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Classical trajectory calculations of the rate of collisional energy transfer between a bath gas 

and a highly excited polyatomic method, and the average energy transferred per collision, as 

functions of the bath gas translational energy and temperature, are reported. The method used 

is that of Lim and Gilbert [J. Phys. Chem. 94, 72 (1990)], which requires only about 500 

trajectories for convergence, and generates extensive data on the collisional energy transfer 

between Xe and azulene, as a function of temperature, initial relative translational energy 

(E T)' and azulene initial internal energy (E'). The observed behavior can be explained 

qualitatively in terms of the Xe interacting in a chattering collision with a few substrate atoms, 

with the collision duration being much too brief to permit ergodicity but with a general 

tendency to transfer energy from hotter to colder modes (both internal and translational). At 

thermal energies, trajectory and experimental data show that the root-mean-squared energy 

transfer per collision, (ali 2) 112, is relatively less dependent on E' than the mean energy 

transfer (ali). The calculated temperature dependence is weak: (AE 2) 112 0:: To. 3
, 

corresponding to (AEdown ) 0:: To.23
• Values for the calculated average rotational energy 

transferred per collision (data currently only available from trajectories, and required for 

falloff calculations for radical-radical and ion-molecule reactions) are of the order of k B T, and 

similar to those for the internal energy; there is extensive collision-induced internal-rotational 

energy transfer. The biased random walk "model B," as discussed in text, is found to be in 

accord with much of the trajectory data and with experiment. This suggests that energy 

transfer is through pseudorandom mUltiple interactions between the bath gas and a few 

reactant atoms; the "kick" given by the force at the turning point of each atom-atom 

encounter governs the amount of energy transferred. Moreover, a highly simplified version of 

this model explains why average energies transferred per collision for simple bath gases have 

the order-of-magnitude values seen experimentally, an explanation which has not been 

provided hitherto. 

I. INTRODUCTION 

This paper reports the results of trajectory calculations 

for the transfer of energy by collision between a highly excit­

ed substrate molecule (azulene) and a bath gas (xenon). 

The aim of the calculations is to elucidate the phenomeno­

logical nature of this process and to provide tests for approxi­

mate models. The long-term objective is to provide means of 

calculating energy transfer data with sufficient accuracy for 

predicting or fitting falloff data in unimolecular and recom­

bination reactions 1 (which requires a knowledge of the rate 

coefficients both for collisional energy transfer and for reac­

tion) and experiments such as the "physical" methods2 

(also denoted "direct" methods) which infer energy transfer 

data from spectroscopic observations of a nonreacting mole­

cule. The energies of the substrate molecule involved in such 

situations are about 103-1 OS cm - 1, and the densities of states 

of the substrate molecule are extremely high (e.g., 1010_1030 

states per cm - 1 ) • 

.) Pennanent address: Department of Chemistry, Technion-Israel Institute 

of Technology, Haifa 32000, Israel 

An efficient basic methodology for carrying out essen­

tially exact classical calculations of the requisite quantities 

has recently been deduced.3 Applications of the method to 

systems where reliable experimental data are available 

show4 that acceptable accord between trajectories and ex­

periment is to be expected, given commonly used potential 

functions, for all except the lightest bath gases. For this rea­

son, we choose a system for the present studies (highly excit­

ed azulene colliding with Xe), where the trajectory data and 

experiments for thermal systems are in good agreement. The 

poor accord earlier reported4 between trajectories and ex­

periments for the lightest bath gases, He and Ne, can prob­

ably be ascribed to lack of knowledge of the substratelbath 

gas interaction potential, rather than to any quantum effects. 

This is because a series of experiments involving changes of 

masses of the lightest atoms in both reactantS and bath 

gas,6,7 wherein any quantum-mechanical effects should re-
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sult in large changes in energy transfer rates, showed no such 

changes and, hence, there is strong experimental evidence 

that a classical description is quite adequate for the purposes 

at hand.8 Since quantum effects should be negligible, and 

since trajectory data give good accord with experiment for 

the systems studied in the present paper, the trajectories 

should accurately mimic the true dynamics of the system. 

We explore here the dependence of the energy transfer 

rate on temperature, initial internal energy, final rotational, 

and internal energy, and substratelbath gas relative transla­

tional energy (this last requires extensions, given in Sec. II, 

to our original3 method for obtaining the requisite energy 

transfer quantities from classical trajectories). These varia­

tions were chosen because they provide insight into the dy­

namics of the energy transfer process, they suggest explana­

tions and make predictions as to the important question of 

the temperature dependence of the average energy trans­

ferred per collision, they provide information on the average 

rotational energy transferred in collisions of highly excited 

molecules, data which are currently completely unavailable 

from experiment but which are important in interpreting 

and predicting falloff curves for processes (such as radical­

radical recombinations and ion-molecule reactions) which 

require this information.9 Moreover, the data can provide 

useful insight on approximate models for collisional energy 

transfer. 

In the last context, it is important to compare "exact" 

theory (accurate trajectory treatment of the dynamics, for a 

given interaction potential) with approximate theory (the 

predictions of an approximate, or model, treatment of the 
dynamics, using the same potential function). Such a com­

parison is much more informative than a comparison of an 

approximate model with actual experiment, since the model 

involves approximations in both the interaction potential 
and the dynamics, and no firm conclusions can be drawn if 

model and experiment disagree (which is wrong, potential, 

approximate dynamics, or both?) or agree (which may be 

caused by a fortuitous cancellation of the separate errors in 
potential and dynamics). 

The energy transfer which is the subject of this paper is 

quantified as R (E,E'): The rate coefficient for transfer from 

initial energy E' to final energy E. The dimensions of Rare 

(energy concentration time) - I. It is essential to inquire 

just what amount of detail is necessary to predict falloff 

curves and the results of "physical" experiments. Data from 
such experiments are usually relatively insensitive to the full 

details of the distribution function R(E,E') (i.e., of its de­

pendence on both E and E'), but rather depend only on the 
values of one (or, for certain experiments, two) moment(s) 

of this distribution. We denote the nth moment as R E ',n' 

RE',n = 1"0 (E - E,)nR(E,E')dE. (1) 

RE',I is the mean rate of energy transfer and R E',2 is the 
mean-square rate; a knowledge of either of these quantities 

(when used in a solution of the master equation) usually 

suffices, for example, to predict a falloff curve satisfactorily 

(given the energy dependence of the microscopic reaction 

rate coefficients). The first moment can be directly inferred 

from experiment using "physical" methods; the second mo­

ment (as will be explained below) is easier to compute (and, 

as will be amplified later in the text, the two moments can be 

readily interconverted). 

The necessity of only having to calculate a single mo­

ment, rather than the full distribution function, renders cal­

culations of energy transfer quantities in such systems achie­

vable with relatively moderate computational resources. 

Only about 500 trajectories need to be found to obtain a 

properly converged value of the second moment. Previously, 

less trajectories were thought necessary;4 the need for the 

increase is discussed in Appendix A, wherein is also dis­

cussed a new method for estimating the uncertainty in rate 

parameters deduced using the present technique. The meth­

od of Lim and Gilbert3 (and the extensions deduced in the 

present paper), together with the availability of a public do­

main program lO for executing these trajectories and (most 

importantly) for properly selecting the initial conditions, 

has now rendered such calculations relatively routine. It 

should be pointed out that there have been many classical 

trajectory studies of such collisional energy-transfer prob­
lems;II-2o however, the only method available for actually 

obtaining the requisite energy-transfer rates in a computa­

tionally efficient way appears to be that of the present au­

thors.3 An equally valid approach to interpreting experi­

mental data is to solve both the energy transfer and master 
equation problems simultaneously. 1 1-13 The computational 

requirements are approximately the same as those for imple­

mentation of the two techniques separately. The simulta­

neous technique does not readily permit a physical interpre­
tation of the average energy transfer rate coefficients. 

