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A b s t r a c t .  Recent attacks on the cryptographic hash functions MD4 
and MD5 make it clear that (strong) collision-resistance is a hard-to- 
achieve goal. We look towards a weaker notion, the universal one-way 
hash functions (UOWHFs) of Naor and Yung, and investigate their prac- 
tical potential. The goal is to build UOWHFs not based on number 
theoretic assumptions, but from the primitives underlying current cryp- 
tographic hash functions like MD5 and SHA-1. Pursuing this goal leads 
us to new questions. The main one is how to extend a compression func- 
tion to a full-fledged hash function in this new setting. We show that the 
classic Merkle-Damgs method used in the standard setting fails for 
these weaker kinds of hash functions, and we present some new methods 
that  work. Our main construction is the "XOR tree." We also consider 
the problem of input length-variability and present a general solution. 

1 I n t r o d u c t i o n  

A cryptographic hash function is a map  F which takes a string of a rb i t ra ry  
length and maps it to a string of some fixed-length k. The proper ty  usually 
desired of these functions is collision-resistance: it should be "hard" to find 
distinct strings x and y such tha t  F(x)  = F(y) .  

Cryptographic  hash functions are much used, most  impor tant ly  for digital 
signatures, and cheap constructions are highly desirable. But  in recent years 
we have seen a spate of at tacks bringing down our most  popular  constructions, 
MD4 and MD5 [8-11]. The conclusion is tha t  the design of collision-resistant 
hash functions may  be harder than  we had thought.  

Wha t  can we do? One approach is to design new hash functions. This is being 
done, with SHA-1 [17] and RIPEMD-160 [12] being new designs which are more 
conservative then their predecessors. In this paper  we suggest a complementary  
approach: weaken the goal, and then make do with hash functions meeting this 
goal. Ask less of a hash function and it is less likely to disappoint! 

Luckily, a suitable weaker notion already exists: universal one-way hash func- 
tions (UOWHF),  as defined by Naor and Yung [16]. But  existing constructions, 



471 

based on general or algebraic assumptions [16,22,13], are not too efficient. We 
take a different approach. We integrate the notion with current hashing technol- 
ogy, looking to build UOWHFs out of MD5 and SHA-1 type primitives. 

The main technical issue we investigate is how to extend the classic Merkle- 
Damgs paradigm [15,7] to the UOWHF setting. In other words, how to build 
"full-fledged" UOWHFs out of UOW compression functions. We address practi- 
cal issues like key sizes and input-length variability. Our main construction, the 
"XOR tree," also turns out to have applications to reducing key sizes for existing 
subset-sum based constructions. To make for results more directly meaningful 
to practice we treat  security "concretely," as opposed to asymptotically. 

Unfortunately, the name UOWHFs does not reflect the property of the no- 
tion, which is a weak form of collision-resistance. We will call our non-asymptotic 
version target collision-resistance (TCR). We refer to the customary notion of 
collision resistance as any collision-resistance (ACR). 

1.1 Background 

A function F : D --+ {0, 1} k on some domain D is a compression function if D 
is the set of strings of some small length (eg., D = {0, 1} 640 for the compression 
function of MD5). It is a (full-fledged) hash function if D = {0, 1}*, or at least 
D = {0, 1} <g for some large number It. In either case, a collision for F is a pair 
x, y E D such that  x ~ y but F(x) = F(y). Informally, F is said to be any 
collision-resistant (ACR) if it is computationaUy hard to find a collision. 

THE MD METHOD. The Merkle-Damghrd construction [15,7] turns an ACR 
compression function F:  {0,1} k+b ~ {0, 1} k into an ACR hash function MDF.  
Fix Co E {0,1} k. Given M = M[1] . . .  Mini, for M[i] E {0, 1} b, compute Ci = 
F(Ci-x IIM[i]) and set M D F ( M )  = Cn. The property of this method is that  if 
it is hard to find collisions in F ,  then it is hard to find collisions in MDF.  

All of the popular hash functions (MD4, MD5, SHA-1, and RIPEMD-160) 
use the MD construction. Thus the crucial component of each algorithm is the 
underlying compression function, and we want it to be ACR. But the compression 
function of MD4 is not: following den Boer and Bosselaers [8], collisions were 
found by Dobbertin [10]. Then collisions were found for the compression function 
of MD5 [9,111. These attacks are enough to give up on MD4 and MD5 from the 
point of view of ACR. No collisions have been found for the compression functions 
of SHA-1 and RIPEMD-160, and these may well be stronger. 

KEYING. In the above popular hash functions there is no explicit key. But 
Damghrd [6,7] defines ACR via keyed functions, and it is in this setting that  
he proves the MD construction correct [7]. Keying hash functions seems essen- 
tial for a meaningful formalization of security. Thus, in truth,  a hash function F 
does not have the signature above: it must have two arguments, one for the key K 
and one for the message M. To use F one selects a random key K,  publishes it, 
and from then on one hashes according to FK. In effect, the key amounts to the 
description of a particular hash function. 
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1.2 Target Col l i s ion-Res is tance  

With an ACR hash function F the key K is published and the adversary wins 
if she manages to find any collision x, y for the FK. The points x and y may 
depend arbitrarily on K; any pair of distinct points will do. In the notion of 
Naor and Yung [16] the adversary no longer wins by finding just any collision. 
The adversary must choose one point, say x, in a way which does not depend 
on K,  and then, later, given K, find another point y, this time allowed to depend 
on K, such that x, y is a collision for FK. Thus, although it might be easy to 
find a collision x ,y  in FK by making both x,y  depend on K, the adversary 
may be unable to find collisions if she must "commit" to x before seeing K. We 
call this weakened notion of security target collision-resistance (TCR). (In the 
terminology of [16] it is universal one-wayness.) 

