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ABSTRACT
Models for the steady-state collisional evolution of low eccentricity planetesimal belts identify
debris discs with hot dust at 1 au, such as ηCorvi and HD 69830, as anomalous since collisional
processing should have removed most of the planetesimal mass over their >1 Gyr lifetimes.
This paper looks at the effect of large planetesimal eccentricities (e ! 0.3) on their collisional
lifetime and the amount of mass that can remain at late times M late. Assuming an axisymmetric
planetesimal disc with common pericentre distances and eccentricities e, we find that M late ∝
e−5/3(1 + e)4/3(1 − e)−3. For a scattered disc-like population (i.e. with common pericentre
distances but range of eccentricities), in the absence of dynamical evolution, the mass evolution
at late times would be as if only planetesimals with the largest eccentricity were present in the
disc. Despite the increased remaining mass, higher eccentricities do not increase the amount of
hot emission from the collisional cascade until e > 0.99, partly because most collisions occur
near pericentre, thus increasing the dust blow-out diameter. However, at high eccentricities
(e > 0.97) the blow-out population extending outwards from pericentre may be detectable
above the collisional cascade; higher eccentricities also increase the probability of witnessing
a recent collision. All of the imaging and spectroscopic constraints for ηCorvi can be explained
with a single planetesimal population with pericentre at 0.75 au, apocentre at 150 au and mass
of 5 M⊕; however, the origin of such a high eccentricity population remains challenging. The
mid-infrared excess to HD 69830 can be explained by the ongoing destruction of a debris
belt produced in a recent collision in an eccentric planetesimal belt, but the lack of far-
infrared emission would require small bound grains to be absent from the parent planetesimal
belt, possibly due to sublimation. The model presented here is applicable wherever non-
negligible planetesimal eccentricities are implicated and can be readily incorporated into
N-body simulations.
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1 INTRODUCTION

A natural byproduct of the planet formation process, at least in the
core accretion model, is the formation of planetesimals (Lissauer
1993). Evidence for planetesimals following the protoplanetary disc
phase comes from debris discs, a phenomenon in which main-
sequence stars exhibit an infrared excess which is attributed to the
thermal emission of dust released from planetesimals in collisions
and sublimation (see review in Wyatt 2008). The Solar system has
its own debris disc, the majority of which is in the asteroid and
Kuiper belts.

Typically extrasolar debris discs are observed to lie in a ring at a
single radius (Greaves et al. 2005; Kalas, Graham & Clampin 2005;
Schneider et al. 2009), or where they are not imaged the emission
spectrum is dominated by a single temperature (Chen et al. 2006).
This motivates considering these discs as planetesimal belts that are
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directly analogous to the asteroid and Kuiper belts (Moro-Martı́n
et al. 2008), and the discs where dust is detected at multiple radii
(Wyatt et al. 2005; Absil et al. 2006; Backman et al. 2009; Chen
et al. 2009; Smith et al. 2009a) are usually inferred to have multiple
planetesimal belts. In the absence of other dynamical processes, the
evolution of these belts is expected to be dominated by collisions
which grind away the mass of the largest objects into dust, which
is subsequently removed by radiation pressure (or P-R drag in the
case of the Solar system; Wyatt 2009).

The collisional evolution of the planetesimal belts of the Solar
system has been studied extensively. Collision rates can be derived
accurately between objects moving on given orbits (Öpik 1951;
Wetherill 1967; Greenberg 1982; Bottke et al. 1994; Vedder 1996;
Dell’Oro & Paolicchi 1998), and the steady-state size distribution
of the belts resulting from their collisional evolution is both well un-
derstood analytically (Dohnanyi 1969; Tanaka, Inaba & Nakazawa
1996; O’Brien & Greenberg 2003; Kobayashi & Tanaka 2009) and
one-dimensional numerical models of this evolution that include a
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realistic prescription for the outcome of collisions provide a good
fit to the observed size distributions in the asteroid belt (Davis
et al. 1989; Durda, Greenberg & Jedicke 1998; Bottke et al. 2005;
O’Brien & Greenberg 2005) and Kuiper belt (Davis & Farinella
1997; Stern & Colwell 1997; Kenyon & Bromley 2004).

The approach to considering the collisional evolution of extraso-
lar debris discs is slightly different in that the orbital element and
size distributions of the parent bodies are poorly constrained, rather
it is important to generalize the effect of this evolution on debris
disc observability with respect to parameters such as initial plan-
etesimal belt mass, radius and mean eccentricity. Analytical models
that achieve this were developed by Dominik & Decin (2003) who
considered the evolution of a mono-disperse planetesimal belt (i.e.
with planetesimals all of the same size) that feeds a population of
smaller planetesimals and dust that is observed. This model was
later refined by Wyatt et al. (2007a) to consider the parent planetes-
imals and the smaller objects to form a continuous size distribu-
tion defined by a single power law as expected for the steady-state
case where planetesimal strength is independent of size (Dohnanyi
1969; Tanaka et al. 1996). A size-dependent planetesimal strength
was later included in such models by Löhne, Krivov & Rodmann
(2008) resulting in a more realistic three-phase size distribution
(e.g. O’Brien & Greenberg 2003). Both the Wyatt et al. (2007b)
and Löhne et al. (2008) models were applied to the statistics of
detections of debris discs around A stars and Sun-like stars to show
that these could be explained if the majority of such debris discs
evolve purely due to steady-state collisional evolution.

One important result that came out of the Wyatt et al. (2007a)
study was the concept of a maximum planetesimal belt mass, and
hence a maximum dust luminosity, that can remain for a given radius
belt at a given time, regardless of its initial mass. Although this is no
longer strictly true when a size-dependent strength is used, Löhne
et al. (2008) showed that the initial mass has a relatively modest
effect on the mass remaining at late times and concurred that for
realistic planetesimal belt parameters there is indeed a maximum
planetesimal belt mass and dust luminosity for a given age (see also
Heng & Tremaine 2009). This concept was used by Wyatt et al.
(2007a) to show that 1–2 Gyr systems, such as η Corvi and HD
69830 that have large quantities of hot dust at ∼1 au (Beichman
et al. 2005; Wyatt et al. 2005; Smith, Wyatt & Dent 2008), cannot
be replenishing that dust from planetesimal belts that are coincident
with the dust (i.e. analogous asteroid belts). They concluded that
the parent bodies of the observed dust must have originated at larger
radii (! several au) where collisional processing times would have
been longer. The paper also concluded that the hot dust is transient
and proposed that this might have been scattered in from an outer
belt in an epoch akin to the Late Heavy Bombardment in the Solar
system (see review in Hartmann et al. 2000). There are now several
examples of systems exhibiting hot dust that appears to be transient
by the criterion described by (Wyatt et al. 2007a; e.g. di Folco et al.
2007; Akeson et al. 2009; Moór et al. 2009).

The motivation of this paper is to consider whether it is possible
to circumvent the conclusion that the hot dust in systems such as η
Corvi and HD 69830 must be transient by postulating a population
of parent planetesimals on highly eccentric orbits (e ! 0.3). In
such a model the hot dust would originate from material close to
pericentre, and the parent population could be long-lived because
the planetesimals spend most of their time at apocentre. This would
challenge our traditional view of debris discs as belts of planetes-
imals with modest eccentricity (e < 0.3), which is also implicit
in the models of Wyatt et al. (2007a), where collision velocities
are assumed to be proportional to the Keplerian velocity times a

mean eccentricity for the belt, and in the models of Löhne et al.
(2008), where eccentricities up to 0.35 were considered. However,
it is clear from the Solar system that there are also populations of
planetesimals on highly eccentric orbits (e ! 0.3): the comets scat-
tered in from the Kuiper belt (Duncan 2008), the scattered disc of
the Kuiper belt (which may be primordial in origin and extends all
the way to the Oort cloud; Gomes et al. 2008) and the Near Earth
Asteroids (Bottke et al. 2002). While the contribution of these pop-
ulations to the dust content of the zodiacal cloud may be small,
the cometary contribution could be as much as 90 per cent (Ipatov
et al. 2008; Nesvorný et al. 2009) and may have been significantly
higher in the past, e.g. during the epoch known as the Late Heavy
Bombardment (Gomes et al. 2005; Booth et al. 2009). Further-
more the opposite may be true for planetary systems with different
architectures and formation scenarios, in which eccentric planetes-
imals may dominate. Indeed, planet formation models often pre-
dict a highly eccentric remnant planetesimal population (Edgar &
Artymowicz 2004; Mandell, Raymond & Sigurdsson 2007; Payne
et al. 2009).

Thus, here we develop the model of Wyatt et al. (2007a) to in-
clude interactions between planetesimals of arbitrary eccentricities
and semimajor axes (and inclinations). Although this model does
not (yet) include the more realistic assumption of a size-dependent
planetesimal strength, it benefits by providing simple analytical for-
mulae for collision lifetimes from which the observability of a plan-
etesimal belt as a function of its eccentricity can be readily assessed.
The inclusion of a size-dependent strength would be expected to
give results within an order of magnitude of those presented here
(see e.g. fig. 11 of Löhne et al. 2008), a level of uncertainty that
is commensurate with the uncertainty in estimates for planetesimal
strength at each size for the Solar system and for different assump-
tions about planetesimal composition (see e.g. fig. 1 of Durda et al.
1998; fig. 11 of Leinhardt & Stewart 2009).

In Section 2 we consider the collisional evolution of an axisym-
metric disc of planetesimals, all of which have the same pericentre
and apocentre distances, and show that the concept of a maximum
remaining mass for a given age also applies in this case, but that the
remaining mass is higher for higher eccentricities (if the pericen-
tre distance is kept constant). The approach to calculating collision
rates is similar to that of Bottke et al. (1994) in that we assume
random mean longitudes, arguments of pericentre and longitudes of
the ascending node, but differs in using a particle-in-a-box approach
to calculating the collision rate at a particular point on the orbit then
integrating around the orbit (as opposed to calculating this from
the fraction of the orbits that the planetesimals spend close enough
that they overlap in physical space). Our collision rate at each point
also includes an integration over the size distribution of impactors
that can cause a catastrophic collision, whereas this integration is
performed after calculating the intrinsic collision probability by
Bottke et al. (1994), requiring that method to keep track of the
velocity probability distribution. Our integration is performed us-
ing a Monte Carlo technique, but in the case of mutual collisions
amongst a population with common eccentricities and semimajor
axes, and assuming that collision velocities are dominated by radial
motion (due to eccentricities) rather than vertical motion (due to
inclinations), the collision rate can also be derived analytically.