Although the experimental observables, and the results 

of a trajectory calculation, are always some rate coefficient, it 

is common (and very useful for conceptual and model build­
ing purposes) to reexpress such rates on a per collision basis, 

through some arbitrary, but physically reasonable (e.g., 

Lennard-Jones or hard-sphere) collision number Z. For this 

purpose, one defines the probability per collision, P(E,E'), 

P(E,E') =2. R (E,E') 
z 

(2) 

and the corresponding moments such as the average energy 

transferred per collision (!:J.E) (sometimes denoted 

(!:J.Eall » and the mean-square energy transferred per colli­
sion (!:J.E2) by 

(3) 

It is essential3
,21 to emphasize that it is the rates, and not the 

per collision quantities, which are the observables. Indeed, it 

is impossible, for all except hard spheres, ever to define a 

"collision," since the substratelbath gas interactions are of 

infinite extent and, hence, it is impossible to calculate quanti­

ties such as (!:J.E) directly from trajectories. "Per collision" 

quantities can always be deduced trivially from the corre­

sponding rates once Z has been defined, but such a definition 

is arbitrary (although should be chosen in a sensible way so 

as to aid intuition and model building). 
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II. DERIVATION OF CLASSICAL TRAJECTORY 

FORMULAS 

We wish to study the variation of the energy transfer 

rates with internal and rotational energy of the substrate, 

and with the substratelbath gas relative translational ener­

gy. The chosen method3 for obtaining such rates from tra­

jectories was deduced for a canonical (i.e., constant tem­

perature) system. We now derive the methodology by which 

average energy transfer rate coefficients can be obtained 

from trajectory calculations for a microcanonical systemj 

i.e., one in which the translational energy of the bath gas/ 

substrate is fixed. This is a straightforward extension of the 

result derived previously. 3 

Consider a substrate molecule colliding with a bath gas 

with a fixed relative initial translational energy E;". We wish 

to calculate the classical rate coefficient for transfer, by colli­

sion, from an initial energy E' to a final energy E. E' and E 

may refer to ( 1 ) the total energy of the molecule E or (2) the 

energy in the "inactive" external rotational degrees of free­

dom Ero! = IOJ2, where I is the value of the two equal princi­

pal moments of inertia of a symmetric top (or the geometric 

mean 1= ~ Ia1b of the two nearly equal ones for an asym­

metric top) and OJ is the corresponding angular speed or (3 ) 

the internal energy E = E - Erot , defined as the energy in the 

"active" degrees offreedom (the vibrational degrees of free­

dom plus the rotational energy about the third principal 
axis) . 1.22,23 

The classical rate coefficient M(E,E 'jE;") for this mi­

crocanonical collisional process is given by24 

M(E,E'jE;") = S dp dqo[ E - Hsubs (t .... 00) ]f(p,q) (PI/P,) o(ql - q~) 
S dp dqf(p,q) 

(4a) 

=v 1"" 21T'bdbP(E;",bjE,E'), 

where the integrals are over all of phase space whose posi­

tions and momenta are p and q, ql is the bath-gas substrate 

relative translational coordinate, q? is a large value of this 

coordinate where trajectories are started, PI /p, = v is the 

corresponding velocity, E;" = ~v, f(p,q) is the distribu­

tion function describing the appropriate initial conditions, 

Hsubs is the Hamiltonian for the substrate molecule, b is the 

impact parameter, and peE ;"'b;E,E') is the classical proba­

bility for the process (in this case, transfer by coIIision of the 

internal energy from E' to E), For simplicity, we have as­

sumed that the bath gas is structureless. Changing variables 

from v to E ;.. and noting that, for the purposes of trajectory 

calculations, the limit of the integration over impact param­

eter is changed to a sufficiently large but finite value bm , one 

has 

(
2E' )112 r"" 

M(E,E'jE;")= p,T Jo 21T'bdbP(E;",bjE,E') 

(
2E' )112 = lim __ T 1T'b ;" 

bm - "" p, 
(5a) 

xi
bm 

21T'b dbP(E' b'E E'). 
b 2 

T' , , 

o 1T' m 

(5b) 

In Eq, (5b) we have deliberately multiplied and divided by 

1T'b ;", to bring out the dependence on the cross-section-like 

term. The nth moment ME',,, is given by 

_ (2E;")1/2 
M E",,- --

P, 

xL"" L"" dE(E-E')"21T'bdbP(E;",bjE,E'). 

(6) 

At this point we note the relation between the microcanoni-

(4b) 

cal rate coefficient M(E,E';E;") and the canonical one 

R(E,E';n, 

R(E,E';n = 21T'-1I2(k
B

n -312 

xL"" dE;"<E;..)1I2e-ETlkBTM(E,E';E;"). 

(7) 

(8) 

and so 

R E",. = 21T'-1/2(k
B

n - 3/2 

xL"" dE;..<E;..)ll2e-ETlkBTME',,, (E;"). (9) 

As stated, it is very useful to reexpress such rates on a per 

collision basis, through some arbitrary, but physically rea­

sonable, collision number Z, e.g" that for hard spheres of 

radius d, 

(
8kB0112 

Zcan = -- 1T'd 2 (canonical), 
1T'p' 

(lOa) 

_ (2E;")112 2 
Z/ACan - -- 1T'd (microcanonical). 

f.L 
(lOb) 

The relations between the rate coefficients and the per coIIi­

sion quantities are then 

ME',,, = ZIJCan (I1E If) M' (11) 
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where (b.E n
) M is the microcanonical nth moment of the 

energy transferred per collision. We note for later use that 

Eqs. (9)-( 11) lead to the result 

(b.En) = 1 (00 dE E e-ETlksT(f:.En). (12) 
(kBn2 Jo T T M 

For notational convenience, we shall henceforth drop the M 

sUbscript for the microcanonical quantities (b.E n) M' where 

no ambiguity arises. 

We now tum to the means of evaluating Eq. (6) from a 

finite number of classical trajectories. If these trajectories are 

chosen from appropriate statistical weightings in all internal 

variables of the substrate (e.g., random vibrational phases 

and orientations) following the usual method of orthant 

and/or microcanonical sampling,2s,26 and the impact pa­

rameter is chosen from the distribution 21Tb /1Tb !., one then 

simply has:3 

(
2EI )1/2 b 2 N 

ME',n = __ T lim lim ~ L (f:.E; )n, 
f.L bm -"" N-oo N ;= I 

(13) 

where b.E; is the energy change in the ith trajectory and N is 

the number of trajectories. Equation (13) is the basic algo­

rithm for finding the required average energy-transfer quan­

tities. Note that the dimensions of ME',n are (volume) 

(time - I) (energy) n. The corresponding formula for com­

putation of (f:.E n) M is 

Convergence in N is generally quickest if one calculates the 

second moment (n = 2), rather than the first moment, since 

then one is always summing positive quantities. Despite 

their deceptively simple appearance (which is to take the 

average of the energy transfer of a large number oftrajector­

ies), it is essential to realize that Eqs. ( 13) and ( 14) are only 

valid provided the initial conditions are chosen with the cor­

rect sampling. 

We now deduce the microscopic reversibility relation­

ship for M(E,E';E r)' This corresponds to that for the ca­

nonical rate coefficient R(E,E';n, 

f(E')R(E,E';n =f(E)R(E',E;n, (15) 

where f(E) =p(E) exp( -E/kBn/Q, peE) being the 

density of states of substrate, and Q = Sp(E) 
X exp ( - E / k B n dE the partition function. Equation 

(15) arises from the time-reversible property of classical 

(and quantum) mechanics: The flux of trajectories forwards 

and backwards must be the same. From Eq. (9) it can then 

be seen that the microcanonical microscopic reversibility re­

lationship is 

M(E,E';Er)p(E') (E;") 112 

= M(E',E;ET)p(E) (ET) 112. (16) 

Recall that the initial total and translational energies are the 

primed quantities E' and E;" and the final ones are un­

primed. By conservation of energy E' + E ;.. = E + E T' 

III. METHOD OF APPLICATION TO Xe/AZULENE 

For azulene colliding with xenon, earlier trajectory 

studies4 had shown that (under circumstances discussed be­

low) agreement with experimental results27-31 could be ob­

tained using a potential function made up of bends, stretch­

es, torsions, and wags for the azulene, and atom-atom 

Lennard-Jones 12-6-4 interaction for the Xe/azulene inter­

action (the r - 4 interaction being used to mimic the dipole 

of the azulene4 ). The potential for the present study, which 

has the same functional form as but differs slightly in nu­

merical values from that given previously,4 is 

stretches: !J.(rij-req)2, 

bends: !f6(8ijk _ 8eq)2, 

out-of-plane wags: !fa (ajkmn - 1T)2, 

abc 
generalized Lennard-Jones: + + 12 -6 -4' 

r ij r ij r ij 

t · V;' 2 orslOns: 0 sm T ijklmn' 

where rij is the distance between atoms i and j, 8ijk is the 

angle between atoms i,j, and the central atom k, a jkmn is the 

angle between the normal to the plane defined by the atomsj, 

m, and n and the line segment between atoms k and the 

central atomj, and T ijklmn is the angle between the two planes 

IJK (containing il and parallel to jk) and LMN (containing 

il and parallel to mn). The potential parameters are given in 

Table 1. The numbering system used for the atoms is as fol­

lows: The carbon atoms obey the standard IUPAC numbering 

scheme for azulene,32 the hydrogen numbering follows di­

rectly on such that atom 11 is the hydrogen bonded to the 

carbon labeled atom 1 and so forth, and the xenon atom is 

number 19. The frequencies obtained from a normal-mode 

analysis of the azulene potential so defined are generally 

within a few cm -I of those of Lim and Gilbert4 (wherein is 

given a comparison with experimental frequencies) but re­

ducing, by approximately 20%, the average discrepancy be­

tween experimental and theoretical frequencies (note that 

the earlier paper inadvertantly omitted two of the experi­

mental frequencies which can however be easily obtained 

from the original source). 

