Damg̊ard, Pedersen, and Pfitzmann [11,12]
giving constructions of statistical-hiding commitments from (standard) collision
resistant hash function.

The idea of our transformation is to leverage the fact that the basic commit-
ment protocol is short: when committing to a long string x∗, the communication
is very short. Thus, a large portion of x∗ is not revealed to the receiver by the
protocol so this part of x∗ is statistically hidden. The task that remains is to
make sure that all of x∗ is hidden. Thus, instead of committing to x∗ directly, we
commit to a random string r that is independent of x∗ and slightly longer. Then,
we extract from r the remaining randomness r′ given the communication of the
protocol using a strong extractor. Finally, we commit on the string x∗ ⊕ r′. It is
not hard to show that if the original scheme was computationally binding, then
the new one is as well. The fact that the scheme is statistically-hiding follows
from the use of the strong extractor and the fact that the commitment is short.

One problem with the recipe above, is that the protocol (as describe) no
longer admits a local-opening. This is because to open an index i, we need the
i-th output bit of the extractor, but computing this bit might require reading a
large portion of the input of r. Our solution is to break the input to sufficiently
small parts such that each part is small enough to fit in a local-opening but is
long enough to have enough entropy (given the communication of the protocol)
so that we can apply the extractor on it.

2.2 Separating Multi-CRH from Standard CRH

We show barriers of constructing a collision-resistant hash function from a 3-
multi-collision-resistant hash function. We rule out fully black-box constructions
(see Definition 9). Our proof technique is inspired by the works of Asharov and
Segev [2] and Haitner et al. [23], that are based in turn on ideas originating in
the works of Simon [50], Gennaro et al. [14] and Wee [54]. However, when trying
to adapt their proof to the setting of multi collisions one encounters several
obstacles and we explain how to overcome them.

The high-level overview of the proof is to show that there exists an oracle Γ
such that relative to Γ there exists a 3-MCRH, however there exist no standard
CRH. Our oracle will contain a truly random function f that maps 2n bits to
n bits. Relative to this oracle, it is clear that 3-MCRH exists, however, also
standard CRH exist. We add an oracle ColFinder that will be used to break any
CRH construction. The main difficulty of the proof is to show that this oracle
cannot be used to break the 3-MCRH.

The oracle ColFinder is essentially the same as in Simon [50]. It gets as an
input a circuit C, possibly with f gates and it outputs two random elements w,w′

such that C(w) = C(w′). It is easy to see that no family of hash functions can
be collision resistant in the presence of such an oracle. A single call to ColFinder

172 I. Komargodski et al.

with the query C (where C(x) = f(x)) will find a collision with high probability.
The main question is whether this oracle be used to find multiple collisions?

Originally, Simon showed that this oracle cannot be used to invert a one-way
function (or even a permutation). Let A be an adversary that uses ColFinder to
invert f on a random challenge y = f(x). Clearly, if A make no calls to ColFinder
then his chances in inverting y are negligible. Assume, for simplicity, that A
performs only a single query to ColFinder. In order for A to gain some advantage,
it must make an “interesting” query to ColFinder. That is, a query which results
in w,w′ and the computation of either C(w) or C(w′) makes a direct query
to some x ∈ f−1(y). This event is called a hit. An important point is that for
any circuit C the marginal distribution of w and of w′ is uniform. Therefore,
the probability of the event “hit” in the ColFinder query is at most twice that
probability when evaluating C(z) for a random z. Thus, we can construct a
simulator that replaces A’s query to ColFinder with the evaluation of C(z) and
hits an inverse of y with roughly the same probability as A (while making no
queries to ColFinder). The task of inverting y without ColFinder can be shown
to be hard, ruling out the existence of such a simulator and in turn of such an
adversary A.

Our goal is to extend this proof and show that ColFinder cannot be used to
find 3-wise collisions. The above approach above simply does not work: specifi-
cally, in our case the event “hit” corresponds to query C to ColFinder that results
in w,w′ and the computation of C(w) and C(w′) together make direct queries
three elements x1, x2, x3 that collide under f (i.e., f(x1) = f(x2) = f(x3)). It
might be the case that these three elements are hit by C(w) and C(w′) com-
bined, but never by one of them alone. Thus, when simulating the C(z) for a
random z we will hit only part of the trio x1, x2, x3 and might never hit all three.

Our main observation is that since A finds a 3-wise collision, but ColFinder
finds only a 2-wise collision (namely w,w′), by the pigeonhole principle, either
w or w′ will hit two of the three elements of the 3-wise collision. Again, since
the marginals of w and w′ each are uniform, we can construct a simulator that
runs A and on the query to ColFinder samples a uniform z and compute C(z)
and will get a colliding x1 and x2 without performing any queries to ColFinder.
Then, one can show that such a simulator cannot exist.

Several problems arise with this approach. First, notice that this does not
extend to an adversary A that makes more than one query. In such a case,
the resulting simulator finds a 2-wise collision x1, x2 without the “hit” event
occurring (i.e., finding a 3-wise collision) but while performing several ColFinder
queries. Such a simulator (that finds a collision), of course, trivially exists, and
we do not get the desired contradiction. Nevertheless, we show that the collision
found by our simulator is somewhat special, and using ColFinder one can only
find “non-special” collisions, ruling out the existence of A in this case. Second,
the event “hit” itself might be spread out within several ColFinder queries, where,
for example, one queries finds x1 and then another query finds x2, x3. We tailor
a simulator for each case, and show that for each case the resulting simulating
cannot exist, completely ruling out the possibility of A to exist.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 173

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For an integer
n ∈ N we denote by [n] the set {1, . . . , n}. We denote by Un the uniform distri-
bution over n-bit strings. For a distribution D we denote by x ← D an element
chosen from D uniformly at random. We denote by ◦ the string concatenation
operation. A function negl : N → R

+ is negligible if for every constant c > 0,
there exists an integer Nc such that negl(n) < n−c for all n > Nc.

Definition 1 (Statistical Distance). The statistical distance between two ran-
dom variables X,Y is defined by

Δ(X,Y) � 1
2

·
∑

x

|Pr[X = x] − Pr[Y = x]|

We say that X and Y are δ-close (resp. -far) if Δ(X,Y) ≤ δ (resp.
Δ(X,Y) ≥ δ).

3.1 Limited Independence

Definition 2 (k-wise independence). Fix n,m, k ∈ N. A function family G =
{g : {0, 1}n → {0, 1}m} is k-wise independent if for every distinct x1, . . . , xk ∈
{0, 1}n and every y1, . . . , yk ∈ {0, 1}m it holds that

Pr
g←G

[∀i ∈ [k] : g(xi) = yi] =
1

2km
.

It is known that for every m ≤ n, there exists a k-wise independent family
of functions, where each function is described by k · n bits. One well-known
construction which is optimal in terms of size is by letting each g ∈ {0, 1}k·n

describe a degree k−1 polynomial over GF[2n]. The description of the polynomial
requires k field elements so k · n bits are enough. Evaluation of such a function
is merely an evaluation of the polynomial.

In some applications (including some of ours) the input size n is very large
and we prefer that the description size of the hash function to be much shorter.
To circumvent this, it is sometimes enough to use almost k-wise independent
functions.