In Section 3 we consider the more general situation in which
planetesimals can interact with planetesimals with different peri-
centre and apocentre distances and show that our collision rates
agree with those of the most accurate studies available in the litera-
ture. To consider the evolution of a realistic planetesimal belt where
a range of eccentricities and semimajor axes is present, we adopt an
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approach similar to Krivov, Sremcevic & Spahn (2005) and Krivov,
Löhne & Sremcevic (2006) in that we consider the evolution of
the phase-space distribution.1 Here we outline a scheme for evolv-
ing the phase-space distribution numerically and apply this to a
scattered-disc-like population with common pericentre and a range
of apocentre distances. The emission properties of eccentric rings
are considered in Section 4 to assess if the emission spectrum of
real systems can be consistently explained by steady-state process-
ing given the stellar ages. The conclusions are given in Section 5.

2 COLLISIONAL LIFETIME OF SINGLE
PERICENTRE–APOCENTRE POPULATION

Our approach to calculating collision rates is based on the particle-
in-a-box approach, wherein the planetesimals are assumed to be
spread uniformly around an annulus and to have a mean collision
velocity (e.g. equation 28 of Wetherill 1967). The resulting collision
rate is accurate to a factor of 2 when the asteroid belt is considered
as a single annulus (Wetherill 1967). Such techniques have also
been well developed for studies of the accumulation of planetesi-
mals into planets (e.g. Greenberg et al. 1978; Wetherill & Stewart
1989) and it is possible to derive precise collision rates for certain
assumptions about the distributions of planetesimal eccentricities
and inclinations, such as those that follow a Rayleigh distribution
(Greenzweig & Lissauer 1990; Lissauer & Stewart 1993). However,
the derived collision rates are only valid where eccentricities and in-
clinations are '1. Here we consider collision rates between pairs of
orbits that can (but do not necessarily) have significant eccentricity
by splitting up the orbits into annuli, since the density and velocity
distributions in each annulus are well defined and the particle-in-a-
box approach can be used to work out accurate collision rates which
can then be integrated around the orbit; in this respect, our approach
to calculating collision rates is similar to that of Spaute et al. (1991)
which assumed e, I ' 1.

2.1 Local collision rates

Consider a planetesimal of diameter D that is moving through a disc
of planetesimals with a range of sizes, where the size distribution
is defined such that σ̄ (Dim)dDim is the fraction of the total cross-
sectional area in the distribution that is in the size range of Dim

to Dim + dDim. If the local volume density of the cross-sectional
area of planetesimals (of all sizes) is σ v in au2/au3, and the relative
velocity of collisions is vrel in m s−1, then a particle-in-a-box calcu-
lation gives the local rate of impacts from planetesimals in the size
range of Dim to Dim + dDim as Rcol(D,Dim)dDim where

Rcol(D,Dim) = 2.11 × 10−4f (D,Dim)σvvrel (1)

in yr−1, where the constant here (and in later equations) arises from
the choice of units for the various parameters, and

f (D,Dim) = σ̄ (Dim)(1 + D/Dim)2. (2)

Note that due to the high relative velocities in an eccentric disc,
we have ignored gravitational focussing in this collision rate (see
Section 2.4.3).

The majority of the collisions suffered by the planetesimal cause
negligible mass loss. Although the cumulative effect of such cra-
tering collisions can be important (e.g. Kobayashi & Tanaka 2009),

1Note that the Krivov et al. (2005) model is not accurate for high eccen-
tricities because of the way the mean impact velocity was calculated (see
Section 3.2).

here we consider the rate at which the planetesimal suffers colli-
sions that have sufficient energy to cause catastrophic disruption.
A catastrophic collision is defined as the one in which the largest
fragment remaining following the collision (due to both shattering
and subsequent gravitational reaccumulation) has half the mass of
the original planetesimal, and a planetesimal’s dispersal threshold
Q!

D (in J kg−1) is defined such that catastrophic collisions are those
in which the specific incident kinetic energy exceeds Q!

D. Dispersal
thresholds have been ascertained for planetesimals of varying sizes
and composition using a combination of laboratory experiments and
numerical modelling (e.g. Fujiwara et al. 1989; Benz & Asphaug
1999). This definition means that for a given collision velocity, there
is a minimum size of object that the planetesimal must be impacted
by to be catastrophically destroyed. Denoting this as Dtc gives the
minimum relative size of the impactor to target for catastrophic
disruption as Xc = Dtc/D, where

Xc =
(
2Q!

D/v2
rel

)1/3
. (3)

Working out the rate of catastrophic collisions, Rcc, then requires
integrating equation (1) from Dtc up to the largest object in the size
distribution

Rcc(D) = 2.11 × 10−4fcc(D)σvvrel, (4)

where fcc(D) =
∫ Dmax

Dtc(D) f (D, Dim)dDim.

2.2 Evolution of the size distribution

To simplify our model for the evolution of the size distribution, we
make the assumption that the distribution follows a single power
law

n(D) ∝ D2−3qd (5)

between sizes Dmin (in µm) and Dmax (in km), where the planetes-
imals are assumed to be spherical to get σ̄ (D) ∝ D4−3qd . For the
situation where the planetesimal strength (i.e. the dispersal thresh-
old) is independent of size and the size distribution has no maxi-
mum or minimum size, it is well known that the planetesimal belt’s
steady-state solution has a power-law size distribution with qd =
11/6 (Dohnanyi 1969; Tanaka et al. 1996), which we use through-
out this paper. This slope arises because it means that the mass loss
rate in each size bin is both independent of size and balanced by
mass gain from the fragmentation of larger planetesimals. A more
realistic size distribution is truncated both at small sizes (e.g. due to
radiation pressure) and at large sizes (e.g. set by the largest object
which formed in the belt). The truncation of the size distribution at
the small size end causes a ripple in the steady-state size distribu-
tion (Campo-Bagatin et al. 1994). However, the truncation at large
sizes has an important longer term effect, as it means that collisions
eventually deplete the number of large objects, since these are no
longer being replenished by the destruction of yet bigger objects.

In the simple model proposed by Wyatt et al. (2007a), the size
distribution is considered to be in a quasi-steady state thus maintain-
ing the power-law slope of equation (5), but for mass to be lost as
the largest planetesimals are depleted on their catastrophic collision
time-scale. For the size distribution of equation (5), the factor in the
collision rate for the largest planetesimals is

fcc(Dmax) = (10−9Dmin/Dmax)3qd−5G(qd, Xc), (6)

where the assumption that qd = 11/6 results in G(q, Xc) =
0.2X−2.5

c + 0.67X−1.5
c + X−0.5

c − 1.87 (see Wyatt et al. 2007a),
which we further simplify to G(11/6, Xc) ≈ 0.2X−2.5

c which is ac-
curate to 71 per cent for Xc < 0.87 and to 30 per cent for Xc < 0.1.
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This means that the local catastrophic collision rate of the largest
planetesimals is

Rcc(Dmax) ≈ 7.49 × 10−10D0.5
minD

−0.5
max Q!

D
−5/6σvv

8/3
rel . (7)

Since most of the objects which are causing this catastrophic de-
struction are both large and contain most of the mass (but little of the
cross-sectional area), it is more appropriate to rewrite equation (7)
using the following relation

σtot = 12 650Mtotρ
−1D−0.5

min D−0.5
max (8)

in au2, where M tot is the total mass in the distribution in M⊕ and ρ

is the planetesimal density in kg m−3, to find that

Rcc(Dmax) = KMtotσ̄vv
8/3
rel , (9)

where

K = 9.5 × 10−6ρ−1D−1
maxQ

!
D

−5/6 (10)

and σ̄v = σv/σtot is the normalized volume density of the cross-
sectional area in au−3. Later in the paper, we adopt K = 2.1 ×
10−14 as a fiducial value corresponding to ρ = 2700 kg m−3, Dmax =
2000 km and Q!

D = 200 J kg−1, or some other equivalent combina-
tion of these parameters.

We acknowledge that the above prescription gives a highly sim-
plistic view of the evolution of the size distribution. For example,
for an infinite collisional cascade in which Q!

D ∝ Dα the size distri-
bution is still expected to follow a power law, but with a slope that
depends on α (O’Brien & Greenberg 2003; Kobayashi & Tanaka
2009). Since experiments have shown that Q!

D has a different slope
at small sizes (in the strength regime) to that at large sizes (in the
gravity regime), and the primordial planetesimal distribution may
differ from that expected when the distribution reaches a steady
state, a more realistic prescription for the size distribution has three
power laws in different size regimes (Löhne et al. 2008), with nu-
merical simulations showing that the transition from strength to
gravity scaling also causes a further wiggle in the size distribution
(Durda et al. 1998). However, despite the seemingly simplistic view
of the evolution presented here, it was found that its predictions for
the evolution of mass and area in a planetesimal belt are accurate
to within an order of magnitude of more detailed models (see e.g.
fig. 11 of Löhne et al. 2008). Given that there are large uncertain-
ties in the various parameters that make up the constant K (equa-
tion 10) – e.g. estimates for planetesimal strength at a given size
vary by several orders of magnitude both for constraints from the
Solar system’s debris belts and for different assumptions about plan-
etesimal composition (see e.g. fig. 1 of Durda et al. 1998; fig. 11 of
Leinhardt & Stewart 2009) – we consider that this model is sufficient
to assess the impact of planetesimal eccentricity on the observabil-
ity of a debris disc, but note that it is possible to construct a more
realistic (and more complex) prescription for the size distribution if
assumptions about how planetesimal strength varies as a function
of size are made.

