
Collision-Resistant Hashing: Towards Making
UOWHFs Practical

Mihir Bellare 1 and Phillip Rogaway ~

1 Dept. of Computer Science & Engineering, University of California at San Diego,
9500 Gilman Drive, La Jolla, California 92093, USA. E-Mail: mihir@cs, ucsd. edu.

URL: h t t p : / / ~ v a - c s e , ucsd. edn/nsers/mihir.

2 Dept. of Computer Science, Engineering II Bldg., University of California at Davis,
Davis, CA 95616, USA. E-mail: rogaway@cs.ucdavis.edu. URL:

http : / / ~ c s i f . c s . ucdav i s , edu/ 'rogavay.

A b s t r a c t . Recent attacks on the cryptographic hash functions MD4
and MD5 make it clear that (strong) collision-resistance is a hard-to-
achieve goal. We look towards a weaker notion, the universal one-way
hash functions (UOWHFs) of Naor and Yung, and investigate their prac-
tical potential. The goal is to build UOWHFs not based on number
theoretic assumptions, but from the primitives underlying current cryp-
tographic hash functions like MD5 and SHA-1. Pursuing this goal leads
us to new questions. The main one is how to extend a compression func-
tion to a full-fledged hash function in this new setting. We show that the
classic Merkle-Damgs method used in the standard setting fails for
these weaker kinds of hash functions, and we present some new methods
that work. Our main construction is the "XOR tree." We also consider
the problem of input length-variability and present a general solution.

1 I n t r o d u c t i o n

A cryptographic hash function is a map F which takes a string of a rb i t ra ry
length and maps it to a string of some fixed-length k. The proper ty usually
desired of these functions is collision-resistance: it should be "hard" to find
distinct strings x and y such tha t F(x) = F(y) .

Cryptographic hash functions are much used, most impor tant ly for digital
signatures, and cheap constructions are highly desirable. But in recent years
we have seen a spate of at tacks bringing down our most popular constructions,
MD4 and MD5 [8-11]. The conclusion is tha t the design of collision-resistant
hash functions may be harder than we had thought.

Wha t can we do? One approach is to design new hash functions. This is being
done, with SHA-1 [17] and RIPEMD-160 [12] being new designs which are more
conservative then their predecessors. In this paper we suggest a complementary
approach: weaken the goal, and then make do with hash functions meeting this
goal. Ask less of a hash function and it is less likely to disappoint!

Luckily, a suitable weaker notion already exists: universal one-way hash func-
tions (UOWHF), as defined by Naor and Yung [16]. But existing constructions,

471

based on general or algebraic assumptions [16,22,13], are not too efficient. We
take a different approach. We integrate the notion with current hashing technol-
ogy, looking to build UOWHFs out of MD5 and SHA-1 type primitives.

The main technical issue we investigate is how to extend the classic Merkle-
Damgs paradigm [15,7] to the UOWHF setting. In other words, how to build
"full-fledged" UOWHFs out of UOW compression functions. We address practi-
cal issues like key sizes and input-length variability. Our main construction, the
"XOR tree," also turns out to have applications to reducing key sizes for existing
subset-sum based constructions. To make for results more directly meaningful
to practice we treat security "concretely," as opposed to asymptotically.

Unfortunately, the name UOWHFs does not reflect the property of the no-
tion, which is a weak form of collision-resistance. We will call our non-asymptotic
version target collision-resistance (TCR). We refer to the customary notion of
collision resistance as any collision-resistance (ACR).

1.1 Background

A function F : D --+ {0, 1} k on some domain D is a compression function if D
is the set of strings of some small length (eg., D = {0, 1} 640 for the compression
function of MD5). It is a (full-fledged) hash function if D = {0, 1}*, or at least
D = {0, 1} <g for some large number It. In either case, a collision for F is a pair
x, y E D such that x ~ y but F(x) = F(y). Informally, F is said to be any
collision-resistant (ACR) if it is computationaUy hard to find a collision.

THE MD METHOD. The Merkle-Damghrd construction [15,7] turns an ACR
compression function F: {0,1} k+b ~ {0, 1} k into an ACR hash function MDF.
Fix Co E {0,1} k. Given M = M[1] . . . Mini, for M[i] E {0, 1} b, compute Ci =
F(Ci-x IIM[i]) and set M D F (M) = Cn. The property of this method is that if
it is hard to find collisions in F , then it is hard to find collisions in MDF.

All of the popular hash functions (MD4, MD5, SHA-1, and RIPEMD-160)
use the MD construction. Thus the crucial component of each algorithm is the
underlying compression function, and we want it to be ACR. But the compression
function of MD4 is not: following den Boer and Bosselaers [8], collisions were
found by Dobbertin [10]. Then collisions were found for the compression function
of MD5 [9,111. These attacks are enough to give up on MD4 and MD5 from the
point of view of ACR. No collisions have been found for the compression functions
of SHA-1 and RIPEMD-160, and these may well be stronger.

KEYING. In the above popular hash functions there is no explicit key. But
Damghrd [6,7] defines ACR via keyed functions, and it is in this setting that
he proves the MD construction correct [7]. Keying hash functions seems essen-
tial for a meaningful formalization of security. Thus, in truth, a hash function F
does not have the signature above: it must have two arguments, one for the key K
and one for the message M. To use F one selects a random key K, publishes it,
and from then on one hashes according to FK. In effect, the key amounts to the
description of a particular hash function.

