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Collisional Radiative Models in Plasmas

B. vaN DER S1ypE, J. J. A. M. vAN pER MULLEN and D. C. ScErAM
Physics Department, Eindhoven University of Technology, Eindhoven,
The Netherlands

2110 ANOuvulliaiiiis,

Abstract

A review on collisional-radiative models in plasmas is given. Work of Fuismmoro, BIBERMAN
et al, DrawiN and SaTox has been an important guide to compose this review. Ionizing,
recombining and equilibrium plasmas are dealt with. Attention has been paid to the classification
of CR models in phases, such as Corona phase, excitation saturation phase (ESP), Capture radiative
cascade (CRC) phase and partial local thermal equilibrium (PLTE). A numerical model applied
to the argon neutral system and an analytical model applied to the ESP and PLTE for ionizing

plasmas are treated in more detail.

-

1, Introduetion

In plasma physics, the distribution functions of atoms and ions over their excited
_states are studied in the framework of collisional-radiative models (CR models). In
these models, the densities of the various excited states of a specific atom or ion are
expressed as functions of a number of relevant parameters, such as the ground state
density 7, and the ion density n;, the electron temperature 7', and -density n, The
name of the models indicates that the densities of the excited states are determined
by collisional and radiative processes and that transport phenomena can be neglected

for these species (see section 2).

The study of CR models may have one or more of the following aims:

1) The determination of the distribution function of the excited states as a function
of the parameters ng, n;, 7, T4, already mentioned but also of the transition pro-
babilities 4 and escape factors A for spontaneous emission and rate coefficients €
for collisional excitation.

2) The study of elementary processes such as collisional excitation and de-excitation,
ionization and recombination, and of radiative processes, by comparing the model
results with experimental data.

3) Diagnostic aims such as the determination of the n, or 7',-value from the measure-
ment of the intensities of spectral lines. These intensites are a good measure for
the densities of excited states. Such a determination requires a good knowledge
of CR models, s1nee excited state densities are dependent on a great number of
parameters.

4) Model studies of discharges, light sources such as gaslasers and impurity concen-
trations in high temperature plasmas. Particularly for light sources, a CR model
is essential for a reliable computation of the light production as a function of various

parameters.
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The field of CR models has been developed by e.g. Barrs, KinasToN, MCWHIRTER
and HEARN [1, 2], GrieM [3], DRAWIN et al [4, 5], BIBERMAN et al [6, 7], Fusmmoro et
al [8—10] and SEATON [34]. With the references cited in those papers, a great deal of
the work on CR models is covered. These contributions have been focussed for the greater
part on hydrogen and hydrogenlike ion systems, since in that case theoretical or semi-
empirical formulae for collisional transitions from e.g. Drawin [5], JoENsoN [11],
Vriens and SmEeETS [12] or vaAN DE REE [27] are available. The expressions can be
compared with experimental results to check the reliability of the model proposed. But
also more complex systems as He [13], Ar [14] and Ar* [15] and several others have
been studied, and are of great practical interest. A great difficulty in these cases is
that there are hardly available cross-sections specific to these elements. Contributions
specific to multiple ionized particles are from Jacoss and DAvis [28] and to recombining
systems from FURURANE et al [29] and SEATON [34]. '

This contribution can be considered as a general review on Collisional-Radiative
Models, mainly based on work of Fusmuoro, BIBERMAN et al., DRAWIN, SEATON and

our own group.

2. Limitations in the Applicability of the CR Models Described

We limit ouzselves in this paper on several points:

1) We exclude from the description the presence of molecular species, such as mole-
cular ions, and the processes, responsible for their creation and destruction such as
associative ionization and dissociative recombination. These species are present .
(=109,) in gaseous discharge conditions with very low ionization degrees « < 10~®and
atom densities 7, = 102 m~3 [7b, 30]. Theinclusion of molecular species into a CR
model should require important changes in the design of these models, since e.g. vibra-
tional and rotational states may be important.

2) We assume a Maxwellian velocity distribution for the electrons. The heavy par-
ticle temperatures 7; and 7, may be different fromT',. Three types of processes
compete with each other with respect to the Maxwellization of the electrons: 1)
elastic collisions between electrons, resulting in aMaxwellization time vz~mng%;
2) the energy loss due to inelastic collisions like excitation and ionization in & time
Tin ~ N5l - my! at ionization degrees for which excitations and ionjzation in the
neutral atomic system are dominant; 3) elastic collisions between electrons and
atoms resulting in a Druyvesteyn distribution in a time 75 ~ n, 0™t -

In Ref [7b] and [31] it is estimated that usually the condition for a Maxwell
distribution is fulfilled for & == 10~ — 1078, so that a great class of strongly, me-
dium, and weakly ionized plasmas are covered and only typical gaseous discharges
do not satisfy this condition. Special cases with rapid electrons, e.g. from plasma-

wall sheaths, require a specific description, since only a small amount of them may

dominate the excitation and ionization processes.

3) We limit ourselves to electron (e) excitations and ionization processes and exclude
‘from the description heavy particles (a) collisions leading to excitation and ioni-
zation. These processes can also be heglected for large enough ionization degrees.
For the same temperatures, the excitation and ionization rates for heavy particles
are about a factor 103 smaller, since the velocity v, &~ 10~2 v, and the cross-sections
are assumed to be a factor 10 smaller than for electronic collisions. This leads to a
dominance for e-a inelastic processes for « = 1073, In Ref [7b] several references

on this topic can be found. ;
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A special case in this respect is charge exchange in two or multispecies plasmas.
This process has large cross-sections and is in many cases responsible for excitation,
ionization transfer from one to another component of the plasma [32].

By the limitations outlined above we treat CR models with electronic (de)-exci-
tation, ionization and recombination processes and with radiative processes as spon-
taneous emission, absorption and, possibly stimulated emission.

3. The Basie Set-up of CR Models

The basic set-up of numerical CR models is the formation of a number of coupled
differential equations for the densities of excited states:

;97&(10) Vo [ On(p)
——@t—+l7-(n(p)wp)—( P ,)” : (1)

The same type of equation holds for 7 and ;. The changes from collisienal (¢) and
radiative (r) processes are taken into account in the term at the right hand side. The
first term is the time derivative and the second term is the transport term by diffusion
and convection.

A typical situation for excited states is that the contribution of populating and de-
populating c.r. processes separately is very large with respect to.the on(p)/o¢ and
V.(n(p)w,) term. Therefore, the basic set-up mentioned, is simplified in the so-called
quasi-steady-state-solution (QSSS) by assuming that

onip) | -
") < 0; V(nlp) ) = 0 @

for excited states. Then the egs. (1) can be replaced by a number of coupled linear equa~
tions [2]:

on(p)
= 0. /o
( E )M | 3).