2.3 Low eccentricity approximation

Collision rates calculated using particle-in-a-box methods such as
that described above typically use what we will call the low eccen-
tricity approximation, since the assumptions break down when e !
0.3. When applied to a planetesimal belt such as the asteroid belt
(e.g. Wetherill 1967), it is assumed that the planetesimals are spread
uniformly throughout a torus of radius r, width dr and vertical ex-
tent 2Imaxr , so that normalized cross-sectional area density can be

approximated at all locations within the torus by

σ̄v =
(
4πr2drImax

)−1
. (11)

Secondly it is assumed that, although collisions in a realistic plan-
etesimal belt occur at a range of relative velocities, collision rates
can be calculated using a mean relative velocity; this can either
be calculated by considering the observed distribution of orbital
elements (i.e. for the asteroid belt) or where this is not known by
assuming that it is proportional to the Keplerian velocity at r:

vk(r) = 2.98 × 104M0.5
! r−0.5, (12)

in m s−1, where M! is in M* and r in au, through the mean eccen-
tricities and inclinations of planetesimals’ orbits so that

vrel/vk = f (e, I ). (13)

It can be shown that for Rayleigh distributions of eccentricities and
inclinations, the mean relative velocities between planetesimals is
given by f (e, I ) = e

√
1.25 + (I/e)2 (equation 17 of Lissauer &

Stewart 1993). These two assumptions can be fed directly into
equation (9) to get an expression for the collision rate which in
this approximation is the same for the largest planetesimals at all
locations within the torus:

Rcc(Dmax) = 1.9 × 106ρ−1D−1
maxQ

!
D

−5/6Mtot

× r−13/3(dr/r)−1M4/3
! I−1

maxe
8/3, (14)

where it was further assumed that I = e.

2.4 Higher eccentricities

For higher eccentricities (e ! 0.3) the assumptions of Section 2.3
break down, because it is expected that both the cross-sectional
area density and the relative velocity of collisions are significantly
different at different locations within the torus and so vary around
the planetesimals’ orbits. To calculate the collision rate between
planetesimals on eccentric orbits, we use an approach that differs
from that pioneered by Öpik (1951), but show in Section 3.2 that
the two approaches get identical results. The method is based on
the particle-in-a-box approach in that it assumes that equations (4)
and (9) provide good estimates for the planetesimal’s local collision
rates as long as the volume density and relative velocity of collisions
at that location are well known. For the orbital element distributions
we consider, we expect these to be well characterized and to de-
pend only on radius (and latitude), and so the collision rate can
be calculated by integrating the local rate along the planetesimal’s
orbit.

To both work out the local collision rate and perform this integra-
tion, a Monte Carlo approach is used, wherein N planetesimals are
chosen with orbital elements chosen randomly from given ranges.
This section considers a disc of planetesimals, all with pericentre
distances in the range of q − dq/2 to q + dq/2 and apocentre dis-
tances in the range of Q−dQ/2 to Q+dQ/2, where dq and dQ are
small enough to have no effect on the result, but are kept finite for
practical reasons and to allow easy implementation in the model of
Section 3. The disc is assumed to be axisymmetric so that pericentre
orientation & is chosen randomly from the range of 0 to 2π, as is
mean anomaly M. The orbital elements for these N planetesimals
are then converted into two-dimensional positions and velocities.

2.4.1 Two-dimensional approximation

The three-dimensional structure of the disc is accounted for in this
section by assuming that vertical motion has little effect on relative
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velocities which can thus be calculated in two dimensions, but
that the vertical structure does affect the local cross-sectional area
density which is accounted for by assuming a vertical extent of
2rImax. Given the axisymmetric structure of the disc, the collision
rate should be the same for planetesimals at the same radius. Thus,
the disc was split into a number of annuli, N ann,r, logarithmically
spaced in radius between q − dq/2 and Q + dQ/2.

The planetesimal positions were then used to derive σ̄ (r) which
is both the fraction of the total cross-sectional area in the annulus
at r ± dr/2 and the fraction of time spent by planetesimals in
the different annuli as they go around their orbit. Further dividing
by the volume of the annulus, dV2D = 4πr3(dr/r)Imax gives the
normalized volume density σ̄v(r). For each planetesimal, its nearest
neighbour is found and the difference in their velocities used to
estimate the relative velocity of collisions. Taking relative velocities
to the 8/3 power and averaging for each annulus result in 〈v8/3

rel 〉 (r).
The mean collision rate for individual planetesimals of size Dmax in
this population is then calculated using

Rcc(Dmax) = KMtot

∑

r

σ̄ (r)σ̄v(r)
〈
v

8/3
rel

〉
(r), (15)

where
∑

r, and similar notation elsewhere, means to sum over ra-
dius, and the extra σ̄ (r) term (compared with equation 9) accounts
for the fraction of time the planetesimal spends in different annuli.

One further simplification is possible to this collision rate by
expressing this in terms of r̄ = r/a using the fact that σ̄ (r) = σ̄ (r̄)
and that relative velocity is proportional to the Keplerian velocity
at r = a times some function of e and r̄ (see equation 19) so
that

Rcc(Dmax) = KMtotv
8/3
k (a)a−3(4πImax)−1S(e), (16)

S2D(e) =
∑

r̄

r̄−2dr̄−1σ̄ (r̄)2
〈
[vrel/vk(a)]8/3

〉
(r̄), (17)

where S(e) = S2D(e) in equation (16) in the two-dimensional ap-
proximation.

Successful implementation of this routine requires that the num-
ber of planetesimals (N) is sufficiently large for the relative velocity
of encounters to be well approximated by the difference in the ve-
locities with nearest neighbours. The number of annuli (N ann,r) must
also be sufficiently large to resolve the radial variations in the col-
lision rate between pericentre and apocentre. To assess this, Fig. 1
plots S(e) as a function of N for N ann,r = 40, normalized to the value
expected when S(e) is calculated with N = 3 × 105 and N ann,r = 40.
It is evident that the solution converges for N > 105 for e ≤ 0.99.
A similar plot showing the effect of changing the number of radial
bins shows N ann,r = 40 is sufficient for this eccentricity range, with
values as low as 10 also giving results within 5 per cent.

2.4.2 Analytical collision rates

The two-dimensional collision rates can also be derived analytically
for a population with a common semimajor axis and eccentricity,
as the various factors in equation (17) are the consequence of the 2-
body Keplerian motion. The distribution of the cross-sectional area
is determined by the rate of radial motion σ̄ (r̄)/dr̄ = 2a/(tperdr/dt),
where tper is the orbital period, giving

σ̄/(dū) = −π−1ū−2[ū2(e2 − 1) + 2ū − 1]−0.5, (18)

where ū = a/r . The relative velocity of collisions at each radius has
a bimodal distribution with half of the collisions occurring at near
zero velocity (for planetesimals moving in the same direction) and

Figure 1. The factor S2D(e) from equation (17) determined numerically
using different numbers of planetesimals N for e = 0.1, 0.6, 0.9, 0.96 and
0.99, compared with that determined using N = 3 × 105. For each value
of N, the calculation was repeated 10 times to determine the 1σ uncertainty
in the value derived in this way, and this is shown by the error bars. For all
eccentricities below 0.99, the calculation has converged for N > 3 × 105.
The number of radial bins was set at 40 for this calculation, which similar
plots show is sufficient for this eccentricity range.

the remainder at a velocity given by
√

2 − 2 cosφ times the orbital
velocity at that radius, where φ is the angle between the velocity
vectors for planetesimals moving in different directions (e.g. those
returning to pericentre colliding with those that have just passed
pericentre), giving

vrel/vk(a) = 2[ū2(e2 − 1) + 2ū − 1]0.5, (19)

noting that 〈[vrel/vk(a)]8/3〉(r̄) is 0.5 times the expression above to
the 8/3 power. Putting these expressions into equation (17) and
integrating over the range ū = (1 − e)−1 to (1 + e)−1 give the
relevant factor in the equation for the collision rate as

S2D = 0.54e5/3(1 − e2)−4/3. (20)

2.4.3 Where do collisions occur, and at what velocity?

The first question we can answer with this model is where most of
the collisions occur. This can be worked out from the distributions
plotted in Fig. 2. Although there is also a small density enhance-
ment at pericentre, planetesimals spend the majority of their time
at apocentre (Fig. 2a; see e.g. fig. 4b of Sykes 1990). Nevertheless,
the apocentric contribution to the overall collision rate is diminished
due to both the r−2 term in equation (17) and the higher relative
velocities at lower radii (Fig. 2b), where it should be noted that the
factor in equation (17) is relative to the Keplerian velocity at r =
a and so is Fig. 2b multiplied by

√
a/r then to the 8/3 power. The

net result is that the majority of the collisions occur close to peri-
centre for all except the lowest eccentricities (Fig. 2c). The Monte
Carlo simulation provides results in excellent agreement with the
analytical calculation (Section 2.4.2) from which it can be found
that 90 per cent of collisions occur at r/a < (1 − e2)/(1 − 0.72e).

As noted in Section 2.4.2, the distribution of collision velocities
in this population is not uniform. Except for planetesimals that are
close to pericentre or apocentre, relative velocities in each annulus
have a bimodal distribution, as for planetesimals that have recently
passed pericentre there is a low relative velocity population that has
also recently passed pericentre and a high relative velocity popu-
lation that is returning from apocentre to pericentre (as noted in
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Figure 2. Radial distribution of the collision rate for mutual collisions
amongst a population of planetesimals with common pericentre and apoc-
entre distances. The plots indicate the contributions of different factors in
the collision rate equation (17) as a function of radius for a population
with eccentricities of 0.1, 0.6, 0.9, 0.96, 0.99. The results of both the Monte
Carlo simulation and the analytical calculation are plotted showing excellent
agreement. (a) The distribution of cross-sectional area density, σ̄ (r̄)/dr̄; the
integral under the curve for each population is 1. (b) The average collision
velocities of planetesimals at different radii relative to the local Keplerian
velocity [〈[vrel/vk(r)]8/3〉(r̄)]3/8. (c) The fraction of S2D(e) that comes from
radii below r′.

Section 2.4.2). Thus, the relative velocity of the high relative veloc-
ity population is approximately 23/8 times that shown in Fig. 2(b)
and remains within the range of 1–2.5 times the local Keplerian
velocity between apocentre and pericentre for e = 0.6–0.99. This
means that, for a population with pericentre at 1 au, collisions occur
at velocities of 10–100 km s−1 and that relatively small planetesi-
mals can cause destructive collisions (equation 3).

Figure 3. Dependence of collision lifetime on eccentricity. For a disc in
which mass and semimajor axis are fixed, collision lifetime ∝1/S(e). The
function S(e) is shown in (a), both calculated in the 2D approximation
[S2D(e), solid line] and with the full 3D calculation [S3D(e), dotted line], as
well as the analytical calculation of the 2D approximation (dashed line which
lies under the solid line). For a disc in which mass and pericentre distance
are fixed, collision lifetimes vary ∝[(1 − e)13/3S(e)]−1. This function is
shown in (b) with the same origin for the different linestyles as (a).