The trajectories were calculated using our public do­

main program MARINER,IO itself a derivative of the public 

domain program MERCURy.33 Initial internal energies were 

chosen to correspond to those used in experimental studies 

on this system (about 17 X 103 and 30 X 103 cm - 1, as dis­

cussed later. Note here that the data of Barker and co­

workers are obtained for an average energy somewhat less 

than these, which are those of the G6ttingen group; how­

ever, the differences in mean-squared energy-transfer values 

resulting from these differences are relatively small). Rota­

tional energies were chosen from a thermal distribution at 

300 K. Initial conditions were otherwise chosen as pre­

scribed earlier. The maximum impact parameter bm was 

varied to ensure adequate convergence; it was found that 9 A 
was sufficient for all cases studied. The initial center-of-mass 

separation was 16 A. The number of trajectories required to 

evaluate Eq. (13) to adequate convergence was about 500 in 

all cases, as explained in Appendix A. The values of transla-
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TABLE I. Potential parameters for the azulene/xenon interaction. For brevity obviously symmetry related 
force constants are not included. 

Stretches 

Atomi Atomj r. (A) f. (mdyn A -I) 

1 2 1.404 8.43350 

3 10 1.404 8.10094 

4 10 1.380 8.501 16 

4 5 1.391 8.501 16 

5 6 1.385 8.33273 

9 10 1.490 6.13268 

1 11-18 1.084 5.00000 

Bends 

Atomi Atomj Atomk B"" (deg) 18 (mdyn A rad-I) 

2 9 1 107.10 0.572 

2 11 1 126.45 0.572 

1 3 2 111.50 0.572 

1 12 2 124.25 0.572 

5 10 4 130.10 0.572 

5 14 4 114.95 0.572 

4 6 5 128.00 0.572 

4 15 5 116.00 0.572 

5 7 6 130.20 0.572 

5 16 6 114.90 0.572 

1 8 9 126.00 0.572 

1 10 9 107.20 0.572 

Out-of-plane wags 
Atomj Atomk Atomm Atomn la(mdynArad- 2

) 

11 2 9 0.45' 

Generalized Lennard-Jones 

Atom i Atomj a kcal mol-I A12 b kcal mol - I A 6 c kcal mol - I A 4 

1 19 0.344 40X 107 - 0.129 79X 10' - 0.464 50X 101 

2 19 0.344 40X 10' - 0.129 79X 10' - 0.34161 X 10- 2 

4 19 0.344 40 X 10' - 0.129 79X 10' - 0.326 36X 10 - I 

5 19 0.344 40X 107 - 0.129 79x 10' - 0.303 96X 10-' 

6 19 0.344 40 X 10' - 0.129 79X 10' - 0.262 63X 10- 1 

9 19 0.344 40X 107 - 0.129 79X 10' - 0.112 50x 10- 2 

11-18 19 0.112 73 X 107 - 0.555 21 X 10' 0.0 

Torsions 
Atom Atom Atom Atom Atom Atom Vo 

j k I m n kcal mol-I 

1 9 11 2 3 12 7.08480 

3 2 13 10 4 9 6.43248 

10 3 9 4 5 14 6.32664 

4 10 14 5 6 15 7.17120 

5 4 15 6 7 16 6.900 12 

9 1 8 10 3 4 4.32972 

• Similarly for all analogous out-of-plane wags. 
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tional energy were chosen to cover the thermal and supra­

thermal range [0.7-10 kcal mol -I; 1 kcal mol-I = 4.184 

kJ mol - I; 2RT::::: 1.2kcaI mol-I at T= 300 K; the factor of 

2, not the usual factor of 1.5, relating the mean translational 

energy and the temperature, arises because of the 

Er exp( - Er/kBT) in Eq. (12)]. Values of the initial in­

ternal energy E' were chosen as 30 644 and 17 500 cm - I, 

corresponding to those in the experiments of Barker and of 
the Gottingen group.27-31 

reason, we present "slices" through a very extensive set of 

data. For convenience, these are given as "per collision" 

quantities, with the re-scaling of rates carried out using Eqs. 

(3) and (10), using a hard-sphere diameter d= 6.97 A 
(corresponding to the collision number Zcan = 478X 10- 18 

m3 s -I of Hippler et aUI ). 

IV. RESULTS AND QUALITATIVE OBSERVATIONS 

Trajectory calculations produce more numerical results 

than one is able to deal with in a sensible fashion. For this 

First, we compare, in Table II, our present results with 

experiments and with our previous study. The "experimen­

tal" entries for (fj.E 2) 112 were obtained from the experimen­

tal (fj.E) using the biased random-walk model (BRW) for 

P(E,E') as described later; trajectory (fj.E ) entries were also 

obtained in a similar fashion from the corresponding 

(fj.E2) 1/2. The good agreement of (I1E2) 1/2 trajectory val-
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TABLE II. Comparison of energy-transfer values from trajectory simulations and "direct" experiments at 300 

K. All values normalized to Z...c = 478X 10- 18 m 3 
S-I (Ref. 31). 

E' (cm -I) This work Lim and Gilberta Gottingen groupb.c Barker et al. c.d 

-(Ml) (cm- I
) 

30644 150 ± 22 116 

205 ± 20' 154" 

17500 105 ± 23 102 

185 ± 25" 133" 
(tiE2) 112 (cm -I) 

30644 430 ± 30 323 

17500 415 ±40 306 

• Reference 4. 

b References 30 and 31. 

c (tiE2) values obtained from (tiE) using BRW. 

d References 27-29. 

225 222 

160 110 

420 417 

347 273 

"(tiE) values obtained from (tiE2) using the BRW functional form as explained in text. 

ues with experiment has been retained even with the minor 

changes in the potential-energy surface; most importantly, 

the present calculations have much improved statistics 

which, inter alia, include now a sufficiently large number of 

trajectories to take accurate account of supercollisions.34 

The present calculations reproduce (at least semiquantitati­

vely) the experimental dependence of the average energy 

transfer on initial energy, in addition to reproducing the ab­

solute values. This suggests that the present calculations 

should adequately model the actual dynamics of the systems 

studied. 
Some microcanonical results are shown in Figs. 1-3, 

which give the computed mean and mean-square, energy 

transferred per collision as a function of the translational 

energy E ;.., for the two different values chosen for E', for the 

total (E), rotational (Erot ), and internal (E) energy trans­

fer; statistical uncertainties in these quantities are also 
shown (see Appendix A). Note that (1l.E) 

= (I:l.Erot ) + (I:l.E) , but of course an equivalent additive re­

lationship does not hold for the mean-square quantities. 

There are some discernible trends in the data as follows. 

At the highest translational energy the net energy trans­

fer is upward and clearly more so for the lower E'. On the 

other hand, at the lowest translational energies (I:l.E) for 

E' = 3 X 104 cm - I is more negative than that for 

E' = 1.7x 104 cm -I; i.e., the net energy transfer is down­

wards and more so for the higher E'-the difference is only 

slightly greater than the uncertainties. The (I:l.E) curves for 

the two E' values remain very close through to intermediate 

E;". 
(1l.E) changes sign at about E;" = 2 kcal mol- I, a 

change in the net direction of the average energy transfer 

close to thermal energies. This effect is equivalent to the sign 

change with change in temperature in canonical systems, 

which is well understood.2
•
35 

(Il.Erot) on the other hand is always positive. As a corol­

lary, (I:l.E) changes sign at an energy above 2 kcal mol-I 

(recall (I:l.E) = (Il.Erot ) + (I:l.E». 
All total mean-square energy-transfer quantities exhibit 

a minimum around E ;.. = 1.2 kcal mol- I; the mean-energy 

quantities may show small maxima or points of inflexion at 

about the same E ;.. but such effects are of the same order as 

the statistical uncertainty. 

At low E ;.., there is a considerable amount of collision­

induced intramolecular internal/rotational (E+-+Erot ) ener­
gy transfer. There is relatively little total energy transfer but 

the average rotational and internal energy transfers are both 

large in magnitude and of opposite sign. 

