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I. INTRODUCTION

Force-free plasma equilibria, i.e. plasma equilibria for which the current density is aligned

with the magnetic field lines, are of great importance in both astrophysical and laboratory

plasmas, in particular for modelling low-β systems. Within the framework of magnetohy-

drodynamics (MHD) a large number of analytical force-free equilibria are known.1–3

For collisionless plasmas, with equilibria being solutions of the time-independent Vlasov-

Maxwell (VM) equations, the situation is completely different. So far only a small number

of one-dimensional (1D) collisionless force-free plasma equilibria is known, of which most

belong to the class of linear force-free fields4–8. So far, analytical self-consistent distribution

functions have been found only for one example of non-linear force-free fields, the force-free

Harris sheet9–12. Finding self-consistent force-free collisionless equilibria is difficult, because

one is dealing with an inverse problem, i.e. find a solution of the Vlasov equation for a given

magnetic field and electric current system (for a discussion of the problem see Ref. 10).

The equilibria mentioned in the previous paragraph have all been found for the non-

relativistic regime. It is the aim of this paper to investigate whether it is possible to generalize

the distribution function found for the force-free Harris sheet into the relativistic regime.

We define the relativistic force-free condition as JµFµν = 0, where Jµ is the four-current

density and Fµν the electromagnetic four-tensor. If a frame of reference exists in which the

electric field vanishes the relativistic force-free condition is identical with the non-relativistic

force-free condition J×B = 0 in this frame of reference.

Collisionless equilibria of the type we are trying to calculate in this paper could be of

importance for investigations of physical processes like instabilities or magnetic reconnection

in relativistic plasmas (see e.g. Refs 13–21). In order to find the relativistic generalization

of the collisionless distribution function for the force-free Harris sheet, we shall use the

relativistic version22–24 of the distribution function of the normal Harris sheet25 as a guide,

together with the non-relativistic distribution function for the force-free Harris sheet.9,11

The paper is structured as follows: section II summarizes the mathematical framework

of the non-relativistic force-free Harris sheet9. Section III then uses this as a basis for

determining the distribution function for the relativistic force-free Harris sheet, and Section

IV we present a discussion and our conclusions.
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II. THE NON-RELATIVISTIC FORCE-FREE HARRIS SHEET

In a 1D VM equilibria with translational symmetry, it is assumed that all plasma variables

depend only on one spatial coordinate, here taken to be z and that the magnetic flux density

has components Bx and By. The magnetic flux density components can be written in terms

of the vector potential A = (Ax, Ay, Az) where,

Bx = −dAy

dz
, (1)

By =
dAx

dz
, (2)

and the electric field is the gradient of the electric potential ϕ,

E = −∇ϕ = −dϕ

dz
ẑ. (3)

These relations automatically satisfy Faraday’s law ∇ × E = 0 and Gauss’ law for the

magnetic flux density ∇ · B = 0. Due to the symmetries of the system (time and spatial

independence of x and y) the three obvious constants of motion for each particle species are

the Hamiltonian or particle energy for each species s,

Hs =
1

2
ms(v

2
x + v2y + v2z) + qsϕ, (4)

and the canonical momentum in the x and y directions respectfully,

pxs = msvx + qsAx, (5)

pys = msvy + qsAy, (6)

where ms and qs are the mass and charge of each species. Here, we consider a plasma

composed of two species of equal and opposite charge but of differing mass, that is, elec-

trons and protons. All positive functions fs satisfying the appropriate conditions for the

existence of the velocity moments and depending only on the constants of motion, fs =

fs(Hs, pxs, pys) solve the steady-state Vlasov equation. For a quasi-neutral plasma in force

balance, Ampère’s law can be written as

d2Ax

dz2
= −µ0

∂Pzz

∂Ax

, (7)

d2Ay

dz2
= −µ0

∂Pzz

∂Ay

, (8)
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where Pzz(Ax, Ay) is the zz-component of the plasma pressure tensor,

Pzz =
∑
s

∫ ∞

−∞
msv

2
zfsd

3v. (9)

The magnetic flux density components of the force-free Harris sheet are given by

Bx = B0 tanh (z/λ), (10)

By =
B0

cosh (z/λ)
. (11)

The x−component of the magnetic flux density has the same spatial structure as the Harris

sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, the force-

free Harris sheet maintains force balance via a magnetic shear y−component.