Definition 3 (Almost k-wise independence). Fix n,m, k ∈ N and δ ∈ R.
A function family G = {g : {0, 1}n → {0, 1}m} is (k, δ)-wise independent if for
every distinct x1, . . . , xk ∈ {0, 1}n the distribution of (g(x1), . . . , g(xk)) is δ-close
to the distribution (u1, . . . , uk), where g ← G and each ui ← {0, 1}m are chosen
uniformly at random.

It is known that for every m ≤ n, there exists a (k, δ)-wise independent
function with each function g ∈ G being described by O(mk + log(n/δ)) bits
[1,44] (see also [52]).

174 I. Komargodski et al.

3.2 Randomness Extractors

We consider random variables supported on n-bit strings. A random variable X
is said to have min-entropy H∞(X) = k if for every x ∈ Supp(X) it holds that
Pr[X = x] ≤ 2−k.

We say that a function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded
extractor if for every distribution X over {0, 1}n with min-entropy k, it holds
that

Δ(Ext(X,Ud), Um) ≤ ε.

The extractor Ext is said to be strong if Ext′(x, s) = Ext(x, s) ◦ s is a (k, ε)-
seeded extractor. That is, if

Δ((Ext(X,Ud) ◦ Ud), (Um ◦ Ud)) ≤ ε.

The famous leftover hash lemma [27,33] says that a pairwise independent
function family is a strong extractor.

Proposition 1. Let G = {g : {0, 1}n → {0, 1}m} be a pairwise independent
family of hash functions where m = k − 2 log(1/ε). Then, Ext(x, h) = h(x) is a
strong (k, ε)-seeded extractor.

Note that the seed length in this extractor equals the number of bits required
to sample g ← G which is 2n bits.

We will also need the following standard proposition that says that condi-
tioning does not reduce entropy by more than the information given by the
condition.

Proposition 2. Let X and Y be random variables. Then, if Y is supported on
strings of length k, then H∞(X | Y) ≥ H∞(X) − k.

3.3 List-Recoverable Codes

The classical notion of error correcting codes ensures that for a code C ⊆ F
n,

where F is a finite field, given a somewhat corrupted version of c ∈ C, it is
possible to recover c. The model of allowed corruptions is that some fraction of
the symbols in the codeword might be adversarially changed. List recoverable
codes were introduced to handle a different model of corruptions: they allow an
adversary to submit, for every coordinate i ∈ [n] a small list Si ⊆ F of possible
symbols. In this model, it is impossible to completely recover a codeword given
the lists, but these codes guarantee that there is only a small list of codewords
that are consistent with all the lists.

More precisely, a mapping C : Fk → F
n from length k messages to length n

codewords, is called (α, �, L)-list-recoverable if there is a procedure that is given a
sequence of lists S1, . . . , Sn ⊆ F each of size �, and is able to output all messages
x ∈ F

k such that C(x)i /∈ Si for at most an α fraction of the coordinates i ∈ [n].
The code guarantees that there are at most L such messages.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 175

Definition 4 (List-recoverable codes). Let α ∈ [0, 1]. We say that a tuple
x ∈ ({0, 1}k)n is α-consistent with sets S1, . . . , Sn ⊆ {0, 1}k, if |{i : xi ∈ Si|} ≥
αn.

A function C : {0, 1}v → ({0, 1}k)n is (α, �, L)-list recoverable, if for every
set S1, . . . , Sn ⊆ {0, 1}k each of size at most �, there are at most L strings
x ∈ {0, 1}v such that C(x) is α-consistent with S1, . . . , Sn. For α = 1, we omit
α in the above notation and call C (�, L)-list recoverable. The strings in the
image of C are referred to as codewords.

These code were initially studied in the context of list-decoding (and indeed
the latter is just a special case of the former with � = 1) by [18–21]. More
recently, they were proven useful in other areas such as compressed sensing [47],
non-adaptive domain extension for hashing [25], domain extension for public
random functions and MACs [13,40], and more (see Sect. 6, and for example,
[29] and references therein).

A natural relaxation of the above codes is to require that S1 = . . . = Sn.
This variant is called weakly list-recoverable codes. A list-recoverable code is
immediately weakly list-recoverable and the converse also holds albeit with a
minor loss in parameters: An (�, L)-weakly list-recoverable code is an (�, nL)-
list-recoverable code. Looking ahead, this loss will not make much of a difference
for us since our L will be polynomial in n.

For our purposes, we will need a list-recoverable code with α = 1. It is
well-known (see e.g., [25]) that the notion of weakly list-recoverable codes is
equivalent to unbalanced expanders with a certain expansion property. The left
set of vertices in the graph is {0, 1}v, the right set of vertices is {0, 1}k and the
left degree is n. This graph naturally induces a mapping C : {0, 1}v → ({0, 1}k)n

which on input x ∈ {0, 1}v (left vertex) outputs n neighbors (right vertices).
The mapping C is (�, L)-list-recoverable iff for every set S ⊆ {0, 1}k of size
larger than L of nodes on the right, the set of left neighbors of S is of size larger
than �.

The following instantiation of locally-recoverable codes based on the explicit
construction of unbalanced expanders of [22] is taken (with minor modifications)
from [25].

Theorem 1 ([22,25]). For every α ≥ 1/2, and k < v, there exists a poly(n)-
time computable function C : {0, 1}v → ({0, 1}k

)n for n = O(v ·k)2 which defines
an (α, �, L)-list recoverable code for every L ≤ 2k/2 and � = Ω(L). The list-
recovery algorithm runs in time poly(v, �).

3.4 Cryptographic Primitives

A function f , with input length m1(n) and outputs length m2(n), specifies for
every n ∈ N a function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider func-
tions with polynomial input lengths (in n) and occasionally abuse notation and
write f(x) rather than fn(x) for simplicity. The function f is computable in
polynomial time (efficiently computable) if there exists an algorithm that for
any x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

176 I. Komargodski et al.

A function family ensemble is an infinite set of function families, whose ele-
ments (families) are indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N

stand for an ensemble of function families, where each f ∈ Fn has domain Dn

and range Rn. An efficient function family ensemble is one that has an efficient
sampling and evaluation algorithms.

Definition 5 (Efficient function family ensemble). A function family
ensemble F = {Fn : Dn → Rn}n∈N is efficient if:

– F is samplable in polynomial time: there exists a probabilistic polynomial-time
machine that given 1n, outputs (the description of) a uniform element in Fn.

– There exists a deterministic algorithm that given x ∈ Dn and (a description
of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).

Universal One-Wayness. A one-way function is an efficiently computable func-
tion which is hard to invert on a random output for any probabilistic polynomial-
time machine. A universal one-way hash function (UOWHF) is a family of com-
pressing functions H for which any PPT adversary has a negligible chance of
winning in the following game: the adversary submits an x and gets back a
uniformly chosen h ← H. The adversary wins if it finds an x′ �= x such that
h(x) = h(x′). UOWHF were introduced by Naor and Yung [46] and were shown
to imply secure digital signature schemes. Rompel [48] (see also [36]) showed how
to construct UOWHF based on the minimal assumption that one-way functions
exist.