For the ground state 0 and the ion ground state ¢, the full eq. (1) applies. For these
states, the gain and loss parts of the ¢, 7 term are in many cases not of the same mag-

nitude. This results in a significant transport term and/or a rate of change of the ground

state densities. In fact, we consider the egs. (1), (3) in separate time domains, a long
time domain for ground states and a short time domain for excited states (multiple
time scale). In the short time domain, there is no relevant time dependent behaviour
and no relevant transport for excited states, whereas for the long time domain the
densities n(p) are dependent on the slowly varying n, and »;. Since the coupling from
the ground states to the excited states is slow, but that from excited states to other
excited states and from excited states to ground states is much more rapid, the de-
scription is correct [2]. For low n,-values, the assumption of QSSS can be violated by
metastables, since the rapid time behaviour of spontaneous emission lacks in this case.
. The set of linear equations for p = 1 to N can be solved numerically in terms of the

densities 7, and #;. One can either solve these ground state densities with the aid of eq.
- (1), including the transport and time dependent terms, or one can introduce them
- as independent input parameters. To be sure in that case whether a physically con-
- sistent set of parameters is chosen, one has to measure these parameters. -
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For analytical models, the QSSS can also be followed. In this case one tries to set up
one general equation, valid for every excited state, by assuming (de)excitation rates
and radiative processes which are analytical functions of e.g. the excitation energy or,
which is equivalent, the principal quantum number (pgn)p. It is clear that significant
deviations from a mean, predictable behaviour falls out of the scope of analytical
models so that e.g. inversion of state densities cannot be found for ionizing plasmas.

As a consequence of the QSSS, it is convenient to describe a density n(p) as a function
of the ground state densities n, and n; according to -

n(®) = r(p) Q) - ms + 14p) - Q¥p) o @
This can aiso be written as
(p) = 1°(p) - n¥(p) + rY(p) - n¥(p). _ ().

in which #5(p) and n®(p) are the Saha density and Boltzmann density, respectively
The so-called collisional-radiative coefficients 7(p) and 7X(p) give the deviations with
respect to n5(p) and nB(p); @5(p) and QF(p) are factors containing a part of the Saha
equation and the Boltzmann equation according to

Qp) = 16 - g g - g(p) - (W2 wm kTR exp (Bip/kT,), -~ (6a)

and

Q¥(p) = 9(p)go~* exp—(E op/kT,), . ' (6b)

with Ew = the ionization energy for p and B = the excitation energy for p; g, = 2
is the statistical weight for electrons, g; for ions and g, for the ground state and g(p)
for p. The first term of eq. (5) indicates the density n(p) in the case that n, = 0 and
the second terms indicates that density for #; = 0. It is convenient to describe the be-
haviour of CR models in terms of #(p) and r(p). These coefficients are functions of
ne and T, but also of the escape factors A(p), which in their turn are dependent on the
plasmadimensions R, the heavy particle temperature T, or T'; and of the ground state
density itself. For large kR, values it is-important that Stark broademng is taken into
account. Then also the electron density 7, influences the value of 4; k, &, is the so-called

optical depth. -

4. Mainlines of the Description of CR Models

4.1.0. Classification according to plasma state

For a proper understanding of the interpretation of CR models, it is very 1mportant
-to distinguish between 3 kinds of plasmas: : :

1. Tonizing plasmas;

2.. Recombining plasmas;

3. Equilibrium plasmas.

This classification is based on the fact whether a plasma is in ionization-recombination
equilibrum or not. The term equilibrium plasmas in this context does not mean plasmas
in some kind of thermal equilibrium, but merely the absence of a nett ionization or
recombination. It may be clear that for i 1on1z1ng and recombining plasmas, there is such

a nett activity.
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4.1.1. JTonizing plasmas

Tonizing plasmas are characterized by an ionization term 8, crM My and a recombination
term xcgnen; which are related to each other according to

Scnneno — KopNehy > 0 . (7)

Scr is the ionization rate coefficient and gy the recombination rate coefficient, as

defined by BaTgs et al [1]. ’ )
Jonizing plasmas may in a steady state, with dny/ot = &n;/0t = 0. In that case,

inward transport of ground state atoms and outward transport of ion ground state

particles are needed to compensate for the net ionization activity. .

Ionizing plasmas may be also time dependent, &/dt == 0, with or without diffusion of

ground state particles. The density #, is given by

- Onelot = — Serneng + xopnegn; — V - (ngty) » (8)
and the density »; by
on;/8t = + Sepneng — ooxnen; — V - (n;w;) ' (9)

The main processes for the plasmas are shown in Fig. 1.
Examples of ionizing plasmas are several types of current carrying discharges such as
arcs, positive columns, gas lasers, active parts of flames and so on.

4.1.2. Recombining plasmas

Recombining plasmas are characterized by the relation
» SCR”B”’O — XorN ey << 0 ) (10)

Recombining plasmas may also be in a steady state, /6t = 0, but now with inward
‘transport of ions and outward transport of ground state atoms, just reverse to ionizing
plasmas. The same time-dependent equations (8, 9) as for ionizing plasma are valid.
The main processes for these plasmas can be found in Fig. 2. - :

Examples of recombining plasmas are many types of non-current carrying plasmas such
. as after-glows, the non-active part of plasma torches, outer regions of flames and so on.

4.1.3. Equilibrium plasmas

Equilibrium plasmas are formal}y characterized by the relation

—37?/0/6t —-V. (’nowo) : 8nz/3t —+ . (”ﬂiwi) = SGR’”’E”’O — xophen; = 0. (11 a)
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Tig. 1. The main stream of proeesses in an ionizing plasma
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Fig. 2. The main stream of processes in a recombining plasma

0

Fig. 3. The main stream of processes in an equilibrium plasma

In most cases one can state that
— Ong/Ot = On;/0t = Sepmeng — xophen; =0 - (11b)

is valid, it means that equilibrium plasmas are in a steady state, since there is no inward
. or outward transport of ground state atoms and ions.

The main processes are a combination of those in Fig. 1 and Fig. 2, but now without
the V- (mw) contributions. Examples of equilibrium plasmas are transitions zones
‘between ionizing and recombmmg plasmas. The descr1pt1on is also important for near
equilibrium plasmas.