For these systems the changes in internal and rotational 
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FIG. 1. Variation of (a) root-mean-square and (b) mean, total (internal 

plus rotational) energy transferred per collision for azulenelXe collisions 

as a function of the initial azulene internal energy (17 500 and 30 644 

cm -I) and the azulene/Xe relative translational energy. The error bars rep­

resent the average deviation as determined by the bootstrapping. 
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FIG. 2. Variation of (a) root-mean-square and (b) mean, rotational energy 

transferred per collision for azulenelXe collisions as a function of the initial 

azulene internal energy ( 17 500 and 30 644 cm - I) and the azulenelXe rel­

ative translational energy. The error bars represent the average deviation as 

determined by the bootstrapping. 
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FIG. 3. Variation of (a) root-mean-square and (b) mean, internal energy 

transferred per collision, for azulenelXe collisions as a function of the ini­
tial azulene internal energy ( 17 500 and 30 644 cm - I) and the azulenelXe 

relative translational energy. The error bars represent the average deviation 

as determined by the bootstrapping. 

energy are of similar magnitude: 100-800 cm -I depending 

on E T' The values of (AE;"t) are close to, but somewhat 

less than, those of (Ac) for a given E T' These trends can be 

explained as follows. 
Examination of trajectories shows8,18,34,36,37 that a typi­

cal collision is one in which the substrate internal energy 

exhibits a number of oscillations caused by the interactions 

of the bath gas with one or more of the substrate atoms. 

While the collision duration is much too short to allow com­

plete energy randomization between the collision partners 

(in this case, between the center-of-mass translational de­

gree offreedom and the azulene internal motions), there is a 

general tendency to transfer energy from hotter to colder 

modes (both internal and translational). Now, although the 

initial total energy of the azulene is very high (3 X 104 

cm - 1;:::; 90 kcal mol - I), the average energy in a given azu­

lene vibration and, hence, the average energy in the atom 

interacting with the bath gas at a given moment, will be 

much less than this. Thus, at very high translational ener­

gies, energy will tend to flow from the relatively hotter trans­

lation degree of freedom to the colder vibrational degrees of 

freedom. Furthermore, since the average energy in an azu­

lene atom will be less at an internal energy of 1.7 X 104 cm - 1 

than for 3 X 104 cm - I, more energy will tend to be trans­

ferred from the translation at the lower E'. This leads to the 

values of (AE) and (AE2) 1/2 being greater for 

E' = 1.7X 104 cm -I for the highest E T. 
For low translational energy, the converse will occur: 

Energy will be transferred to the now colder translational 

degree offreedom from the hotter vibrations. Thus, for low­

er E;", (A.E) will be negative; moreover, since more energy 

will be transferred from the higher internal energy, (AE ) for 

higher E' will be more negative than that for lower E' and, 

consequently, (A.E 2
) 1/2 is greater for the higher E'. 

To locate the position of the change in sign of (AE), we 

need to consider some sort of average vibrational energy per 

mode for azulene. There are a number of ways of defining 

such a quantity. In the simplest sense this can be taken as the 

total internal energy divided by the number of modes, giving 

a value of 2.8 and 3.6 kcal mol-I for E' = 1.7 X 104 and 

3 X 104 cm - I, respectively (remembering that for a classical 

simulation, the total energy available for transfer includes 

the zero-point energy). A more sophisticated means of 

expressing an average energy per mode is as follows. 38 

One first defines a vibrational temperature Tv in terms of the 

total vibrational partition function Qv using 

E;ot = RT~ (a In Qv1aTv), whereE ;ot is the sum of E' and 
the thermal internal energy. Next, (Ev) the average energy 

in a particular mode with vibrational partition function 

qv (Tv), can be obtained using the expression 

(Ev) = RT~ (a In qv1aTv)' Since (as discussed later) the 
highest frequencies are especially involved in the collisional 

energy transfer process, it has been suggested38 that this 

measure of the average energy per mode is better for inter­

preting energy transfer experiments than the simpler defini­

tion given previously. However, for the present purpose of 

interpreting classical trajectory data (as distinct from actual 

experiment), one must use classical partition functions; the 
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average energy per mode then becomes the same with both 

methods. Moreover, the existence of extensive internal-to­

rotational energy redistribution during the collision (see the 

following) renders improved treatments of the average ener­

gy per mode unnecessary for the purpose of qualitative dis­

cussion. What is important is that the average energy asso­

ciated with a mode lies within the translational energy range 

covered in these studies. The transition between (on aver­

age) up and down collisions is therefore placed within this 

range, which is broad enough to display both the high and 

low translational energy limits. This explains qualitatively 

the occurrence and location of the zero in the E T depend­

ence of (liE). To relate this transition point more accurately 

to the internal energy of the azulene it would be necessary to 

have a more complete understanding of the classical dynam­

ics of the distribution of energy within the modes and the 

rate of intramolecular vibrational redistribution, a point 

which is not pursued further here. Moreover, the statistical 

uncertainty in the calculated energy transfer values makes it 

difficult to address the relative order in (!1E) for the two 

internal energies for intermediate translational energies, 

since the calculated values are quite close in this range. In­

deed, a classical simulation may not be expected to accurate­

ly model such small differences in energy transfer between 

two internal energies, because of the neglect of zero-point­

energy effects. 

The average rotational energy transfer always being 

positive can be seen as a result of the effective rotational 

temperature being much lower than the vibrational and (for 

higher E T) translational temperatures. That is, there is al­

ways another mode (internal or translational) with an ener­

gy greater than that initially in the rotational modes, which 

therefore always increase in energy after a collision. 

The origin of the small maxima and points of inflection 

at about 1 kcal mol- 1 is unclear. It may arise partly because 

the initial rotational energy was chosen from a thermal dis­

tribution at 300 K (kBT~0.6 kcal mol- I), but the complex 

dynamical interactions between rotational, translational, 

and vibrational degrees of freedom preclude a clear-cut ex­

planation from the limited trajectory data currently avail­

able. 

In an isolated molecule, the total angular momentum is 

conserved and, hence (to a good approximation), Erot is 

constant; the passage of the bath gas breaks down this con­

servation temporarily and, hence, collision-induced rota­

tional-internal energy transfer can take place. The actual 

amount of this exchange depends on the amount of rota­

tional-internal coupling induced by the presence of the bath 

gas, this coupling being different from the internal-transla­

tional and rotational-translational coupling that is the cause 

of bath-gas/substrate total energy transfer. In light of the 

discussion earlier, we suggest that the amount of collision­

induced rotational-internal energy transfer can be qualita­

tively understood in terms of the difference between the rota­

tional and internal temperatures. If this difference is much 

greater than those between translational temperature and 

the internal and rotational temperatures, then there will be 

more collision-induced rotational-internal energy transfer 

than translational-total energy transfer. Since the rotational-

internal temperature difference is independent of the trans­

lational temperature, collision-induced rotational-internal 

energy transfer, therefore, is most apparent at lower E T 
where there is no dominating internal-translation tempera­

ture difference. However, a complete understanding of this 

effect must await quantitative explanation of the division of 

the energy transfer into internal and rotational components. 

The actual magnitude of the energy transferred will be 

explained when we consider an approximate quantitative 

model for the dynamics in Sec. V and in Appendix B. It is 

noteworthy that, while experimental values for changes in 

internal energy are of course now known for many systems, 

no such data are available (except for very small molecules) 

for rotational energy transfer of highly excited species. Con­

cerning the relative values of (!1E ;ot ) and (!1il) (or alterna­

tively of (IiErot ) and (!1E», we have no further qualitative 

or quantitative explanation for the observed partitioning 

into rotational and internal components and can note that 

the trajectory data given here should prove useful for future 

investigations of this question. 

Having discussed the behavior of the microcanonical 

results, we examine how the average energy transfer depends 

on E' in the canonical case, for which trajectory data at 300 

K are shown in Table II. The sensitivity to E' of (liE) and 

(liE 2) 1/2 may be quantified as the relative variation 

(d (liE )/dE')/(IiE), which is about 1 X 10 - 5 per cm -1; 

the corresponding quantity for (!1E 2) 112 is about 0.5 X 10 - 5 

per cm - 1. Hence (at 300 K), (liE ) is twice as sensitive to E' 

as is (liE 2) 112. That is, at thermal energies, the mean-square 

energy transfer values show a relatively smaller variation 

with initial energy E' than do those of (!1E ). Note, however, 

that at suprathermal energies, the E' dependencies of both 

(liE) and (liE 2) 112 are about the same. 

The experimental variation of (!1E ) with E' at thermal 

energies has been the subject of considerable debate in the 

literature. 27-31 Now, the intercon version between (liE ) and 

(1iE 2
), obtained from Eqs. (1) and (3) given a functional 

form for P(E,E'), is quite insensitive to the form of P(E,E'). 
This is exemplified in Fig. 4, which shows (!1E ) as a function 

of (liE 2) 112 for azulene at 300 K with three different func­

tional forms for P(E,E'): exponential down,1 biased ran-

o~~~-----------------------. 

