
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Collisional damping rates for electron plasma waves
reassessed

J. W. Banks, S. Brunner, R. L. Berger, W. J. Arrighi, and T. M. Tran
Phys. Rev. E 96, 043208 — Published 13 October 2017

DOI: 10.1103/PhysRevE.96.043208

http://dx.doi.org/10.1103/PhysRevE.96.043208


LLNL-JRNL-703319

Collisional Damping Rates for Electron Plasma Waves Reassessed

J. W. Banks1,∗ S. Brunner2, R. L. Berger3, W. J. Arrighi3, and T. M. Tran2

(1) Rensselaer Polytechnic Institute,
Department of Mathematical Sciences, Troy, NY 12180
(2) Ecole Polytechnique Fédérale de Lausanne (EPFL),

Swiss Plasma Center (SPC),
CH-1015 Lausanne, Switzerland and

(3) Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551
(Dated: September 28, 2017)

Collisional damping of electron plasma waves, the primary damping for high phase velocity waves,
is proportional to the electron-ion collision rate, νei,th. Here, it is shown that the damping rate
normalized to νei,th depends on the charge state, Z, on the magnitude of νei,th and the wavenumber
k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision
rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion
collision rate is the damping rate given by the commonly accepted value. The result presented here
corrects the result presented in textbooks at least as early as 1973. The complete linear theory
requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself
contains contributions to both pitch angle scattering and thermalization.

I. INTRODUCTION

Collisions may provide the only significant damping of
electron plasma waves (EPWs) in low-temperature labo-
ratory plasmas, for EPWs driven by stimulated Raman
scatter (SRS), either forward scatter or backscatter near
the quarter-critical surface, and for the higher phase ve-
locity EPW in the two-plasmon decay (TPD) instabil-
ity, that is, whenever the phase velocity of the EPW is
greater than 4-5 times the electron thermal velocity. For-
ward Raman scatter is also a concern to the efficient per-
formance of the Backward Raman Amplifier.[1, 2] SRS
and TPD are of particular concern for direct-drive Iner-
tial Confinement Fusion because of both the loss of drive
resulting from the energy lost to SRS, and the preheat of
the fuel by energetic electrons.[3–5] Recent National Ig-
nition Facility designs have added a high-Z material layer
to the capsule ablator to increase the collisional damping
of EPWs in an attempt to suppress TPD.[6] The impli-
cations of our results for collisional damping on the TPD
threshold and on nonlinear TPD saturation mechanisms
will be discussed in the conclusions.

The effect of weak collisions on the linear Landau
damping of EPWs has been the subject of a number of
publications since the 1960s.[7–13] Comparatively little
attention has been given to collisional damping perhaps
because of the assumed result that the damping rate is
one-half the velocity-weighted collision rate averaged over
a Maxwell-Boltzmann distribution of electrons.[14] That

is νflcoll ' νbragei /2 where νbragei is the electron-ion scatter-
ing rate as defined by Braginskii.[15]

Previously, using the 2D+2V Vlasov code LOKI, we
found that for plasmas without self-collisions, the colli-
sional damping of EPWs was less than the commonly
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assumed νflcoll.[16] However, that result had limited ap-
plicability for two reasons. First, only the electron-ion
scattering operator restricted to two Cartesian velocity
dimensions (vx, vy) was considered. As will be shown
here, there are significant differences in the damping rate
in high-Z limit between the Cartesian collision operator
restricted to 2V and the full 3V operator used in this
work. Second, the important electron-electron scatter-
ing operator, essential to the standard “textbook” the-
ory, was neglected. Here, to our knowledge for the first
time in a Vlasov code, we include both electron-ion and
electron-electron operators.

In agreement with previous work we find that weak
collisions do not reduce Landau damping. Here, within
the context of the Landau Collision operator, we ex-
tend the applicability of that result to collision rates
as large as one-half the plasma frequency. Concerning

the collisional damping rate, we find that νcoll/ν
fl
coll is

a function of ionization state Z, varying from ∼ 1 at
Z = 1 to ∼ 0.7 as Z → ∞ for strongly collisional
plasmas. This Z−dependence should be expected be-
cause electron-ion collisions only isotropize the distribu-
tion whereas electron-electron collisions drive the distri-
bution towards a Maxwell-Boltzmann.