Naor and Yung [16] formalize this via the standard "polynomial-time adver- 
saries achieve negligible success probability" approach of asymptotic cryptogra- 
phy. In order to get results which are more directly meaningful for practice, our 
formalization is non-asymptotic. See Section 2. 

No BIRTHDAYS! Besides being a weaker notion (and hence easier to achieve) we 
wish to stress one important practical advantage of TCR over ACR: because x 
must be specified before K is known, birthday attacks to find collisions are 
not possible. This means the hash length k can be small, like 64 or 80 bits, as 
compared to 128 or 160 bits for an ACR hash function. This is important to us 
for several reasons and we will appeal to it later. 

GOOD ENOUGH FOR SIGNING. In weakening the security requirement on hash 
functions we might risk reducing their utility. But TCR is strong enough for 
the major applications, i] appropriately used. In particular, it is possible to use 
TCR hash functions for hashing a message before signing. Due to page limits, 
the constructions are omitted here: they can be found in [4]. The idea is to pick 
a new key K for each message M and then sign the pair (K, FK(M)), where F is 
TCR. This works best for short keys. When they are long some extra tricks can 
be used, as described in [4], but we are better off with small keys. Thus there is 
a strong motivation for keeping keys short. 

1.3 Making  T C R  Funct ions  out  o f  Standard Hash  Funct ions  

The most direct way to make a TCR hash function is to appropriately key an 
existing hash function such as MD5 or SHA-1. We caution that one must be 
careful in how this keying is done. If not, making a TCR assumption about the 
keyed function may really be no weaker than making an ACR assumption about 
the original hash function. See Section 4. 

1.4 E x t e n d i n g  T C R  Compress ion  Funct ions  to  T C R  Hash  Funct ions  

Instead of trying to key an entire hash function, as above, a good strategy 
might be to implement a TCR compression function (perhaps by keying an 
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existing compression function) and then t ransform it into a (full-fledged) T C R  
hash function using some simple construction. The  question we investigate is 
how to do this t ransformation.  This turns out to be quite interesting. 

THE MD METHOD DOES NOT WORK FOR T C R .  Suppose we are given a T C R  
compression function H in which each x-bit  key specifies a map  HK: {0, 1} k+b -~ 
{0, 1) k. We want to build a T C R  hash function H ~ in which each key K specifies 
a map  H~: on arbi t rary  strings. The obvious thought  is to apply the MD method  
to H/r .  However, we show in Section 5.1 tha t  this does not work. We give an 
example of a compression functions which is secure in the T C R  sense but  for 
which the resulting hash function is not. 

LINEAR ITERATION: BASIC AND XOR.  The most  direct extension we found to 
the MD construction is use a different key at each stage. This works, and its 
exact security is analyzed in Section 5.2. But  the method needs a long key. 

We provide a variant of the above scheme which uses only one key for the 
compression function, but  also uses a number  of auxiliary keys, which are XORed 
in at  the various stages. This can slightly reduce key sizes, and it also has some 
advantages from a key-scheduling point of view (eg., it may be slow to "set up" 
the key of a compression function, so it 's  best if this not be changed too often). 

THE BASIC TREE SCHEME. To get major  reductions in key size we turn to trees, z 
Wegman and Carter  [25] give a tree-based construction of universal hash func- 
tions tha t  reduces key sizes, and Naor and Yung have already pointed out tha t  
key lengths for UOWHFs  can be reduced by the same method [16, Section 2.3]. 
We recall this basic tree construction in Section 5.4 and provide a concrete analy- 
sis of its security. Then we look at key sizes. Suppose we s tar t  with a compression 
function with key length ~, mapping 2k bits to k bits, and we want to hash nk 
bits to k bits. The basic tree construction yields a hash function with a key size 
of ~ lg n bits. 2 Key lengths have been reduced, but one can reduce them more. 

THE X O R  TREE SCHEME. Our main construction is the XOR tree scheme. 
Here, the hash function uses only one key for the compression function and 
some auxiliary keys. If  we s tar t  with a compression function with key length ~, 
mapping  2k bits to k bits, and we want to hash nk bits to k bits, the XOR tree 
construction yields a hash function with a key size of ~ + 2k lg n bits. 

Recall tha t  k is short, like 64 bits, since we do not need to worry about  
bi r thday at tacks for T C R  functions. On the other hand, ~ can be quite large 
(and in many  constructions, it is). So ~ + 2k lg n may be much less than  ~ lg n. 

x It may be worth remarking that the obvious idea for reducing key size is to let the key 
be a seed to a pseudorandom number generator and specify longer keys by stretching 
the seed to any desired length. The problem is that our keys are public (they are 
available to the adversary) and pseudorandom generators are of no apparent use in 
such a context. 