472

1.2 Target Col l i s ion-Res is tance

With an ACR hash function F the key K is published and the adversary wins
if she manages to find any collision x, y for the FK. The points x and y may
depend arbitrarily on K; any pair of distinct points will do. In the notion of
Naor and Yung [16] the adversary no longer wins by finding just any collision.
The adversary must choose one point, say x, in a way which does not depend
on K, and then, later, given K, find another point y, this time allowed to depend
on K, such that x, y is a collision for FK. Thus, although it might be easy to
find a collision x ,y in FK by making both x,y depend on K, the adversary
may be unable to find collisions if she must "commit" to x before seeing K. We
call this weakened notion of security target collision-resistance (TCR). (In the
terminology of [16] it is universal one-wayness.)

Naor and Yung [16] formalize this via the standard "polynomial-time adver-
saries achieve negligible success probability" approach of asymptotic cryptogra-
phy. In order to get results which are more directly meaningful for practice, our
formalization is non-asymptotic. See Section 2.

No BIRTHDAYS! Besides being a weaker notion (and hence easier to achieve) we
wish to stress one important practical advantage of TCR over ACR: because x
must be specified before K is known, birthday attacks to find collisions are
not possible. This means the hash length k can be small, like 64 or 80 bits, as
compared to 128 or 160 bits for an ACR hash function. This is important to us
for several reasons and we will appeal to it later.

GOOD ENOUGH FOR SIGNING. In weakening the security requirement on hash
functions we might risk reducing their utility. But TCR is strong enough for
the major applications, i] appropriately used. In particular, it is possible to use
TCR hash functions for hashing a message before signing. Due to page limits,
the constructions are omitted here: they can be found in [4]. The idea is to pick
a new key K for each message M and then sign the pair (K, FK(M)), where F is
TCR. This works best for short keys. When they are long some extra tricks can
be used, as described in [4], but we are better off with small keys. Thus there is
a strong motivation for keeping keys short.

1.3 Making T C R Funct ions out o f Standard Hash Funct ions

The most direct way to make a TCR hash function is to appropriately key an
existing hash function such as MD5 or SHA-1. We caution that one must be
careful in how this keying is done. If not, making a TCR assumption about the
keyed function may really be no weaker than making an ACR assumption about
the original hash function. See Section 4.

1.4 E x t e n d i n g T C R Compress ion Funct ions to T C R Hash Funct ions

Instead of trying to key an entire hash function, as above, a good strategy
might be to implement a TCR compression function (perhaps by keying an

473

existing compression function) and then t ransform it into a (full-fledged) T C R
hash function using some simple construction. The question we investigate is
how to do this t ransformation. This turns out to be quite interesting.

THE MD METHOD DOES NOT WORK FOR T C R . Suppose we are given a T C R
compression function H in which each x-bit key specifies a map HK: {0, 1} k+b -~
{0, 1) k. We want to build a T C R hash function H ~ in which each key K specifies
a map H~: on arbi t rary strings. The obvious thought is to apply the MD method
to H/r . However, we show in Section 5.1 tha t this does not work. We give an
example of a compression functions which is secure in the T C R sense but for
which the resulting hash function is not.

LINEAR ITERATION: BASIC AND XOR. The most direct extension we found to
the MD construction is use a different key at each stage. This works, and its
exact security is analyzed in Section 5.2. But the method needs a long key.

We provide a variant of the above scheme which uses only one key for the
compression function, but also uses a number of auxiliary keys, which are XORed
in at the various stages. This can slightly reduce key sizes, and it also has some
advantages from a key-scheduling point of view (eg., it may be slow to "set up"
the key of a compression function, so it 's best if this not be changed too often).

THE BASIC TREE SCHEME. To get major reductions in key size we turn to trees, z
Wegman and Carter [25] give a tree-based construction of universal hash func-
tions tha t reduces key sizes, and Naor and Yung have already pointed out tha t
key lengths for UOWHFs can be reduced by the same method [16, Section 2.3].
We recall this basic tree construction in Section 5.4 and provide a concrete analy-
sis of its security. Then we look at key sizes. Suppose we s tar t with a compression
function with key length ~, mapping 2k bits to k bits, and we want to hash nk
bits to k bits. The basic tree construction yields a hash function with a key size
of ~ lg n bits. 2 Key lengths have been reduced, but one can reduce them more.

THE X O R TREE SCHEME. Our main construction is the XOR tree scheme.
Here, the hash function uses only one key for the compression function and
some auxiliary keys. If we s tar t with a compression function with key length ~,
mapping 2k bits to k bits, and we want to hash nk bits to k bits, the XOR tree
construction yields a hash function with a key size of ~ + 2k lg n bits.

Recall tha t k is short, like 64 bits, since we do not need to worry about
bi r thday at tacks for T C R functions. On the other hand, ~ can be quite large
(and in many constructions, it is). So ~ + 2k lg n may be much less than ~ lg n.

x It may be worth remarking that the obvious idea for reducing key size is to let the key
be a seed to a pseudorandom number generator and specify longer keys by stretching
the seed to any desired length. The problem is that our keys are public (they are
available to the adversary) and pseudorandom generators are of no apparent use in
such a context.