4.2.0. Classification dependlng on the electron density =, and
the principal quantum number p i

Besides a classification in the three types, mentioned above, we can discern a further
classification in phases like corona phase, excitation saturation phase (ESP) and so on.
Whether a plasma is in one or another phase depends mainly on the electron density
n, and less on the electron temperature 7', the neutral density #, and the ion density
n; in cases where n; # n,. In fact, generally it is a simplification to say that a plasma is
in one or another phase, since it is quite normal that for a specific i 10n1z1ng plasma con-
dition the lower states are in the corona phase, medium states are in ESP and higher

1T THE /(PTTE\. Thiug the vhagse of a particular atate 1 depends on

states are in Pa/rtl?ux Aad S\ X iuj. 13US, UO8 PU&SE O1I & parvifiial 8iave ¥ Gepenas On 7,

and other parameters and on the value of p itself. We shall describe in this section
phase classification according to these remarks.

4.2.1. Ionizing Plasmas

4.2.1.1. Corona Phase
For sufficientyl low n.-values, e.g. for a hydrogen plasma with 7', ~ 3 eV for 1, <
1.10%° m=3, one or more states with sufficiently low p-values can be described with the
corona phase (see Fig. 8). In its most elementary form, we can state that excited states



Beitr. Plasmaphys. 24 (1984) 5 453

p are populated by direct excitation from the ground state and are depopulated by

spontaneous emission of radiation to lower states. It means that there is no excitation

flow to higher states and to the ion ground state from these lower excited states and
that there is only direct ionization from the ground state to the ion state. Recombination
does not play any role at these low n,-values since recombination is proportional to
ngn; (three body recombination) or ngn; (radiative recombination) and is much smaller
than outward ion transport. See also the Figs. 11—14 from which it is clear that
r{p)n®(p) >1%(p) n5(p). Thus, only the second term of eq. (5), 7}(p) nE(p), contributes
t0 n(p); this is consistent with the ionizing character of the plasma.

In this most elementary form, the balance equation for an optically thin plasma can

be written as
00, p) e mg =X Alp, q) - nip), (12)

with € is an excitation rate coefficient. In some cases, cascade radiation from higher
states has to be taken into account and in other cases stepwise excitation is introduced

by metastable states. :
Then, eq. (12) has to be extended to:

C(0, p) - 1 - 1y + Clm, D) - 1y - My +,§ Alr p) - nlr) = 5 A(p, 0) - n(p),
] ' (13)

with the index m for a metastable state. The r'(p) coefficients. are <€ 1 and proportional
to n, for the corona phase. The latter can be found as a consequence of the structure of
the populating and depopulating processes in the egs. (12, 13).

Fugmoro [10] introduced a description to characterize the density per unit statisti-
cal weight 7(p) = n(p)/g(p) in terms of the pgn p. He deduced for the temperature

range of ionizing plasmas

n(p)/g(p) ~ p=0 | (14

for optically thin plasmas. Absorption of resonance radiation gives large deviations from
this power law. The main processes for the corona phase are indicated in Fig. 4.

- 4.2.1.2. Excitation saturation Phase (ESP)

For a hydrogen plasma with 7', ~ 3 eV all excited states are in ESP for ne = 102 m~3,
whereas for lower n,-values a decreasing number of higher states is in this phase (Fig. 8).
The dominant characteristic for this phase is that for these higher , and/or p-values
the collisional excitation — radiative deexcitation balance of the corona phase is re-

V'(”iﬂl)
e

!
1] I

VA now,}

- Fig. 4. The main processes in the corona phase of an ionizing plasma
. A
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placed by a colhsmnal excitation — deexcitation balance; the ESP is thus collisionally
dominated. The balance equation for a state p can then be written as:

ne+ X Clg, p) - 1g) + (e - (D) - 1)) = me - X C(p, 9) - n(p) + e - S(p) X n(p),  (15)
q=+p : ‘ q+p

with S(p) is the ionization rate coefficient. The recombination term n, - a(p) - n; is of

minor significance here and has been indicated for completeness.

The specific character of these deexcitation processes is that they create a ladderlike
excitation flow from lower to higher excited states, pre-dominantly with steps of

Ap = 1 for hydrogen and Ap < 1 fore.g. argon. Here p-is the effective pgn. In addition

there is from every state a certain chance of ionization to the ion ground state (see Fig. 5).

V-niwi)
!

L P g |
e — — —

V.lnpwo)

Fig. 5. The main processes in the excitation saturation phase of an ionizing plasma

Thus in spite of the fact that the plasma is collisionally dominated, there is no Saha-
equilibrium between the excited states but, apart from an ionization sink at every
state p, a balance between the excitation from state p — 1 to p and the deexcitation
from p to p + 1. Excitation to upper states is favoured with respect to lower states
by larger excitation cross-sections as a consequence of a smaller energy gap between
the excited states and of an increasing statistical weight for higher excited states, e.g.
~ 2 p? for hydrogen. The condition for ladderlike excitation is that p > the Byron limit
Pzy = (Ry/3 kT )'/2. This condition is fulfilled for all excited states for ionizing plasmas
ifT,>1.0eV. The deviations from Saha-equilibrium are due to the absence of a signi-
ficant recombination contribution. It means that the term 7%(p) n5(p) of eq. (5) plays a
minor role. The absence of a significant recombination is related to not too high electron
densities and not too low ground state densities, ng/n;> > ocr/Sor Eq. (15)-can be re-
placed by

Op—1,9)-n-n(p —1) = Op, p — 1) 7o - n(p) = Cp, p + 1) - s
X n(p) = C(p + 1, ) - g - 0(p + 1) + 8(p) - 1o - 0(p) — (D) - Mg = 1)
. | 6

The relative overpopulation with respect to the Saha densﬂ;y 8b(p) = n(p)/ns(p) —1
i8 accordmg to VAN DER MULLEN et al [16] (see section 6) »

8b(p) = bop™®, | - (173)
or with n(p) = n(p)/g(p), :
1(p) = Bp® exp Byy/kT, + 1) (b
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Since exp E;,/kT, ~ 1 for H;,/kT, — 0, the p=¢ power law is the most important factor
in cases with not too low temperatures. .