2 This corresponds to a binary tree construction. In Section 5.4 we consider the more 
general case of starting with a compression function of mk bits to k bits and building 
an m-ary tree. 
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1.5 Other Results 

REDUCING KEY SIZES FOR OTHER CONSTRUCTIONS. Our  main motivation has 
been building TCR hash functions from primitives underlying popular crypto- 
graphic hash functions. But XOR trees can also be used to reduce key sizes for 
TCR hash functions built from combinatorial or algebraic primitives. For exam- 
ple, the subset sum based construction of [13] uses a key of size sl bits to hash s 
bits to 1 bits, where I is a security parameter which controls subset sum instance 
sizes. (Think of I as a few hundred.) So the size of the key is even longer than the 
size of the data. The basic (binary) tree scheme can be applied to reduce this: 
starting with a compression function taking 21 bits to l bits (it has key length 

= 2/2) the key size of the resulting hash function is ~ lgn = 2l 2 lg(n), where n 
is the number of (l-bit) blocks hashed. With our (binary) XOR tree scheme, the 
key size of the resulting function is ~ + 2l lg(n) -- 2l(l + lg(n)). The latter can be 
quite a bit smaller. For example if I -- 300 and n -- 10 KBytes, the key length 
for the basic scheme is about 15 times larger than that for the XOR scheme. 

INPUT-LENGTH VARIABILITY. The proofs for our constructions rule out adver- 
saries who can find collisions x, y for equal-length strings. In practice, collisions 
between strings of unequal length must be prevented. To handle this we provide 
a general mechanism for turning hash functions secure against equal-length colli- 
sions into hash functions secure also against collisions of possibly unequal length. 
This needs just one extra application of the compression function. See Section 6. 
Given this, we can concentrate on designing functions that resist equal-length 
collisions. 

1.6 Re la t ed  Work  

The general approach to concrete, quantitative security that we are following 
began with [3]. 

Keying hash functions has arisen in other contexts. A good deal of work has 
gone into keying hash functions for message authentication [1,23,14,18]. But that 
is a very different problem from what we look at here; there, the key is secret, 
and one is trying to achieve a particular goal of private key cryptography. In 
another direction for keying a hash function Bellare, Canetti and Krawczyk [2] 
considered keyed compression functions as pseudorandom functions, and showed 
that applying the MD construction then yields a pseudorandom function. 

A weaker-than-standard notion of hashing is considered in [1], but that notion 
is based on a hidden key and those hash functions don't suffice for signatures. 

2 N o t i o n s  o f  H a s h i n g  

When one looks at hash functions like MD5 or SHA-1 there is no explicit key. 
However, no notion of collision-freeness can be properly formalized in such a 
setting. The first step is thus to talk of families of functions. 
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FAMILIES OF HASH FUNCTIONS. In a family of hash functions F ,  each key K 
specifies a particular hash function FK in the family. Each such function maps 
D to {0, 1} k where D is some domain associated to the family, and k is the hash 
length, or output length, also depending on the family. The key K will be drawn 
at random from some key space {0,1} ~, and ~ will be called the key length. If 
D = {0, 1} l for some 1 then l is called the input length. 

Formally, a family F of (keyed) hash functions is a map F:  {0,1} ~ x D -~ 
{0,1} ~. We define FK: D -+ {0,1} k by FK(x) = F(K,x)  for each K e {0,1} ~ 
and each x �9 D. We use either the notation FK(x) or F(K, x), as convenient. 

The  hash family F is a compression function if the domain is D = {0, 1} m 
for some (small) constant m (eg., m = 512). It is an extended hash function if 
D = {0, 1} M or {0, 1} <M for some (large) constant M (eg., M = 264 - 1). 

We say F is length consistent if for every K �9 {0, 1} ~ and every x, y �9 D it 
is the case that  if Ixl = [Yl then IF(g,x)l = I f(g,y)l .  

COLLISIONS. A collision for a function f defined on a domain D is a pair of 
strings x, y �9 D such that  x # y but  ] (x )  = f (y) .  In our setting the function of 
interest is f = FK for a randomly chosen key K.  Security of a hash family talks 
about  the difficulty of finding collisions in FK. There are two notions of security. 
The stronger one we call here any collision-resistance (ACR). The weaker one, 
which is due to Naor and Yung [16], we call target collision-resistance (TCR). 
We now define both notions. First some technicalities. 

PROGRAMS AND TIMING. A model of computation is fixed, and the execution 
time of a program is discussed and analyzed as in any algorithms text,  eg. [5]. An 
adversary is a program for our model, written in some fixed programming lan- 
guage. Any program is allowed randomness: the programming language supports 
the operation FLIPCOIN 0 which returns a random bit. By convention, when we 
speak of the running time of an adversary we mean the actual execution time 
in the fixed model of computation plus the length of the description of the pro- 
gram. For F a family of hash functions we let TF denote the worst-case time to 
compute F in the underlying model of computation. Namely, given K �9 {0,1} ~ 
and x �9 D, this is the time to output  F(K, x). 

2.1 A n y  C o l l i s i o n - R e s i s t a n c e  - -  A C R  

The "standard" notion of collision resistance for a function f is tha t  given f it is 
hard to find a collision x, y for f .  In the keyed setting, it can be formalized like 
this (eg. [6,7]). The adversary C, called a collision-finder, is given K chosen at 
random from {0,1} ~, and is said to succeed if it outputs a collision x, y for FK. 
We measure the quality of the hash family by the success probability of the 
adversary as a function of the time it invests. Formally, a collision-finder C is 
said to (t, e)-break the family of hash functions F : {0, 1} ~ x D ~ {0, 1} k if 
the running time of the adversary is at most t and the probability tha t  C, on 
input K ,  outputs  a collision x, y for FK is at least e. Here the probability is take 
over K (a random point in {0,1} ~) and C's random coins. Informally we say F is 
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"any collision-resistant" (ACR) if for every collision-finder who (t, e)-breaks F ,  
the ratio t/e is large. 