For weak collisions, the exponential decay rate of the
perturbation is in accord with the linear Landau damping
rate νL for an EPW. For larger collision rates, we find an
increase in the damping rate above νL, as expected from
the additional effects of collisional damping. However,
we find that even with the full collision operator employ-
ing both electron-ion (pitch-angle) and electron-electron
(pitch-angle and thermalization) collision operators, the
damping directly attributable to collisions for Z & 6 is

70-90% of νflcoll, the rate derived from a linearized set of
fluid equations with electron-ion momentum exchange,
Eqs (38)-(43) in Ref. [16]. The greater reduction occurs
with larger collision rates. Only if Z . 4 is the collisional

damping well-approximated by νflcoll. The transition of
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νcoll to the asymptotic rate as a function of Z is well
approximated by an exponential decrease such that the
Z → ∞ rate is approached within 20% for Z as small
as 6 (for a fixed value of νei,th). The remainder of this
paper is organized as follows. Sec. II presents a con-
cise description of the mathematical formulation of the
governing equations discretized in the Vlasov simulation
code. Sec. III then shows results of Vlasov simulations
of the damping of EPWs for varying charge states Z, col-
lision rates, and wavenumbers. Finally in Sec. IV, we
provide a summary of the results and discussion of ap-
plications.

II. VLASOV SIMULATION AND METHOD

In this work, we use a 1D+3V Vlasov code in cylin-
drical velocity coordinates and assume azimuthal sym-
metry to effectively reduce the system to one spatial
(x) and two velocity coordinates (vx, v⊥). A few re-
sults from the 2D+2V LOKI code extended to include
self-collisions will also be presented to facilitate discus-
sion of multi-dimensional simulations in the conclusions.
Including both electron-ion and electron-electron colli-
sion operators, we compute the damping rate of an
initial small-amplitude EPW (initialized with a small-
amplitude density perturbation). The effects of colli-
sions on EPW damping are discussed for a range of Z
and thermal electron-ion collision frequency, νei,th/ωpe,

where ωpe =
√

4πNee2/me is the electron plasma fre-
quency and

νei,th = 2π
Ze4Ne ln(Λei)

m2
ev

3
th e

. (1)

Here −e is the elementary electric charge of the elec-
tron, me its mass, and vth e =

√
Te/me the electron

thermal velocity. Further, Te is the electron tempera-
ture and Ne is the spatially-averaged background elec-
tron density. The thermal electron self-collision rate
is νee,th = 8πe4Ne ln(Λee)/(m

2
ev

3
th e), and ln(Λei) and

ln(Λee) are the Coulomb logarithms for electron-ion and
electron-electron collisions respectively. Note that we

have adopted CGS units throughout, and that νbragei =

[4/(3
√

2π]νei,th ' 0.532νei,th.
The evolution of the electron distribution function

f(x, vx, v⊥, t) is described by the Fokker-Planck equation,
i.e. the Vlasov equation including collisional effects:

∂f

∂t
+ ~v · ∇f − e

me

~E · ∂
∂~v
f = −Cee[f, f ]− Ceif. (2)

The electric field components, ~E = −∇φ are ob-
tained from the electrostatic potential, φ(x, t), which
is itself determined by Poisson’s equation, ∇2φ =
4πe

(∫
fe d~v −NiZ

)
, where we have assumed a single

immobile ion species with homogeneous density Ni and
charge Ze, ensuring charge neutrality over the physical
domain.

In Eq. (2), electron-ion pitch angle scattering is de-
scribed by the Lorentz operator,

Cei (f) = −νei,th v3th e

∂

∂~v
·U · ∂f

∂~v
. (3)

The tensor U is defined as

U(~v) =
1

v

(
I− ~v : ~v

v2

)
, (4)

where ~v is the velocity vector, v its amplitude and I the
identity tensor.

In this work the nonlinear self-collision Landau opera-
tor Cee[f, f ], bilinear in its two arguments, is linearized
with respect to the spatially uniform Maxwellian distri-

bution fM(v) = Ne exp[−v2/(2v2th e)]/[(2π)
3/2
v3th e]. Note

that Cee[fM, fM] = 0 for any Maxwellian distribution.