2.4.4 Collision rate and remaining mass versus eccentricity

Fig. 3(a) shows how S2D(e) varies with eccentricity, where the re-
sults of the Monte Carlo simulation closely follow the predictions
of the analytical calculation in equation (20). The factor S(e) can be
readily used to assess how changing the eccentricity of a planetes-
imal population affects its collisional lifetime using equation (16).
It can also be used to consider how eccentricity affects the amount
of disc mass that can remain at late times. For the assumptions
about the evolution of the size distribution discussed in Section 2.2,
the evolution of planetesimal belt mass from its initial value of
M tot0 can be calculated from the collisional rate using the equa-
tion dMtot/dt = −MtotRcc(Dmax), which can be solved to give the
mass at time t in years to be

Mtot/Mtot0 = [1 + (Rcc(Dmax)Mtot0/Mtot)t]−1. (21)

This means that at late times, the remaining mass converges to a
value of (Wyatt et al. 2007a)

Mlate = t−1[Mtot/Rcc(Dmax)], (22)

= (4πImax/K)
[
a3/v

8/3
k (a)

]
[S(e)t]−1, (23)

where late means t ! 1/Rcc(Dmax).
Here we illustrate this in two ways. First, we consider a disc in

which eccentricity is varied, but the semimajor axis and disc mass
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are kept constant. The collisional lifetime of such a disc is ∝1/S(e),
meaning that increasing eccentricity results in a shorter collisional
lifetime. The mass remaining at late times is also ∝1/S(e), which
from Fig. 3 decreases rapidly with eccentricity, because of the in-
creased collision rate of material at a pericentre which tends to
smaller radii.

However, if pericentre location and disc mass are kept fixed as
eccentricity is increased, collisional lifetime instead varies ∝[(1 −
e)13/3S(e)]−1. Rewriting equation (23) gives

Mlate = [1.47 × 10−11Imax/K]M−4/3
! q13/3t−1[(1 − e)13/3S(e)]−1,

(24)

so that the mass remaining is also ∝[(1 − e)13/3S(e)]−1, and this
function is plotted in Fig. 3(b). Thus, both collision lifetime and
mass remaining increase as eccentricity is increased ∝e−5/3(1 +
e)4/3(1 − e)−3. Primarily, this is because planetesimals spend a
larger fraction of their orbit at large radii resulting in both a longer
time between collisions and a lower density of colliders in the
region where collisions occur near pericentre; as illustrated in Fig. 2,
increasing eccentricities also result in an enhanced collision velocity
at pericentre which offsets this to some extent, but there is no
significant change in collision velocities once eccentricities have
increased beyond 0.4.

2.4.5 Comparison with low eccentricity approximation

The collision rate in the low eccentricity approximation (Sec-
tion 2.3) can also be expressed in the form of equation (16), where
a = r and S(e) = S lowe(e):

Slowe = 3.0(dr/r)−1e8/3. (25)

This could be plotted in Fig. 3, e.g. assuming that the width of the
ring is dr/r = 2e, which would show agreement within an order
of magnitude for e = 0.1–0.98. However, this comparison is less
instructive than noting that the masses (and fractional luminosities)
remaining at late times in Wyatt et al. (2007a) were derived using
e = 0.05 and dr/r = 0.5 for which S lowe = 2 × 10−3 and [(1 −
e)13/3S lowe(e)]−1 = 610. Thus to increase the amount of mass that
can remain at late times above the values in that paper, assuming that
the radius inferred for the population corresponds to the location
of the pericentre of an eccentric ring, would require eccentricities
higher than 0.78, with a factor of >100 increase for e > 0.96. This
illustrates the point that collisional lifetimes (and remaining mass)
can be increased both by increasing eccentricity and by spreading
material over a broader range of radii.

2.4.6 Three-dimensional calculation

For the three-dimensional calculation, it is further assumed that the
longitudes of ascending node ) are random and that inclinations
are randomly chosen from the range of 0 to Imax, and these were
used to calculate three-dimensional positions and velocities for the
planetesimals. Since the collision rate is then also a function of
latitude, the disc was further split in latitude into N ann,φ bins at
φ ± dφ/2. The planetesimal positions were used to derive σ̄ (r,φ),
which is the fraction of the total cross-sectional area in the annulus at
r ± dr/2 and φ± dφ/2. Dividing this by the volume of the annulus,
dV3D = 2πr3(dr/r) cosφdφ, gives the normalized volume density
σ̄v(r,φ). The mean velocities are also a function of φ, 〈v8/3

rel 〉 (r ,
φ). This results in a collision rate given by equation (16) in which

S(e) = S3D(e, Imax), where

S3D(e, Imax) =
∑

r̄

r̄−2dr̄−1
∑

φ

(2Imax/ cosφdφ)

× σ̄ (r̄ ,φ)2
〈
[vrel/vk(a)]8/3

〉
(r̄ ,φ). (26)

We can now answer how important it is to account for the three-
dimensional structure of the disc. For Imax = 0.05 and using N ann,φ =
9, it was found that S3D(e, Imax)/S2D(e) has a constant value of
1.43 ± 0.04 for eccentricities in the range of 0.1–0.98 (see Fig. 3).
We attribute this offset to the fact that an even distribution of inclina-
tions between 0 and Imax results in a higher density in the mid-plane
(to achieve a uniform density, we could have used the inclination
distribution function given by equation 2.20 of Krivov et al. 2005).
Thus, the two-dimensional results give a good approximation of the
collision rates in a three-dimensional disc, as long as the parameter
Imax used in this calculation is interpreted as there being a uniform
distribution of inclinations between 0 and 1.43Imax. However, for
low eccentricities e ' Imax, where collision velocities are not due
only to radial and azimuthal motion, but also latitudinal motion, a
full three-dimensional calculation would be necessary.

3 EVOLUTION SCHEME FOR ECCENTRIC
PLANETESIMAL SWARM

The single pericentre and apocentre distance population of Sec-
tion 2 was necessarily an idealized case given that the eccentric
populations in the Solar system have a range of eccentricities. This
section describes how the modelling method of Section 2 can be
generalized for such a situation, both to calculate the collision rates
between populations with different eccentricities and semimajor
axes (Section 3.1) and to use these rates to model the collisional
evolution of a planetesimal belt with a distribution of orbital el-
ements (Section 3.3). The approach to modelling the collisional
evolution is similar to the kinetic model employed by Krivov et al.
(2005) in that we consider the evolution of the phase-space distri-
bution, which here is just two dimensional and defined by M tot(q,
Q).

3.1 Collisions between two single pericentre–apocentre
populations

The parameter space is divided into cells of size q ± dq/2 and
Q ± dQ/2, hereafter simply referred to as cell (q, Q), where M tot(q,
Q) is the total mass in that cell. Cells are logarithmically spaced.
For now it is assumed that the distribution of inclinations is the
same for each cell, and other angles are randomized as before, and
so where needed the spatial distribution from material in each cell
(σ̄ (r)(q,Q) and σ̄v(r)(q,Q)) can be ascertained in one of the ways
described in Section 2.4.

The scheme described in Section 2 can be used in a similar manner
to work out the rate of catastrophic impacts on to planetesimals of
size Dmax in cell (q1, Q1) from planetesimals in cell (q2, Q2):

Rcc(Dmax, q1, Q1; q2, Q2) =Mtot(q2, Q2)R̄cc(Dmax, q1, Q1; q2,Q2).

(27)
For the two-dimensional approximation, the normalized collision
rate is

R̄cc(Dmax, q1, Q1; q2,Q2) = K
∑

r

σ̄ (r)(q1, Q1)

× σ̄v(r)(q2, Q2)
〈
v

8/3
rel[1,2]

〉
(r), (28)
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where 〈v8/3
rel[1,2]〉 (r) is the mean of the relative velocities to the 8/3

power between planetesimals in the different cells at that radius
(which can e.g. be worked out using the Monte Carlo method of
Section 2.4).

The computation of R̄cc(Dmax, q1,Q1; q2, Q2) can be
made more efficient noting that R̄cc(Dmax, q1, Q1; q2, Q2) =
R̄cc(Dmax, q2, Q2; q1, Q1) and that some combinations of q1, Q1,
q2, Q2 are either unphysical or non-overlapping, as well as by only
including in the Monte Carlo calculation planetesimals where the
orbits from the two cells overlap. A similar simplification to that
used to derive equations (16) and (17) can also be employed so that
the collision rate is given by

R̄cc(Dmax, q1, Q1; q2, Q2) = (K/2.1 × 10−14)M4/3
! q

−13/3
1

× I−1
maxT (e1, e2, q2/q1). (29)

Here on we plot the function T (e1, e2, q2/q1) defined in this way
rather than R̄cc, noting that the situation described in Section 2.4
corresponds to T (e, e, 1) which must therefore be equal to 1.43 ×
10−3(1 − e)13/3S2D(e).

3.2 Comparison with previous collision rate calculations

The collision rates described in Section 3.1 use the two-dimensional
approximation, but can be readily modified for a three-dimensional
calculation in a manner similar to Section 2.4.6. It is also possible
to modify the assumptions to choose an inclination distribution that
spans a narrow range of Imin to Imax. In this case, the collision rates
we derive should be comparable with those of other authors who
consider interactions between planetesimals on two orbits, each of
which is defined by a semimajor axis, eccentricity and inclination
(with other angles assumed to be randomly distributed).

To carry out such a comparison, we also need to modify the cal-
culation to derive the more typically quoted quantity of the intrinsic
collision probability, Pi, which is the probability of impact per unit
time divided by τ 2 where τ = (D + Dim)/2 (Wetherill 1967). Our
method included the τ 2 factor from the outset (see equation 2) and
integrated the collision rate over the size distribution capable of
causing catastrophic impacts, whereas this was accounted for at
a later stage by other methods. Using our notation, the intrinsic
probability in 10−18 km−2 yr−1 is given by

Pi = 0.030
∑

r,φ

σ̄ (r,φ)(q1, Q1)σ̄v(r,φ)(q2, Q2)〈vrel[1,2]〉(r,φ),

(30)

where the constant includes both a conversion between units and
an extra factor π (since our calculation considers a cross-sectional
area rather than τ 2). In Table 1, we compare the intrinsic colli-
sion probabilities we find using the Monte Carlo approach with
200 000 planetesimals in each population with those of Dell’Oro &
Paolicchi (1998) and Bottke & Greenberg (1993) showing excellent
agreement between the methods.