Note that  the adversary is given the (random) point K (the key is "an- 
nounced") and only then is the adversary asked to find a collisions for FK. 
So the adversary may employ a strategy in which the collision which is found 
depends on K.  This makes the notion very strong. 

2.2 T a r ge t  Co l l i s ion -Res i s t ance  - -  T C R  

In the notion of [16] the adversary does not get credit for finding any old collision. 
The adversary must still find a collision x, y, but now x is not allowed to depend 
on the key: the adversary must choose it before the key K is known. Only after 
"committing" to x does the adversary get K.  Then she must find y. 

Formally, the adversary C = (C1, C2) (called a target collision finder) consists 
of two algorithms, C1 and C2. First, C1 is run, to produce x and possibly some 
extra "state information" a that  C1 wants to pass to C2. We call x the target 
message. Now, a random key K is chosen and C2 is run. Algorithm C2 is given 
K,x ,a  and must find y different from x such that  FK(x) = FK(y). 

The formalization of [16] was asymptotic. Here we provide a concrete one, 
and call this version of the notion target collision-resistance (TCR). 

We begin with some special cases. A target collision finder C = (C1, C2) 
is called an equal-length target collision finder if the messages x, y which C1 
outputs always satisfy Ix] = [Yl. It is called a variable-length target collision 
finder when no restriction is made on the relative lengths of x, y. 

Let C = (C1, C2) be a target-collision finder. We say it (t, e)-breaks F if its 
running time is at most t and it finds a collision with probability at least e. 
The running time is the sum of the running times of the two algorithms and 
the probability is over the coins of C1 and C2 and the choice of K.  We say that  
F is (t, e)-resistant to equal-length target collisions if there is no equal-length 
target collision finder which (t, e)-breaks F.  F is (t, e)-resistant to variable-length 
target collisions if there is no variable-length target collision finder which (t, e)- 
breaks F.  If we just say F is (t, e)-TCR, or (t, e)-resistant to target collisions, 
we mean it is (t, e)-resistant to variable-length target collisions. 

Resistance to equal-length target collisions is a weaker notion than resistance 
to variable-length target collisions: in the former, the adversary is only being 
given credit if it finds collisions where the messages are of the same length. 
In practice, we want resistance to variable-length target resistance. However, it 
turns out the convenient design approach is to focus on resistance to equal-length 
target collisions and then achieve resistance to variable-length target collisions 
via a general transformations we present in Section 6. 

Informally, we say F is "target collision-resistant" (TCR) (or, resp., TCR to 
equal-length collisions) if it for every (resp., equal-length) target collision-finder 
who (t, e)-breaks F ,  the ratio t /e  is large. 
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3 C o m p o s i t i o n  L e m m a s  

It is useful to hash a long string in stages, first cutting down its length via one 
hash function, then applying another to this output to cut it down further. Naor 
and Yung [16] considered this kind of composition in the context of TCR hash 
functions. We first state a concrete version of their lemma and then extend it to 
an equal-length collision analogue which is in fact what we will use. 

Let HI: {0, i} ~ • {0, I} l~ -+ {0, i} t2 and H2: {0, I} ~2 x {0, I} 12 --> {0, i} k 
be families of hash functions. The composition H2 oH1: {0, 1} ~1+~' x {0, 1} 11 --+ 
{0, 1} k is the family defined by (H2 o H1)(K2K1, M) = /-/2(/(2, Hi(K1, M)) for 
all K1 E {0, 1} ~ , / (2  E {0, 1} ~2, and M E {0, 1} 11 . From the proof of Naor and 
Yung's composition lemma [16] we extract the concrete security parameters to 
get the following. 

L e m m a  1. ( T C R  compos i t ion  l emma)  LetHl: {0, 1} ~ • 1} tl -+ {0, 1} t2 
and H2: {0, 1} ~2 x {0, 1} t2 -+ {0, 1} k be families of hash functions. Assume the 
first is (tl,el)-secure against target collisions and the second is (t2,e2)-secure 
against target collisions. Then the composition H2 o H1 is (t, c)-secure against 
target collisions, where t = 69(min(t1 - ks, t2 - 2THI -- kl)) and e = el + e2. 

In this paper we need such a lemma for the case of equal-length TCR. This 
requires an extra condition on the first family of hash functions, namely that it 
be length consistent. See [4] for a proof. 

L e m m a  2. ( T C R  compos i t ion  l e m m a  for equal - length  collisions) Let 
Hi: {0, 1} ~ x {0, 1}/1 --+ {0, 1}/2 and H2: {0, 1} ~2 • {0, 1}/2 "+ {0, 1} k be fami- 
lies of hash functions. Assume the first is length consistent and ( tl, el )-resistant 
to equal-length target collisions. Assume the second is (t2, e2)-resistant to equal- 
length target collisions. Then the composition H2 o H1 is (t, e)-resistant to equal- 
length target collisions, where t = O(min(tl -k2 ,  t 2 -  2TH~ --kl)) and e = el +e2. 

4 T C R  H a s h  F u n c t i o n s  f r o m  S t a n d a r d  H a s h  F u n c t i o n s  

The most direct way to construct a TCR hash function is to key a function like 
MD5 or SHA-1. We point out the importance of doing this keying with care. 

Suppose, for example, that one keys MD5 through its 128-bit initial chaining 
value, IV. Denote the resulting hash function family by MD5*. Then breaking 
MD5* (in the sense of violating TCR) amounts to finding collisions in an algo- 
rithm which is identical to MD5 except that it begins with a random, known 
IV (as opposed to the published one). It seems unlikely that this task would be 
harder than finding collisions in MD5 itself. It could even be easier! 