Assuming that the pressure takes the form Pzz(Ax, Ay) = P1(Ax) + P2(Ay), equa-

tions (7) and (8) combined with the force-free condition (B2
x + B2

y = const.) gives the

condition for force balance: (
dAx

dz

)2

+ 2µ0P1(Ax) = 2µ0P01, (12)(
dAy

dz

)2

+ 2µ0P2(Ay) = 2µ0P02, (13)

where P01 and P02 are constants. Solving these equations for P1(Ax) and P2(Ay) the plasma

pressure for the force-free Harris sheet is

Pzz =
B2

0

2µ0

[
1

2
cos

(
2Ax

B0λ

)
+ exp

(
2Ay

B0λ

)]
+ P03, (14)

where P03 is a constant. Since the pressure is the sum of two independent functions that are

a function of Ax and Ay respectively, the distribution function is assumed to be of the form

fs = exp (−βsHs)[g1s(pxs) + g2s(pys)], (15)

where the reciprocal thermal energy of species s is βs = (kBTs)
−1. Applying Channell’s

fourier transform method5, echoed in Harrison and Neukirch9, the plasma pressure integral

can be solved for the distribution function fs. Therefore, a collisionless distribution function

for the force-free Harris sheet is

fs =
n0,s

v3th,s
exp (−βsHs)[as cos (βsuxspxs)

+ exp (βsuyspys) + bs], (16)

where vth,s = (msβs)
−1/2 is the thermal speed of species s and uxs, uys, as and bs are

constants.
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III. RELATIVISTIC FORCE-FREE HARRIS SHEET

If the thermal energy of the plasma, kBT , approaches or exceeds the rest energy, mc2,

a non-relativistic treatment is no longer sufficient to describe the system. In a relativistic

framework, P ν are the components of the canonical momentum four-vector P = p + qsA,

where: p = mw = (E/c, p1, p2, p3) is the four-momentum; w = (w0, w1, w2, w3) is the four-

velocity; and A = (ϕ/c, A1, A2, A3) is the four-potential. The Hamiltonian or particle energy

for each species s, Hs corresponds to the speed of light times the zeroth component of the

canonical momentum four-vector P 0c = E+ qsϕ. The subsequent canonical components are

now functions of the four-velocity, P i = msw
i+qsA

i. A relativistic analogue of the force-free

Harris sheet distribution function can be written as

fs = fs0 exp (−βsP
0c)[as cos (βsuxsP

1)

+ exp (βsuysP
2) + bs], (17)

where fs0 = n0smsβs/(4πc) and n0s is the mean particle density. Details of the normalisation

calculation are given in appendix A. Using the relation cosx = 1
2
(eix + e−ix) we can recast

the distribution function as

fs = f1s(w
0, w2) + f2s(w

0, w1) + f3s(w
0, w1) + f4s(w

0)

= fs0[c1s exp (−cβsms(w
0 − uysw

2/c))

+ c2s exp (−cβsms(w
0 + iuxsw

1/c))

+ c3s exp (−cβsms(w
0 − iuxsw

1/c))

+ c4s exp (−cβsmsw
0)], (18)

where

c1s = exp (−βsqs(ϕ− uysA
2)), (19)

c2s =
as
2
exp (−βsqs(ϕ+ iuxsA

1)), (20)

c3s =
as
2
exp (−βsqs(ϕ− iuxsA

1)), (21)

c4s = bs exp (−βsqsϕ). (22)

In the non-relativistic scenario the zz−component of the plasma pressure tensor is the

key plasma parameter characterising the system; in the relativistic case it is the energy-

momentum tensor that is key. The energy-momentum tensor has components Tαβ =
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(Tαβ)plasma + (Tαβ)em, incorporating contributions to the energy and momentum from the

kinetic and electromagnetic behaviour of the plasma. In this context, a relativistic force-free

system corresponds to Tαβ
,β = −JβFαβ = 0, where Fαβ are the components of the Faraday

tensor and J = (cρ, J1, J2, J3) is the four-current. In a frame where ϕ = 0, B = (B1, B2, 0)

and J = (cρ, J1, J2, 0), the only non-zero component of the Lorentz force is J1B
2−J2B

1 = 0.