As noted by Bottke et al. (1994) (their point I.2), to utilize in-
trinsic collision probabilities requires knowledge of the velocity
probability distribution and it is not sufficient to assume a single
mean relative velocity of collisions. This is automatically included
in our method, since we keep track of the velocities encountered
by a planetesimal at each location and these are used to work out
the amount of the cross-sectional area of impactors at that location
that are able to cause a catastrophic collision. To illustrate that our
Monte Carlo method computes an accurate velocity probability dis-
tribution, here we reproduce fig. 1 of Bottke et al. (1994) (see also
fig. 1 of Dell’Oro & Paolicchi 1998) in our Fig. 4.

Table 1. Intrinsic collision probabilities in
10−18 km−2 yr−1 between the Astrid and objects
from table II of Dell’Oro & Paolicchi (1998) for
comparison of our results with those of that paper
and with those of Bottke & Greenberg (1993).

Object BG93 DP98 This paper

1948 EA 3.16 3.19 3.17
Apollo 3.58 3.58 3.58
Adonis 4.51 4.52 4.35
1950 DA 3.69 3.76 3.76
Encke 3.36 3.42 3.43
Brorsen 0.93 0.94 0.94
Grigg-Mellish 0.022 0.022 0.022
Temple-Tuttle 0.62 0.62 0.60
Neujmin 0.94 0.93 0.93
Schaumasse 1.13 1.15 1.15
Pons Brooks 0.041 0.041 0.041

Figure 4. Contribution of different relative velocities to the intrinsic colli-
sion probability for two planetesimals, one with orbital elements a = 3.42 au,
e = 0.578, I = 0.435 rad and the other with a = 1.59 au, e = 0.056, I =
0.466 rad for comparison with fig. 1 of Bottke et al. (1994) and fig. 1 of
Dell’Oro & Paolicchi (1998).

Similarly, we find that we can reproduce figs 5 and 6 of Krivov
et al. (2005) (not shown here) noting that their + and v̄imp are given
by

+(a1, e1, a2, e2) =
∑

r,φ

σ̄ (r,φ)(q1,Q1)σ̄v(r,φ)(q2, Q2), (31)

v̄imp =
∑

r,φ

σ̄ (r,φ)(q1,Q1)σ̄v(r,φ)(q2, Q2)

× 〈vrel[1,2]〉(r,φ)/+(a1, e1, a2, e2), (32)

in our notation, although we should again point out that such a mean
collision velocity must be used with care as a range of velocities
contribute to the collision rate (see Fig. 4).

In summary we conclude that, for the same assumptions, our
method for calculating collision rates produces results that are in
agreement with the most accurate methods available in the literature
and that although this method was derived with the intention of
studying high eccentricity orbits, it is also applicable regardless of
the magnitude of the eccentricity.

3.3 Implementation of evolution

The factor R̄cc(Dmax, q1, Q1; q2, Q2) (equation 28) depends only
on the way in which the parameter space is divided up. Thus, an
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approach was implemented in which this factor was worked out
ahead of time and then used to work out the catastrophic collision
rate for the largest planetesimals in cell (q, Q) from planetesimals
in all other cells:

Rcc(Dmax, q,Q) =
∑

q2

∑

Q2

Mtot(q2, Q2)R̄cc(Dmax, q, Q; q2, Q2).

(33)

Using the assumptions about the evolution of the size distribution
described in Section 2.2, this collision rate can then be used to work
out the mass which would be removed in a time-step dt , and the
mass distribution stepped forwards in time:

Mtot(q,Q, t + dt) = Mtot(q, Q, t)[1 − dt ∗ Rcc(Dmax, q, Q)].

(34)

The time-step dt is chosen so that some fraction, say 0.1 per cent,
of the mass is removed from the most rapidly evolving cell in that
time-step, i.e.

dt = 10−3/max[Rcc(Dmax, q,Q)]. (35)

3.4 Application to scattered disc-like distribution

One of the simplest examples of this evolution is its application
to a scattered disc-like distribution wherein planetesimals have a
common pericentre distance, q, but a range of apocentre distances.
Such a distribution might arise from planetesimals scattered by a
planet on a circular orbit at a radius just inside q.

Fig. 5(a) shows the function T (e1, e2, 1) for a population with
pericentres in the range (1 ± 0.1)q1 and apocentres in 30 logarith-
mically spaced bins in the range (1 − 50)q1. This illustrates how
for most planetesimals in the population, their collision rate per
unit mass of the colliding population is highest for collisions with
the lowest eccentricity population. This is because the mass of a
lower eccentricity colliding population is concentrated in a smaller
volume resulting in higher densities and so higher collision rates.
However, for the low eccentricity population it is noticeable that
T (0, e2, 1) peaks at eccentricities of around 0.5 and that the col-
lision rate per unit mass of the colliding population is lower with
planetesimals on circular orbits. This is because the higher density
of the low eccentricity colliders is offset by the lower relative veloc-
ities. The reduction in relative velocities as eccentricity is decreased
was already noted in Fig. 2(b), and its impact on collision rates is
evident in Fig. 3(b).

To illustrate how such a population evolves through mutual colli-
sions, we assume that the mass in orbits in the range of Q to Q+dQ

starts off ∝ Q−αdQ with a total mass of Mdisc0 distributed among
apocentres in the range Q/q = 1–50. This assumption results in
an initial distribution of mass surface density that falls off approxi-
mately as ,m ∝ r−α−1, because most of the mass is concentrated at
apocentre. Fig. 5(b) shows the evolution of mass surface density for
α = 1, 2, 3, where equation (29) was used to normalize both radius
and mass surface density, meaning that the times plotted correspond
to real times of

t = (2.1 × 10−14/K)M−4/3
! (Imax/0.05)q13/3

1 M−1
disct

′ yr (36)

where Mdisc is in M⊕ and q1 in au.
The α = 1 evolution shows how the distribution tends to a flat

distribution in mass surface density. This is because the low ec-
centricity population is rapidly depleted, with mass becoming ever
more concentrated in larger apocentre population that evolves rela-
tively slowly; note from Fig. 2(a) that a high eccentricity population

Figure 5. Collisional evolution of a scattered disc-like distribution. (a)
The function T (e1, e2, 1) that through equation (29) defines the rate of
collisions for a planetesimal in population 1 interacting with planetesimals in
population 2. (b) Evolution of the mass surface density distribution assuming
an initial distribution of apocentres n(Q) ∝ Q−α , where α = 1, 2, 3 is shown
with solid, dotted and dashed lines, respectively. The resulting evolution
scales with q1 and Mdisc0 as per the axis labels, and four lines are shown for
each initial apocentre distribution, at times of t ′ = 0, 104, 106, 108, where
real time in years is related to t′ through equation (36). (c) Evolution of the
total disc mass for the distributions plotted in (b), including also α = −1
and 5.

would have a fairly flat mass surface density distribution. The α = 3
evolution differs from that of α = 1 in that a bimodal population is
formed with a low eccentricity population causing the peak in sur-
face density at low r and a high eccentricity population causing the
flat surface density distribution. Because the mass starts off concen-
trated in the low eccentricity population, its evolution is unaffected
by the material with large apocentres, and so it evolves due to mu-
tual collisions. However, populations with higher eccentricities are
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rapidly depleted in collisions with the low eccentricity population,
with the highest eccentricities persisting the longest. Eventually, the
low eccentricity population is depleted in mutual collisions so that
the mass is concentrated in the highest eccentricities even for α ≥ 3.

The evolution of the total disc mass is shown in Fig. 5(c). From
this, it can be seen that the evolution is slower for shallower apoc-
entre distributions. All distributions also tend to a mass evolution
that falls off ∝1/t , meaning that the amount of mass remaining at
late times is independent of both initial mass and α. The amount of
the remaining mass lies between two values as follows. If the mass
is in the lowest eccentricities (steep distributions at young ages),
then that mass is given by that expected from a low eccentricity
population at r = q. However, if the mass is in the highest eccen-
tricities (all distributions at late ages), then that mass is given by the
mass expected for the highest eccentricities in the distribution; since
emax = 0.96 in this simulation because Q/q ≤ 50, this figure is in
agreement with the expectations of Figs 3(b) and 5(a). Typically, the
evolution switches from having the mass in the lowest eccentricity
population to the highest eccentricity population.

Application of this can be readily seen for the case of the scattered
disc in the Kuiper belt. For a pericentre at 30 au and an initial mass
of 0.1 M⊕, we see that the evolutionary time-scale is very long, since
real time is 25 × 106t ′ (for K = 2.1 × 10−14 and Imax = 0.05), so that
4.5 Gyr corresponds to t ′ = 200, meaning that collisional mass loss
would be expected to be very small over the age of the Solar system,
regardless of α. Had the scattered disc had 100 times more mass in
the epoch prior to the Late Heavy Bombardment, real time would be
0.25 × 106t ′, so that 800 Myr corresponds to t ′ = 3200, and again
we would not expect collisional evolution to be strong. However,
it must also be noted that we have assumed here that planetesimals
remain in their (q, Q) cell and are only removed by collisions. In the
scattered disc dynamical processes, such as scattering by Neptune,
can occur on time-scales that are shorter than collisional mass loss,
and so must be taken into account (e.g. Volk & Malhotra 2008),
although the 2003 EL61 collisional family in the Kuiper belt may
provide evidence of the role of collisions in the evolution of the
scattered disc (Levison et al. 2008).

Another application would be to a putative scattered disc around
HD 69830. For a pericentre at 1 au, just outside the outermost
(known) planet (Lovis et al. 2006), we see that for an initial mass
of 1 M⊕ the real time is the same as t′ (for K = 2.1 × 10−14 and
Imax = 0.05), and so after ∼2 Gyr of evolution the maximum mass
that can remain is independent of both initial mass and α, although
in accordance with the earlier discussion it does depend on the max-
imum eccentricity in the distribution. Thus we find that 10−3 M⊕
can remain at 2 Gyr if apocentres extend out to 50 au, with more
mass remaining should higher apocentres be present (or lower val-
ues of K be applicable). It is worth noting from Fig. 5(b), however,
that although we have increased the mass that passes through 1 au,
this does not necessarily increase the mass surface density at 1 au.