Alternatively, suppose one tries to use the well-known "envelope" method, 
setting MD5~(M) = MD5(KIIMIIK). It seems likely that any extension of 
Dobbertin's attack [11] which finds collisions in MD5 would also defeat MD5**. 
Letting md5 denote the compression function of MD5, note that if for any c you 
can find m, m' such that md5(cllm) = md5(c]lm'), then you have broken MD5**. 
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A safer approach might be to incorporate key bits throughout the message 
being hashed. For example, with IKI = 128 one might intertwine 128 bits of 
key and the next 384 bits of message into every 512-bit block. (For example, 
every fourth byte might consist of key.) Now the cryptanalyst's job amounts to 
finding a collision M, M ~ in MD5 where we have pre-specified a large number 
of (random) values to be sprinkled in particular places throughout M and M ~. 
This would seem to be very hard. 

Note that the approach above (shuffling key and message bits) is equally 
at home in defining a TCR compression function based on the compression 
function underlying a map like MD5 or SHA-1. The resulting compression keyed 
compression function can then be extended to a full-fledged keyed hash function 
using the constructs of this paper. Doing this one will gain in provable-security 
but lose out in increased key length. 

5 T C R  H a s h i n g  b a s e d  o n  T C R  C o m p r e s s i o n  F u n c t i o n s  

Throughout this section messages will be viewed as sequences of blocks of some 
length l, with I depending on the context. For notational simplicity, let St = 
{0, 1} I. 

We are given a TCR compression function H. We wish to extend it to a 
full-fledged hash function H ~. We begin with a method which does not work. 

5.1 The M D  Construction Doesn't  Propagate T C R  

Suppose H: {0,1} ~ • {0,1} k+b -~ {0,1} k and we want to hash messages of 
nb-bits. The MD method gives a keyed family of functions M D H n :  {0, 1} n • 
{0, 1} nb ~ {0, 1} k. To define it, fix some k-bit initial vector, say IV = O k. Now 
view the message M = M[1] . . .  M[n] as divided into n blocks, each of b bits. Let 
M D H n ( K ,  M)  = Cn where Co = IV and, for i >_ 1, Ci = HK(Ci-1 II M[i]). 

Damgs [7] shows that if H is ACR then so is M D H  n. It would be nice if this 
worked for TCR too. But it does not. The reason is a little subtle. If H is TCR 
it still might be easy to find collisions in HK if we knew K in advance (meaning 
we were allowed to see K before specifying any point for the collision). However, 
a few MD iterations of H on a fixed point can effectively surface the key K, 
causing subsequent iterations to misbehave. This intuition can be formalized by 
giving an example of a compression function H which is TCR but for which 
M D H  n is not. To give such an example we must first assume that some TCR 
compression function exists (else the question is moot). 

Proposi t ion 3. Suppose there exists a TCR compression function F: {0, 1} ~ x 
{0, 1} k+b "~ {0, 1} k. Then there exists a TCR compression function H and an 
integer n < max(2, [(k + ~ + b)/b]) such that M D H  n is not TCR. 

The statement of the above proposition is "informal" insofar as we have pushed 
the numerical bounds into the proof. 
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5.2 T h e  Basic  Linear Hash  

Though the MD construction doesn't propagate TCR, a natural approach is to 
iterate just in M D H  n but with a different key at each round. We will show that  
this does preserve TCR. 

We let H: {0, 1} ~ • {0, 1} k+b --+ {0, 1} k be the given TCR compression 
function. The message M = MIll  . . .  M[s] to be hashed is viewed as divided into 
s < n blocks, each of size b. 

In the basic linear scheme a hash function is specified by n different keys, 
K 1 , . . . ,  Kn E {0, 1} ~, one key for each application of the underlying compression 
function. We hash as in the MD method but with a different key at each stage. 
Again we set the IV to a constant, say O k. Formally, LHn(K1 . . .  Kn, M)  = Cs 
where Co = O k and for i : 1 , . . . ,  s: Ci = H(Ki ,  Ci-x [I M[i]). The family of 
hash functions is LHn: {0,1} n~ x 2~ <n -~ {0, 1} k. The following theorem says 
that  if the compression function H is resistant to target collisions then so is the 
extended hash function LH n. The proof is in [4]. 

T h e o r e m  4. Suppose H: {0, 1} ~ • {0, 1} k+b -+ {0,1} k is (t',e')-resistant to 
target collisions. Suppose n > 1. Then LHn: {0, 1} n~ x •<n ___} {0, 1} k is (t, e)- 
resistant to equal-length target collisions, where e = n d  and t = t'--O(n.[TH+t;]). 

5.3 T h e  X O R  Linear Hash  

We present a variant of the above in which the compression function uses the 
same key K in each stage, but an auxiliary "mask" key Ki, depending on the 
stage number i, is XORed to the chaining variable in the i-th stage. One ad- 
vantage is that  the key size is reduced compared to the basic scheme for some 
choices of the parameters. Another advantage is in key scheduling. If the com- 
pression function is being computed in hardware it may be preferable to fix the 
key for the compression function. In software too there can be a penalty for key 
"setup." 

We now describe the scheme properly. Recall the message is M = M[1] . . .  M[s] 
where s < n. The function is specified by n + 1 different keys K, K 1 , . . . ,  Kn as 
indicated above. Let X L H n ( K K 1 . . . K n ,  M)  = Cs where Co = O k and for 
i = 1 , . . . , s  we set 

C~_ 1 = Ki (9 Ci-1 and Ci = H(K ,  C~_ 1 II M[i]) . 