-500 

<fill> (em-I) 

-1000 +-----------.------------.....------' 
o 500 1000 

FIG. 4. Value of mean-energy transferred per eoIlision as a function of the 

root-mean-square value for azulene with E' = 17 500 em - I for T = 300 K, 

for biased random-walk (-), (E - E')' exp[(E - E')/aj-down ( ... ), 
and exponential-down (---) models for P( E,E'). 

J. Chem. Phys., Vol. 96, No.8, 15 April 1992  Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.118 On: Thu, 01

Sep 2016 04:53:42



Clarke et al.: Energy transfer in highly excited molecules 5991 

dom walk I [which has a displaced Gaussian functional 

form; see Appendix B], and a model with P(E,E') 

0: (E - E')2 exp[ - (E' - E)la] for E <E'. These three 

models have qualitatively different functional forms. In gen­

erating the results of Fig. 4, the integral expressions for 

(till) and (I1E 2
), Eqs. (1) and (3), were evaluated numeri­

cally with the functional form for P(E,E') only being used to 

generate the downward (E' > E) values, the upward values 

being found exactly using microscopic reversibility. This ex­

act numerical integration avoids having to make assump­

tions such as an exponential form for the equilibrium popu­

lation distribution required to generate these quantities 

using approximate analytic formulas; 1 i.e., microscopic re­

versibility is taken into account exactly in Fig. 4. The requi­

site methodology for thisl is available as public code. 39 Note 

that although the illustration given here of the insensitivity 

to the functional form is for a canonical system, it must also 

hold for a microcanonical one, since M(E,E ';E T)(E T) 1/2 

and R (E,E'; n are related by a Laplace transform, as shown 

in Eq. (7). One sees from Fig. 4 that the relationship be­

tween (till) and (I1E2) 1/2 is indeed insensitive to the func­

tional form for P( E,E'), except for very large energy transfer 

( > 1000 cm - I). Further calculations (not illustrated here) 

show that this insensitivity is even better at higher tempera­

tures. 

The relative sensitivities to E' of (I1E) and (I1E2) can 

now be examined with reference to experiment, using the 
data of Barker and co-workers. 27-29 These experiments mea­

sure (I1E) (or ratherinfer the values of RE',I after calibra­

tion), but the values of (I1E) can be converted with minimal 

uncertainty to equivalent values of (I1E 2) 1/2 through Fig. 4. 

Figure 5 shows, for the monatomic bath gases, the experi­
mental ratios of the mean energy transfer and root-mean­

square energy transfer, for experiments where the initial ex­

citation is about 17 500 and 30 644 cm - I. If the (I1E 2) 1/2 

values were exactly independent of initial energy, the ratio 

for this quantity should be unity; the data show an average 

value of 1.4. On the other hand, the corresponding average 

ratio for (I1E) is 1.9. This indeed suggests that, for thermal 
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FIG. 5. Ratio of average energy transferred per collision at two different 
initial excitation energies (dE) (30 644 cm -I )/(dE) (17500 cm -I) 

and corresponding ratio for mean-squared energy transfer 
(dE'}(30 644 cm - ')/(dE2) (17500 cm - I). Experimental (dE) val­

ues are from Barker (Refs. 27-29). 
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FIG. 6. Pseudo-opacity functions P2 (b) for subthermal microcanonical 

(E T = 0.7 kcal mol- I) and suprathermal (E T = 10 kca1 mol - I) azul­

ene/Xe collisions; E' = 1.7 X 1 if cm - I. 

systems, (till 2) 1/2 is less sensitive to E' than is (I1E). This 

observation will be of use in Sec. V when we are considering 

quantitative models for the energy-transfer process. The tra­

jectory data also show that the mean rotational energy-trans­

fer quantities (I1Ero,) and (I1E;o,) are also only weakly de­

pendent on the initial total energy E'. This is illustrated in 

Fig. 2. 

Finally, we note the behavior of the opacity function 

P n (b) for collisional energy transfer. This quantity is defined 

in the usual way except that it has different units from con­

ventional opacity functions (as appropriate to the units of 

the dynamical quantity we are considering); e.g., we define 

the microcanonical opacity function by rewriting Eq. (6) as 

(17) 

The Pn (b) are easily obtained from trajectory data. Typical 

opacity functions for high and low translational energy are 

shown in Fig. 6 [note that owing to the small number of 

trajectories chosen by the sampling procedure for small b, 

largepn(b) values at small b may possibly be artifactual]. 

The opacity function for E T = 0.7 kcal mol- I, which is 

slightly lower than thermal energies, shows that even though 

the maximum is at small b, there are significant contribu­

tions out to large impact parameters where many energy­

transferring collisions are such that the bath gas interacts in 

a chattering collision with atoms on the periphery of the 

substrate molecule. The opacity function for a suprathermal 

system (10 kcal mol - I) shows slightly different behavior. 

Now there is only a significant contribution to the energy 

transfer from small impact parameters. This can be under­

stood when it is noted that high E T implies a high centrifu­

gal angular momentum barrier for a given b; thus trajector­

ies at higher b will tend to be deflected by this barrier at 

higher translational energies and, hence, never approach 

sufficiently closely to exchange much energy. 

Next, we consider the implications that the translational 

energy dependence of Fig. I has for the temperature depend­

ence of the average energy-transfer quantities. First, we note 

that a more detailed inspection of the translational energy 

dependence of Fig. I shows that the dependence at lower 
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FIG. 7. Comparison of values for root-mean-square total energy transfer 

from trajectories and from biased random-walk model B, for azulene/Xe 
with E' = 17 500 em -I. 

energies is different from that at higher energies due to the 

net change in the direction of energy transfer around ther­

mal energies; as stated, this is likely to arise because the ini­

tial rotational energy was chosen from a thermal distribution 

in the present simulations. The calculated temperature de­

pendence of the root-mean-square energy transfer is depicted 

in Fig. 7, obtained from our predicted translational energy 

dependence by using the data of Fig. 1 for direct numerical 

integration of Eq. (12). The data of Fig. 7 can be approxi­

mated by (I1E2) a: TO.3 over the ambient thermal energy 

range of 250-600 K: a weak but positive temperature de­

pendence. This can be compared with the temperature-de­

pendent energy-transfer data for (I1Edown ) for N2 bath 

gas.40 It was found that (I1Edown ) a: T - 112, which when 

converted to values of the mean-square energy transfer, 

yields (I1E2) 112 a: T - 0.43. While our calculated exponent 

for monatomic bath gas is opposite to the observations for 

diatomic bath gas, what is important is that both experiment 

and theory show a very weak temperature dependence. It 

must be borne in mind that both experimental and predicted 

dependencies are very weak and, as is apparent from Fig. 2, 

the translational energy (and hence temperature) depend­

ence is strongly influenced by the average rotational energy 

transferred per collision. Hence, the calculated temperature 

dependence for Xe bath gas is probably significantly in­

fluenced by our choice of initial rotational energy from a 

thermal distribution at 300 K. Moreover, it is likely that the 

observed experimental temperature dependence with N2 

bath gas has a large contribution from transfer of rotational 

energy of the N 2 . 

Note that if the translational energy dependence of 

(!1E 2
) M can be approximated by 

(I1E2)M = f a;(E;');, (18) 
;=0 

then Eqs. (18) and (12) give 

(I1E2) = f ru + l)a; (kB n;. (19) 
i=O 

This has the implication that if the E;' dependence of 

(I1E2) M could be approximated as a single exponent i, so 

also can the temperature dependence of (!1E 2
). 

V. QUANTITATIVE COMPARISON OF TRAJECTORY 

DATA WITH BIASED RANDOM-WALK MODEL 

In Sec. IV we showed how much of the trajectory data 

could be understood qualitatively in terms of the dynamics 

of the energy-transfer event. In this section we shall use the 

trajectory data obtained here, as well as trajectory data re­

ported elsewhere, to make a quantitative comparison with 

the assumptions and predictions of a particular model. We 

reiterate that a definitive test of the dynamical assumptions 

inherent in an approximate model can only be properly car­

ried out by comparing accurate trajectory treatment of the 

dynamics, for a given interaction potential, with the predic­

tions of a model, using the same potential function. Such a 

comparison is more informative than that between an ap­

proximate model with actual experiment since the model 

involves approximations in both the interaction potential 

and the dynamics, and no conclusions as to the correctness 

of either the model or the assumed potential can be drawn 

whether or not model and experiment disagree or agree. 