4 EMISSION PROPERTIES OF ECCENTRIC
PLANETESIMAL SWARMS

It was shown in Sections 2 and 3 how increasing planetesimal eccen-
tricity leads to longer collisional lifetimes and higher disc masses
at late times in spite of collisional processing. Here we consider
how the emission spectrum of a planetesimal swarm changes as
its eccentricity is increased and how such swarms might appear in
observations of dust around nearby stars.

4.1 Emission spectrum

The emission spectrum from planetesimal belts comprised of dust
with absorption (and emission) efficiencies Qabs(λ, D) can be cal-
culated using

Fν = 2.35 × 10−11d−2σtot

∑

r

σ̄ (r)
∫ Dmax

Dmin

Qabs(λ,D)

×Bν(λ, T (D, r))σ̄ (D)dD,
(37)

T (D, r) = [〈Qabs(D, λ)〉T!/〈Qabs(D, λ)〉T (D,r)]1/4Tbb(r), (38)

Tbb(r) = 278.3L0.25
! r−0.5, (39)

where F ν is in Jy, d is the distance in pc, σ tot is in au2 and scales
with total mass according to equation (8) for the assumptions of
this paper about the size distribution, σ̄ (D)dD is the fraction of the
total cross-sectional area in the size range of D to D + dD and is
∝ D−1.5dD for the distribution assumed here, Dmin is the minimum
size in the distribution that is commonly assumed to be the size
at which dust is blown out of the system by radiation pressure,
Dmax is the size of the largest object, although for computational
purposes this can be set at ∼1 m as larger objects contribute little
to the emission spectrum (e.g. fig. 5 of Wyatt & Dent 2002), Bν is
in Jy sr−1, 〈Qabs〉T means Qabs averaged over a blackbody spectrum
of temperature T and L! is in L*.

Later in the paper, we will use emission efficiencies calculated
using Mie theory (or another suitable approximation) along with
the optical constants of different materials combined using a mixing
theory in the manner described elsewhere (Li & Greenberg 1998;
Wyatt & Dent 2002). The grain model we will use assumes a core-
mantle composed of silicates and organic refractory material, in the
ratio qSi, which is incorporated into the grain with a porosity p; some
fraction qH2O of the vacuum is filled with water ice. However, for
heuristic purposes this section starts by assuming that dust created in
the planetesimal belt both absorbs and emits light like a blackbody
so that Qabs = 1.

For the disc comprised of planetesimals with common pericen-
tre and apocentre distances discussed in Section 2, Fig. 6(a) shows
the emission spectrum for a range of eccentricities for a star with
L! = 1 L*, d = 10 pc, and for a planetesimal belt with q = 1 au
and σ tot = 10−3 au2. Although the absolute level of emission and
range of wavelengths are dependent on these stellar and planetesi-
mal belt properties, the shape of the emission spectrum would not
be (e.g. wavelengths would scale ∝L−0.25

! q0.5). This shows that
increasing eccentricity leads both to emission over a wider range
of wavelengths, due to the larger range of radii and so temperatures
in the disc, and to a decrease in the level of emission for a given
amount of the cross-sectional area.

To work out the emission spectra for these discs at late times,
equation (24) was used to get the mass and equation (8) to get
the cross-sectional area (see Fig. 6b). The minimum size in the
distribution was assumed to be the size at which dust is blown out
by radiation pressure. Because the majority of collisions occur at
pericentre (see Fig. 2c), the blow-out size is that for which radiation
pressure β = 0.5(1 − e), so that for blackbody grains

Dbl = 0.8(2700/ρ)(L!/M!)/(1 − e), (40)

in µm. The increase in the blow-out size for high eccentricities is
significant since it truncates the collisional cascade, thus removing
much of its cross-sectional area. Fig. 6(b) shows that the effect
of increasing eccentricity of a planetesimal belt above 0.1 while
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Figure 6. Emission spectra of discs comprised of material all with the same
pericentres, but with eccentricities of 0.1, 0.6, 0.9, 0.96, 0.99 shown with
different linestyles. (a) Spectra for 10−3 au2 of material with blackbody
emission properties and with pericentres at 1 au around a 1 L* star at 10 pc.
(b) As for (a), but the total cross-sectional area has been scaled to the
maximum mass that can remain after 1 Gyr of processing (assuming K =
2.1 × 10−14 and Imax = 0.05), also taking into account the change in
blow-out radius as eccentricity increases. (c) As for (b), but assuming that
the cross-sectional area is in 1 µm grains of a mixture of silicate–organic
refractory material.

keeping its pericentre distance constant is first to reduce the amount
of emission present at late times at all wavelengths (compare the e =
0.1 and e = 0.6 lines). However, for high enough eccentricities the
emission is increased above the e = 0.1 values, with the transition
occurring at eccentricities of ∼0.99 for short-wavelength emission
and ∼0.7 for long-wavelength emission.

Although the quantitative conclusions about the absolute level
of emission would be different if realistic particles had been as-
sumed, these qualitative conclusions about how the emission spec-

trum changes as eccentricity is changed would not, since a change in
particle properties would affect the emission from all discs in a sim-
ilar manner. To illustrate this, Fig. 6(c) shows the emission spectra
assuming that the total cross-sectional area is all in 1 µm particles
of silicate–organic refractory material (noting that this is not meant
to be a physical model). The emission efficiencies of such parti-
cles drop rapidly at longer wavelengths (apart from close to the 10
and 18 µm silicate features) dramatically reducing the far-infrared
emission, even though the qualitative comparison of the behaviour
as eccentricity is changed is unaffected (i.e. the eccentricity required
for an increase in short- or long-wavelength emission is the same).

4.2 Consequences of increased remaining mass

While increasing the eccentricity does not have the effect of increas-
ing the warm disc emission, it does increase the remaining mass,
and that has two important implications.

4.2.1 Blow-out population

The first is that the collisional cascade is losing mass through radi-
ation pressure blow-out at a rate M tot/t cc(Dmax), which is M late/t age

once the largest objects reach collisional equilibrium. This means
that a higher remaining mass means a higher mass loss rate. Typi-
cally, the short lifetime of blow-out grains means that they contribute
little to the total cross-sectional area present in the disc. However,
for an eccentric ring in which the majority of the mass loss occurs
at pericentre, the surface density of the blow-out grains can exceed
that of the collisional cascade.

The following arguments give an estimate of the surface bright-
ness of these grains. To simplify this calculation, it is assumed that
all collisions occur at pericentre where dust of size Dloss (in µm) is
released at the orbital velocity of vloss = 2π

√
M!(1 + e)/q au yr−1.

Further assuming that this dust has β = 1 means that the dust
undergoes no acceleration so that

ṙloss = vloss

√
1 − (q/r)2. (41)

The mass loss rate, when converted to a rate of loss of the cross-
sectional area as dust of size Dloss and divided by the cross-sectional
area present in the collisional cascade, gives

σ̇loss/σtotcc = 3.16 × 104D0.5
bl D0.5

maxD
−1
losst

−1
age, (42)

which results in a distribution of the cross-sectional area for r > q

of

dσloss/σtotcc/dr̄ = 4500L0.5
! M−1

! D0.5
maxD

−1
losst

−1
ageq

1.5

× (1 + e)−0.5(1 − e)−1.5[1 − (q/r)2]−0.5. (43)

This can be compared with the distribution of the cross-sectional
area in the collisional cascade (Fig. 2a), which the analytical re-
sults (equation 18) show has a minimum at r̄ = 1 − e2 of
σ̄/dr̄ = π−1

√
e−2 − 1. Thus the blow-out population becomes

more important relative to the collisional cascade as eccentricity
increases, and is also more dominant in populations with larger
pericentre distances. Specifically, the cross-sectional area in the
blow-out population can be higher than that of the collisional cas-
cade at some radius when

e > 1 − 160L0.25
! M−0.5

! q0.75D0.25
max D−0.5

loss t−0.5
age (44)

for these assumptions. For the M! =L! = q = 1 system at 1 Gyr con-
sidered earlier, further assuming that Dmax = 2000 km and Dloss =
1 µm, this means that the blow-out population becomes important
when e > 0.97, noting that Dloss ' Dbl = 30 µm in this example.
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4.2.2 Cometary sublimation

The conclusions of Section 4.2.1 are independent of the mechanism
producing the blow-out grains, which need not be through colli-
sions. Rather the large remaining mass might provide a reservoir
that, through collisions, replenishes smaller planetesimals that re-
lease dust through comet-like sublimation. In such a case, the above
calculation may overestimate the amount of the cross-sectional area
in the collisional cascade meaning that the cascade could be ex-
tremely faint, because sublimation time-scales (which are ∝ D if
the mass loss rate is proportional to the surface area) can be shorter
than collision time-scales (which from equation 4 are ∝ D0.5)
for the small particles in the cascade, thus reducing their number
so that Dmin should be significantly higher than Dbl in equation (8).
However, this would only be the case if sublimation processes just
produce non-sublimating (e.g. silicate) grains that are below the
blow-out limit. Large non-sublimating grains produced above the
blow-out limit would increase the cross-sectional area in the col-
lisional cascade. Since Solar system comets are seen to release
significant quantities of non-icy mm–cm-sized grains (e.g. Reach
et al. 2009), we consider that further work is required before the
impact of sublimation on the steady-state size distribution of a colli-
sional cascade is fully understood, but note that sublimation remains
a viable mechanism for feeding the blow-out population discussed
in Section 4.2.1.

4.2.3 Frequency of massive collisions

To estimate the frequency of massive collisions for a system evolv-
ing in collisional equilibrium, for which the collisional lifetime of
the largest objects is the age of the system, we rewrite equation (24)
of Wyatt et al. (2007a) to find that the collision rate for objects larger
than size Dpb is given by

Rcc(D > Dpb) = (Mlate/6Mpb)t−1
age, (45)

where a distribution with q = 11/6 was assumed. This means that,
for a given parent body size, a higher eccentricity ring results in a
higher remaining mass and so more frequent collisions.