The linearized operator, denoted Ĉee(f), is given by

Ĉee(f) = Cee[fM, f ] + Cee[f, fM],

where Cee[fM , f ] represents collisions of the deviation
δf = f − fM on the Maxwellian background fM, while
the second term Cee[f, fM] , the so-called back-reaction,
represents the collisions of the Maxwellian background
fM on the fraction δf . The first term can be cast in
self-adjoint differential form operating on f as

Cee[fM, f ] = − ∂

∂~v
·
[
fM(v)Dee ·

∂

∂~v

(
f(~v)

fM(v)

)]
. (5)

The diffusion tensor Dee is derived analytically for the
assumed Maxwellian background as

Dee = γee

∫
d~v ′fM(~v ′)U(~v − ~v ′)

=
Ne γee
vth e

[
K(v)

(
1− ~v : ~v

v2

)
+ 2H(v)

~v : ~v

v2

]
,

with γee = νee,thv
3
th e/(4Ne) and the normalized velocity

amplitude, v = v/vth e. The functions H(v) and K(v)
are related to the Rosenbluth potentials [17] and given
in [18]. The contributions to Dee proportional to H(v)
and K(v) correspond respectively to thermalization and
pitch angle scattering.

The back-reaction term, Cee[f, fM], is essential to en-
sure conservation of mass, momentum, and kinetic en-
ergy, but the exact (Landau) form is an integral equa-
tion that is numerically cumbersome. Therefore, as in
Refs. [19, 20], we have used the following approximate
simplified operator:

Cee[f, fM] '−
Cee[fM, ~vfM] ·

∫
d~v ′ Cee[fM, ~v

′fM] f(~v ′)
fM(v ′)

1
V

∫
d~v ′ Cee[fM, ~v ′fM] · ~v ′

−
Cee[fM, v

2fM]
∫
d~v ′ Cee[fM, v

′2fM] f(~v ′)
fM(v ′)∫

d~v ′ Cee[fM, v ′2fM]v ′2
,

(6)
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where V is the dimensionality of velocity space (discussed
in the conclusions). Note that in Eq. (6), the opera-
tor Cee[·, fM] is fully expressed in terms of the operator
Cee[fM, ·] given by Eq. (5). Invoking the symmetry of the
operator Cee[fM, ·] one can prove that the linearized op-

erator Ĉee(f) with the approximate back-reaction term
(6) possesses the same symmetry and conservation prop-
erties as the original integral operator. These properties
ensure that linearized shifted Maxwellian distributions
remain exact stationary states of the operator Ĉee(f).[18]
By then applying a consistent and accurate discretization
approach, one ensures that these properties are preserved
in the numerical approximation.

III. RESULTS

Consider now the effect of collisions on linear damping
of spatially one-dimensional EPWs propagating in the
x-direction with wavenumber kλDe = 0.3. We present
simulation results obtained with an initial electron dis-
tribution set to

f(x, vx, v⊥, t = 0) =

[
1 +

δn

Ne
cos(kx)

]
fM (v). (7)

This corresponds to a Maxwellian distribution fM (v)
with a sinusoidal density perturbation along the x-
direction, which evolves into a standing EPW. The rela-
tive density perturbation is set to δn/Ne = 1 × 10−4 to
ensure the simulations remain in the linear regime.

In the linear regime, the decay of the EPW is, as ex-
pected, well fit with an exponential decay. Real frequen-
cies ωR and damping rates ν of the EPW for kλDe = 0.3
and for a range values of νei,th/ωpe, 0 to 5 ·10−1, are sum-
marized in Fig. 1. Assuming ln(Λee) ' ln(Λei), the rela-
tion of νee,th to νei,th is taken to be νee,th ' 4 νei,th/Z.
Results have been obtained successively for Z = 1, 6,
and 16. Also shown is the linear Landau damping rate,
νL,kin/ωpe = 1.26 × 10−2, for kλDe = 0.3 in a collision-
less plasma. Figure 1(a) shows that ∆ω = ωR − ωR,kin

decreases as νei,th increases where ωR,kin = 1.16ωpe is
the linear frequency in a collisionless plasma (νei,th = 0).
Thus the phase velocity decreases with increasing νei,th
and the linear Landau damping estimated with the fre-
quency ωR modified by finite collisionality thus increases
with νei,th. However, we find this effect is not significant.