An important part of the total ionization is in ESP for not too high temperatures -
governed by stepwise ionization. This is a consequence of the existence of the ladderlike
excitation flow. : '

+ According to eq. (17) 7(p) ~ p~%, thus strongly dependent on p; the coefficient seems
to be independent of 7, and is only weakly dependent on 7',. Typical values are 102 to
1075, thus < 1, for p = 2—6 for hydrogen (Fig. 10). The fact of '(p) values, independent
of n,, is in agreement with the structure of the eqs. (15, 18), since all terms are in the
same way dependent on n,. In fact, there is for many excited states a smooth transition
between the corona phase with #(p) ~ n, and a typical ESP with 71(p) = constant for a
certain p-value. This comes from the fact that transition from radiative deexcitation
in the corona phase to collisional deexcitation in the ESP takes place at different n,-
values for different excited states. Lower states come into ESP for higher n,-values and
deliver above that value their full contribution to the excitation flow. As a consequence,
the density of higher states increases, in spite of the structure of the eqgs. (15, 16) until
the lowest excited state is in ESP. From that n,-value the system is in so-called complete
saturation, and all r’(p) values become constant, independent of n,. Below that specific
ne-value the 7*(p) behaviour is between that of corona and that of complete saturation °
(see also Fig. 9). _

The construction of the egs. (17a) and (17b) leads to a better understanding of the
different density distributions over the excited states for sufficiently high 7',-values,
sayy T’y > 1.5 eV in argon and hydrogen with respect to low 7',-values, say 7, < 1.0 eV.
For high T,-values #(p) should follow a p~¢ dependence and for low 7',- and p-values
7{p) should follow an exp (#;,/kT,) dependence. :

We now can explain this behaviour as follows:- _

Since b, (and ) > 0 for ionizing plasmas, 6b(p) > 6(p + 1) in eq. (17a), which leads to &
ladderlike excitation flow in upper direction; this conclusion is valid for high and low
T ~values, since the direction of the flow is determined by the value of 85(p) with respect
to 6b(p + 1). S .

The density 7(p) itself or d7(p) = 7(p) — n%(p) is determined by fp=® exp (E;,/kT,) and not
only by fp~¢ as stated by Fujimoto. For high 7',-values, the slope of the p~¢ factor is
indeed dominant over that of the factor E,,/kT,. For low T ,-values, however, the p¢
factor is no longer dominant for low p-values. This role is taken over by the factor
exp (H;/kT,) (see Fig. 6) and leads to a close to Saha density. Without taking into
account the factor exp (&;,/kT, in 7(p), one comes to the erroneous conclusion that for
low T, and p-values 6b(p) << 6b(p + 1), though &5(p) > dy(p + 1). This should lead
to an excitation flow into lower direction, a behaviour contrary to the ionizing character
of the plasma. We conclude that this misinterpretation is avoided by the introduction
of exp F;,/kT , in 7(p), since now 8b(p) = bep~¢ for all temperature and éz(p) is dominated
by either exp (¥;,/kT,) or p~, leading to two different density distributions, described
by one formula. For values p < pp,, the boundary value given by the Byron limit,
the densities are dominated by the factor exp (#:p/kT;) and the states show a small
deviation from thermal equilibrium, a near equilibrium situation. The excitation flow,
which at first sight seems to be limited in this situation by the near equilibrium values
- of n(p) and d(p), retains its magnitude, since the flow depends only on the difference
between 6b(p) and 6b(p - 1). Only the relative value of the flow is small with respect
to the many equilibrium processes which take place. In section 6 (egs. 30, 33 a), this

point becomes more clear.
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on(p) = n(p) — n%(p) = pp~* exp Ep/kT,
of excited states in an ionizing plasma
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4.2.1.8, Partical Local Thermal Equilibrium (PLTE)

For an ionizing plasma three body recombination becomes important at high n,-
values. In fact, also here the influence of recombination is first demonstrated for high
p-vales and becomes important for lower states with increasing n,-values (see Fig. 25,
the phase diagram for argon). When the total number of recombination processes to a
certain state p is almost equal to that of ionization processes and largely exceeds the
excitation flow, this state is in Saha-equilibrium or in PLTE. As a consequence of the
Saha-equilibrium, there is also an excitation-deexcitation equilibrium between state
p and its neighbouring states p — 1 and p -+ 1, apart from the excitation flow, which
is now relatively small with respect to the large number of equilibrium processes. Ho-
wever, this flow retains its magnitude, and still determines the ion density, since the
excitation flow determines for an important part the total ionization.

As a consequence of the dominance of ionization-recombination and excitation-
deexcitation equilibrium, only the term »%p) #5(p) of eq. (5) is important and for p-values
high enongh, 7%(p) = 1. In PLTE, the coefficient 7*(p) retains its value reached in ESP
and is still € 1. The dominant processes in PLTE are shown in Fig. 7. In PLTE eq.

(18) remains valid, the recombination term included.

\4V) FOLGILS V. COINVINALION Lo J1IC RO

0

Fig. 7. The main processes in the partial LTE of an ionizing plasma
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Flg 8. Phase dlagram for an optically thin ionizing hydrogen plasma at T, = 1.28
X 10% K, acecording to FusmoTo (10b)

An overall view of the phases as functions of p and #, is given in Fig. 8 for hydrogen
and in Fig. 25 for argon. In these figures the distinction between complete and partial
saturation is also indicated. The boundary between ESP and PLTE depends on the
no-value used (Fig. 25); this is a consequence of a larger excitation flow for larger n,-
values. The boundary criterion used is: n(p)/n5(p) = 2. Since n(p) is proportional to
ne and 75(p) to 7, - n;, we find that for the boundary condition n(p)/n5(p) ~ ne/nen;
(= my/n? for singly ionized plasmas) = constant. A change of a factor 100 in », corres-
ponds with a change of a factor 10 in n,.

In the Figs. 9 and 10 we give examples of the r*(p) coefficients for hydrogen plasmas
deduced from data of DrawiN and EMa®rD [5b], one for an optically thin plasma (Fig. 9)
and one for an optically thick plasma (Fig. 10). These Figs. demonstrate the behaviour
of the r(p) coefficients in the corona and ESP phase as described, e.g. the constant va-
lue for high n,-values. Note the influence of radiation trapping. For the optically thick

107 //i»o

1074

rtip)

1076

1078 - L : ! 1 \
1016 1018 1020 © 1022 p73 1024
Ne

Fig.9. The 7(p) coefficients for an optically thin hydrogen plasma (Ref. [5b]) as a
function of the elctron density; 7', = 32 - 10* K
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Fig. 10. The 7Y(p) coefficients for an optically thick hydrogen plasma (Ref. [5b])

as & function of the electron density n,;
T, =32-10°K; A4(2,1) = 10-2, A(3,1) = 10~L
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Fig. 11. The density of excited states per unit of statistical weight 5(p) = n(p)/g(
as a function of the excitation energy B,y a so-called Boltzmann-plot for an
optically thin hydrogen plasma. Parameters: n, = 106 m-3, T, = 32.000 K, n,
= 10" m~3, The Boltzmann- and Saha-densities are also indicated as_Boltzmann-

and Saha-line, respectively.