There are a number of models for the collisional energy­

transfer process in the literature2 and we do not propose to 

review these here. Rather, our aim is to see if any of the 

general observations from the trajectory data can support 

the assumptions of a particular model and then to carry out 

quantitative tests against the trajectory results. It will 

emerge that what has been denoted "model B" of the biased 

random-walk treatment41 is in accord with trajectory re­

sults. 

Our starting point is the observation, from Sec. IV, that 

the mean-square energy transfer is less dependent upon the 

initial energy than is (I1E). One of the models in the litera­

ture, the BRW model B,41 has among its assumptions the 

supposition that (I1E 2) is independent of E'; given the rela­

tively weak dependence evinced by both the trajectory calcu­

lations and experiment, it is not unreasonable to take an E' 

independent (I1E2) as an approximation which is in qualita­

tive accord with these data. The model (presented in detail 

I h 36374142)' . d C " e sew ere ' " IS summanze lor convemence m Ap-

pendix B. It takes note of the results of trajectory calcula­

tions that show that the substrate internal energy during a 

collision exhibits a large number of pseudorandom oscilla­

tions. These oscillations arise from the "chattering" nature 

of the energy-transfer interaction: Multiple collisions of the 

bath gas with one or more single substrate atoms driven by 

the highest-frequency oscillations, which have random 

phase. Given the assumption of randomness, subject to the 

constraint of microscopic reversibility, a functional form for 

P(E,E ') can then be obtained using the theory of Brownian 

motion: The displaced Gaussian ofEq. (B2) of Appendix B. 

This functional form contains a single parameter s, which is 

obtained [Eq. (B4) of Appendix B] from the product of the 

collision duration (tc) and a diffusion coefficient in "energy 

space" (D). The BRW model then makes dynamical ap­

proximations to obtain a simple expression for D, for a given 

interaction potential. The oscillations are treated in an aver­

age way with a particular average energy and subject to an 
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average (atom-atom) force. The crucial approximation in 

the present context of model B is stated in Eq. (B6) of Ap­

pendix B: That this, average oscillator energy (which ap­

pears in several different places in the approximate dynami­

cal treatment) is simply the average substratelbath gas 

translational energy, independent of the internal energy of 

the substrate. The alternative version of the BRW model 

denoted as "model A,,,41 incidentally, assumed instead a 

form for this average energy which depends strongly on E'; 

this hypothesis can now be rejected because of the availabil­

ity of the new trajectory data which form the subject of this 

paper. 

A most important result from the BR W model B treat­

ment is that, in its most primitive version, it leads to an 

expression, Eq. (BI8) of Appendix B, which explains in a 

very simple fashion the typical values of the energy trans­

ferred per collision observed experimentally with monato­

mic bath gases which no other model currently available is 

able to do. 

Since the BR W model B makes a hypothesis which is in 

accord with a prominent feature of the present trajectory 

data, it is profitable to use the current data to test this model 

quantitatively. It is important to note that the BRW model B 

contains no semiempiricai parameters, in contrast to some 
alternative versions. 36,41 

Before starting such a comparison it is realized that 

there is a difficulty in comparing the results of microcanoni­

cal (constant translational energy) trajectory data with the 

predictions of any approximate canonical (constant tem­

perature) model, as is the BR W model. Of course, one could 

attempt to derive a microcanonical version of the model, but 

that is a nontrivial exercise. This is because of the relation­
ship between the up and down energy-transfer rates imposed 

by microscopic reversibility. These microscopic reversibility 

relations are imposed by the time reversibility of quantum 

and classical mechanics, and any approximate model which 

does not obey them is seriously flawed. In the BR W mod­
el,36.37,41,42 canonical microscopic reversibility is imposed on 

the dynamical assumptions from the outset. However, the 

microscopic reversibility relations for the microcanonical 

and canonical cases, Eqs. (15) and (16), are inherently dif­

ferent in nature. For the canonical case, the temperature is 

the same before and after a collision and so does not need to 

be treated explicitly. InEq. (15) onehas/(E,T) and/(E',T) 

and the problem is a two-variable one in E and E', with only a 

parametric dependence on T. For the microcanonical case, 

however, the translational energy is different before and 

after the collision, and this must be taken into account spe­

cifically, making the problem a three-dimensional one in E, 
E', and E T' Moreover, this additional dimensionality means 

that the numerical methods used (for example) for solving 

the master equation and interconverting different averages 

of R (E,E'), I which take microscopic reversibility exactly 

into account canonically, can no longer be used in the micro­

canonical case. 
This difficulty can be overcome by numerically integrat­

ing the (AE 2) M as a function of E T to yield, from Eq. (12), 

(AE2) as a function of T, which can then be used for com­

parison of model and trajectory data of the canonical results 

TABLE III. Lennard-Jones parameters used in biased random-walk calcu­

lations. For a full description of the origin of these parameters see Ref. 1. 

E (K) u(A) 

AzulenelXe 347 5.33 

XelXe 230 4.05 

C/C 20.3 3.2 

H/H 6.5 3.0 

and predictions, given in Fig. 7 (here the trajectory data are 

for E' = 17 500 em - I). The "local" atom-atom potential 

functions used in the BRW calculations were taken to be the 

appropriate averages of those used in the trajectory calcula­

tions (parameters are given in Table III). It will be recalled 

that (AE 2) 112 is found from the trajectory data to be only 

weakly dependent on E', and also that the BR W model B 

gives a (AE 2) 112 that is only very weakly dependent on E'; 

this is seen in Eqs. (B2) and (BI8) of Appendix B. It is 

apparent that although the temperature dependence com­

puted from the trajectory data is not well reproduced by the 

model, there is reasonable accord between model and trajec­

tory results at lower temperatures. Overall, considering the 

uncertainties involved, the accord is encouraging seeing that 

(as stated) the BRW model B contains no semiempirical 

parameters. 

Further tests are now discussed. For this, we return to 

trajectory data for canonical systems. Figure 8 shows recal­

culated energy-transfer results (using 600 trajectories rather 

than 150, which had previously been published4), wherein 

the bath gas was varied. It can be seen again that the accord 

between trajectory data and BR W model B predictions is 

very good for the heavier bath gases, but that the dynamical 

approximations in the BRW model B result in a great under­

estimate of the energy transfer for the lightest bath gases (He 

and Ne). This underestimate probably arises because the 

lightest bath gases are more likely to bounce off the substrate 

after the first (few) atom-atom encounters and, hence, re-

1000 

800 

<M2> 112 
600 

(em-I) 

400 

I 
E'/ cm-' 

• B.R.W: 17500 

o Trajectories: 30644 

m Trajectories: 17 500 

FIG. 8. Comparison of (AE2) 1/2 values predicted by BRW model Band 
obtained from trajectory results for different bath gases at E' = 1.7 X 1(Y' 
cm - , for a canonical system with T = 300 K. The error bars represent the 

average deviation as determined by the bootstrapping. 
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FIG. 9. Comparison of (tiE2) 112 values from BRW model B with values 

deduced from experimental values of (tiE) [those of Barker and co­
workers (Refs. 27-29) and of the Gottingen group (Refs. 30 and 31) 1 using 

method described in text. 

duce the chattering nature of the collision which forms the 

cornerstone of the BR W model. 

While the underestimate of the amount of energy trans­

fer for the lightest bath gases by the BR W model B is a cause 

for concern, it is in the opposite direction to the overestimate 

of the energy transfer when the trajectory results are com­

pared to experiment.4 The overestimate of the trajectory cal­

culations is ascribed to the substratelbath gas interaction 

potential being too repulsive. It is apparent, for example, 

from Eq. (BI8) of Appendix B, that the average energy 

transfer is extremely sensitive to the repulsive wall. The 

quantity F in that equation is the slope of the average atom­

atom potential at the classical turning point. Because the 

underestimate of the approximate dynamics of the BRW 

model B is opposite to the overestimate caused by the ap­

proximate potential, there is a cancellation of errors when 

the model is compared to experiment, as done in Fig. 9. It is 

apparent that the approximate model is in good accord with 

experiment. Experimental trends for the dependence on bath 

gas are well reproduced by the model. It is however empha­

sized that this accord for the lightest bath gases is due to a 

cancellation of errors, and such accord cannot be relied upon 

to hold in all cases for light bath gases. The model predicts 

that (t:.E 2) \12 is essentially independent of E' and thus gives 

qualitative and semiquantitative accord with the experimen­

tal trend of (t:.E) with E '. 