In the case of ion acoustic waves, Epperlein et al.[21]
found a reduction in electron Landau damping from
pitch-angle scattering of electrons from ions for kλei =
kvth/νei,th < 1 and a reduction in the collisional damp-
ing for kλei > 1. The total electron damping remained
greater than the Landau rate until kλei � 1. This limit
requires νei,th/ωpe > kλDe, and thus is not accessible to
EPWs with significant Landau damping rates.

Fig. 1(b) shows the EPW damping rate ν increases
significantly once νei,th/ωpe & 0.01. For constant νei,th,
ν is larger for smaller Z, that is if νee,th & νei,th. On

FIG. 1: (a) The frequency difference, ∆ω = ωR−ωR,kin, and
(b) the total EPW damping rate, ν, is shown as a function
of νei,th/ωpe for Z = 1, 6, 16 and kλDe = 0.3. The solid
double horizontal line separates Figs (a) and (b). For higher
Z values, the electron-ion scattering is the dominant source
of collisional damping. The linear Landau damping rate νL
for kλDe = 0.3 in a collisionless plasma is shown in (b) by the
horizontal solid red line. The result with pitch-angle collisions
(νei 6= 0) but no self-collisions (νee = 0, i.e. Z = ∞) is also
shown. For Z = 1 the damping from a LOKI simulation
restricted to 2V Cartesian velocity coordinates is also shown.

the other hand, once Z & 6 and νee,th . νei,th, this total
damping rate is mainly dependent on νei,th and kλDe.

Because collisions have a small effect on the linear Lan-
dau damping, the collisional component of the damping
rate shown in Fig. 2 can be calculated as ν− νL,kin. The

collisional damping rate, νflcoll = νbragei /2, obtained from
the hydrodynamic description is also shown for compari-

son. For Z = 16, as shown in Fig. 2(b), νflcoll is up to 50%
larger than the simulation result, particularly for larger
values of νei,th. For lower ionization degrees, in partic-

ular Z = 1 shown in Fig. 2(a), νflcoll agrees well with
the kinetic simulations. This observation is explained by
the fact that self-collisions being relatively important in
this latter case, the distribution is maintained close to
a shifted Maxwellian, which is the underlying assump-
tion for the friction force relation in the Branginskii fluid
equations [15].

In the limit that self-collisions are unimportant (Z →
∞), an alternative approach to obtaining the kinetic fre-
quency and damping of EPWs is afforded by the par-
tial fraction technique[9, 12, 13, 21]. The plasma dis-
persion equation for EPWs including only electron-ion
pitch angle collisions in 2V and 3V velocity space is found
by a Legendre/Fourier series expansion of the linearized
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FIG. 2: The total (ν/ωpe) and the collisional component of
the damping rate of EPWs for (a) Z = 1 and (b) Z = 16
for kλDe = 0.3. The linear Landau damping rate, νL,kin for
kλDe = 0.3 is displayed as a horizontal line. The collisional
component of the Vlasov simulation damping rate νcoll = ν−
νL,kin for kλDe = 0.3 is shown along with the hydrodynamic

damping rate, νflcoll (red dashed). Also displayed in (b) is
the total damping rate for kλDe = 0.2 which is essentially
the same as the collisional component for kλDe = 0.3 as the
Landau damping for kλDe = 0.2 is exceedingly small. The
numerical solution to Eqs. (8 )-(11) for kλDe = 0.2 (νpf )
is shown in (b). It agrees very well with the corresponding
Vlasov simulation result in (b) and with the Vlasov simulation
result for Z =∞, that is, νee = 0.