Definition 6 (Universal one-way hash functions (UOWHF)). An effi-
cient function family ensemble F = {Fn : {0, 1}m1(n) → {0, 1}m2(n)}n∈N is a
universal one-way hash function family if the probability of every probabilistic
polynomial-time adversary A to win in the following game is negligible in n:

1. A, given 1n, submits x ∈ {0, 1}m1(n).
2. Challenger responds with a uniformly random f ← Fn.
3. A (given f) outputs x′ ∈ {0, 1}m1(n).
4. A wins iff x �= x′ and f(x) = f(x′).

3.5 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender S
and a receiver R. The goal of such a scheme is that after the first stage of the
protocol, called the commit protocol, the sender is bound to at most one value.
In the second stage, called the opening protocol, the sender opens its committed
value to the receiver. We also require that the opening protocol allows to open
only a single bit of the committed string. More precisely, a commitment scheme
for a domain of strings {0, 1}� is defined via a pair of probabilistic polynomial-
time algorithms (S,R,V) such that:

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 177

– The commit protocol: S receives as input the security parameter 1n and a
string s ∈ {0, 1}�. R receives as input the security parameter 1n. At the end
of this stage, S outputs decom1 . . . , decom� (the local decommitments) and
R outputs com (the commitment).

– The local-opening procedure: V receives as input the security parameter 1n, a
commitment com, an index i ∈ [�], a local-decommitment decomi, and outputs
either a bit b or ⊥.

A commitment scheme is public coin if all messages sent by the receiver are
independent random coins.

Denote by (decom1, . . . , decom�, com) ← 〈S(1n, s),R〉 the experiment in
which S and R interact with the given inputs and uniformly random coins, and
eventually S outputs a list of � decommitment strings and R outputs a com-
mitment. The completeness of the protocol says that for all n ∈ N, every string
s ∈ {0, 1}�, every tuple (decom1, . . . , decom�, com) in the support of 〈S(1n, s),R〉,
and every i ∈ [�], it holds that V(i, decomi, com) = si.

Below we define two security properties one can require from a commitment
scheme. The properties we list are statistical-hiding and computational-binding.
These roughly say that after the commit stage, the sender is bound to a specific
value which remains statistically hidden for the receiver.

Definition 7 (ε-binding). A commitment scheme (S,R,V) is (t(n), ε(n))-
binding if for every probabilistic adversary S∗ that runs in time at most t(n), it
holds that

Pr
[

(i, decomi, decom
′
i, com) ← 〈S∗(1n),R〉 and

⊥ �= V(i, decomi, com) �= V(i, decom′
i, com) �= ⊥

]
≤ ε(n)

for all sufficiently large n, where the probability is taken over the random coins
of both S∗ and R.

Given a commitment scheme (S,R,V) and an adversary R∗, we denote
by view〈S(s),R∗〉(n) the distribution on the view of R∗ when interacting with
S(1n, s). The view consists of R∗’s random coins and the sequence of messages
it received from S. The distribution is take over the random coins of both S and
R. Without loss of generality, whenever R∗ has no computational restrictions,
we can assume it is deterministic.

Definition 8 (ρ-hiding). A commitment scheme (S,R,V) is ρ(n)-hiding if for
every (deterministic) adversary R∗ and every distinct s0, s1 ∈ {0, 1}�, it holds
that

Δ
({view〈S(s0),R∗〉(n)}, {view〈S(s1),R∗〉(n)}) ≤ ρ(n)

for all sufficiently large n ∈ N.

178 I. Komargodski et al.

Complexity Measures. The parameters of interest are (1) the number of rounds
the commit protocol requires, (2) the size of a commitment, and (3) the size of
a local opening.

The size of a commitment is the size (in bits) of the output of S denoted
above by com. A short commitment is such that the size of com is much smaller
than �. Preferably, the size of a short commitment depends solely on n, but
poly-logarithmic dependence on � is also okay. The size of a local opening is the
maximum size of decomi (in bits). A protocol is said to support local opening if
this size depends only on n and at most poly-logarithmically on �.

3.6 Fully Black-Box Constructions

We give a definition of a fully black-box reduction from an MCRH to standard
CRH. For this, we generalize the definition of an MCRH to the setting of oracle-
aided computation: The generation and evaluation algorithms of an MCRH are
given access to an oracle Γ relative to which they can generate a description of
a hash function and evaluate an index at a point. The adversary is also given
oracle access to Γ in the security game and has to find multiple collisions relative
to it.

We focus here on k-MCRH functions with k = 3. The following definition of
a “black-box construction” is directly inspired by those of [2,23].

Definition 9. A fully black-box construction of a collision-resistant function
family H′ from a 3-MCRH function family H mapping 2n bits to n bits consists
of a pair of probabilistic polynomial-time algorithms (H.G,H.E) and an oracle-
aided polynomial-time algorithm M such that:

– Completeness: For any n ∈ N, for any 3-MCRH function family H and any
function h produced by h ← H′H(1n), it holds that hH : {0, 1}2n → {0, 1}n.

– Black-box proof of security: For any collision resistant hash H′, any
probabilistic polynomial-time oracle-aided algorithm A, every polynomial p(·),
if

Pr
[

x1 �= x2

hH(x1) = hH(x2)

∣∣∣∣
h ← hH(1n)

(x1, x2) ← AH(1n, h)

]
≥ 1

p(n)

for infinitely many values of n, then there exists a polynomial p′(·) such that

Pr
[
x1, x2, x3are distinct and
h(x1) = h(x2) = h(x3)

∣∣∣∣
h ← H(1n)

(x1, x2, x3) ← MA,H(1n, h)

]
≥ 1

p′(n)

for infinitely many values of n.

4 Multi-Collision-Resistant Function Families

A multi-collision-resistant hash function is a relaxation of standard collision-
resistant hash function in which it is hard to find multiple collisions on the same
value.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 179

Definition 10 (Multi-Collision-Resistant Hashing). Let k = k(n) be a
polynomial function. An efficient function family ensemble H = {Hn : {0, 1}2n →
{0, 1}n}n∈N is a (t, ε)-secure k-multi-collision-resistant hash (MCRH) function
family if for any probabilistic algorithm A that runs in time at most t(n), for
large enough n ∈ N:

Pr
[
x1, . . . , xk are distinct and

h(x1) = · · · = h(xk)

∣∣∣∣
h ← Hn

(x1, . . . , xk) ← A(h)

]
≤ ε(n).

We call such x1, . . . , xk that map to the same value under h a k-wise collision.
Lastly, we say that H is a secure k-MCRH if it is (p, 1/p)-secure for every poly-
nomial p(·).
The Compression Ratio. In the definition above we assume that the hash func-
tion compresses its input from 2n bits into n, where the choice of the constant
2 is somewhat arbitrary. Our choice of linear compression rate (in contrast to,
say, a polynomial compression rate) models the basic building blocks in most
standards of cryptographic hash functions, such as the ones published by NIST
(e.g., most of the SHA-x family).

When considering k-MCRH functions, a compression that eliminates less
than log k bits is not of interest, since such a function exists unconditionally, say
by chopping (there simply will be no k-wise collision).