2 This corresponds to a binary tree construction. In Section 5.4 we consider the more
general case of starting with a compression function of mk bits to k bits and building
an m-ary tree.

474

1.5 Other Results

REDUCING KEY SIZES FOR OTHER CONSTRUCTIONS. Our main motivation has
been building TCR hash functions from primitives underlying popular crypto-
graphic hash functions. But XOR trees can also be used to reduce key sizes for
TCR hash functions built from combinatorial or algebraic primitives. For exam-
ple, the subset sum based construction of [13] uses a key of size sl bits to hash s
bits to 1 bits, where I is a security parameter which controls subset sum instance
sizes. (Think of I as a few hundred.) So the size of the key is even longer than the
size of the data. The basic (binary) tree scheme can be applied to reduce this:
starting with a compression function taking 21 bits to l bits (it has key length

= 2/2) the key size of the resulting hash function is ~ lgn = 2l 2 lg(n), where n
is the number of (l-bit) blocks hashed. With our (binary) XOR tree scheme, the
key size of the resulting function is ~ + 2l lg(n) -- 2l(l + lg(n)). The latter can be
quite a bit smaller. For example if I -- 300 and n -- 10 KBytes, the key length
for the basic scheme is about 15 times larger than that for the XOR scheme.

INPUT-LENGTH VARIABILITY. The proofs for our constructions rule out adver-
saries who can find collisions x, y for equal-length strings. In practice, collisions
between strings of unequal length must be prevented. To handle this we provide
a general mechanism for turning hash functions secure against equal-length colli-
sions into hash functions secure also against collisions of possibly unequal length.
This needs just one extra application of the compression function. See Section 6.
Given this, we can concentrate on designing functions that resist equal-length
collisions.

1.6 Re la t ed Work

The general approach to concrete, quantitative security that we are following
began with [3].

Keying hash functions has arisen in other contexts. A good deal of work has
gone into keying hash functions for message authentication [1,23,14,18]. But that
is a very different problem from what we look at here; there, the key is secret,
and one is trying to achieve a particular goal of private key cryptography. In
another direction for keying a hash function Bellare, Canetti and Krawczyk [2]
considered keyed compression functions as pseudorandom functions, and showed
that applying the MD construction then yields a pseudorandom function.

A weaker-than-standard notion of hashing is considered in [1], but that notion
is based on a hidden key and those hash functions don't suffice for signatures.

2 N o t i o n s o f H a s h i n g

When one looks at hash functions like MD5 or SHA-1 there is no explicit key.
However, no notion of collision-freeness can be properly formalized in such a
setting. The first step is thus to talk of families of functions.

475

FAMILIES OF HASH FUNCTIONS. In a family of hash functions F , each key K
specifies a particular hash function FK in the family. Each such function maps
D to {0, 1} k where D is some domain associated to the family, and k is the hash
length, or output length, also depending on the family. The key K will be drawn
at random from some key space {0,1} ~, and ~ will be called the key length. If
D = {0, 1} l for some 1 then l is called the input length.

Formally, a family F of (keyed) hash functions is a map F: {0,1} ~ x D -~
{0,1} ~. We define FK: D -+ {0,1} k by FK(x) = F(K,x) for each K e {0,1} ~
and each x �9 D. We use either the notation FK(x) or F(K, x), as convenient.

The hash family F is a compression function if the domain is D = {0, 1} m
for some (small) constant m (eg., m = 512). It is an extended hash function if
D = {0, 1} M or {0, 1} <M for some (large) constant M (eg., M = 264 - 1).

We say F is length consistent if for every K �9 {0, 1} ~ and every x, y �9 D it
is the case that if Ixl = [Yl then IF(g,x)l = I f(g,y)l .

COLLISIONS. A collision for a function f defined on a domain D is a pair of
strings x, y �9 D such that x # y but] (x) = f (y) . In our setting the function of
interest is f = FK for a randomly chosen key K. Security of a hash family talks
about the difficulty of finding collisions in FK. There are two notions of security.
The stronger one we call here any collision-resistance (ACR). The weaker one,
which is due to Naor and Yung [16], we call target collision-resistance (TCR).
We now define both notions. First some technicalities.

PROGRAMS AND TIMING. A model of computation is fixed, and the execution
time of a program is discussed and analyzed as in any algorithms text, eg. [5]. An
adversary is a program for our model, written in some fixed programming lan-
guage. Any program is allowed randomness: the programming language supports
the operation FLIPCOIN 0 which returns a random bit. By convention, when we
speak of the running time of an adversary we mean the actual execution time
in the fixed model of computation plus the length of the description of the pro-
gram. For F a family of hash functions we let TF denote the worst-case time to
compute F in the underlying model of computation. Namely, given K �9 {0,1} ~
and x �9 D, this is the time to output F(K, x).