Neglecting viscosity and heat conduction the 33-component of (Tαβ)plasma, which we will

refer to as the plasma pressure P , is given by

P = c
∑
s

ms

∫
d4w (w3)2fs(w) δ(wνw

ν − c2) (23)

= c
∑
s

(P1s + P2s + P3s + P4s). (24)

Note that (Tαβ)plasma = pαNβ, where N = nu is the number flux four-vector and n is

the number density. To solve the first pressure integral P1s we will perform a coordinate

transformation defined by the transformation matrix

[Λβ̄
α] =


γ1s 0 −uysγ1s/c 0

0 1 0 0

−uysγ1s/c 0 γ1s 0

0 0 0 1

 , (25)

where γ1s = (1 − u2
ys/c

2)−1/2, wβ̄ = Λβ̄
αw

α and wα = Λα
β̄
wβ̄ such that Λβ̄

αΛ
α
β̄
= 1. Note

that this coordinate transformation, and following transformations, are used as a means to

evaluate the integral and do not physically correspond to a Lorentz boost. The Jacobian

of the system is simply J = 1 therefore, dwβ̄=dwα and f1s(w
0, w2) = f1s(w

0̄). Making the

change of variables yields

P1s = ms

∫
d4w̄ (w3̄)2f1s(w

0̄) δ(wνw
ν − c2), (26)

which can be written as

P1s = ms

∫
d3w̄

(w3̄)2

w0̄
f1s(w

0̄), (27)

where

f1s = fs0c1s exp (−cβsmsw
0̄/γ1s). (28)

A convenient way of expressing w0̄ can be obtained using the inner product of the four-

velocity with itself, w ·w = gµνw
νwµ which gives w0̄ =

√
c2 + (w)2. Note the metric used
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here is defined as gµν =diag(+1,−1,−1,−1). The integral can now be easily evaluated by

changing to spherical coordinates, making use of the Jüttner transformation (w/c = sinh x)

and using the known integral26∫ ∞

0

sinh2ν x exp (−β coshx)dx

=
1√
π

(
2

β

)ν

Γ(ν + 1
2
)Kν(β), (29)

where K is the modified Bessel Function of the second kind. Therefore

P1s =
k1sn0s

βsc
exp (−βsqs(ϕ− uysA

2)), (30)

where k1s = γ2
1sK2(Λ1s) and Λis = msc

2βs/γis. Similarly P2s and P3s can be evaluated using

the following coordinate transformation

[∆β̄
α] =


γ2s ±iuxsγ2s/c 0 0

±iuxsγ2s/c γ2s 0 0

0 0 1 0

0 0 0 1

 , (31)

where γ2s = (1 + u2
xs/c

2)−1/2, wβ̄ = ∆β̄
αw

α and wα = ∆α
β̄
wβ̄ such that ∆β̄

α∆
α
β̄
= 1. The

Jacobian is again J = 1, with f2s(w
0, w1) = f2s(w

0̄) and f3s(w
0, w1) = f3s(w

0̄). This yields

P2s =
k2sn0s

2βsc
exp (−βsqs(ϕ+ iuxsA

1)), (32)

P3s =
k2sn0s

2βsc
exp (−βsqs(ϕ− iuxsA

1)), (33)

where k2s = asγ
2
2sK2(Λ2s). The final pressure integral P4s can be trivially evaluated, without

any need for a coordinate transformation, using Eq. (29) yielding

P4s =
k3sn0s

βsc
exp (−βsqsϕ), (34)

where k3s = bsK2(Λ3s) and Λ3s = msc
2βs. The total plasma pressure is then

P =
∑
s

n0sk1s
βs

exp (−βsqsϕ)[exp (βsqsuysA
2)

+ (k2s/k1s) cos (βsqsuxsA
1) + k3s/k1s]. (35)

The charge density ρ is given by (see Eq.(B5)),

ρ = −∂P

∂ϕ
=

∑
s

qs exp (−βsqsϕ)Ns(A
1, A2), (36)
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where,

Ns(A
1, A2) = n0sk1s[exp (βsqsuysA

2)

+(k2s/k1s) cos (βsqsuxsA
1)