The factor two compression is somewhat arbitrary as any k-MCRH that
compresses (1 + ε)n bits into n bits can be translated into a (k1/ε)-MCRH that
compresses 2n bits into n (e.g. via the Merkle-Damg̊ard iterated construction [10,
42]). It is possible to assume an even stronger hash function that compresses by
a polynomial factor, say n2 bits into n bits (and this is sometimes useful; see the
paragraph in the end of Sect. 6 for an example), but this is a strong assumption
that we prefer to avoid.

For standard collision resistant hash function (with k = 2), it is known that
composition allows to translate hash functions that compress by one bit into
hash functions that compress by any polynomial factor (from n bits into nδ bits
for any constant δ > 0). Obtaining a similar result for k-MCRH functions (with
k > 2) without significantly compromising on the value of k in the resulting
family is an open problem. In Sect. 6 we give a transformation in which the
resulting family is (kO(log n))-MCRH.

Public vs. Private Coins. Our definition above is of a private-coin MCRH,
namely, the coins used by the key-generation procedure are not given to the
collision finder, but are rather kept secret. One can define the stronger public-
coin variant in which the aforementioned coins are given to the attacker. The
weaker notion is enough for our applications. There are (other) cases where this
distinction matters, see Hsiao and Reyzin [31].

5 Tree Commitments from Multi-CRH

We show how to build a commitment scheme which is computationally-binding,
statistically-hiding, round-efficient, has short commitments, and supports local

180 I. Komargodski et al.

opening. We refer to Sect. 3.5 for the definition of a commitment scheme,
computational-binding, statistical-hiding, and the efficiency measures of com-
mitments we consider below.

Theorem 2. Assume that there exists a (t, ε)-secure k-MCRH H for a polyno-
mial k = k(n) in which every function can be described using � = �(n) bits. For
any parameters d = d(n) and 1 < z ≤ n/2d, there is commitment protocol for
strings of length 2d · n with the following properties:

1. (t′, ε′)-computationally-binding for ε′ = O
(
2

d
log(n/(zd)) ·

(
k2

2z−d + ε
))

and t′ =

O
(

ε′2·t
nk2d·p(n)

)
, where p(·) is some fixed polynomial function.

2. 2−n-statistically-hiding.
3. takes O

(
d

log(n/(zd))

)
rounds.

4. the commitment has length O (d� + dn).
5. supports local opening of size O

(
d2n

)
.

There are various ways to instantiate z compared to n and d, offering various
trade-offs between security and efficiency. We focus here on the case in which we
wish to commit on a polynomially-long string, that is, d = c log n for a constant
c ∈ N. In the following the big “O” notation hides constants that depend on c.
Setting z = n1−δ for a small constant δ > 0, the parameters of our commitment
scheme are:

1. ε′ = O
(

k2

2n1−δ + ε
)

and t′ = ε′2·t
poly(n) .

2. 2−n-statistically-hiding.
3. takes O(1) rounds.
4. the commitment has length O(� + n log n).
5. supports local opening of size O(n log2 n).

This setting is very efficient in terms of rounds (it is a constant that depends
solely on c) but suffers in security loss (the resulting scheme is at most 2−n1−δ

-
secure). In the regime where the MCRH is (p, 1/p)-secure for every polynomial
p, our resulting scheme is as secure (i.e., (p, 1/p)-computationally-binding for
every polynomial p).

In case ε is very small to begin with (e.g., much smaller than 2−n1−δ

), we
can use set z to be z = n/(2c log n) for a small constant δ > 0. The resulting
commitment scheme satisfies:

1. ε′ = O
(
nc−1 ·

(
k2

2n/ log n + ε
))

and t′ = t·ε′2
poly(n) .

2. 2−n-statistically-hiding.
3. takes O(log n) rounds.
4. the commitment has length O(� log n + n log n).
5. supports local opening of size O(n log2 n).

This setting has a logarithmic number of rounds, but the security loss is much
smaller than before (only of order 2−n/ log n).

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 181

Roadmap. Our protocol is constructed in two main steps. In the first step (given
in Sect. 5.1) we construct a protocol with the above properties (i.e., Theorem 2)
except that it is not statistically hiding (but is computationally-binding, takes
few rounds, has short commitment, and supports local opening). In the second
step (given in Sect. 5.2), we show how to generically bootstrap our commitment
scheme, into one that is also statistically-hiding. This reduction is both efficient
and security preserving with respect to all parameters.

5.1 A Computationally-Binding Scheme

The main ingredients in our first protocol are an MCRH (Definition 10) and a
limited-independent family (Definition 2):

– A (t, ε)-secure k-MCRH for a polynomial k = k(n):

H = {h : {0, 1}2n → {0, 1}n}.

We assume that every h ∈ H can be described using � = �(n) bits.
– A family of pairwise-independent functions mapping strings of length 2n to

strings of length z:

G = {g : {0, 1}2n → {0, 1}z}.

Recall that every g ∈ G can be described using 4n bits.

Description of the Protocol. Our protocol relies on the notion of a Merkle hash
tree. This is a method to hash a long string into a short one using a hash
function with fixed input length. Let x ∈ {0, 1}� be a string. A Merkle hash
tree is a binary tree T , associated with a string x ∈ {0, 1}� and a hash function
h : {0, 1}2n → {0, 1}n. Let x = x1, . . . , x2d be the decomposition of x into 2d

blocks, each of length n. Every node v in the tree has a sibling denoted by N(v)
(we assume that the sibling of the root is ⊥). Every node v in the tree is labeled
with a string πv ∈ {0, 1}n. The tree has 2d leaves v1, . . . , v2d and the label of vi

are set to πvi
= xi. The labels of the rest of the nodes are computed iteratively

from the leaves to the root. Given a node v whose both children u1, u2 are labeled
with πu1 , πv2 , we set the label of v to be πv = h(πu1 , πv2). The node root has
label y and we call it the root-hash.

Given a Merkle hash tree for a string x = x1 . . . x2d ∈ {0, 1}2d·n, let pathi be a
set of nodes in the tree including the nodes on the path from xi to the root of the
tree and all their siblings along this path. We further let Pi = {πv | v ∈ pathi}
be the set of all the labels of the nodes in the set pathi (the labels of the nodes
on the path from xi to the root of the tree and the labels of their siblings). Each
set pathi contains 2d nodes and thus the description size of each Pi is 2dn bits.

The commitment protocol (S,R,V) specifies how to commit to a string of
length 2dn. Our protocol uses a Merkle hash tree with a function h supplied
by the receiver and a root hash replied by the sender. In the next round, the
receiver chooses a limited-independence function g with z bits of output (z is

182 I. Komargodski et al.

a tunable parameter) and sends it to the sender. The sender then computes g
on the hash values of every pair of sibling nodes in the Merkle hash tree (i.e.,
g(πv ◦ πN(v))). Then it concatenates all of these values into one long string s′.
Then, the protocol continues in a recursive manner on this string s′. The length
of s′ is roughly z2d bits (there are 2d internal nodes in the tree and each requires
z bits) which is still too long to send as is, however is smaller than the original
string s. This allows us to apply the same ideas recursively with the base case,
committing on a string of length n, being the trivial protocol of sending the
string as is. Choosing parameters carefully, we balance between the efficiency
and security of our resulting commitment.