The corresponding family is XLHn:  {0, 1} ~+nk x E <n --+ {0, 1} k. The proof of 
the following can be found in [4]. 

T h e o r e m  5. Suppose H: {0, 1} ~ x {0, 1} k+b --~ {0, 1} k is (t', d)-resistant to 
target collisions. Suppose n > 1. Then XLHn:  {0, 1} ~+nk x •<n _~ {0, 1} k is 
(t, e)-resistant to equal-length target collisions, where e = ne' and t = t' - O(n . 
[TH + to]). 
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5.4 T h e  Basic  Tree Scheme  

A tree can be used to reduce the key size. A tree scheme described by Naor 
and Yung [16] uses lg n keys (for the compression function) to hash an n-block 
message (using a binary tree). Later we will do better,  but  first let us provide a 
description and concrete security analysis of the basic scheme. 

We are slightly more general. First, we consider m-ary trees for some rn _> 2. 
This means we start  with a compression function H:  {0, 1} ~ • {0, 1} mk -~ {0, 1} k 
and want to use it to  hash messages of length much more than  ink. Second, we 
do not wish to fix the number of blocks that  messages will be. 

PARALLEL HASH. We first describe a primitive we will use. We are given a 
message M which is either a single k-bit block, or else consists of s blocks, each 
m k  bits. In the former case we leave the message unchanged. In the lat ter  case 
view the message as M = M I l l . . .  M[s] and hash each ink-bit block into a k-bit 
block via the compression function. We call this procedure "parallel hash." 

Formally, for any integer I _> 1 we define P H  Ira'. {0, 1} ~ x (Ek U~Tnk)<t _~ EF<I 
like this. If M e ~Tk set pHZm(K,  M)  = M.  Else write M = M[1] . . .  M[s] e Z~n k 
(s _< l) and set 

P H l m ( g ,  M)  = H ( K ,  MIll)  [I H(K,M[2])  [I "'" [I H ( K ,  M[s]) .  

Notice that  only one key is used. Notice that  P H  m = H is the original compres- 
sion function augmented to be the identity on messages of size k. 

L e m m a  6. Suppose H: {0,1} '~ x {0,1} mk --~ {0,1} k is (t', e')-resistant to target 

collisions. Suppose I > 1 and le tn  = l m .  Then PHn:  {0, 1}~ • E~UE<~ -~ E <` 
is (t, e)-resistant to equal-length target collisions, where e = le' and t = t~-O(nk) .  

Proof. The proof is a slight extension and "concretization" of the proof sketch 
in [16, Section 2.3], and for completeness is given in [4]. [ 

BASIC TREE HASH. We assume that  the messages we will hash have length 
bounded by k m  d, for some constants m and d. To simplify our exposition we 
further insist tha t  any message M to be hashed has exactly m i k-bit blocks, for 
some i E {0, 1 , . . . ,  d}. The hash function uses d keys K 1 , . . . ,  Kd, and the hash 
value is denoted T H ( K 1 . . .  Kd, M) .  It is computed on M -- M[1] . . .  Mira if by 
building an m-ary tree of depth i. The leaves correspond to the message blocks 
and the root corresponds to the final hash value. Group the nodes at level 1 (the 
leaves) into runs of size m and hash each group via H(K1,  .). This yields rn i-1 
values, which form the nodes at level 2 of the tree. Now continue the process. 
At each level we use a different key. Thus H ( K j ,  .) is the function used to hash 
the nodes at level j of the tree. At level i we have m nodes, which are hashed 
under H( K i ,  .) to yield the root,  which, at level i + 1, is the final hash value. 

Formally, the hash function can be defined by compositions of the parallel 
hashes we described above. Namely 

T H  ma = P H  ra o P H  ra2 o . . .  o P H  ma-1 o P H  ma . (1) 
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By our notion of composition each parallel hash uses a different key. Thus one 
key is used for every hash of a given level, but the key changes across levels. So 
there are d keys in all. We can assess the security by applying the composition 
lemma and the analysis of the security of the parallel hash. 

T h e o r e m  7. Suppose H: {0, 1} a x {0, 1} mk -+ {0, 1} k is (t', e ')-vesistant to tar- 

get collisions. Suppose n = m d where d > 1. Then T H n  : {0, 1} d~ x Ud=0 ~y~n' _+ 
{0, 1} k is (t, e)-resistant to equal-length target collisions, where e = n e ' / ( m  - 1) 
and t = t' - O ( n  . [TH + !r 

Pro@ For each i = 1 , . . . ,  d, Lemma 6 says that  P H  m' is (ti, e~)-secure against 

equal-length collisions, where ti = t - O ( m  ~) and ei = m i - l e  '. Note that  P H  "~' 
is length consistent for any i = 1 , . . . ,  d. Now look at Equation (1) and apply 
Lemma 2 d times. This gives us e = (m ~ + . . .  + m d - 1 ) e  ' = (m  d -- 1 ) e ' / ( m  -- 1) > 
n e ' / ( m  -- 1). The time estimates can be checked similarly. Details omitted. | 

5.5 T h e  X O R  Tree  Hash  

In the basic tree hash we key the compression function anew at each level of the 
tree. Thus the key length is a .  logm(n), which can be large, because a may be 
large. In the XOR variant there is one key K defining H ( K , - )  and this is used 
at all levels. However, there are auxiliary keys K 1 , . . . ,  Kd, one per level. These 
are not keys for the compression function: they are just XORed to the data  at 
each stage. As described in Section 5.2, the motivation is that  we can get shorter 
keys, and also better key scheduling. 