However, a higher eccentricity also means that larger parent bod-
ies are required to reproduce the same fractional luminosity. To
estimate the minimum mass of a parent body, Dpb, that would be
required to be destroyed to reproduce an observed fractional lumi-
nosity of f obs, it is assumed (optimistically) that a collision turns
all of an object’s mass into particles of size Dbl which are then
redistributed around a ring with the same eccentricity as the parent
object (i.e. ignoring the increase in eccentricity due to radiation
pressure). The fractional luminosity from an eccentric ring can be
calculated by integrating equation (18) to be

fobs = σtot/
(

4πq2(1 − e)−2
√

1 − e2
)

. (46)

Thus to reproduce f obs requires a parent body mass

Mpb = 3.14 × 10−8ρDblfobsq
2(1 − e)−2(1 − e2)0.5 (47)

in M⊕, noting that Dbl is also a function of eccentricity. This readily
gives the maximum rate of collisions that could reproduce a given
fractional luminosity in a single event; e.g. if a mass of 1 M⊕ remains
at 1 Gyr in a belt with a pericentre of 1 au and eccentricity of 0.99,
then events that might potentially produce f obs = 10−3 in 1 µm dust
occur 1.4 times per Myr.

On the other hand, a higher eccentricity means that the dust is not
depleted in collisions so rapidly. The collision rate of same sized

particles can be worked out using equation (4) with f cc(D) = 4
(Wyatt et al. 1999). Using the analytical approximation of Sec-
tion 2.4.2, we find that

Rcc(Dbl) = 1.3σtotM
0.5
! q−3.5(1 − e)3.5(1 − e2)−0.5I−1

max, (48)

which is true regardless of the particle size (as long as such particles
contain the majority of σ tot) and gives a collision rate to reproduce
f obs of 16f obsM

0.5
obsI

−1
max a−1.5.

Combining these results in the same manner as Wyatt et al.
(2007a), to estimate the fraction of time that collisions are expected
to result in dust above a given level of f obs, we find that

P (f > fobs) = 0.33 × 106Mlatet
−1
agef

−2
obs M

−0.5
! Imax

× ρ−1D−1
bl q−0.5(1 + e)−0.5. (49)

For example, if a mass of 1 M⊕ remains at 1 Gyr in a belt with a peri-
centre of 1 au and eccentricity of 0.99, then events that might poten-
tially produce f obs = 10−3 in 1 µm dust of a density of 2700 kg m−3

with inclinations of up to 0.05 would occur 0.4 per cent of the time.
This fraction is insensitive to eccentricity except that a high value
is required to permit 1 M⊕ of material to remain so late despite col-
lisional processing, and would also affect the validity of assuming
that the dust is 1 µm in size.

4.3 Application to η Corvi

The 1.3 Gyr F2V star η Corvi at 18.2 pc exhibits excess emission
from circumstellar dust at wavelengths from a few µm up to sub-
mm. The sub-mm emission has been resolved in imaging at both 450
and 850 µm with Submillimetre Common-User Bolometer Array
(SCUBA), and modelling shows that this data set can be explained
by emission from a ring of 150 ± 20 au radius inclined at 45◦ ±
25◦ to our line of sight (Wyatt et al. 2005). The region is seen to
be centrally cleared, but the excess mid-infrared emission cannot
originate in the 150 au ring and has been resolved to lie somewhere
in the 0.16–3.0 au region (Smith et al. 2008; Smith, Wyatt & Haniff
2009b) with a temperature inferred from the emission spectrum
that places it at ∼1.7 au. It remains debatable whether there is any
emission in the 3–100 au region (Chen et al. 2006; Smith et al.
2008). Regardless the warm emission at <3 au is expected to be
transient if confined to a ring at that location (Wyatt et al. 2007a),
as discussed in Section 1.

Here we consider the possibility that both the imaging and spec-
troscopic constraints can be explained by a model with a single
planetesimal population. Fig. 7 shows the emission spectrum of a
model with planetesimals of a density of 1480 kg m−3 with peri-
centres at 0.75 au, apocentres at 150 au (i.e. eccentricity of 0.99)
and inclinations of up to 0.05, after 1.3 Gyr of evolution. The plan-
etesimal collisional parameters are assumed to be Dmax = 2000 km
with strength Q!

D = 3 × 105 J kg−1, leading to the conclusion that
5 M⊕ of material remains at the current epoch. Dust is created in
the collisional cascade down to a size of Dbl = 480 µm before
removal by radiation pressure, and the emission properties of the
grains were calculated assuming a core-mantle composed of 30 per
cent amorphous silicate and 70 per cent organic refractory material
with a porosity of 0.4 and water ice filling 20 per cent of the gaps;
the emission spectrum of the collisional cascade is shown with a
dashed line, and is largely insensitive to the assumed composition as
bound grains act like black bodies. The population of grains that are
being removed by radiation pressure is assumed to be all of 5 µm in
diameter, and their emission properties were calculated assuming
the same grain properties as the collisional cascade; their emission
spectrum is shown with a dotted line.
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Figure 7. Emission spectrum of η Corvi modelled using a single planetes-
imal population with pericentres at 0.75 au and apocentres at 150 au (see
text for details). The dashed, dotted and solid lines correspond to the contri-
bution from the collisional cascade, blow-out grains and the total emission
spectrum, respectively. The diagonal solid line is the stellar spectrum, the
grey dotted line is the Spitzer’s Infrared Spectrograph (IRS) spectrum after
the photospheric contribution has been subtracted, and asterisks and squares
are the IRAS and Spitzer photometric fluxes, respectively, after photosphere
subtraction (and colour correction where necessary).

The model provides an excellent fit to the observed shape of the
emission spectrum, noting that it is not our intention to provide an
exact fit to the emission features for which a more detailed compo-
sitional model would be required; that is, the composition should
not be regarded to be constrained in this model, but in providing a fit
to the spectrum it does allow the physical parameters of the model
to be self-consistently derived. In the model, the mid-infrared emis-
sion is dominated by grains being removed by radiation pressure,
which contribute 91 and 84 per cent of the 11.6 and 18.7 µm emis-
sions, respectively. Such emission is centrally concentrated (e.g. 68
and 51 per cent of the emission in these wavebands come from
inside 3.5 au). To assess whether the model is consistent with avail-
able mid-infrared imaging constraints, we first show that the model
fluxes in an aperture of a radius of 0.5 arcsec (285 and 263 mJy at
these wavebands) are consistent with those observed (330 ± 184
and 309 ± 79 mJy; Smith et al. 2008). In the model, the aperture
used to estimate the background level, 0.5–1.0 arcsec, does include
disc emission (28 and 60 mJy in these wavebands), but at a level con-
sistent with its non-detection in Smith et al. (2008) for which >150
and >140 mJy would have been necessary for a >3σ detection.
To consider whether there is an aperture which could confidently
detect the mid-infrared emission from such a model, we plotted the
model fluxes in fig. 7 of Smith et al. (2008), noting that the central
concentration of the mid-infrared emission means that we only need
to consider the emission close to the pericentre. Thus, we approx-
imated the mid-infrared emission from the model as originating in
two consecutive annuli, each with a uniform surface brightness and
spanning radii of 3 ± 3 and 9 ± 3 au; from the model, we find that the
inner annulus contains 262 and 239 mJy and the outer annulus con-
tains 27 and 53 mJy at these wavebands. Both annuli are below the
threshold at which extended emission should have been detected,
consistent with the observations, but the outer annulus is at a level
where extension would be detected in observations twice as deep at
both wavebands. The lack of material <0.75 au is consistent with
visibilities measured by the Mid-Infrared Interferometric Instru-
ment (MIDI) for the Very Large Telescope Interferometer (VLTI)
that suggest that the emission is completely resolved, although the
model would predict small changes in visibility with baseline for a
40 mas ring that might be detectable in more sensitive observations

(see fig. 9 of Smith et al. 2009b). The low emission efficiencies of
the blow-out population mean that it contributes little to the longer
wavelength fluxes, and the sub-mm emission is dominated by the
collisional cascade. The majority of the sub-mm emission come
from material near apocentre (92 per cent of the 450 µm emis-
sion come from 100–150 au) and so we expect the model to fit the
sub-mm imaging constraints (Wyatt et al. 2005).

Although we have devised a model that explains the observations,
this does not necessarily make it plausible. Nevertheless, most of
the model parameters are reasonable. The planetesimal strength re-
quired is above that assumed for the population models of Wyatt
et al. (2007b), but is within the range of that expected for 2000 km
planetesimals (Benz & Asphaug 1999). The assumption that blow-
out particles are 100 times smaller than the blow-out limit could in-
dicate that larger unbound particles readily disintegrate into smaller
fragments (noting that they are produced at collisional velocities of
up to 80 km s−1), but may perhaps be circumvented with a different
choice of composition. It is also worth noting that this model pre-
dicts that we have a 1:2300 chance of witnessing a collision capable
of reproducing the observed fractional luminosity of 0.5 × 10−3;
that is, it is possible that the mid-infrared emission is enhanced due
to stochastic collisions.

The origin of the planetesimals is, however, a concern. High ec-
centricity orbits normally imply scattering by a planet, with the
apocentre or pericentre coinciding with the orbit of the planet. It
is unclear why both pericentre and apocentre distances would be
fixed here. One possibility is that a primordial population that in-
cluded a wider range of eccentricities and semimajor axes has been
depleted by collisional processing leaving just the high eccentricity
remnant (see Section 3.4). The primordial population could then
be an extended scattered disc created by inward planet migration
(Payne et al. 2009), with a planet lying just interior to the pericentre,
and the apocentre corresponding to the highest eccentricity attained
in the population. In this case, the current mass is a small fraction of
the primordial mass; for example for n(Q) ∝ Q−α where α = 1 or 2
we find the primordial mass to be 7 or 200 times (respectively) the
5 M⊕ inferred at present (assuming the observed apocentres are in
the range of 90–210 au), and so an initially flat apocentre distribu-
tion is required for a realistic starting population. Alternatively this
population could have been scattered in by a more distant planet
which was orbiting close to the apocentre, although in this scenario
the lack of material with pericentres in the 3–100 au range is a prob-
lem, as collisional processing preferentially removes material with
the lowest pericentres in a distribution with a common apocentre.2

Certainly, the dynamics of creating populations of extremely high
eccentricity must be explored before we can be confident that this
is a viable model. It is also important that the dynamics that creates
the high planetesimal eccentricities, such as scattering by a planet,
does not significantly deplete the planetesimal population on longer
time-scales. This could be achieved if the planetesimals become
detached from the planet, perhaps because that planet migrates or
is scattered to put it out of reach of the planetesimals.