The commitment protocol for strings of length 2dn for d ≥ 1 is described in
Fig. 1.

The commit protocol between S and R

The sender S has string s = s1 . . . s2d where si ∈ {0, 1}n for all i ∈ [2d].

1. R ⇒ S: Sample h ← H and send h.
2. S ⇒ R: Compute a Merkle hash-tree T of s using h and send the root-hash y. Let

πv be the hash value in the tree for node v ∈ T , and let Pi =
{
πv ◦ πN(v)

}
v∈pathi

for all i ∈ [d].
3. R ⇒ S: Sample g ← G and send g.
4. S ⇔ R: Recursively interact to commit on the string s′ = u1 ◦ . . . ◦ u2d , where

ui =
{
g(πv ◦ πN(v))

}
v∈pathi

. Notice that |s′| = 2d · dz = 2d
′
n, where d′ = d −

(logn − log z − log d). Denote the outputs of the sender and receiver by

((D1, . . . , D2d
′
n), C) ← 〈S(1n, s′), R〉.

The output of each party

– R’s output: The receiver R outputs com = (h, y, g, C).
– S’s output: The sender S outputs (decom1, . . . , decom2d), where decomi is defined

as follows: Let i′ be the index in s′ of the block containing ui. Set decomi =
(si, Pi, Di′).a

The local-opening procedure V

The verifier V has an index i ∈ [2d], a decommitment decomi, and a commitment
com.

1. Verify that si appears in Pi in the right location.
2. Verify that the values in Pi are consistent with respect to h and y.
3. Compute ui =

{
g(πv ◦ πN(v))

}
v∈pathi

, where Pi =
{
πv ◦ πN(v)

}
v∈pathi

. Recur-
sively compute u′

i ← V(i′, Di′ , C) and verify that u′
i = ui.

4. If all tests pass, output si. Otherwise, output ⊥.

a We assume without loss of generality that each ui is contained in a single block
(otherwise, we pad the string).

Fig. 1. Our commitment protocol for strings of length 2d · n.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 183

Rounds and Communication Analysis. Denote by Size(2dn), Rounds(2dn), and
Decom(2dn), the total size of the commitment, the number of rounds of the com-
mit stage, and the size of a local opening on a string of length 2dn, respectively.
The commitment consists of a description of a hash function h ∈ H (whose size
is denoted by �(n)), the root-hash value of a Merkle hash-tree (which is of size
n), a function g ∈ G (which is of size 4n), and the recursive commitment. The
opening for an index i ∈ [2d] consists of a block (of size n), the full i-th path
(which consists of 2dn bits), and the recursive opening.

Recall that the protocol for committing on strings of length 2dn uses (recur-
sively) a protocol for committing on strings of length 2d′

n, where

d′ = d − (log n − log z − log d) = d − log(n/(zd)).

Moreover, the commitment protocol on strings of length n has communication
complexity n, consists of a single round and the opening is n bits. Thus, the
total number of recursive call will be

⌈
d

log(n/(zd))

⌉
.

We get that the total number of communication rounds is bounded by

Rounds(2dn) ≤ 3 + Rounds(2d′
n) ≤ · · · ≤

⌈
3d

log(n/(zd))

⌉
+ O(1)

Actually, since each recursive call consists of three messages (except the base of
the recursion), we can join the last round of every iteration with the first round
in the next one. Therefore, we can get the improved bound

Rounds(2dn) ≤ 2d

log(n/(zd))
+ O(1)

The size of a commitment is bounded by

Size(2dn) ≤ �(n) + 5n + Size(2d′
n)

≤
⌈

d · (�(n) + 5n)
log(n/(zd))

⌉
≤ d · (�(n) + 5n).

The size of a local opening is bounded by

Decom(2dn) ≤ n + 2dn + Decom(2d′
n)

≤
⌈

3d2n

log(n/(zd))

⌉
≤ 3d2n.

Computational-Binding. We show that our protocol is (td, εd)-computationally-
binding for strings of length 2d · n. We assume that the k-MCRH is (t, ε)-
secure and that the internal protocol for strings of length 2d′

n is (td′ , εd′)-
computationally-binding. We set εd to satisfy the following recursive relation:

εd =
4k2

2z−d
+ 4ε + 4εd′ .

184 I. Komargodski et al.

Plugging in the number of rounds our recursion takes, we get that

εd ≤ 2
6d

log n−log z−log d ·
(

4k2

2z−d
+ 4ε

)
.

Let S∗ be a (cheating) adversary that runs in time td and breaks the binding
of the protocol, namely, with probability εd, S∗ is able to (locally) open the
commitment in two ways without getting caught. That is, after the commitment
stage, there is an index i ∈ [2d] for which the adversary S∗ is able to open the
corresponding block in two different ways with probability εd:

Pr
S∗,R

[
(i, decom0

i , decom
1
i , com) ← 〈S∗(1n),R〉 and

⊥ �= V(i, decom0
i , com) �= V(i, decom1

i , com) �= ⊥

]
≥ εd, (1)

where the probability is taken over the random coins of both S∗ and R. The
randomness of R consists of uniformly chosen functions h ← H and a function
g ← G, so we can rewrite Eq. (1) as

Pr
S∗,h←H,

g←G

[
(i, decom0

i , decom
1
i , com) ← 〈S∗(1n), (h, g)〉

and⊥ �= V(i, decom0
i , com) �= V(i, decom1

i , com) �= ⊥

]
≥ εd. (2)

We will show how to construct an adversary A that runs in time at most t
and finds a k-wise collision relative to a randomly chosen hash function h ← H.
The procedure A will run the protocol 〈S∗(1n), (h, g)〉 with the given h and
a function g chosen uniformly at random and get (with good probability) two
valid and different openings for some index i. Then, A will partially rewind the
adversary S∗ to the stage after he received the hash function h and replied with
the root hash y (of s), and execute it again but with a fresh function g ← G.
With noticeable probability, this will again result with two valid openings for
some (possibly different) index i. Repeating this process enough times, A will
translate a large number of different (yet valid) decommitments into a large
number of collisions relative to h. The fact that these collisions are distinct (with
good probability) will follow from the fact that the g’s are sampled independently
in every repetition.

We introduce some useful notation. Recall that S∗ is the sender that is able
to locally open its commitment in two different ways. We slightly abuse nota-
tion and also think of S∗ as a distribution over senders (this is without loss of
generality since we can assume it chooses all of its randomness ahead of time).
For an index i∗ ∈ [R], string y ∈ {0, 1}n, we denote by S∗|h,y a distribution
over all senders S∗ in which the first message received is h and the reply is the
root-hash y. For a string y that is sampled by choosing h ← H and running
S∗ for one round to obtain y, the adversary S∗|h,y is uniformly chosen from
all possible continuations of the adversary S∗ given these first two messages.
Given this notation, we can write the adversary S∗ as a pair of two distribu-
tions (Yh,S∗|h,Yh

), where Yh is the distribution of the first message S∗ sends in
response to h, and S∗|h,Yh

is the distribution over the rest of the protocol.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 185

In a high-level, our algorithm A maintains a binary tree of depth d and
2d leaves, in which each node v is associated with a set of labels Sv. At the
beginning, each such set Sv is initialized to be empty. The algorithm A uses S∗

to get many valid pairs of openings decom0
i and decom1

i for an index i:

decom0
i = (s0i , P

0
i ,D0

i′) and decom1
i = (s1i , P

1
i ,D1

i′)

that are consistent with a commitment:

com = (h, y, g, C).