+k3s/k1s]. (37)

A charge neutral plasma requires that ρ = 0, hence

ϕ =
1

e(βi + βe)
ln

(
Ni

Ne

)
. (38)

The condition of vanishing electric field is satisfied by Ne = Ni, which is true if

βiuyi = −βeuye, (39)

βi|uxi| = βe|uxe|, (40)

n0ik1i = n0ek1e = n0, (41)

k2i/k1i = k2e/k1e = a, (42)

k3i/k1i = k3e/k1e = b. (43)

As a result the plasma pressure is given by

P =
(βi + βe)

βiβe

n0[exp (−βeeuyeA
2)

+a cos (βeeuxeA
1) + b]. (44)

The x− and y− components of the current density are calculated using Eqs. (B6) and (B7)

(see Appendix B)

J1 =
∂P

∂A1
= −(βi + βe)

βi

n0aeuxe sin (βeeuxeA
1), (45)

J2 =
∂P

∂A2
= −(βi + βe)

βi

n0euye exp (−βeeuyeA
2). (46)

The corresponding, self-consistent vector potential can be obtained via Ampère’s Law,

d2A1

dz2
= −µ0J

1, (47)

d2A2

dz2
= −µ0J

2. (48)

The resulting vector potential components can be written as,

A1 = α1 arctan (exp (z/λ1)), (49)

A2 = α2 ln (cosh
2 (z/λ2)), (50)
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and the magnetic flux density components are

B1 = −(2α2/λ2) tanh (z/λ2), (51)

B2 =
α1/(2λ1)

cosh (z/λ1)
, (52)

where

α1 = 4/(βeeuxe), (53)

α2 = 1/(βeeuye), (54)

λ1 =

(
βi

βe(βi + βe)aµ0n0e2u2
xe

)1/2

, (55)

λ2 =

(
2βi

βe(βi + βe)µ0n0e2u2
ye

)1/2

. (56)

For a force-free system we require J1B
2 − J2B

1 = 0. This condition is satisfied provided

4α2 = ±α1 (α = |α1|) and λ1 = λ2 = λ which implies uxe = −uye and a = 1/2. Therefore,

the relativistic force-free Harris sheet is

B1 = B0 tanh (z/λ), (57)

B2 =
B0

cosh (z/λ)
, (58)

where B0 = α/(2λ). The relationship between the microscopic and macroscopic parameters

of the equilibria can be deduced by comparing Eq. (14) to Eq. (44). This yields

B2
0

2µ0

= n0
(βi + βe)

βeβi

, (59)

a =
1

2
, (60)

P03 = n0
(βi + βe)

βeβi

b, (61)

2

|B0|λ
= eβe|uxe| = eβi|uxi|, (62)

2

B0λ
= −eβeuye = eβiuyi, (63)

where we have assumed that λ is positive and B0 can be negative. Following Neukirch et

al.11 the connection with the original Harris sheet can be made using Eq. (59) and Eq. (63)

to obtain an expression for λ,

λ =

(
2(βe + βi)

µ0e2βeβin0(uyi − uye)2

)1/2

(64)
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Therefore, the relativistic force-free Harris sheet is equivalent to the non-relativistic force-

free Harris sheet9–12 (and consistent with the relativistic Harris sheet22) where we can now

formally access the relativistic regime, msc
2βs ≪ 1.

When msc
2βs ≫ 1 the relativistic solution reduces to its non-relativistic counterpart

where,

n0 = n0sγ
2
1sK2(Λ1s) ≈ α1 exp

(
msβsu

2
ys

2

)
, (65)

a =
asγ

2
2sK2(Λ2s)

γ2
1sK2(Λ1s)

≈ α2 exp

(
−msβs

2
(u2

xs + u2
ys)

)
, (66)

b =
bsK2(Λ3s)

γ2
1sK2(Λ1s)

≈ α3 exp

(
−
msβsu

2
ys

2

)
, (67)

and

α1 = n0s(1 + u2
ys/c

2)(1 + u2
ys/(4c

2))

×
(

π

2msβsc2

)1/2

exp
(
−msβsc

2
)
, (68)

α2 = as
(1− u2

xs/c
2)

(1 + u2
ys/c

2)

(1− u2
xs/(4c

2))