case the 7l(p) values are already constant at n, = 102 m~8 and for the optically thin case
atn, = 10% m~3, In the Figs. (11—14) weshow for a hydrogen plasmawith 7', = 32 - 10°K
and ny = 10 m~3 the densities of excited states for a number of electron densities, |

from n, = 1-10" m=2till n, = 1-102m=3 Forn, = 1- 108 m=3and 1-10'® m~* these
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densities are all between the line of Boltzmann densities #5(p) and that of Saha densities

#n%(p). For n, = 1.10% m-3, n(p) = n¥(
p = 10 and for n, = 1.102 m

p) for the highest states indicated, namely
~% almost all states are in' PLTE. The Saha-line shifts

towards the Boltzmann line, since #5(p) ~ nyn; = .2, so that full LTE is reached at
about n, = 5.10%% m3, :
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Tig. 14. A Boltzmann-plot for n, = 102 m-3, 7', = 32.000 K, 1, = 101°® m~*%

- 4.2.2. Recombining Plasmas

4.2.2.1. Capture Radiative Cascade (CRC) Phase

Recombining plasmas are for sufficiently low #,- and p-values in the so-called CRC
phase. In this phase the population density of a state p is completely determined by
radiative processes; this is contrary to the corona phase, with both collisional and radia-

- tive processes. In its most elementary form,a state p is populated by radiative recom-
" bination and depopulated by spontaneous emission to lower states. The ionization and
excitation energy is transfered into radiation by several steps of cascade radiation.
In this case the balance equation for a state p reads:

ne + i+ B(p) = n(p) X A(p, 9), (18a)

q<p

where f(p) is the coeff101ent for radiative recombination. If we take into account the
contribution of cascade radiation from higher states than p itself, eq. (18 a) has to be

extended to
e+ 1 - B(P) + Zn<7) Alr, 20) = n(p) q<ZpA'(p, q)- (18b)

The main processes in the CRC phase are presented in Fig. 15,

i

R N
it »
I
I

Fig. 15. The main processes in the capture radiative cascade phase (CRC) of recom-
bining plasmas
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A model for the CRC phase in astrophysical plasmas.has been given by BAKER and
MEenzEL [33] and has been improved by Searon [34]. From the resuls of SEATON, one
can construct that

3lnp—p) ' .
3lnp — &p)’ -

with {(p) and &(p) tending asymptotically to constant values for p — oo . This implies
that for very large p-values, b(p) becomes 1. It means that even in this case of CRC,
without any collision process or even trapping of radiation, the system tends to Saha
equilibrium for very high p-values. The values of {(p) and &(p) permit inversions for
7(p) or b(p) exp E;,/kT, for a large range of electron temperatures.

The dependence of population inversion on electron temperature and -density and
on opacity had been investigated by FURURANE [29] with a numerical model. He also
finds inversion for rather high temperatures up till 5eV and even higher for special
circumstances. Fusmmoro [10¢, d] argues for low 7',-values a dependence according

to
(20a)

B(p) = exp—(E;y/HT)

7(p) = p+? _
which is in line with SEATON and FURUKANE, since it also implies inversion. On the con-
trary, he finds for medium and high T ~values

7(p) = p~5, (20b)

not in line with the findings of SEATON and FURUKANE.

4.2.2.2. Medium and High »,-Values (ESP and PLTE)

It is clear that for increasing n,- and p-values the CRC description breaks down since
collisional processes will dominate radiative processes, according to n,- 3, O(p, q) >
2

<p . 7
qZA(p, q), at first for high lying states and with increasing n.-values, also for lower .
states. Radiative recombination will be taken over by three particles recombination
if m? -« m; - Q(p) > n,* n; - f(p). The main processes for ESP and PLTE are indicated
in Fig. 16. This figure holds especially for low electron temperatures.

The collisionally dominated out of equilibrium phase for recombining plasmas is also
- called ESP. This phase is in the recombining case characterized by an excitation flow
from higher to lower states, reversely to that in lonizing plasmas. The condition for a

downward excitation flow is
b 1) > b(p) or SB(p + 1) > 8b(p). | | (21)

It is assumed that the description with 6b is also useful for recombining plasmas with
6b < 0 since these plasmas are in most cases not too far from equilibrium, so that 6b

is not equal to — 1.

I
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Fig. 16. The main processes in the ESP and PLTE phase of recombinihg plasmas
with low electron. temperature
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It is useful to discern a high and low temperature limit, or more exactly Z;,/kT, < 1
-and B;,/kT, > 1. More extended theories refer to so-called bottleneck values of E;,/kT,,
slightly more than 1. _

For low E;,/kT ;values, in principle the same analytical treatment as given in section . -
6 for ionizing plasmas can be employed, since the specific ionizing character of the plasma
has not been used in the derivation. It now results in.

b(p) == 1 — b¥p=%, - S (22a)

thus with a minus sign instead of a plus sign (compare eq. 17), and with = 6 suggested
by the theory in section 6 and with # = 5 according to more specific theories for re-
combining plasmas from BIBERMAN et al [7b] and BrRoCKLEEURST [35]. For the great
ma;omty of p-values, the second term is of minor significance so that b(p) ~ 1 and

n(p) ~ 75(p). It means that the ionization recombination equilibrium is so strong -
that the downward excitation flow causes onlyaxmnor disturbance with respect to the
equilibrium value 75(p). The minus sign is essential for the condition that b(p -+ 1)
has to be > b(p) and that b < 0. Equation (22a) allows deviations from Saha-densities,
growing with decreasing p-values. According to the bottle-neck criteria, the deviations
may also be limited for p = 2 when 7', is high enough. These predictions are roughly
in agreement with data from the numerical model, described in section 5. For tempera-
tures 7', = 2 eV, Saha-densities are found all the way but for 7, < 2 eV the densities
become mgmflcantly smaller than the Saha-densities, especially for low p-values.