Regardless of the origin of the planetesimals, it seems that the
0.75–150 au region would have to be clear of planets for this model
to be viable. Current limits from radial velocity studies only rule out
companions down to 2.1 Jupiter mass out to 0.48 au (Lagrange et al.
2009). As noted above, another testable prediction of the model is
that there should be thermal emission from the 3–100 au region
which may be detectable as extended emission.

2Collision rates for material with common apocentres, Q1, would be given
by equation (29) replacing q

−13/3
1 with Q

−13/3
1 [(1 + e1)/(1 − e1)]13/3.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 402, 657–672



670 M. C. Wyatt et al.

4.4 Application to HD 69830

The 2 Gyr K0V star HD 69830 at 12.6 pc exhibits excess emis-
sion from circumstellar dust at mid-infrared wavelengths, includ-
ing significant emission features (Beichman et al. 2005). No ex-
cess emission is seen at 70 µm (Trilling et al. 2008) or at 850 µm
(Sheret, Dent & Wyatt 2004; Matthews, Kalas & Wyatt 2007).
Three Neptune-mass planets are known within 0.7 au (Lovis et al.
2006) that are thought to have migrated in from 3–8 au (Alibert
et al. 2006). Mid-infrared studies constrain the dust to 0.05–2.4 au
(Smith et al. 2009b), consistent with the temperature inferred from
the emission spectrum that places the dust at 1 au (Lisse et al. 2007);
at such a location, the dust is inferred to be transient (Wyatt et al.
2007a).

The lack of cold emission rules out several models for the ori-
gin of the dust, including the eccentric planetesimal belt model as
applied to η Corvi above. Although an eccentric ring alleviates con-
cerns about the longevity of the disc feeding the dust at 1 au, the
hot dust is always accompanied by cold emission from collisional
cascade material at apocentre (Fig. 6b). One way around this is to
postulate that there is little cross-sectional area in the collisional
cascade, e.g. because small grains have been removed by sublima-
tion (Section 4.2.2). Fig. 8 shows a model which fits the emission
spectrum by only including the blow-out component comprised of
solid grains of 1 µm in diameter composed of one-third amorphous
silicate and two-third organic refractory material; note again that the
model is used only to fit the overall shape of the spectrum and does
not claim the level of detail required to constrain the composition.
Dust in this model extends out from the 1.2 au pericentre of a ring
with an eccentricity of 0.99; the spectrum is insensitive to eccen-
tricity, however, this does have a moderate impact on the inferred
mass loss rate through equation (41). As well as nearly fitting the
70 µm upper limit, this model also meets the mid-infrared imaging
constraints, since it predicts the 18.7 µm flux within a 0.5 arcsec
aperture to be 412 mJy (compared with 377 ± 46 mJy found by
Smith et al. 2009b), with just 30 mJy coming from the 2–4 arcsec
region. As for Section 4.3 the model was analysed assuming the
emission to originate in two annuli at 2 ± 2 and 6 ± 2 au with disc

Figure 8. Emission spectrum of HD 69830 modelled using a single plan-
etesimal population with pericentres at 1.2 au and an eccentricity of 0.99
(see text for details). The solid line shows the contribution from blow-out
grains; for this to be a viable model the emission from the collisional cas-
cade component has been suppressed, e.g. due to the sublimation of its
smallest grains. The diagonal solid line is the stellar spectrum, the grey
dotted line is the IRS spectrum after the photospheric contribution has been
subtracted, and asterisks and squares are the IRAS and Spitzer photomet-
ric fluxes, respectively, after photosphere subtraction (and colour correction
where necessary).

fluxes of 121 and 29 mJy, respectively. Comparison with fig. 7 of
Smith et al. (2009b) shows that both annuli are below the thresh-
old at which extended emission should have been detected in these
observations, but that extension would have been detected from the
outer annulus in observations twice as deep, a conclusion which
holds regardless of the origin of the dust as long as it is assumed to
be in the process of radiation pressure blow-out. Without material
<1.2 au, the model emission would be expected to be completely
resolved on MIDI baselines in line with observations (Smith et al.
2009b).

This model gives a mass loss rate of 0.08 M⊕ Myr−1, which is
higher than the 5−60 × 10−6 M⊕ Myr−1 quoted in Beichman et al.
(2005) and Wyatt et al. (2007a), since those papers assumed mass
loss due to collisions rather than radiation pressure. Assuming that
this mass loss comes from a parent population in collisional equi-
librium, this implies a parent population of 160 M⊕, similar to the
90–900 M⊕ calculated in Beichman et al. (2005) based on an ex-
trapolation from the Hale-Bopp mass loss rates. It seems that such a
high remaining mass is prohibitive after 2 Gyr of processing, since
this can only be achieved for e > 0.998 for the fiducial value of
K = 2 × 10−14 or e > 0.993 for the slightly higher K-value used
for η Corvi modelling (Section 4.3). Even if it was possible to im-
plant such a large mass at high eccentricities, there would still be
the concern raised in Section 4.2.2 about whether comet sublima-
tion would also produce bound non-sublimating grains that would
increase the cold emission from the collisional cascade. Thus, a
steady-state explanation is not favoured.

An alternative model invokes a recent collision as the origin of
the dust. In an eccentric ring, such events can occur frequently
enough for this model to be viable (Section 4.2.3). A planetesimal
belt mass of 1 M⊕ results in P (f > 0.2 × 10−3) = 0.06 assuming
that collisions result in 1 µm grains. Since the observed grains also
seem to be small enough to be blown out by radiation pressure, the
probability of witnessing such an event is in fact lower than that
derived in Section 4.2.3 and quoted above: a short grain lifetime ei-
ther implies that the collision occurred very recently (i.e. within the
blow-out time-scale of several years) or that the dust is the product
of ongoing secondary collisions or sublimation amongst the debris
of an older more massive (and hence rarer) collision. The persis-
tence of 24 µm excess over 24 yr time-scales between the epochs
of Infrared Astronomical Satellite (IRAS) and Spitzer (Lisse et al.
2007) rules out a very recent origin. This leaves ongoing secondary
collisions or sublimation in a debris belt which would have to con-
tain >2 × 10−6 M⊕ to sustain a mass loss of 0.08 M⊕ Myr−1 over
24 years. Equation (45) shows that such debris belts might only be
recreated in collisions every 24 000 years for a planetesimal belt
containing 1 M⊕ at 2 Gyr. In other words, we have a 1:1000 chance
of witnessing the aftermath of such an event, a conclusion which
holds even if the mass loss had been assumed to persist over longer
time-scales (since the increased debris belt mass required would
have been recreated in collisions correspondingly less frequently).
Since 1 M⊕ is not an implausible remnant mass for an eccentric
planetesimal belt (see Section 3.4), we consider secondary colli-
sions to be a possible explanation for HD 69830, even if some
process like sublimation must be invoked to deplete small grains
and render the collisional cascade of the parent planetesimal belt
non-detectable.

5 CONCLUSION

This paper considers collisional processes in a population of plan-
etesimals with high eccentricities. Collision rates are derived both
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analytically and using Monte Carlo simulations. It was found that
eccentricity has a significant effect on collision rates and that the
amount of mass that can remain in a planetesimal belt at late times
can be significantly increased.

The emission properties of eccentric planetesimal belts were pre-
sented, and it was found that radiation pressure causes eccentric
rings to be deficient in small particles. Thus, despite the increased
mass of a high eccentricity planetesimal belt at late times, extreme
eccentricities of >0.99 are required to enhance the emission level
above that expected from a low eccentricity belt. However, the high
mass loss rate of extreme eccentricity planetesimal belts can cause
the wind of blow-out particles that extends outwards from the peri-
centre to be detectable. The high frequency of massive collisions
in such belts can also make it likely for us to be witnessing dust
produced in such collisions.

Application of this model to the η Corvi debris disc showed that
all available observations can be explained by an extreme eccentric-
ity (e = 0.99) planetesimal belt of a mass of 5 M⊕, circumventing
the conclusion that the hot dust at 1.7 au must be transient. Despite
this success, the dynamical challenges of creating such a massive
extreme eccentricity population would need to be overcome before
this model can be considered viable. Observational tests are sug-
gested including the presence of resolvable emission (and absence
of planets) in the 3–100 au region. Application to HD 69830 is com-
plicated by the lack of far-infrared emission. It may be possible to
explain this non-detection by the removal of small dust from the
collisional cascade by sublimation, in which case the mid-infrared
emission may be plausibly explained by the ongoing destruction of
a debris belt produced in a recent collision in an eccentric planetes-
imal belt.

Although the majority of the discussion focuses on single eccen-
tricity populations, the results can also be applied to populations
with a range of semimajor axes and eccentricities. This was demon-
strated by application to scattered disc-like populations where it
was found that, in the absence of other dynamical processes, rapid
collisional erosion of the low eccentricity populations would be
expected to result in a single high eccentricity population. Since
the known high eccentricity planetesimal populations are produced
in interactions with planets, and so may be continuing to undergo
dynamical evolution on time-scales shorter than collisional time-
scales, it is noted that dynamical interactions may continue to play
a defining role in the long-term evolution of high eccentricity pop-
ulations and that the collisional evolution scheme presented here
could be readily incorporated into N-body simulations of planet–
planetesimal interactions to derive simultaneously the collisional
and dynamical evolution of a scattered planetesimal population. A
further extension of the model would include a prescription for
planetesimal strength as a function of size which would lead to
a departure from the single phase size distribution assumed here
(e.g. Löhne et al. 2008).

The results of this study would be applicable wherever non-
negligible planetesimal eccentricities are found. Thus, other poten-
tial applications include the Solar system’s comet and Near Earth
Asteroid populations, particularly in the early phases when these
populations would have been more massive and hence collisional
processing more important (Booth et al. 2009), the outcome of
planet formation models (e.g. Payne et al. 2009), and systems where
eccentric planetesimals may be implicated such as the origin of dust
around white dwarfs (Farihi, Jura & Zuckerman 2009) and of the
hottest dust population of debris discs such as Vega (Absil et al.
2006).
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Moór A. et al., 2009, ApJ, 700, L25
Moro-Martı́n A., Wyatt M. C., Malhotra R., Trilling D. E., 2008, in Barucci

M. A., Boehnhardt H., Cruikshank D. P., Morbidelli A., eds, The Solar
System Beyond Neptune. Univ. Arizona Press, Tucson, p. 465
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