Since both openings are valid and si �= s′
i, it must be that (1) s0i (resp., s1i)

appears in P 0
i (resp., P 1

i) and (2) P 0
i and P 1

i are consistent with the root-hash
y. Thus, it must be that P 0

i �= P 1
i and there is a node v on the path pathi that

is the first (going from the root to the leaves) non-trivial collision between P 0
i

and P 1
i . Now, by the induction hypothesis, the probability that S∗ cheats in

the internal decommitment is small, and since g is sampled uniformly at every
iteration, we show that it must be a new collision that did not appear before.
We will identify the location of the collision at a node v and add this collision
to the set Sv. See Fig. 2 for a precise description of A.

The adversary A(1n, h):

1. For all nodes v, set Sv = ∅ to be the empty set.
2. Send to S∗ the function h and receive a root-hash y ∈ {0, 1}n.
3. Do the following T = 50nk2d/ε2d times:

(a) Sample g ← G.
(b) Obtain (i, decom0

i , decom
1
i , com) ← 〈S∗|h,y(1n), g〉.

(c) Parse decom0
i = s0i , P

0
i , D0

i′
)
and decom1

i = s1i , P
1
i , D1

i′
)
. Parse com =

(h, y, g, C).
(d) If any of the following occurs, continue to the next iteration:

i. ⊥ �= V(i, decom0
i , com) �= V(i, decom1

i , com) �= ⊥.
ii. ⊥ �= V(i′, D0

i′ , C) �= V(i′, D1
i′ , C) �= ⊥.

(e) Let v the node of the first (from the root to the leaves) non-trivial collision
between P 0

i and P 1
i . Let X = π0

v, π0
N(v) and Y = π1

v, π1
N(v) be the values of

the collision for P 0
i and P 1

i , respectively. Add X and Y to Sv.
(f) If there exists a node v for which |Sv| ≥ k, then output Sv and halt.

4. Output ⊥.

Fig. 2. The algorithm A to find a k-wise collision in H.

The analysis of the adversary A can be found in the full version [38].

Remark 1 (Optimization I: recycling h). In the recursive step of our protocol, we
can use the same hash function h as in the first step of the recursion. This saves
sending its description (which is of size �(n) at every iteration and the resulting
size of a commitment is (O(�(n) + d2n).

186 I. Komargodski et al.

Remark 2 (Optimization II: almost-universal hashing). In our protocol we used
a pairwise independent hash function whose description size is proportional to
their input size. This costs us in communication. We could save communication
by using almost-universal hash functions whose description size is proportional
to their output size.

5.2 Getting Statistical-Hiding Generically

We show how to transform any short commitment scheme Π that is compu-
tationally binding (but perhaps not hiding) to a new scheme Π ′ that is short,
computationally binding and statistically hiding. Moreover, if Π admits a local-
opening, then Π ′ admits a local-opening as well. Our transformation is informa-
tion theoretic, adds no additional assumptions and preserves the security, the
number of rounds and communication complexity of the original scheme (up to
a small constant factor).

High-Level Idea. The underlying idea of our transformation is to leverage the
fact that the commitment protocol Π is short. Specifically, when committing to
a long string s ∈ {0, 1}nc

for some large c ∈ N, the communication is very short:
Λ(n) bits for a fixed polynomial function.13 Thus, when we commit to s, a large
portion of s is not revealed to the receiver by the protocol so this part of s is
statistically hidden. The question is how to make sure that all of s is hidden.

Our solution takes advantage of the fact that some fraction of s remains hid-
den. We commit on a random string r that is independent of s and slightly longer.
Then, we extract from r the remaining randomness r′ given the communication
of the protocol using a strong extractor (see Sect. 3.2). Finally, we commit on
the string s ⊕ r′. We need to show that this scheme is computationally-binding
and statistically-hiding. The former follows from the computational-binding of
the original scheme. The latter follows from the fact that r′ is completely hidden
to the receiver and it masks the value of s.

The details of this transformation appear in the full version [38].

6 Four-Round Short Commitments from Multi-CRH

We show how to construct a 4-round short commitment protocol based on a
family of k-MCRH functions. Compared to the protocol from Sect. 5, this pro-
tocol has no local opening and is secure only for constant values of k. However,
it consists only of 4 rounds. Furthermore, using techniques similar to Sect. 5.2
the protocol can be made also statistically-hiding which suffices for some appli-
cations such as statistical zero-knowledge arguments [8].

We discuss methods that allow us to prove security even for polynomial values
of k towards the end of the section.

13 Our protocol from Sect. 5.1 has an additional linear dependence on c, but we will
ignore this in this section to simplify notation.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 187

Theorem 3. Assume that there exists a (t, ε)-secure k-MCRH H for a constant
k in which every function can be described using � = �(n) bits. For any c ∈
N, there is a commitment protocol for strings of length nc with the following
properties:

1. (t′, ε′)-computationally-binding for ε′ = 4ε + O(kc log n)
2n and t′ = t·ε′2

O(kc log n)·p(n) ,
where p(·) is some fixed polynomial function.

2. takes 4 rounds (i.e., 4 messages).
3. the commitment has length � + O (n).

Proof. We describe a commitment protocol for a string s = s1 . . . s2d of length
2d ·n for d = (c−1) · log n. We show that our protocol is computationally-binding
and getting statistical-hiding can be done using the generic transformation from
Sect. 5.2. Our protocol uses a Merkle hash-tree as described in Sect. 5. The main
observation made in this construction is that before using the Merkle hash-
tree we can use a special type of encodings, called list-recoverable codes (see
Definition 4) to get meaningful security. Let C : {0, 1}2dn → ({0, 1}2n)2

d′
be

an (�, L)-list-recoverable code for � = kd, L = O(kd), and d′ = O(log n) with
some large enough hidden constants. Such a code exists by Theorem1 (with
efficient encoding and list-recovery). Let G be a family of (2−n)-almost pairwise-
independent functions mapping strings of length 2dn to strings of length n (see
Definition 3): G = {g : {0, 1}2dn → {0, 1}n}. Recall that every g ∈ G can be
described using at most 2n + log(2dn) + log(2n) ≤ 4n bits.

The commitment protocol for a string s = s1 . . . s2d of length 2d · n for
d = (c − 1) · log n works as follows. The receiver first sends a description of
an h ← H which is a k-MCRH to the sender. The sender then computes the
encoding C(s) of s and computes the Merkle hash tree of s′ = C(s) (and not
of s). The sender sends the root of the hash tree y to the receiver. The receiver
replies with a hash function g ← G and finally the sender replies with u = g(s).
The opening is done is the natural way by letting the sender reveal s to the
receiver who then simulates the computation and makes sure that the messages
y and u are consistent. See Fig. 3 for the precise description.

By the description of the protocol, one can see that the protocol consists of
4-rounds and has communication complexity of � + n + 4n + n = � + 6n bits. In
addition, for the honest sender the verification succeeds with probability 1.