Vlasov-Fokker-Planck equation with the result,[16]

ε(k, ω) = 1 + χe(k, ω) = 0, (8)

χe(k, ω) = 2(V − 1)π

∫ ∞
0

dv vV−1
v2fM (v)

k2v2 − V iων̃1
, (9)

where V = 2 and V = 3 for two or three dimensional
velocity space respectively. The complex frequency ν̃1
is obtained in 2V and 3V by evaluating respectively the

recurrence relations (10) and (11):

ν̃l−1 = −iω + (l − 1)2νei +
k2v2

4ν̃l
; l > 2, (10)

ν̃l−1 = −iω + l(l − 1)νei +
l2

4l2 − 1

k2v2

ν̃l
; l > 2,(11)

having defined νei(v) = νei,th(vth e/v)3. Solving the dis-
persion relation (8)-(11) numerically for V = 3 results
in excellent agreement with the Vlasov simulations with
νee = 0 shown here. For V = 2, prior LOKI simulations
that only included pitch-angle collisions also showed good
agreement with the numerical solution of Eqs. (8),(9), and
(10).[16]

The reduction of the damping with respect to the fluid

result, νflcoll, is most evident by examining the integrand
in Eq. (9) which together with Eq. (8) is the plasma dis-
persion function when νee = 0, that is when Z →∞. In
Appendix B1 of Reference ([16]) the solution of the dis-
persion relation, Eqns. (8-9) are discussed for the case
that Landau damping is negligible. There it is shown that
reduction is caused by the strong velocity dependence of
the collision frequency, νei(v) ∝ νei,thv

−3. As νei,th in-
creases, the imaginary part electron susceptibility is in-
creasingly weighted by higher velocities and thus a lower
effective collision frequency. In the limit that Z → 1,
that is, νee,th ' νei,th, the perturbation is constrained
to be a shifted Maxwellian such that the hydrodynamic
treatment is valid and the effective collision frequency is
νei,th.

We have extended our simulations to other values of
kλDe, in particular to kλDe < 0.2, smaller values more
pertinent to TPD and forward SRS for which Landau
damping is nearly insignificant. The EPW damping from
the 1D+3V Vlasov simulations for kλDe = 0.2, shown in
Fig. 2(b), is a little larger than the collisional component
of the damping for kλDe = 0.3, reflecting a weak depen-
dence of νcoll on kλDe as well. Also in Fig. 2(b), the
partial fraction solution for ν (“pf” in figure) is in excel-
lent accord with the simulation results for kλDe = 0.2.

For Z � 1, νcoll decreases with k2. With the onset of
Landau damping (i.e. kλDe ∼ 0.25 for νei,th/ωpe = 0.01
and kλDe ∼ 0.2 for νei,th/ωpe = 0.001), the calculation
of νcoll is inaccurate (involving the subtraction of two
nearly equal numbers). However, the decrease with k2

likely continues such that for kλDe = 0.5, the collisional

component of the damping would be ∼ 0.5νflcoll in the
case that νei,th/ωpe = 0.001. For Z = 1, no variation of
νcoll with k2 was found for kλDe < 0.25. These results
are summarized in Fig. 3. Note, the Z = 16 collisional
damping rate is well approximated by the Z =∞ rate for
which electron-electron self-collisions play no role. Shown
in the blue and red lines for νei,th/ωpe = 0.001 and
νei,th/ωpe = 0.01 are the fits to the Z = ∞ collisional

damping rates given by νcoll/ν
fl
coll = 0.98 − 1.8(kλDe)

2

and νcoll/ν
fl
coll = 0.96− 2.1(kλDe)

2 respectively.
The approach to the high-Z limit of collisional damp-

ing is quite rapid as shown in Fig. 4 for 3 values of col-
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FIG. 3: The collisional component of the damping normalized
to the fluid rate νflcoll as a function of kλDe. For Z = 16,
the collisional damping rate decreases with k2λ2

De for both
νei,th/ωpe = 0.01 and νei,th/ωpe = 0.001. For Z = 1, the
collisional damping rate is apparently independent of kλDe for
both νei,th/ωpe = 0.01 and νei,th/ωpe = 0.001. The Z = 16
damping rate is well approximated by the Z = ∞ (νee = 0)
results shown by the blue and red lines for νei,th/ωpe = 0.001
and νei,th/ωpe = 0.01 respectively.