2.1 A n y C o l l i s i o n - R e s i s t a n c e - - A C R

The "standard" notion of collision resistance for a function f is tha t given f it is
hard to find a collision x, y for f . In the keyed setting, it can be formalized like
this (eg. [6,7]). The adversary C, called a collision-finder, is given K chosen at
random from {0,1} ~, and is said to succeed if it outputs a collision x, y for FK.
We measure the quality of the hash family by the success probability of the
adversary as a function of the time it invests. Formally, a collision-finder C is
said to (t, e)-break the family of hash functions F : {0, 1} ~ x D ~ {0, 1} k if
the running time of the adversary is at most t and the probability tha t C, on
input K , outputs a collision x, y for FK is at least e. Here the probability is take
over K (a random point in {0,1} ~) and C's random coins. Informally we say F is

476

"any collision-resistant" (ACR) if for every collision-finder who (t, e)-breaks F ,
the ratio t/e is large.

Note that the adversary is given the (random) point K (the key is "an-
nounced") and only then is the adversary asked to find a collisions for FK.
So the adversary may employ a strategy in which the collision which is found
depends on K. This makes the notion very strong.

2.2 T a r ge t Co l l i s ion -Res i s t ance - - T C R

In the notion of [16] the adversary does not get credit for finding any old collision.
The adversary must still find a collision x, y, but now x is not allowed to depend
on the key: the adversary must choose it before the key K is known. Only after
"committing" to x does the adversary get K. Then she must find y.

Formally, the adversary C = (C1, C2) (called a target collision finder) consists
of two algorithms, C1 and C2. First, C1 is run, to produce x and possibly some
extra "state information" a that C1 wants to pass to C2. We call x the target
message. Now, a random key K is chosen and C2 is run. Algorithm C2 is given
K,x ,a and must find y different from x such that FK(x) = FK(y).

The formalization of [16] was asymptotic. Here we provide a concrete one,
and call this version of the notion target collision-resistance (TCR).

We begin with some special cases. A target collision finder C = (C1, C2)
is called an equal-length target collision finder if the messages x, y which C1
outputs always satisfy Ix] = [Yl. It is called a variable-length target collision
finder when no restriction is made on the relative lengths of x, y.

Let C = (C1, C2) be a target-collision finder. We say it (t, e)-breaks F if its
running time is at most t and it finds a collision with probability at least e.
The running time is the sum of the running times of the two algorithms and
the probability is over the coins of C1 and C2 and the choice of K. We say that
F is (t, e)-resistant to equal-length target collisions if there is no equal-length
target collision finder which (t, e)-breaks F. F is (t, e)-resistant to variable-length
target collisions if there is no variable-length target collision finder which (t, e)-
breaks F. If we just say F is (t, e)-TCR, or (t, e)-resistant to target collisions,
we mean it is (t, e)-resistant to variable-length target collisions.

Resistance to equal-length target collisions is a weaker notion than resistance
to variable-length target collisions: in the former, the adversary is only being
given credit if it finds collisions where the messages are of the same length.
In practice, we want resistance to variable-length target resistance. However, it
turns out the convenient design approach is to focus on resistance to equal-length
target collisions and then achieve resistance to variable-length target collisions
via a general transformations we present in Section 6.

Informally, we say F is "target collision-resistant" (TCR) (or, resp., TCR to
equal-length collisions) if it for every (resp., equal-length) target collision-finder
who (t, e)-breaks F , the ratio t /e is large.

477

3 C o m p o s i t i o n L e m m a s

It is useful to hash a long string in stages, first cutting down its length via one
hash function, then applying another to this output to cut it down further. Naor
and Yung [16] considered this kind of composition in the context of TCR hash
functions. We first state a concrete version of their lemma and then extend it to
an equal-length collision analogue which is in fact what we will use.

Let HI: {0, i} ~ • {0, I} l~ -+ {0, i} t2 and H2: {0, I} ~2 x {0, I} 12 --> {0, i} k
be families of hash functions. The composition H2 oH1: {0, 1} ~1+~' x {0, 1} 11 --+
{0, 1} k is the family defined by (H2 o H1)(K2K1, M) = /-/2(/(2, Hi(K1, M)) for
all K1 E {0, 1} ~ , / (2 E {0, 1} ~2, and M E {0, 1} 11 . From the proof of Naor and
Yung's composition lemma [16] we extract the concrete security parameters to
get the following.

L e m m a 1. (T C R compos i t ion l emma) LetHl: {0, 1} ~ • 1} tl -+ {0, 1} t2
and H2: {0, 1} ~2 x {0, 1} t2 -+ {0, 1} k be families of hash functions. Assume the
first is (tl,el)-secure against target collisions and the second is (t2,e2)-secure
against target collisions. Then the composition H2 o H1 is (t, c)-secure against
target collisions, where t = 69(min(t1 - ks, t2 - 2THI -- kl)) and e = el + e2.

In this paper we need such a lemma for the case of equal-length TCR. This
requires an extra condition on the first family of hash functions, namely that it
be length consistent. See [4] for a proof.

L e m m a 2. (T C R compos i t ion l e m m a for equal - length collisions) Let
Hi: {0, 1} ~ x {0, 1}/1 --+ {0, 1}/2 and H2: {0, 1} ~2 • {0, 1}/2 "+ {0, 1} k be fami-
lies of hash functions. Assume the first is length consistent and (tl, el)-resistant
to equal-length target collisions. Assume the second is (t2, e2)-resistant to equal-
length target collisions. Then the composition H2 o H1 is (t, e)-resistant to equal-
length target collisions, where t = O(min(tl -k2 , t 2 - 2TH~ --kl)) and e = el +e2.