VI. CONCLUSIONS 

The present paper reports the results of trajectory calcu­

lations designed to explore the dependence of rates of colli­

sional energy transfer of highly excited molecules on tem­

perature, translational, rotational, and internal (largely 

vibrational) energy. These calculations have been carried 

out for a system where such trajectory calculations have 

been shown to give good accord with experiment and should 

therefore properly mimic the real dynamics. The observed 

behavior can be explained qualitatively in terms of the Xe 

interacting in a chattering collision with a few substrate 

atoms, with the collision duration being much too brief to 

permit ergodicity but with a general tendency to transfer 

energy from hotter to colder modes (both internal and trans­

lational). The results of this paper can be looked upon as 

predictions of experiments that could, in principle, be car­

ried out; however, their main value is in leading to under­

standing of the dynamics of this complex process . 

One conclusion reached from the present calculations is 

that the average rotational energies transferred per collision 

(data currently only available from trajectories, and re­

quired for falloff calculations for radical-radical and ion­

molecule reactions) are of the order of k B T, and similar to 

those for the internal energy. The temperature dependencies 

of the mean-square and average downward energy trans­

ferred per collision are small and dependent on the rota­

tional component (s). Another conclusion to be reached 

from these trajectory data is that the root-mean-square ener­

gy transferred per collision is 50% less sensitive to the initial 

internal energy than is the mean energy transferred; this con­

clusion is also borne out by deducing values for (t:.E2) 1/2 

from experimental values for (t:.E). 

The relative insensitivity of (t:.E 2) 1/2 to E' observed in 
the trajectories lends support to an assumption made in a 

model for the collision dynamics: the biased random-walk 

model B. This model gives good quantitative accord with the 

results of trajectory calculations for all except the lightest 

bath gases. This is a particularly stringent test, as the same 

potential parameters were used in both the trajectory results 

and the approximate model. Fortunately, the poor accord of 

the model with trajectories for the lightest bath gases results 

in a compensating error to that induced by the incorrect 

potential function in the trajectory calculations, so the ap­

proximate model, with its approximate potential, gives good 

accord with experiment, at least in the limited examples con­

sidered here. However, such coincidences cannot be always 

relied upon. Nevertheless, it would appear not unreasonable 

to use this model to supply good first estimates of average 

energy transfer parameters for the purposes of fitting and 

predicting falloff data. Energy-transfer parameters from this 

model are quick and simple to compute, and indeed the req­

uisite code is part of the current version of our UNIMOL pro­
gram suite. 39 

Most importantly, the BRW model B gives considerable 

insight into the nature of the energy-transfer event. This is 

governed by pseudorandom mUltiple interactions (a chat­

tering collision) between the bath gas atom and one (or a 

few) of the reactant atoms, and it is the "kick" given by the 

force at the classical turning point of each atom-atom en­

counter that governs the amount of energy transferred; Eq. 

(BI8) of Appendix B gives a simplified formula. Moreover, 

this primitive version of the model, Eq. (BI8) of Appendix 

B, readily explains why average energies transferred per col­

lision for simple bath gases have the observed order-of-mag­

nitude values seen experimentally, an explanation which has 

not been provided hitherto. 

There are of course many questions raised by these tra­

jectory studies which are left unanswered. Primary among 

these is the form of the potential function between a sub­

strate and the lightest bath gases (He and Ne); accurate 

quantum-chemical calculations seem the only way around 

this problem. Another unanswered question is the way the 

average energy transfer is partitioned between internal and 

rotational energy. The answer to this problem is especially 
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important in fitting and predicting falloff data for ion-mole­

cule reactions (and other systems where the moment ofiner­

tia of the transition state considerably exceeds that of reac­

tant). A third problem is how to overcome the errors in the 

approximations to the dynamics in the BR W model B for the 

lightest bath gases. 

The trajectory methods deduced and employed in this 

paper (which are in the public domain lO
) and the approxi­

mate model which they support, when allied with improved 

potential-energy surfaces, should become increasingly use­

ful tools for the experimentalist to help understand the dy­

namics of these energy-transfer processes. 
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APPENDIX A: CONVERGENCE AND ERROR ANALYSIS 

OF TRAJECTORY CALCULATIONS 

In our first calculations3 using the trajectory method 

employed here, it appeared that 100-150 trajectories were 

sufficient for adequate convergence in the mean-square ener­

gy transfer. In the calculations reported here, the number of 

trajectories was considerably extended, and it was found that 

the apparent convergence reported earlier was artifactual. 

This was manifested by carrying out several sets of 150 tra­

jectories, using different initial random number seeds. The 

resulting values of the root-mean-square energy transfer 

were significantly ( > 25%) different, whereas each batch of 

150 trajectories appeared to converge to much better than 

this criterion. Another manifestation of this problem was 

seen when the microcanonical values «aE 2) ~2), for differ­

ent values of E T' were employed using Eq. (19) to estimate 

the canonical one « aE 2) 1/2); a discrepancy of 50% was 

sometimes seen when each of these quantities was calculated 

using only '150 trajectories (note, however, that this discrep­

ancy was not seen in each case; some such calculations ap­

peared to show good agreement and, hence, such a conver­

gence test must be used over a range of, say, E' values). 

It is particularly apparent from the total (aE), that the 

poor convergence is caused by a comparatively small num­

ber of trajectories which show a very large energy transfer. 

The effect of such supercollisions has been seen experimen­
tally,43-47 and has also been reported in other trajectory 

data.48 We have also deduced the explanation for their ap­

pearance.34 Here, however, our concern is their effect on 

convergence. These supercollisions, although rare, contrib­

ute significantly to the final (aE 2) 1/2, as evaluated from a 

large number (1000) of trajectories. That these rare super­

collisions are indeed the cause of the lack of convergence is 

apparent when one carries out the convergence tests stated 

earlier, omitting all trajectories where (aE2) 1/2 exceeds, 

say, about 3 times the average value. One then always ob-

tains satisfactory convergence in only 150 trajectories; how­

ever, this convergence is a value that is significantly less than 

that obtained from a much larger number of trajectories 

without artificial omission of the rare supercollisions. 

Earlier calculations3 showed an apparent convergence 

because supercollisions are rare: Only one or two might be 

found in 150 trajectories. Furthermore, unless these oc­

curred late in the batch, the jump in plots of (aE2) against 

N, the number of trajectories, which indicates their presence 

would not be regarded as significant. 

Clearly then, an improved procedure for obtaining true 

convergence must be found together with some estimate of 

the uncertainties involved, without resorting to running 

enormous numbers of trajectories. We suggest that the fol­

lowing scheme will satisfy these requirements. 

Firstly, it is evident that a larger number of trajectories 

needed to be run and for each of these a value of (aE) was 

calculated. We have found that 600 trajectories is appropri­

ate. Next, a large number (1000) of alternative sets of 600 

trajectories (or more strictly aE; values) are then created by 

random selection, with replacement, from the original set. 

That is, it is possible for a particular trajectory to appear 

more than once in a set. This process is an implementation of 

a bootstrap resampling.49 The required values of (aE2) 
were then calculated out for the individual bootstrap sets 

using the appropriate version of Eq. (14) and also by exam­

ining the intercept of a linear least-squares fit to a plot of 

(aE2) against liN for N> 200: A simple extrapolation to 

an infinite number of trajectories. These values of (1iE 2
) 

were then averaged over all bootstrap sets to give the final 

results. The two different versions of the calculation (aE2) 
for the individual sets gave essentially identical results. 

This method has the added advantage in that it allows 

an evaluation of the uncertainty in the trajectories in terms of 

the average deviation (the average of the absolute value of 

the deviation from the average) or the standard deviation of 

the bootstrap sets. The average deviation is the basis for the 

error bars in the figures. The bootstrap method is based on 

the assumption that the the original trajectories are a good 

approximation of the full distribution so that the generated 

data sets are also good representations. The differences be­

tween data sets can therefore provide some indication of the 

uncertainty in the original set. 

APPENDIX B: BIASED RANDOM-WALK B MODEL 

We present here a summary of the biased random-walk 

model B, which was found in this paper to give a good ap­

proximation, for all except the lightest bath gases, to the 

results of the present trajectory calculations. Detailed deri­
vations can be found in earlier work.36,37,41,42 

The biased random-walk (BRW) model is in two parts. 

The first gives a general description of the probability distri­

bution P( E,E'); this distribution function is characterized 

by a single parameter s. The second part gives a prescription 

for the value of s. 

1. Functional form of P(E,E) 

The essence of the BR W model is to assume that energy 

exchange between the molecule and the bath gas during the 
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collision is random, subject only to the constraint of micro­

scopic reversibility (and, in a more sophisticated version37 

required for considerations of rotational energy transfer,9.~0 

to the constraint of conservation of energy). The distribu­

tion function B(E;.E' ,t) for the probability of the molecule, 

with initial internal energy E', having internal energy Ei at 

time t during the collision, is then given by the Smolu­

chowski equation for diffusion in some external field, 

aB a(zB + aB laEi ) 

-=D , 
at aEi 

(Bl) 

where D is an "energy-space diffusion coefficient" and z is a 

quantity arising from microscopic reversibility. The proba­

bility distribution P(E,E') can then be identified as 

B(E; =.E,E',t = te), where te is the durationofacollision.1t 

is of course recognized that there is no rigorous way of defin­

ing the beginning and end of a collision, but this assumption 

of some sharp beginning and end is inherent in developing 

our approximate model. 