FIG. 4: The collisional component of the damping normal-
ized to the fluid rate νflcoll as a function of Z. For Z > 10 and

kλDe = 0.3, the collisional damping rate is νcoll ∼ 0.7 νflcoll

and νcoll ∼ 0.8 νflcoll for νei,th = 0.1 and νei,th = 0.01 respec-
tively. For Z > 10 and kλDe = 0.2, the collisional damping
rate is νcoll ∼ 0.8 νflcoll for νei,th = 0.1 and νcoll ∼ 0.9 νflcoll for
νei,th . 0.01.

lision rate, νei,th/ωpe = 0.1, 0.01, .001 and 2 values of
kλDe = 0.2 and 0.3. As Z → 1, the collisional damp-

ing rate, νcoll → νbragei /2. However, if Z > 6, νcoll is

only 70% of νflcoll for strong collision rates but increases
to 90% for weak collision rates. For weaker collision rates
(νei,th/ωpe < 0.01), the collisional damping rate relative

to νflcoll ceases to change significantly for a given Z and

kλDe.

IV. DISCUSSION

We used a nonlinear 1D+3V Vlasov-Fokker-Planck
code to obtain the Landau and collisional damping of
EPWs, and showed that the collisional component of
the damping relative to the collision rate νei,th is depen-
dent on the relative strength of electron-ion pitch-angle
scattering to thermalization from electron-electron colli-
sions,that is the charge state Z, the wavenumber kλDe,
and the ratio of the collision rate to the plasma frequency,
νei,th/ωpe.

For ICF, one practical impact of the reduced collisional
damping of EPWs is on the threshold laser intensity, IL,
for onset of TPD in direct-drive designs for MegaJoule
scale laser facilities, such as NIF[22]. The estimated
plasma scale lengths are so large that the TPD threshold
is set by the collisional damping, γTPD

0 ∝
√
IL > νcoll/2

if Z is large enough, e.g. Z & 14.[4] For the parame-
ters given in Ref. [4], kλDe < 0.3, the collisional rates
are very small ( νei,th/ωpe . 10−3), and we estimate

νcoll ∼ 0.9 νflcoll or a 20 % reduction in the threshold laser
intensity for TPD. The Langmuir decay instability is con-
sidered a saturation process for TPD as it has a low
threshold if the daughter Langmuir wave is weakly Lan-
dau damped.[23, 24]. The threshold EPW wave ampli-
tude, (δn/n)LDI ∝

√
νiawνepw, is determined by Landau

damping of the ion acoustic wave, νiaw, and collisional
damping of the EPW, νepw. The wavenumber depen-
dence of the collisional damping of EPWs presented here
may have an influence on the spectrum of waves non-
linearly driven. Much stronger collisional effects with
νei,th/ωpe ∼ 0.1 occur in low temperature plasmas where
Te ∼ 2eV and Ne ∼ 1017cm−3[25].

Our results here address linear (small-amplitude)
waves; the nonlinear evolution of an EPW including col-
lisional de-trapping will be addressed in future work. In
such nonlinear simulations, the rate of de-trapping de-
pends on the scattering process, i.e. pitch-angle, drag,
or parallel diffusion. Note that in the case of IAWs, the
collisional de-trapping rates of ions and electrons scale
differently from the de-trapping rate of electrons in an
EPW.[26] For both EPWs and IAWs, large amplitude
waves nonlinearly heat the plasma by collisional and col-
lisionless processes anisotropically. Thus, it is essential
to implement a collision operator as we have that is
not limited a to Lorentzian pitch-angle[16] nor to a one-
dimensional approximation[27] to Landau collision oper-
ator.

Plasma waves driven in laser speckles or by intrinsically
2D parametric instabilities such as TPD or SRS sidescat-
ter require at least two Cartesian spatial dimensions and,
to include collisions, a choice of reduced 2V Cartesian
(vx, vy) or full 3V (vx, vy, vz). An Eulerian representation
in six-dimensional [or even five-dimensional (2D+3V)]
phase space remains computationally prohibitive. Using
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LOKI, [28, 29] a 2D+2V Vlasov-Fokker-Planck code in
Cartesian geometry, similar results have been obtained to
those obtained here in 3V; only the numerical coefficients
are different (see Fig. 1).
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