4 T C R H a s h F u n c t i o n s f r o m S t a n d a r d H a s h F u n c t i o n s

The most direct way to construct a TCR hash function is to key a function like
MD5 or SHA-1. We point out the importance of doing this keying with care.

Suppose, for example, that one keys MD5 through its 128-bit initial chaining
value, IV. Denote the resulting hash function family by MD5*. Then breaking
MD5* (in the sense of violating TCR) amounts to finding collisions in an algo-
rithm which is identical to MD5 except that it begins with a random, known
IV (as opposed to the published one). It seems unlikely that this task would be
harder than finding collisions in MD5 itself. It could even be easier!

Alternatively, suppose one tries to use the well-known "envelope" method,
setting MD5~(M) = MD5(KIIMIIK). It seems likely that any extension of
Dobbertin's attack [11] which finds collisions in MD5 would also defeat MD5**.
Letting md5 denote the compression function of MD5, note that if for any c you
can find m, m' such that md5(cllm) = md5(c]lm'), then you have broken MD5**.

478

A safer approach might be to incorporate key bits throughout the message
being hashed. For example, with IKI = 128 one might intertwine 128 bits of
key and the next 384 bits of message into every 512-bit block. (For example,
every fourth byte might consist of key.) Now the cryptanalyst's job amounts to
finding a collision M, M ~ in MD5 where we have pre-specified a large number
of (random) values to be sprinkled in particular places throughout M and M ~.
This would seem to be very hard.

Note that the approach above (shuffling key and message bits) is equally
at home in defining a TCR compression function based on the compression
function underlying a map like MD5 or SHA-1. The resulting compression keyed
compression function can then be extended to a full-fledged keyed hash function
using the constructs of this paper. Doing this one will gain in provable-security
but lose out in increased key length.

5 T C R H a s h i n g b a s e d o n T C R C o m p r e s s i o n F u n c t i o n s

Throughout this section messages will be viewed as sequences of blocks of some
length l, with I depending on the context. For notational simplicity, let St =
{0, 1} I.

We are given a TCR compression function H. We wish to extend it to a
full-fledged hash function H ~. We begin with a method which does not work.

5.1 The M D Construction Doesn't Propagate T C R

Suppose H: {0,1} ~ • {0,1} k+b -~ {0,1} k and we want to hash messages of
nb-bits. The MD method gives a keyed family of functions M D H n : {0, 1} n •
{0, 1} nb ~ {0, 1} k. To define it, fix some k-bit initial vector, say IV = O k. Now
view the message M = M[1] . . . M[n] as divided into n blocks, each of b bits. Let
M D H n (K , M) = Cn where Co = IV and, for i >_ 1, Ci = HK(Ci-1 II M[i]).

Damgs [7] shows that if H is ACR then so is M D H n. It would be nice if this
worked for TCR too. But it does not. The reason is a little subtle. If H is TCR
it still might be easy to find collisions in HK if we knew K in advance (meaning
we were allowed to see K before specifying any point for the collision). However,
a few MD iterations of H on a fixed point can effectively surface the key K,
causing subsequent iterations to misbehave. This intuition can be formalized by
giving an example of a compression function H which is TCR but for which
M D H n is not. To give such an example we must first assume that some TCR
compression function exists (else the question is moot).

Proposi t ion 3. Suppose there exists a TCR compression function F: {0, 1} ~ x
{0, 1} k+b "~ {0, 1} k. Then there exists a TCR compression function H and an
integer n < max(2, [(k + ~ + b)/b]) such that M D H n is not TCR.

The statement of the above proposition is "informal" insofar as we have pushed
the numerical bounds into the proof.

479

5.2 T h e Basic Linear Hash

Though the MD construction doesn't propagate TCR, a natural approach is to
iterate just in M D H n but with a different key at each round. We will show that
this does preserve TCR.

We let H: {0, 1} ~ • {0, 1} k+b --+ {0, 1} k be the given TCR compression
function. The message M = MIll . . . M[s] to be hashed is viewed as divided into
s < n blocks, each of size b.

In the basic linear scheme a hash function is specified by n different keys,
K 1 , . . . , Kn E {0, 1} ~, one key for each application of the underlying compression
function. We hash as in the MD method but with a different key at each stage.
Again we set the IV to a constant, say O k. Formally, LHn(K1 . . . Kn, M) = Cs
where Co = O k and for i : 1 , . . . , s: Ci = H(Ki , Ci-x [I M[i]). The family of
hash functions is LHn: {0,1} n~ x 2~ <n -~ {0, 1} k. The following theorem says
that if the compression function H is resistant to target collisions then so is the
extended hash function LH n. The proof is in [4].

T h e o r e m 4. Suppose H: {0, 1} ~ • {0, 1} k+b -+ {0,1} k is (t',e')-resistant to
target collisions. Suppose n > 1. Then LHn: {0, 1} n~ x •<n ___} {0, 1} k is (t, e)-
resistant to equal-length target collisions, where e = n d and t = t'--O(n.[TH+t;]).

5.3 T h e X O R Linear Hash

We present a variant of the above in which the compression function uses the
same key K in each stage, but an auxiliary "mask" key Ki, depending on the
stage number i, is XORed to the chaining variable in the i-th stage. One ad-
vantage is that the key size is reduced compared to the basic scheme for some
choices of the parameters. Another advantage is in key scheduling. If the com-
pression function is being computed in hardware it may be preferable to fix the
key for the compression function. In software too there can be a penalty for key
"setup."