Herewith we-enter the for récombining plasmas important regime with high w, =

B;,/kT ;-values, or low T',-values. Now deexcitation to lower states is favoured with
respect to excitation processes in upward direction. This results in a rapid fall of the
distribution function of b(p) for lower p-values with respect to higher ones. The most
complete distribution function for this case is given by Mawssace and KEck [36].
Their expression can be rewritten with some approximation as being

b(p) = e~ (u,%/8! + w,*/2! + u, + 1)
or ‘ A . |
b(p) = exp— (Ryop~®) (Ryo®p~%/3! + Byo®p~*/2! + Ryep™ -+ 1), (22D)

with Ry, = Ry/kT,. For low p-values the first term dominates and for very high p-
values the last term does. BIBERMAN et al [7b] find an expression with only the last
constant term, but equal to about 0.6 instead of 1. Fusmmoro [10d] only finds the p~°
term, valid for lower p-values. For very high p-values, the solution of b(p) tends to 1,
as does eq. (22a). In eq. (22b) it is expressed that b(p) is for a great part dominated by
the factor exp — Ry,p~2, since this factor leads to strong deviations with respect to
the Saha-density for the lower p-values. The terms with p~¢, p~* and p~2 are for low tem-
peratures not sufficient to compensate fully the effect of the factor exp (— Ryyp~2). The
‘behaviour described is confirmed by the numerical model presented in section b and by
measurements of HINNov and HirscaBErG [37], whlch are already used by MANSBACH
and KECK to check their ‘oheory

A phase diagram as given by Fusmoro [10d] for hydrogen at low temperatures is
shown in Fig. 17. In Fig. 18 we indicate the (p) coefficients derived from Drawrn
[5b] for this case. The typical behaviour of the 7%(p) coefficients is a constant value
< 1 for low n,-values in the CRC phase, a proportlonahty to #, in the ESP and a con-

stant value ~ 1 for PLTE.
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Fig. 17. A phase diagram for a Iow-temi)erature recombining hydrogen plasma at
T, = 10°* K according to Fusmoro (10d) '
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Fig. 18. The 7(p) coefficients for an optically thin, low temperature hydrogen plasma,
at T, =4 - 10° K according to DrawIN and EmMARD (Ref. [5b]) )

4.2.3. Equilibrium Plasmas

An equilibrium plasma is a superposition of an lonizing and a recombining plasma
in such a way that the egs. (11a, b) are fulfilled. For low n,-values there is a combina-
tion of the Corona and CRC phases. Numerical estimates of FusmioTo [10a] show that
the densities of all excited states p are determined by Corona processes for 909, and by
CRC processes for 109%,. The slow radiative recombination-is exceeded by a factor 10
by direct excitation from the ground state. From eq. (11) it can be deduced that the
ration ny/n; = xcr/Scr. This ratio is constant if the ionization coefficient Sgr and re-
combination coefficient acp are independent of n,. This is the case for the Corona, /CRC
phase (see Fig. 19)). : i

For medium electron densities the ratio n,/n; decreases slightly, especially for opti-
cally thick plasmas. This change is mainly caused by the increase of the S¢p coefficient

3 Beitr. Plasmaphys., Bd. 24 (1984) H. 5



464 B.vax pER SwoE, J.J. A. M. vax DER Murren, D. C. Scaram, Collisional Radiative Mode

10"!-
_ _

!
. - z
P N//
10 corona / CRC ~o /

N -

~ -
g ® 7/

&
o ~ Ve
< VA
4%
. - : 2%\
10751 Y
7/ .
s
s
L o , s
10'7L L L I 1 1 i ] I 1 L
0% 107 0% - 0% 0% m=3 1%

Fig. 19. The ratio ny/n; as a function of the electron density «, for a hydrogen equi-
librium plasma; 7T, = 32.103 K ; straight line: optically thin; broken line: optically
thick, A(2,1) = 102, A(3, 1) = 101 : ,

’

by stepwiée ionization. For medium electron densities, the net recombination coeffi-
cient acp to the ground staté remains determined by radiative recombination and/or
radiative decay from the lowest excited states to the ground state. Once when three
particles recombination starts to dominante the recombination, we can state that for
recombining processes n(p)/n; ~ n,, whereas for lonizing processes n(p) ~ ng or n(p)/n;~
N/ M- .

Thus this leads to a dominance of recombining processes for high n,-values and of a
linear increase of n(p)/n; with n,. Then the LTE description is valid. It may be emphasi-
zed that the ratio ne/n; for ionizing plasmas may deviate orders of magnitude from that
of equilibrium plasmas for low and medium n,-values. Only for high density ionizing
plasmas like cascade arcs with PLTE having minor deviations from LTE, the ratio
n9/n; for equilibrium plasmas becomes almost equal to that of real plasmas.

5. An Example of a Numerieal Model

In this section we shall describe a numerical model developed for the argon neutral
system. The major question for non-hydrogenlike systems is which electron-collision
cross-sections between excited states have to be used, since theoretical or measured
values are in general not available. Another severe problem, specific to the numerical
approach, is how many states or groups have to be taken into account to get a reliable
model. Up till now, the specific results of several CR models for the argon neutral sy-
stem were unsatisfactory and disagree with each other.

Karsonts [14] describes an extended model, based on DrRAWIN’s excitation and ioni-
zation formulae for hydrogen. The numerical deviations of his model with respect to
others are relatively large. He omitted the important 3p —4p excitation and the spe-
cific role of the 2 metastable states have not been taken into -account.

VAN pER MULLEN et al [17] report on a model with only a few number of groups
* 'with an excitation between excited groups also based on DrRawIN’s formulae. The ground
state excitation to 4 s and 4 p however is taken from experimental data. They already

introduce a simplified form of the excitation flow to higher states and groups.
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Fig. 20. The 7! (4p) coefficient for the argon neutral system for an optically thin
plasma. A comparison between 4 models and measurements. For the present model
the parameters are: 7, = 3 eV, T, =1eV, ny = 10 m-3, B, = 10 mm

" Pors [18] presents a model with more groups as VAN DER MULLEN, also with DRAWIN’S
formulae, but without introducing an excitation flow to higher states. In fig. 20 we
present the r(4p) coefficient as a function of the electron density n, for the models
discussed to illustrate the great differences with respect to each other. For all these
models we see a 71(4p) course in which the’ typical saturation behaviour observed in
experiments, namely a constant r(4p) value, can not be found. -

The main change in the model described here with respect to the previous ones is
that we employ the semi-empirical excitation and ionization formulse of VRIENS and
SMEETS [12] proposed for neutral hydrogen and alkali excited states. For the argon
system these excitation rates appear to be a factor 5-—15 larger than those of DrRAWIN
(see Fig. 21). These differences cause in our model the argon neutral system to be colli-
sionally dominated for smaller n,-values than in the previous models. The typical sa~
turation (ESP) is shown at n,-values, indicated by experimental data.

In the model presented here we include 49 lumped states containing groups up till
the 15s, 15p, 144 and 13f groups. It assures a reasonably realistic excitation flow, in
any case for the lower excited states and groups. The excitation cross-sections between
the 3p ground state and the 4s and 4p groups have been deduced from experimental
data [19—21]. Transition probability values have been derived from NBS-tables [22]
and from Karsonts [14]. :

We distinguish 4 separate 4s states and separate s, p, d and f groups. The s, p and d
groups have been given the correct statistical weights of 12,.36 and 60 respectively.
The statistical weight of the f group has been increased artificially to the value (12p?—
108) in order to account for the total statistical weight of 1292 for each pgn p. The appli-
cation of the correct total statistical weight appeared to be essential for a good result.