If D and z are assumed independent of t and of E; (a 

restriction which can be lifted in certain cases discussed else­

where42
), then the solution ofEq. (Bl) is 

P(E,E') = (41T~)-1I2exp( - (Z~::_E')2), 

(B2) 

where the value of z is identified from the microscopic rever­

sibility relation for P(E,E'), the analog ofEq. (1S), yielding 

z = _ a In/(E) (B3) 
aE 

and the quantity s, which has the dimensions of energy, is 

given by 

~ = Dtc • (B4) 

Having determined the general functional form for P(E,E'), 

it now remains to determine the parameter s by making 

further assumptions as to the dynamics of the system. 

2. The value of the parameter s 

There are two quantities to be specified to yield a value 

of s: te and D. The former is taken to be the average time for 

traversing the spherically averaged substrate-moleculel 

bath-gas interaction potential Vav (r), starting from a closest 

interaction distance d, 

('0 [ (b )2] - 112 
te = (2f.l) 112 Jd dr Eav - V - Eav 7 . (BS) 

Here f.l is the substrate moleculelbath gas reduced mass 

(f.l- 1 = mS~b~ + mb-; 1, where the terms on the right-hand 

side are the molecular weights of substrate molecule and 

bath gas, respectively). The average energy in model B is 

taken as the average substrate moleculelbath gas transla­

tional energy, 

Eav = 2kBT (B6) 

[recall that this is 2kB T rather than the usual l.SkB T, be­

cause ofthe additional (E;') 112 term in Eq. (7)], bav = jd is 

an average impact parameter and ro is the classical turning 

point [Le., where the quantity in parentheses in Eq. (BS) is 

zero]. Equation (B6) is crucial in the context of comparison 

with the trajectory calculations, since it supposes that one of 

the most important quantities in the model is independent oj 

the initial energy (E'). 

The next step is to specify D. The assumption of ran­

domness yields the result, well known from Brownian mo­

tion, that the diffusion coefficient can be obtained from the 

time integral of the autocorrelation function of the time de­

rivative of the energy during the collision 

D = Lc <E; (1')E; (0) )d1'. (B7) 

Again using the theory of Brownian motion, the time evolu­

tion of E; during a collision is assumed to be given by a 

generalized Langevin equation, 

d
2
E. It . 

--' = - a - K( 1')E; (t - 1')d1' + X(t), 
dt 2 _ 00 

(B8) 

where a is a quantity related to z, X(t) is a randomly fluctu­

ating "force", and K (t) a memory kernel. The next supposi­

tion is that K(t) is exponential, 

K(f) = (A 2 + C 2 )e- W
• (B9) 

The solution ofEq. (B8) then yields 

<Ei (1')Ei (0» = <E:)e- At [cos(Ct) + (AIC) sin(Ct)] 

(BlO) 

[note that the functional form given by Eq. (BlO) is in ac­

cord with direct evaluations37
,41 of the autocorrelation func­

tion from trajectory data] and, hence, 

(BIl) 

The quantities then to be determined are <ED, t e , A, and C. 

C (which determines the rate of oscillations in the autocorre­

lation function) is taken to be given from the highest vibra­

tional frequency, V h , of the substrate molecule (this is usual­

ly a C-H stretch), 

(BI2) 

A, which gives the decay time of the autocorrelation func­

tion, is approximated as that due to a constant average force 

F acting on an average or "local" atom-atom oscillator 

whose energy is Eav = 2kB T, 

A=F--( 
2 )112 

mbEav ' 
(B13) 

where the average mass mb is the reduced mass for a sub­

strate atom, m = m.ubs/natoms (where the substrate mole­

cule contains natoms atoms), and the difference between 

m subs and m is 

1 1 ----+-. 
m.ubs - m m 

(B14) 

[Eq. (B14) corrects an error in Eq. 34(b) of Ref. 41.) The 

average force F is approximated by noting that it is the 

changes at the classical turning point of each local atom­

atom interaction that contribute most to the energy transfer, 

and thus hypothesizing that F is the absolute value of the 

force due to a local atom-atom potential at the turning point, 

J. Chem. Phys., Vol. 96, No.8, 15 April 1992  Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.118 On: Thu, 01

Sep 2016 04:53:42



Clarke et al.: Energy transfer in highly excited molecules 5997 

F= I dVf!(r) I ' 
dr ,= '0 

(BI5) 

where Vf! (r) = V;oe (r) + Eav (bloe/r) 2. Here the average 

"local" impact parameter is assumed to be given by 

bloe = ~aloe (O!2) 1/2, where O!2 is the usual reduced colli­

sion integral and (assuming for simplicity that the interac­

tion is Lennard-Jones) aloe is the "local" Lennard-Jones ra­

dius aloe' i.e., V;oe (r) = 4£loe [(aloe/r) 12 - (aloe /r)6]. The 

parameters aloe and Eloe are taken as the averages of those of 

the substrate atoms (see Table III or Gilbert and Smith I for 

examples). 

The mean-square rate of internal energy change, (E;), 
is estimated as the product of the frequency V h and some 

average energy. This average energy is in turn approximated 

as the average kinetic energy Eav minus an average energy 

change per oscillation period a v with the restriction that a v 
not be less than !Eav. This gives 

. 2 { . }2 
(E i ) = vh[Eav -mmC!aVI,!Eav )] , (BI6) 

where aVis found as follows. Let I1x = (2Eav/k) 112 be the 

distance moved by the oscillator, where k is an appropriate 

force constant. The diminution a V can be approximated as 

I1xd V;oc / dx, evaluated at an average atom-atom distance x. 

The force constant can be approximated as k = 41fmlight vi, 
where mli8ht is the mass of the lightest atom (it is the lightest 

atoms that are responsible for the rapid oscillations). The 

average atom-atom distance x can be approximated as the 

mean of an outer value (x/aloe = ~, again assuming a Len­

nard-Jones local interaction and using the average impact 

parameter as earlier) and an inner one (x/aloe = I). Thus 

the average x is given by x/ a loc =~. One thus has 

E (E)2 a V = _ 34.0 __ Ioe_ _a_v_ • 

aloe Vh mlight 

(BI7) 

Equations (BII )-(BI7), (B5), and (B6) furnish the 

complete expressions required to evaluate the parameter s 

(and hence other energy transfer parameters such as (aE) 

and (aE2) 112). However, these expressions are hardly phy­

sically transparent. It is useful to consider some approxima­

tions, which typically might introduce errors of 50%, but 

which lead to much simpler expressions. First, in Eq. (Btl), 

one notes that usually A 2 « C 2, and so the former term may 

be ignored in the denominator. Next, ignoring the terms in­

volving aVin Eq. (BI7) yields simply 

-2 2tcF k 3/2 
s-~ ~ (Bn . 

1fy mb 

(BI8) 

This simplified and approximate expression does indeed lead 

to physical insight. It states that the energy transfer is domi­

nated by the force at the turning point of a local atom-atom 

repulsion. Order-of-magnitude substitution (using typical 

values tc ~ 10 - 12 s, F~ (5-10) X 10 - liN, the latter derived 

from a Lennard-Jones potential using Eav = 2kB T, etc.) im­

mediately gives a value of sofa bout 102 cm -I at T= 300 K. 

Since the val ues of (!:.E ) and (aE 2) 112 are the same order of 

magnitude as s, this back-of-envelope estimate immediately 

explains the typical size of the energy transferred per colli­

sion observed experimentally with monatomic bath gases. 

This is something no other approximate model is able to do. 

Moreover, as discussed in Sec. IV, the model [in the more 

sophisticated version given by Eqs. (Bll)-(BI7), (B5), 

and (B6)] successfully reproduces experimental results 

quantitatively and, even more important, qualitatively (i.e., 

dependence on bath gas and internal energy). 

Equation (BI8) is very useful for showing why energy 

transfer values have the observed order of magnitude, and in 

developing intuitive understanding of the energy-transfer 

process. However, it should be noted that more subtle effects 

such as trends with bath gas and E' are only properly repro­

duced by Eqs. (Bll)-(BI7), (B5), and (B6) (Sec. V), 

which are not as transparent in interpretation as Eq. (BI8). 

Moreover, the functional dependencies on mass and tem­

perature in Eq. (BI8) are not as simple as at first sight; F 

depends implicitly on the potential, on k B T and on m b • 
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