We now describe the scheme properly. Recall the message is M = M[1] . . . M[s]
where s < n. The function is specified by n + 1 different keys K, K 1 , . . . , Kn as
indicated above. Let X L H n (K K 1 . . . K n , M) = Cs where Co = O k and for
i = 1 , . . . , s we set

C~_ 1 = Ki (9 Ci-1 and Ci = H(K , C~_ 1 II M[i]) .

The corresponding family is XLHn: {0, 1} ~+nk x E <n --+ {0, 1} k. The proof of
the following can be found in [4].

T h e o r e m 5. Suppose H: {0, 1} ~ x {0, 1} k+b --~ {0, 1} k is (t', d)-resistant to
target collisions. Suppose n > 1. Then XLHn: {0, 1} ~+nk x •<n _~ {0, 1} k is
(t, e)-resistant to equal-length target collisions, where e = ne' and t = t' - O(n .
[TH + to]).

480

5.4 T h e Basic Tree Scheme

A tree can be used to reduce the key size. A tree scheme described by Naor
and Yung [16] uses lg n keys (for the compression function) to hash an n-block
message (using a binary tree). Later we will do better, but first let us provide a
description and concrete security analysis of the basic scheme.

We are slightly more general. First, we consider m-ary trees for some rn _> 2.
This means we start with a compression function H: {0, 1} ~ • {0, 1} mk -~ {0, 1} k
and want to use it to hash messages of length much more than ink. Second, we
do not wish to fix the number of blocks that messages will be.

PARALLEL HASH. We first describe a primitive we will use. We are given a
message M which is either a single k-bit block, or else consists of s blocks, each
m k bits. In the former case we leave the message unchanged. In the lat ter case
view the message as M = M I l l . . . M[s] and hash each ink-bit block into a k-bit
block via the compression function. We call this procedure "parallel hash."

Formally, for any integer I _> 1 we define P H Ira'. {0, 1} ~ x (Ek U~Tnk)<t _~ EF<I
like this. If M e ~Tk set pHZm(K, M) = M. Else write M = M[1] . . . M[s] e Z~n k
(s _< l) and set

P H l m (g , M) = H (K , MIll) [I H(K,M[2]) [I "'" [I H (K , M[s]) .

Notice that only one key is used. Notice that P H m = H is the original compres-
sion function augmented to be the identity on messages of size k.

L e m m a 6. Suppose H: {0,1} '~ x {0,1} mk --~ {0,1} k is (t', e')-resistant to target

collisions. Suppose I > 1 and le tn = l m . Then PHn: {0, 1}~ • E~UE<~ -~ E <`
is (t, e)-resistant to equal-length target collisions, where e = le' and t = t~-O(nk) .

Proof. The proof is a slight extension and "concretization" of the proof sketch
in [16, Section 2.3], and for completeness is given in [4]. [

BASIC TREE HASH. We assume that the messages we will hash have length
bounded by k m d, for some constants m and d. To simplify our exposition we
further insist tha t any message M to be hashed has exactly m i k-bit blocks, for
some i E {0, 1 , . . . , d}. The hash function uses d keys K 1 , . . . , Kd, and the hash
value is denoted T H (K 1 . . . Kd, M) . It is computed on M -- M[1] . . . Mira if by
building an m-ary tree of depth i. The leaves correspond to the message blocks
and the root corresponds to the final hash value. Group the nodes at level 1 (the
leaves) into runs of size m and hash each group via H(K1, .). This yields rn i-1
values, which form the nodes at level 2 of the tree. Now continue the process.
At each level we use a different key. Thus H (K j , .) is the function used to hash
the nodes at level j of the tree. At level i we have m nodes, which are hashed
under H(K i , .) to yield the root, which, at level i + 1, is the final hash value.

Formally, the hash function can be defined by compositions of the parallel
hashes we described above. Namely

T H ma = P H ra o P H ra2 o . . . o P H ma-1 o P H ma . (1)

481

By our notion of composition each parallel hash uses a different key. Thus one
key is used for every hash of a given level, but the key changes across levels. So
there are d keys in all. We can assess the security by applying the composition
lemma and the analysis of the security of the parallel hash.

T h e o r e m 7. Suppose H: {0, 1} a x {0, 1} mk -+ {0, 1} k is (t', e ')-vesistant to tar-

get collisions. Suppose n = m d where d > 1. Then T H n : {0, 1} d~ x Ud=0 ~y~n' _+
{0, 1} k is (t, e)-resistant to equal-length target collisions, where e = n e ' / (m - 1)
and t = t' - O (n . [TH + !r

Pro@ For each i = 1 , . . . , d, Lemma 6 says that P H m' is (ti, e~)-secure against

equal-length collisions, where ti = t - O (m ~) and ei = m i - l e '. Note that P H "~'
is length consistent for any i = 1 , . . . , d. Now look at Equation (1) and apply
Lemma 2 d times. This gives us e = (m ~ + . . . + m d - 1) e ' = (m d -- 1) e ' / (m -- 1) >
n e ' / (m -- 1). The time estimates can be checked similarly. Details omitted. |

5.5 T h e X O R Tree Hash

In the basic tree hash we key the compression function anew at each level of the
tree. Thus the key length is a . logm(n), which can be large, because a may be
large. In the XOR variant there is one key K defining H (K , -) and this is used
at all levels. However, there are auxiliary keys K 1 , . . . , Kd, one per level. These
are not keys for the compression function: they are just XORed to the data at
each stage. As described in Section 5.2, the motivation is that we can get shorter
keys, and also better key scheduling.