The trapping of resonance radiation has been taken into account. The trapping is a
function of the neutral density n,, the radius R, the neutral temperature 7', (Doppler
broadening) and, the electron density n, (Stark broadening). ‘ :

3*
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Fig. 21. A number of excitation rate coefficients as functions of T, of VriENs and
SmEETS compared to those of DRAWIN, both applied to the argon neutral system;
—— VBIENs and SMEETS; ——~- DRAWIN

Fig. 22. The coupling scheme between the various groups 'in the argon neutral
system

The coupling scheme for excitation between the excited states is according to:

18 = np; ns = (0 + 1) 83 18 = (n + 1) p;
wp) = (n — 1) d; n(p) = (n + 1) s; n(p) = (n + 1) p; np = nd; -
n—Nd=s@m—-1)fin—1d=@m+1)p;n—1)d=nd; (n — 1) & = nf;

(n — 1y f = nd; (n — 1) f = nf (see Fig. 22). .

In Fig. 20 we present the r(4p) coefficient as a function of n, for T, = 3 eV, ny —
109 m=3, T, = 1.6V and R, = 10 mm, an optically thin plasma. In this figure. the
differences with the previous models and the satisfactory agreement with 2 measured
values are also shown. The existence of the Corona phase (n, < 3 - 1018 m~3)and the
ESP (n, > 10 m™3) are clearly demonstrated. This behaviour agrees with earlier
measurements [23] from which it appeared that the 7(4p) coefficient did not show a
significant increase for 3-10®m=3 < n, < 3.10% m=3, The two indicated measured
points are average values of 15—20 individual measurements of the 696.5 nm, 4p —4s
- lin€. The n,- and T, values have been measured with Thomson scattering and the 77,-
values with Fabry-Pérot interferometry (see also ref. [38]).

In Fig. 23 we show densities of excited groups as a function of the effective pgn p =

Degr= ]/Ry/Epi, for three different numbers N of groups included; R is the Rydberg
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energy and E,;istheionization energy of state p. The figure clearly shows the weakness of
numerical models caused by the truncation of the model at a certain group, even if a
large number of groups have been included. Especially the densities of high lying groups
show significant deviations caused by that fact. The slope of the straight part of the
density-curve depends on the number N of considered groups. In Fig. 24 the slope of
this part is indicated as a function of the number N. Tt shows that a sufficiently large
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Fig. 23. The -density n(p)/g(p) aé a function of p for three different numbers of
N:49(e), 29 (c) and 13 (X). Parameters: n, = 1020 m=3, T, = 3 eV, n, = 102 m-3,
T,=1eV, R, = 10mm i
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Fig. 24. The slope of the density curves as a function of N, the number of groups
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number of groups considered leads to a definite. value of the slope of this straight part.
It means that the density of the lower groups, roughly up to N/2 does not change any
more. Moreover, the value of 5.2 is in satisfactory agreement with measurements and
the analytical model, described in section 6. We conclude that though the truncation
of the excitation flow at a certain group N to higher groups causes significant deviations
in the densities of groups bétween N/2 and N, the densities of groups < N/2 are reliable
with respect to the analytical model and experimental data if N = 40. ’

In Fig. 25 we present a complete phase diagram for the parameters indicated. It
is an example of an ionizing plasma.

CESP R \ /na=1021m-3

= (partial)

Y

D

1 I L
‘0% 107 0% m3 102
Ne

Fig. 25. The phase diagram of the afgo;l neutral system for 7', = 3 eV, 7, = 1eV
and B, = 10 mm

v

6. An Example of an Analytical Mo;lel

The model, developed in our group by vaN DER MuLLEN et al [16], is appropriate
.for upper states in a real ionizing plasma. These states which are in the excitation sa-
turation phase (ESP) or in partial local thermal equilibrium (PLTE), are described
with the help of a so-called analytical top model (ATM), in principle for hydrogen and
hydrogenlike ions. By application of the effective pgn Dess, it can also be applied to-
other systems. :

The main feature of an analytical model is that one general expression valid for an
arbitrary state p is developed. Hence, there is no need for a truncation of the excitation
flow to higher states, since this flow is contained in the general expression. Therefore,
one may expect in this case a reliable slope of the density curve as a function of .
Another important point is that in the model for ESP and PLTE shown here, the numeri-
cal values of the excitation and ionization functions are of minor importance. The tran-
sition of the Corona phase to the ESP is out of the scope of this model. On the other hand,
a numerical value of the excitation flow can not be deduced from the general expression
for .non-hydrogen systems or for parameters in hydrogen for which lower states are
still in the Corona phase. :

The main assumptions to be made for the analytical model presented are:

1) Radiative processes can be omitted since the plasma is collisionally dominated.
It means that we only consider ESP and PLTE. - '
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2) The excitation flow has a ladderlike character, it means that for hydrogen steps:
with 4p = 1 dominate over so-called jumps of 4p > 1.

3) We assume a so-called high temperature (7',) and/or high pgn limit, so that Uy ==
E,ilkT, < 1. This assumption makes the derivation more straight-forward at some
points. It is believed that this assumption plays a minor role in the results.

The balance equation of a state p then reads [16]: _
e n(p —1)-0(p — 1, p) — ne - n(p) - C(p, p — 1) — n, - n(p) - C(p, p +1)

+ e -n(p + 1) - Clp + 1, p) = n, - n(p) - S(p) + n2n; - Q(p) = 0 (23)

S is the ionization rate coefficient and @ the three body recombination coefficient.
By defining the excitation flow J(p) according to :

L@ =m0 0(p) - OB, p+ 1) —np-n(p + 1) - Clp + 1, p), - (29)
an ionization sink according to |
I(p) = n, - n(p) - S(p), ; (25)
and a -recombination source according to
 R(p)=ntni-Qp), | o (26)
we can state the equation . ' . V
dJ(p)/dp = R(p) — I(p) < O. | (27)

This equation expresses that the change in J, A4J(p) = dJ(p)/dp - Ap (with dp=1)
is equal to the net ionization loss, R(p) — I(p). .
It is possible to express C(p, p + 1) as a simple function of p according to [16]:

Clp, p + 1) = c,p*; o ’ v - (28)

¢y is only a weak function of 7', and is dependent on a function v, which can be adjusted
for the different collision theories. In the same way, S(p) can be written as