We now describe the hash function. As before, assume that  the messages 
we will hash have m i blocks, each k-bits, for some i E {0 , . . . ,  d}. The hash 
function is described by a "primary key" K E {0, 1} ~ and d "auxiliary keys" 
K 1 , . . .  ,Kd E {0, 1} ink. The hash value is denoted X T H ( K K 1 . . .  Kd,  M ) .  It is 
computed by building an m-ary tree of depth i whose root is the hash value. 
Level 1 consists of the leaves, which are the m d individual blocks of the message. 
Group them into runs of m blocks each. Before hashing each sequence of blocks, 
however, XOR key K1 to each group. Now hash each masked group via H ( K ,  .). 
This yields m d-1 values, which form the nodes at level 2 of the tree. Now continue 
the process. At each level we use a different key for the masking, but the same 
key K for the hashing. 

Here is a more formal description. Let M -- M[1] . . .  M[s] be the message, 
consisting of k-bit blocks, and suppose s -- m i. We define X T H ( K K 1 . . .  Kd,  M )  
recursively. First assume i = 0 so that  M = M[1] consists of 1 block. We set 
X T H ( K ,  M )  = M[1]. Now suppose the message M is longer, namely i > 1. Let 
N j  = M [ ( j -  1)m i-1 + 1 ] . . . M [ j m  ~-1] for j = 1 , . . . , m .  Let 

X T H I ( K K I  . . .  K i - 1 ,  M )  = 

X T H ( K K I  . . .  K i - 1 ,  N1) II " II X T H ( K K I  . . .  K i - 1 ,  N m )  . 
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Then let 

X T H ( K K 1 . . .  Ki,  M)  = H(K ,  K i s X T H I ( K K 1 . . .  Ks-x,  M))  . 

The first function here computes the input for the next compression stage. Before 
applying the compression function to it, however, we XOR in the auxiliary key 
for this stage. We also set X T H ( K K 1 . . .  Kd, M)  = X T H ( K K I  . . .  Ks, M) .  We 
let X T H n :  {0, 1} ~r X Ud=o ~7~ n' ~ {0, 1} k denote the XOR tree hash family 
for messages of at most n = m d blocks. 

The key length is ~ + mk �9 logm(n ). For m = 2, k = 64, the resulting key 
length of ~ + 1281gn is significantly smaller than for the basic tree scheme in 
the case where the key size of the compression function is quite big, as happens 
for examples in the constructions of [13]. 

We can no longer appeal to the composition lemma in proving security, be- 
cause the hashing at the different levels of the tree involve a common key K.  
Instead we give a direct proof of security, which can be found in [4]. 

T h e o r e m  8. Suppose H: {0, 1} ~ x {0, 1} mk -~ {0, 1} k is (t',e')-resistant to 
target collisions. Suppose n = m d where d > 1. Then X T H n :  {0, 1} '~+dmk x 
Ui----0d z~n t _.~ {0, 1} k is (t, e)-resistant to equal-length target collisions, where 
e = ne ' / (m - 1) and t = t' - r [TH + ink]). 

6 L e n g t h  V a r i a b i l i t y  

In Section 5 we proved security against equal-length target collisions. In practice 
one requires security against variable-length target collisions. 

It is often assumed that input-length variability can be handled by padding 
the final block of a message M to be hashed so that  it unambiguously en- 
codes ]M]. Let pad(.) denote such a padding function (eg., that  of [20]). If H is 
secure against equal-length target collisions is is H o pad secure against variable- 
length target collisions? Not necessarily. And the same applies to ACR. It is easy 
to construct such examples. 

Here, instead, is a general technique to achieve length-variability. It requires 
one extra application of the compression function. See [4] for a proof. 

T h e o r e m  9. F/x m > 0 and let Dx be a set of strings each of length less than 
2 '~. Let HI: {0, 1} ~1 x D1 -+ {0, 1} tl and H2: {0, 1} ~2 • {0, 1}/l+rn ---} {0, 1} k 
be families of hash functions. Assume H1 is (tx, ex)-secure against equal-length 
target collisions and H2 is (t2,e2)-secure against equal-length target collisions. 
Define H: {0, 1} ~1+~2 x D1 ~ {0, 1} k by 

H(KxK2, M) = H2(K2,Hx(Kx,M) II IMIm) 

where IMI., is the length of M written as a string of exactly m bits, M E D1, 
Kx E {0, 1} ~ ,  and K2 E {0, 1} ~2. Then H is ( t, e)-secure against variable-length 
target collisions, where t = min(tx - (9(~2), t2 - (9(t~x - 2TH~ -- 2lx -- 2m)) and 
6 ----- ~X + ~2. 
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While length-indicating padding doesn ' t  work in general, does it work for the 
schemes of Section 5? For L H  the answer is no: star t ing with an arbi t rary  T C R  
compression function H0 one can construct a T C R  compression function H for 
which LHopad  is insecure against variable-length target  collisions. For X L H  the 
answer is yes: if H is a T C R  compression function then X L H o p a d  is guaranteed 
to be secure against target  collisions; one can appropriately modify the proof  of 
Theorem 5 to show this. 