We now describe the hash function. As before, assume that the messages
we will hash have m i blocks, each k-bits, for some i E {0 , . . . , d}. The hash
function is described by a "primary key" K E {0, 1} ~ and d "auxiliary keys"
K 1 , . . . ,Kd E {0, 1} ink. The hash value is denoted X T H (K K 1 . . . Kd, M) . It is
computed by building an m-ary tree of depth i whose root is the hash value.
Level 1 consists of the leaves, which are the m d individual blocks of the message.
Group them into runs of m blocks each. Before hashing each sequence of blocks,
however, XOR key K1 to each group. Now hash each masked group via H (K , .).
This yields m d-1 values, which form the nodes at level 2 of the tree. Now continue
the process. At each level we use a different key for the masking, but the same
key K for the hashing.

Here is a more formal description. Let M -- M[1] . . . M[s] be the message,
consisting of k-bit blocks, and suppose s -- m i. We define X T H (K K 1 . . . Kd, M)
recursively. First assume i = 0 so that M = M[1] consists of 1 block. We set
X T H (K , M) = M[1]. Now suppose the message M is longer, namely i > 1. Let
N j = M [(j - 1)m i-1 + 1] . . . M [j m ~-1] for j = 1 , . . . , m . Let

X T H I (K K I . . . K i - 1 , M) =

X T H (K K I . . . K i - 1 , N1) II " II X T H (K K I . . . K i - 1 , N m) .

482

Then let

X T H (K K 1 . . . Ki, M) = H(K , K i s X T H I (K K 1 . . . Ks-x, M)) .

The first function here computes the input for the next compression stage. Before
applying the compression function to it, however, we XOR in the auxiliary key
for this stage. We also set X T H (K K 1 . . . Kd, M) = X T H (K K I . . . Ks, M) . We
let X T H n : {0, 1} ~r X Ud=o ~7~ n' ~ {0, 1} k denote the XOR tree hash family
for messages of at most n = m d blocks.

The key length is ~ + mk �9 logm(n). For m = 2, k = 64, the resulting key
length of ~ + 1281gn is significantly smaller than for the basic tree scheme in
the case where the key size of the compression function is quite big, as happens
for examples in the constructions of [13].

We can no longer appeal to the composition lemma in proving security, be-
cause the hashing at the different levels of the tree involve a common key K.
Instead we give a direct proof of security, which can be found in [4].

T h e o r e m 8. Suppose H: {0, 1} ~ x {0, 1} mk -~ {0, 1} k is (t',e')-resistant to
target collisions. Suppose n = m d where d > 1. Then X T H n : {0, 1} '~+dmk x
Ui----0d z~n t _.~ {0, 1} k is (t, e)-resistant to equal-length target collisions, where
e = ne ' / (m - 1) and t = t' - r [TH + ink]).

6 L e n g t h V a r i a b i l i t y

In Section 5 we proved security against equal-length target collisions. In practice
one requires security against variable-length target collisions.

It is often assumed that input-length variability can be handled by padding
the final block of a message M to be hashed so that it unambiguously en-
codes]M]. Let pad(.) denote such a padding function (eg., that of [20]). If H is
secure against equal-length target collisions is is H o pad secure against variable-
length target collisions? Not necessarily. And the same applies to ACR. It is easy
to construct such examples.

Here, instead, is a general technique to achieve length-variability. It requires
one extra application of the compression function. See [4] for a proof.

T h e o r e m 9. F/x m > 0 and let Dx be a set of strings each of length less than
2 '~. Let HI: {0, 1} ~1 x D1 -+ {0, 1} tl and H2: {0, 1} ~2 • {0, 1}/l+rn ---} {0, 1} k
be families of hash functions. Assume H1 is (tx, ex)-secure against equal-length
target collisions and H2 is (t2,e2)-secure against equal-length target collisions.
Define H: {0, 1} ~1+~2 x D1 ~ {0, 1} k by

H(KxK2, M) = H2(K2,Hx(Kx,M) II IMIm)

where IMI., is the length of M written as a string of exactly m bits, M E D1,
Kx E {0, 1} ~ , and K2 E {0, 1} ~2. Then H is (t, e)-secure against variable-length
target collisions, where t = min(tx - (9(~2), t2 - (9(t~x - 2TH~ -- 2lx -- 2m)) and
6 ----- ~X + ~2.

483

While length-indicating padding doesn ' t work in general, does it work for the
schemes of Section 5? For L H the answer is no: star t ing with an arbi t rary T C R
compression function H0 one can construct a T C R compression function H for
which LHopad is insecure against variable-length target collisions. For X L H the
answer is yes: if H is a T C R compression function then X L H o p a d is guaranteed
to be secure against target collisions; one can appropriately modify the proof of
Theorem 5 to show this.