8(p) = s,p? . ' (29

Q(p) can be found from S(p) with the principle of detailed balance. By introducing
the density per statistical weight #(p) = n(p)/g(p) and the Saha increment b(p) = 7(p)/
7%(®) = n(p)/n(p), we can deduce for J(p): o

T(p) = + 2na"(p) - ¢, - P°{b(p) — blp + 1)} o (30a)
which for a continuous description leads to
I(p) = — 2n%(p) - ¢, - 9 (p), | (30b)

where b'(p) is thé first derivative of b(p). ,
Similar expressions can be found for I(p) and R(p) and read:

I(p) = 2n0%(p) - 5, - p*B(p) - (31)
and o : :
“R(p) = 2n0°(p) s,9*. o . (32)
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By substituting the egs. (30b, 31 and 32) into €q. (27), we can derive a second order
differential equation in b(p) under the assumption that (n%(p) ¢p) = 0 and (s,/c,) = 0.
This is true for the high %, limit (assumption 3). The equation reads: .

p*-0"(p) + 6p - b'(p) — sp/le, - (b(p) — 1) = 0, | (33)
with the solution:

b(p) =1+ byp~° (34a)
or '

Wp) = n’p) + fptexpu, | (34b)

with by, = £ exp w,/n5(p).
The value of x can be found from

2z =25+ 2.571 + 0.16 s,/c,. ) (35)

In eq. (34) it is shown that the population distribution consists of a superposition of
the Saha equilibrium value, dominant for PLTE and caused by an ionization-recombina.-
tion and excitation-deexcitation equilibrium and of a term related to the excitation flow
and dominant for the ESP. This term can be considered as an overpopulation 6b = byp—¢
with respect to the Saha density.

It can be concluded from eq. (35) that variation of the value Sy/Cp, e.g. from different
collision theories has only a minor influence on the value of z; z is always > 5 and close
to 6. In Ref. [16] it is pointed out that for # = 6 the solution Bp~% exp u, has the same
energy dependence as the Maxwell distribution for free electrons. This surprising result
can be understood by noting that in the ESP the interactions with free electrons oceur
more frequently than typical atomic events like radiative decay. Apparently, the result
of these frequent interactions is that the energy distribution of the free electrons is
imposed on the overpopulated bound electrons. It is also shown that the derivation of
the distribution function can be carried out with a Fokker-Planck description without
. assuming the Ap = 1 limitation for excitation. '

With the solution for %(p) with 2 = 6 we can find

J(p) = 12n,fc,p ' exp u,, o (36a)

I(p) = 2n.syp™* exp w, + 2 in(p) s,p* . (36b)
and :

B(p) = 2nq%(p) spp*. . (36¢)

In Fig. 26 the results for J(p), I(p) and E(p) as functions of p are shown for different
ng-values. J(p)/n, is monotonously decreasing as a consequence of the fact that RB(p) —
I(p) < O for every p-value. Also I(p)/n, is a monotonously decreasing function with
P7? as far as the first term is considered. This term can be explained as the net ioniza-
tion, the difference between I(p) and R(p). B(p) itself, and hence I(p) increase rapidly
with p and with n, and from a certain p-value p* the term 2n5(p) s,p* becomes
dominant. If the second term of I(p) or RB(p) becomes larger than the first term, we are
leaving the ESP and entering PLTE. The basic importance of Fig. 26 is that the ESP
solution represented by J(p) and the first term of 7 (p) is valid for all p-values and do- .
minates for p < p* and that the PLTE solution represented, by the second term of
I(p) and by R(p) is also valid for all p-values but dominates for p > p*

In Fig. 27 we show that there is very good agreement between expression y(p) =
7(p) exp-u, ~ p~% and a number of experiments in different gases, as e.g. Na I, He IT
and ArI. It means:that the collisionally dominated top of a spectral system can be’
satisfactorily described with a simple power law.



Beitr. Plasmaphys. 24 (1984) 5

104

103

107!

R/ng(10% m™3)
R/ng (1020 m3]
R/no (100 m73)

J/ng

1

- 100 L / / . \Ieff/ Na
. I I} i
10

100 1000
P .

471

Fig. 26. The excitation flow J(p)/n,, the ionization sink I (p)/n, and the recombination
source B(p)/n, as functions of p for different n,-values; T, = 4 &V, 7, = 1019 m~3,
(for J(p), I(p), 7y == 10 m~3

X(p) .

10 1

10 100_1

2

Fig. 27. Comparison between the analytical ex

experiments:

+ argon I Ref. [24]
Oo helium Ref. [25]
¢ sodium Ref. [26]

pression y(p) ~ p~¢ and a number of



472 B. vax pER SwpE, J.J. A. M. vaN pER MuLLew, D. C. SéBBAM, Collisional Radiative Models
- 7. Conclusions

L. Especially the work of SEATON, Fusmioro, BIBERMAX et al, and DRAWIN et al make it
possible nowadays to have at our disposal a systematic, and in many cases quanti-

- tative description of collisional radiative models of spectroscopic systems in plasmas.

2. The global character of the description of analytical models as e.g. from Fusmoro
has been extended to more fundamental descriptions by SEATON and BIBERMAN et al
and especially for the ESP and PLTE of ionizing plasmas by vax DER MULLEN etal.’
By these contributions; a simple but reliable description for the upper part of excited
systems is available, : _ ’ .

3. It appears to be possible to extend the set-up of numerical models from hydrogen
(like) systems to more complex systems as e.g. the argon neutral system with the
help of the formulae of Verens and SmewTs with a satisfactory agreement with ex-
perimental data. The p~% dependence, found in the analytical model for the ESP,
appears to be produced by the numerical model with reasonable accuracy. o

4. The comparison between analytical and numerical models delivers more insight into
the possibilities and limitations of both models, Examples of these are:

1) - The limitation of & numerical model due to the cut-off at a certain state. A suffi-
cient number of states has to be taken into account and only for the half of this
number reliable results are found. At the other hand, one can extrapolate the
results for the lower states with sufficient accuracy to the higher states. The ex-
perience of the analytical model is a helpful guide in this.

2) The limitation of an analytical model to a specific phase deserves another ana-
lytical model or a limited numerical model to make possible an absolute rather
than a relative computation of state densities, at the other hand. The analytical
model provides one generally valid solution for & great number of states without
a time-consuming set-up of an extended nunierical model. N '

3) The analytical model for the collisionally dominated phases ESP and PLTE is
less sensitive to the §pecific collision theory used, whereas numerical models,

- including the corona phase and ESP are very sensitive to this choice.

4) Integration of analytical and numerical models promises the best results with a
minimum of work, so that the advantages of both are realized. '
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