Acknowledgments 

The first author  is supported in par t  by a 1996 Packard Foundation Fellowship in 
Science and Engineering, and NSF C A R E E R  award CCR-9624439. The  second 
author  is supported in par t  by NSF C A R E E R  Award CCR-9624560. 

Thanks  to the Crypto  97 referees for their comments  on this paper.  

References 

1. M. BELLARE, R. CANETTI AND H. KRAWCZYK, Keying hash functions for message 
authentication. Advances in Cryptology - Crypto 96 Proceedings, Lecture Notes 
in Computer Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996. 

2. M. BELLARE, R. CANETTI AND H. KRAWCZYK, Pseudorandom functions revis- 
ited: the cascade construction and its concrete security. Proceedings of the 37th 
Symposium on Foundations of Computer Science, IEEE, 1996. 

3. M. BELLARE, J. KILIAN AND P. ROGAWAY, The security of cipher block chaining. 
Advances in Cryptology - Crypto 94 Proceedings, Lecture Notes in Computer 
Science Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994. 

4. M. BELLARE AND P. ROGAWAY, Collision-Resistant Hashing: Towards Making 
UOWHFs Practical. Full version of this paper, available via h t t p : / /~n~-cse .  
ucsd. edu/users/mihir. 

5. T. CORMEN, C. LEISERSON AND R. RIVEST, Introduction to Algorithms. 
McGraw-Hill, 1992. 

6. I. DAMG~,RD, Collision Free Hash Functions and Public Key Signature Schemes. 
Advances in Cryptology - Eurocrypt 87 Proceedings, Lecture Notes in Computer 
Science Vol. 304, D. Chaum ed., Springer-Verlag, 1987. 

7. I. DAMG~.RD, A Design Principle for Hash Functions. Advances in Cryptology - 
Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard 
ed., Springer-Verlag, 1989. 

8. B. DEN BOER AND A. BOSSELAERS, An attack on the last two rounds of MD4. 
Advances in Cryptology - Crypto 91 Proceedings, Lecture Notes in Computer 
Science Vol. 576, J. Feigenbaum ed., Springer-Verlag, 1991. 

9. S. DEN BOER AND A. BOSSELAERS, Collisions for the compression function of 
MD5. Advances in Cryptology - Eurocrype 93 Proceedings, Lecture Notes in 
Computer Science Vol. 765, T. Helleseth ed., Springer-Verlag, 1993. 

10. H. DOBBERTIN, Cryptanaiysis of MD4. Fast Software Encryption--Cambridge 
Workshop, Lecture Notes in Computer Science, vol. 1039, D. Gollman, ed., 
Springer-Verlag, 1996. 

11. H. DOBBERTIN, Cryptanalysis of MD5. Rump Session of Eurocrypt 96, May 1996, 
http ://~. iacr. org/conferences/ec96/rump/index �9 html. 



484 

12. H. DOBBERTIN, A. BOSSELAERS AND B. PRENEEL, RIPEMD-160: A strength- 
ened version of RIPEMD, Fast Software Encryption, Lecture Notes in Computer 
Science 1039, D. Gollmann, ed., Springer-Verlag, 1996. 

13. R. IMPAGLIAZZO AND M. NAOR, Efficient cryptographic schemes provably as se- 
cure as subset sum. Journal of Cryptology, Vol. 9, No. 4, Autumn 1996. 

14. B. KALISKI AND M. ROBSHAW, Message Authentication with MD5. RSA Labs' 
CryptoBy~es, Vol. 1 No. 1, Spring 1995. 

15. R. MERKLE, One way hash functions and DES. Advances in Cryptology - 
Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, G. Bras- 
sard ed., Springer-Verlag, 1989 

16. M. NAOR AND M. YUNG, Universal one-way hash functions and their crypto- 
graphic applications. Proceedings of the 21st Annua/Symposium on Theory o[ 
Computing, ACM, 1989. 

17. National Institute of Standards, FIPS 180-1, Secure hash standard. April 1995. 
18. B. PRENEEL AND P. VAN OORSCHOT, MD-x MAC and building fast MACs from 

hash functions. Advances in Cryptology - Crypto 95 Proceedings, Lecture Notes 
in Computer Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995. 

19. RIPE Consortium, Ripe Integrity primitives - -  Final report of RACE integrity 
primitives evaluation (R1040). Lecture Notes in Computer Science, vol. 1007, 
Springer-Verlag, 1995. 

20. R. RIVEST, The MD4 message-digest algorithm, Advances in Cryptology 
- Crypto 90 Proceedings, Lecture Notes in Computer Science Vol. 537, 
A. J. Menezes and S. Vanstone ed., Springer-Verlag, 1990, pp. 303-311. Also 
IETF RFC 1320 (April 1992). 

21. R. RIVEST, The MD5 message-digest algorithm. IETF RFC 1321 (April 1992). 
22. J. ROMPEL, One-way functions are necessary and sufficient for digital signatures. 

Proceedings of the 22nd Annual Symposium on Theory of Computing, ACM, 
1990. 

23. G. Tsudik, Message authentication with one-way hash functions, Proceedings of 
Infocom 92, IEEE Press, 1992. 

24. S. VAUDENAY, On the need for multipermutations: cryptanalysis of MD4 and 
SAFER. Fast Software Encryption - -  Leuven Workshop, Lecture Notes in Com- 
puter Science, vol. 1008~ Springer-Verlag, 1995, 286-297. 

25. WEGMAN AND CARTER, New hash functions and their use in authentication and 
set equality, Journal of Computer and System Sciences, Vol. 22, 1981, pp. 265-279. 