Acknowledgments

The first author is supported in par t by a 1996 Packard Foundation Fellowship in
Science and Engineering, and NSF C A R E E R award CCR-9624439. The second
author is supported in par t by NSF C A R E E R Award CCR-9624560.

Thanks to the Crypto 97 referees for their comments on this paper.

References

1. M. BELLARE, R. CANETTI AND H. KRAWCZYK, Keying hash functions for message
authentication. Advances in Cryptology - Crypto 96 Proceedings, Lecture Notes
in Computer Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

2. M. BELLARE, R. CANETTI AND H. KRAWCZYK, Pseudorandom functions revis-
ited: the cascade construction and its concrete security. Proceedings of the 37th
Symposium on Foundations of Computer Science, IEEE, 1996.

3. M. BELLARE, J. KILIAN AND P. ROGAWAY, The security of cipher block chaining.
Advances in Cryptology - Crypto 94 Proceedings, Lecture Notes in Computer
Science Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994.

4. M. BELLARE AND P. ROGAWAY, Collision-Resistant Hashing: Towards Making
UOWHFs Practical. Full version of this paper, available via h t t p : / /~n~-cse .
ucsd. edu/users/mihir.

5. T. CORMEN, C. LEISERSON AND R. RIVEST, Introduction to Algorithms.
McGraw-Hill, 1992.

6. I. DAMG~,RD, Collision Free Hash Functions and Public Key Signature Schemes.
Advances in Cryptology - Eurocrypt 87 Proceedings, Lecture Notes in Computer
Science Vol. 304, D. Chaum ed., Springer-Verlag, 1987.

7. I. DAMG~.RD, A Design Principle for Hash Functions. Advances in Cryptology -
Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard
ed., Springer-Verlag, 1989.

8. B. DEN BOER AND A. BOSSELAERS, An attack on the last two rounds of MD4.
Advances in Cryptology - Crypto 91 Proceedings, Lecture Notes in Computer
Science Vol. 576, J. Feigenbaum ed., Springer-Verlag, 1991.

9. S. DEN BOER AND A. BOSSELAERS, Collisions for the compression function of
MD5. Advances in Cryptology - Eurocrype 93 Proceedings, Lecture Notes in
Computer Science Vol. 765, T. Helleseth ed., Springer-Verlag, 1993.

10. H. DOBBERTIN, Cryptanaiysis of MD4. Fast Software Encryption--Cambridge
Workshop, Lecture Notes in Computer Science, vol. 1039, D. Gollman, ed.,
Springer-Verlag, 1996.

11. H. DOBBERTIN, Cryptanalysis of MD5. Rump Session of Eurocrypt 96, May 1996,
http ://~. iacr. org/conferences/ec96/rump/index �9 html.

484

12. H. DOBBERTIN, A. BOSSELAERS AND B. PRENEEL, RIPEMD-160: A strength-
ened version of RIPEMD, Fast Software Encryption, Lecture Notes in Computer
Science 1039, D. Gollmann, ed., Springer-Verlag, 1996.

13. R. IMPAGLIAZZO AND M. NAOR, Efficient cryptographic schemes provably as se-
cure as subset sum. Journal of Cryptology, Vol. 9, No. 4, Autumn 1996.

14. B. KALISKI AND M. ROBSHAW, Message Authentication with MD5. RSA Labs'
CryptoBy~es, Vol. 1 No. 1, Spring 1995.

15. R. MERKLE, One way hash functions and DES. Advances in Cryptology -
Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, G. Bras-
sard ed., Springer-Verlag, 1989

16. M. NAOR AND M. YUNG, Universal one-way hash functions and their crypto-
graphic applications. Proceedings of the 21st Annua/Symposium on Theory o[
Computing, ACM, 1989.

17. National Institute of Standards, FIPS 180-1, Secure hash standard. April 1995.
18. B. PRENEEL AND P. VAN OORSCHOT, MD-x MAC and building fast MACs from

hash functions. Advances in Cryptology - Crypto 95 Proceedings, Lecture Notes
in Computer Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.

19. RIPE Consortium, Ripe Integrity primitives - - Final report of RACE integrity
primitives evaluation (R1040). Lecture Notes in Computer Science, vol. 1007,
Springer-Verlag, 1995.

20. R. RIVEST, The MD4 message-digest algorithm, Advances in Cryptology
- Crypto 90 Proceedings, Lecture Notes in Computer Science Vol. 537,
A. J. Menezes and S. Vanstone ed., Springer-Verlag, 1990, pp. 303-311. Also
IETF RFC 1320 (April 1992).

21. R. RIVEST, The MD5 message-digest algorithm. IETF RFC 1321 (April 1992).
22. J. ROMPEL, One-way functions are necessary and sufficient for digital signatures.

Proceedings of the 22nd Annual Symposium on Theory of Computing, ACM,
1990.

23. G. Tsudik, Message authentication with one-way hash functions, Proceedings of
Infocom 92, IEEE Press, 1992.

24. S. VAUDENAY, On the need for multipermutations: cryptanalysis of MD4 and
SAFER. Fast Software Encryption - - Leuven Workshop, Lecture Notes in Com-
puter Science, vol. 1008~ Springer-Verlag, 1995, 286-297.

25. WEGMAN AND CARTER, New hash functions and their use in authentication and
set equality, Journal of Computer and System Sciences, Vol. 22, 1981, pp. 265-279.