The analysis of the commitment scheme can be found in the full version [38].

Supporting Arbitrary Larger k. The reason why we could prove security only for
constant values of k stems from the fact that our adversary A for the MCRH
runs in time proportional to kd. The source of this term in the running time
is that our Merkle hash tree in the construction is of depth d = O(log n) and
when counting the number of possible openings per coordinate in a leaf, we get
kd possibilities. Our adversary A basically “collects” this number of different
openings for some coordinate and thereby finds a k-wise collision. If k is super-
constant the running time of A becomes super-polynomial.

188 I. Komargodski et al.

The commit protocol between S and R

The sender S has string s = s1 . . . s2d where si ∈ {0, 1}n for all i ∈ [2d].

1. R ⇒ S: Samples h ← H and sends h.
2. S ⇒ R: Compute s′ = C(s) and a Merkle hash-tree T of s′ using h and send the

root-hash y.
3. R ⇒ S: Sample g ← G and send g.
4. S ⇔ R: Send u = g(s) to the receiver

The output of the receive is com = (h, y, g, u).

The verifier V gets the input s simulates the sender to verify y and u.

Fig. 3. Our four-round commitment protocol for strings of length 2d · n.

There are two paths we can take to bypass this. One is to assume super-
polynomial security of the MCRH and allow our adversary to run in super-
polynomial time. The second assumption is to assume that we start with a
stronger MCRH that compresses by a polynomial factor (i.e., from n1+Ω(1) to
n) rather than by a factor of 2. This will cause the Merkle hash tree to be
of constant depth. Under either of the assumptions, we can support polynomial
values of k (in n). However, both assumptions are rather strong on the underlying
MCRH and we thus prefer to avoid them; see Sect. 4 for a discussion.

Domain Extension of MCRH Functions. The construction we gave in the proof
of Theorem 3 can be viewed as a domain extension method for MCRH functions.
Specifically, given a k-MCRH f that maps 2n bits into n bits, we constructed a
function g that maps m = m(n) bits into n bits for any polynomial m(·) such
that g is a ((k − 1)log m + 1)-MCRH.

Other Uses of List-Recoverable Codes for Domain-Extension. List-recoverable
codes have been proven useful in various applications in cryptography. The work
of Maurer and Tessaro [40] considers the problem of a extending the domain
of a public random function. They show how to use a length-preserving ran-
dom function f on n input bits, to get a variable-input-length function g that
maps arbitrary polynomial-size inputs into arbitrary polynomial-size outputs
such that g is indistinguishable from a random function for adversaries making
up to 2(1−ε)n queries to g. One of their main components in the construction is a
list-recoverable code (there referred to as an input-restricting function family).

Building on ideas and techniques of [40], Dodis and Steinberger [13] showed
that list-recoverable codes are also useful for security preserving domain exten-
sion of message-authentication codes (with “beyond-birthday” security).

More recently, Haitner et al. [25] studied the possibility of a fully parallel
(i.e., non-adaptive) domain-extension scheme that realizes a collision-resistant

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 189

hash function. Starting with a random function f that maps n bits into n bits,
they construct a function g that maps m(n) bits into n bits for any polynomial
m(·), makes only parallel calls to f , and requiring an attacker to make at least
2n/2 queries to g to find a collision with high probability. Their construction uses
list-recoverable codes and they show that such codes are actually necessary for
this task.

7 Separating Multi-CRH from CRH

In this section we rule out fully black-box constructions (see Definition 9) of CRH
functions from k-MCRH functions for k > 2. Our proof technique is inspired by
the works of Asharov and Segev [2] and Haitner et al. [23], that are based in
turn on ideas originating in the works of Simon [50] Gennaro et al. [14]) and
Wee [54].

We present an oracle Γ relative to which there exists a 3-multi-collision-
resistant hash function, but any collision-resistant hash function can be easily
broken. The theorem below is stated and proved only for the case of standard
CRH and 3-MCRH. The ideas in this proof naturally extend to a separation of
k-MCRH from (k + 1)-MCRH for all fixed values of k.

Theorem 4. There is no fully black-box construction of a collision-resistant
hash function family from a 3-multi-collision-resistant hash function family map-
ping 2n bits to n bits.

The proof can be found in the full version [38].

8 UOWHFs, MCRHs and Short Commitments

We explore the relationship between short commitments, MCRHs and univer-
sal one-way hash functions (see Definition 6). Our main message is that short
commitment protocols (with some requirements listed below) directly imply
UOWHFs. The transformation is efficient in the sense that a description of a
hash function corresponds to the messages sent by the receiver and evaluation of
the function is done by executing the protocol. In some cases this gives a way to
construct a UOWHF which is more efficient than the direct construction based
on one-way functions or permutations [46,48] (see comparison below).

Theorem 5. Any short commitment protocol in which the receiver is public-coin
yields a universal one-way hash function with the following properties:

1. The key size is the total number of (public) coins sent by the receiver.
2. The length of inputs that the UOWHF supports is the length of messages the

commitment protocol commits to and the length of the output is the amount
of bits sent from the sender to the receiver.

3. The evaluation of a hash function amounts to a single execution of the com-
mitment protocol.

190 I. Komargodski et al.

Plugging in our construction of short commitments from MCRH functions
from Theorem 2, we obtain a new construction of a UOWHF for messages of
length n2d starting with a k-MCRH for a polynomial k = k(n). The key size in
the resulting family is proportional to the number of bits sent from the receiver
to the sender: � + O(d · n/ log n) bits, where � is the size of an MCRH key.14

Using our construction of short commitments from MCRH functions from
Theorem 3, we get a new construction of a UOWHF for messages of length n2d

starting from a k-MCRH for any constant k. The key size in the resulting family
is �+O(n) bits. Notice that this term is independent of d and the hidden constant
in the big “O” is pretty small.15

Comparison with Previous Constructions. Starting with a standard collision
resistant hash function on short inputs, it is known how a collision resistant
hash function on long inputs (based on the so called Merkle-Damg̊ard iterated
construction) [10,42]. This directly implies a UOWHF. The key size in the result-
ing construction is optimal: it is just a key for a single collision resistant hash.
However, when starting with weaker building blocks the key size grows.

Naor and Yung [46] suggested a solution based on a tree hash (similar to a
construction of Wegman and Carter for universal hash functions [55]). In their
scheme, hashing a message of length n2d is done by a balanced tree such that in
the i-th level n2d−i bits are hashed into n2d−i−1 bits by applying the same basic
compression function 2d−i−1 times. Each level in the tree requires its own basic
compression function which results with a total of d keys for the basic UOWHF.
Thus, the total size of a key in the resulting function is d� bits, where � is the
bit size of a key in the basic UOWHF.

In case that the keys of the basic scheme (� above) are rather long, Shoup [49],
following on the XOR tree hash of Bellare and Rogaway [5], offered the following
elegant scheme to transform a fixed-input UOWHF into a UOWHF that supports
arbitrary long inputs. Given an input of 2d blocks each of size n, for i = 1, . . . , 2d

we compute ci = h((ci−1 ⊕ sκ(i)) ◦ mi), where s0, . . . , sd are uniformly random
“chaining variables”, and κ(i) chooses one of the elements s0, . . . , sd.16 Thus,
the total size of a key in the resulting function is � + (d + 1)n bits.

The proof of Theorem5 appears in the full version [38].

Acknowledgments. We are grateful to Noga Ron-Zewi for teaching us about list-
recoverable codes, for multiple useful discussions, and for sharing with us a preliminary
version of [28]. We greatly acknowledge Gilad Asharov and Gil Segev for educating us
about black-box separations. We thank Iftach Haitner and Eran Omri for answering
questions related to [25]. We also thank Stefano Tessaro for telling us about [13,40]
and in particular for explaining the relation of [40] to this work.

14 The overhead in the key size can be improved if the pairwise hash function is replaced
by an almost uniform hash function as described in Remark 2.

15 The concrete constant in our scheme is roughly 6 but we did not try to optimize it
further.

16 The function κ(i) counts the number of times 2 divides i, that is, for i ≥ 1, κ(i) is
the largest integer κ such that 2κ divides i.

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 191

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

2. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)

3. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS, pp. 106–115. IEEE Com-
puter Society (2001)

4. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

5. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs
practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052256

6. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi collision resis-
tant hash functions and their applications. IACR Cryptology ePrint Archive 2017,
489 (2017)

7. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: A paradigm for
keyless hash functions. IACR Cryptology ePrint Archive 2017, 488 (2017)

8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

9. Coppersmith, D.: Another birthday attack. In: Williams, H.C. (ed.) CRYPTO
1985. LNCS, vol. 218, pp. 14–17. Springer, Heidelberg (1986). https://doi.org/10.
1007/3-540-39799-X 2

10. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

11. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. J. Cryptol. 10(3), 163–194 (1997)

12. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit com-
mitments. IEEE Trans. Inf. Theory 44(3), 1143–1151 (1998)

13. Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birthday bar-
rier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 323–342.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 19

14. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

15. Girault, M., Cohen, R., Campana, M.: A generalized birthday attack. In: Barstow,
D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A.,
Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 129–156. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-45961-8 12

16. Girault, M., Stern, J.: On the length of cryptographic hash-values used in iden-
tification schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
202–215. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 21

17. Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made
non-interactive? or on the relationship of SZK and NISZK. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 30

https://doi.org/10.1007/BFb0052256
https://doi.org/10.1007/3-540-39799-X_2
https://doi.org/10.1007/3-540-39799-X_2
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-642-20465-4_19
https://doi.org/10.1007/3-540-45961-8_12
https://doi.org/10.1007/3-540-45961-8_12
https://doi.org/10.1007/3-540-48658-5_21
https://doi.org/10.1007/3-540-48405-1_30

192 I. Komargodski et al.

18. Guruswami, V., Indyk, P.: Near-optimal linear-time codes for unique decoding and
new list-decodable codes over smaller alphabets. In: Proceedings on 34th Annual
ACM Symposium on Theory of Computing, pp. 812–821. ACM (2002)

19. Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes. In:
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp.
126–135. ACM (2003)

20. Guruswami, V., Indyk, P.: Linear-time list decoding in error-free settings. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 695–707. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27836-8 59

21. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

22. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from parvaresh-vardy codes. J. ACM 56(4), 20:1–20:34 (2009)

23. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of
statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)

24. Haitner, I., Horvitz, O., Katz, J., Koo, C., Morselli, R., Shaltiel, R.: Reducing
complexity assumptions for statistically-hiding commitment. J. Cryptol. 22(3),
283–310 (2009)

25. Haitner, I., Ishai, Y., Omri, E., Shaltiel, R.: Parallel hashing via list recoverability.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 173–190.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 9

26. Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM J. Comput. 39(3), 1153–1218 (2009)

27. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28, 1364–1396 (1999)

28. Hemenway, B., Ron-Zewi, N., Wootters, M.: Local list recovery of high-rate ten-
sor codes & applications. In: 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pp. 204–215. IEEE Computer Society (2017)

29. Hemenway, B., Wootters, M.: Linear-time list recovery of high-rate expander codes.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9134, pp. 701–712. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47672-7 57

30. Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding algo-
rithm. IACR Cryptology ePrint Archive 2017, 864 (2017)

31. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 6

32. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, pp. 134–147. IEEE
Computer Society (1995)

33. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, pp. 12–24. ACM (1989)

34. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th Annual Symposium on Foundations of
Computer Science, FOCS, pp. 230–235. IEEE Computer Society (1989)

https://doi.org/10.1007/978-3-540-27836-8_59
https://doi.org/10.1007/978-3-540-27836-8_59
https://doi.org/10.1007/978-3-662-48000-7_9
https://doi.org/10.1007/978-3-662-47672-7_57
https://doi.org/10.1007/978-3-662-47672-7_57
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6

Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions 193

35. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 19

36. Katz, J., Koo, C.: On constructing universal one-way hash functions from arbitrary
one-way functions. IACR Cryptology ePrint Archive 2005, 328 (2005)

37. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC, pp. 723–732. ACM (1992)

38. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids:
Dealing with multiple collisions. IACR Cryptology ePrint Archive 2017, 486 (2017)

39. Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of
search problems: ramsey and graph property testing. In: 58th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)

40. Maurer, U., Tessaro, S.: Domain extension of public random functions: beyond
the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-
5 11

41. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

42. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

43. Mironov, I.: Collision-resistant no more: hash-and-sign paradigm revisited. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 140–156. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 10

44. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and appli-
cations. SIAM J. Comput. 22(4), 838–856 (1993)

45. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. J. Cryptol. 11(2), 87–108 (1998)

46. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pp. 33–43. ACM (1989)

47. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-
recoverable codes and recursion. In: 29th International Symposium on Theoreti-
cal Aspects of Computer Science, STACS. LIPIcs, vol. 14, pp. 230–241. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

48. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
pp. 387–394. ACM (1990)

49. Shoup, V.: A composition theorem for universal one-way hash functions. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 32

50. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

51. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-540-74143-5_11
https://doi.org/10.1007/978-3-540-74143-5_11
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/11745853_10
https://doi.org/10.1007/3-540-45539-6_32
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19

194 I. Komargodski et al.

52. Ta-Shma, A.: Explicit, almost optimal, epsilon-balanced codes. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp.
238–251 (2017)

53. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

54. Wee, H.: One-way permutations, interactive hashing and statistically hiding com-
mitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 419–433.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 23

55. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/978-3-540-70936-7_23

	Collision Resistant Hashing for Paranoids: Dealing with Multiple Collisions
	1 Introduction
	2 Our Techniques
	2.1 The Main Commitment Scheme
	2.2 Separating Multi-CRH from Standard CRH

	3 Preliminaries
	3.1 Limited Independence
	3.2 Randomness Extractors
	3.3 List-Recoverable Codes
	3.4 Cryptographic Primitives
	3.5 Commitment Schemes
	3.6 Fully Black-Box Constructions

	4 Multi-Collision-Resistant Function Families
	5 Tree Commitments from Multi-CRH
	5.1 A Computationally-Binding Scheme
	5.2 Getting Statistical-Hiding Generically

	6 Four-Round Short Commitments from Multi-CRH
	7 Separating Multi-CRH from CRH
	8 UOWHFs, MCRHs and Short Commitments
	References