(1 + u2
ys/(4c

2))
, (69)

α3 = bs
(1− u2

ys/(4c
2))

(1 + u2
ys/c

2)
. (70)

This is consistent with Neukirch et al.11. In the ultra-relativistic regime msc
2βs ≪ 1 and

n0 ≈
2n0s

(msc2βs)2
(1− u2

ys/c
2)−2, (71)

a ≈ as

(
1− u2

ys/c
2

1 + u2
xs/c

2

)2

=
1

2
, (72)

b ≈ bs(1− u2
ys/c

2)2. (73)

The general solution is constrained by the condition

a =
asγ

2
2sK2(Λ2s)

γ2
1sK2(Λ1s)

=
1

2
, (74)

where as is a free parameter. This condition dictates the allowable values of uxs = −uys = us

for a givenmsc
2βs, Fig. 1 exhibits the relationship between us/c andmsc

2βs for as = 1, giving

a hint of the general dependence for arbitrary as.
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FIG. 1. Plot of us/c against msc
2βs for as = 1, exhibiting the relationship a = 1/2 that constrains

the relativistic force-free Harris sheet.

IV. SUMMARY AND CONCLUSIONS

Recently the first nonlinear force-free, non-relativistic VM equilibrium for the force-free

Harris sheet was reported by Harrison and Neukirch9. If the thermal energy of the plasma

approaches or exceeds its rest energy, a non-relativistic treatment is no longer sufficient and

a relativistic analogue must be sought. This paper has presented a collisionless distribution

function for the relativistic force-free Harris sheet. Mirroring the non-relativistic solution9–11,

where the properties of the pressure tensor were exploited, the energy-momentum tensor

Tαβ was wielded in an equivalent role27, allowing the calculation of the equilibrium. In our

calculation, we restrict ourselves to a frame where the electric potential vanishes (ϕ = 0),

B = (B1, B2, 0), and J = (cρ, J1, J2, 0), where the only non-zero component of the Lorentz

force is J1B
2 − J2B

1 = 0. The condition of vanishing electric field is true only in one frame

of reference; in a moving frame ϕ is non-zero. The resulting relativistic force-free Harris

sheet is identical to its non-relativistic counterpart but now the relativistic regime where

msc
2βs ≪ 1, can be formally accessed.

Alternative methods of studying relativistic VM equilibria have also been developed28–34.
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Suzuki explored possible equilibria by describing the deviation of the distribution function

from a Maxwell-Jüttner distribution using orthogonal polynomial series28. Using this novel

method a new, two dimensional equilibrium was reported. Kocharovsky and co-workers

use the method of invariants of particle motion to find exact solutions of the VM system

for arbitrary particle energy distributions29–31. There technique allows for the description of

multicomponent plasmas, that may be relativistic or not, for a general magnetic geometry29.

Relativistic equilibria have also been studied extensively within the context of plasma

pinches and electron beams used in fusion and laboratory plasmas35–42. In these inves-

tigations an electron beam, described by a prescribed distribution function, is embedded

in a background plasma permeated by a background magnetic field. The resulting elec-

tromagnetic fields are self-consistently calculated yielding stable Vlasov equilibria. A va-

riety of tailored seed distribution functions have been investigated such as monoenergetic

distributions35,36; warm beams (i.e. a drifting Maxwellian)37,38; and helical (force-free) beams

(i.e. a combination of axial and azimuthal configurations)38–42.

The work presented here lays the critical bedrock for further investigations of plasma phe-

nomena such as waves, instabilities and magnetic reconnection. In particular the distribution

function reported here can be used as the initial conditions for numerical investigations of

magnetic reconnection in relativistic, collisionless plasmas.
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Appendix A: Normalisation Constant, fs0

Consider the distribution function,

fs = f1s(w
0, w2) + f2s(w

0, w1) + f3s(w
0, w1) + f4s(w

0)

= fs0[c1s exp (−cβsms(w
0 − uysw

2/c))

+ c2s exp (−cβsms(w
0 + iuxsw

1/c))

+ c3s exp (−cβsms(w
0 − iuxsw

1/c))

+ c4s exp (−cβsmsw
0)], (A1)

where

c1s = exp (−βsqs(ϕ− uysA
2)), (A2)

c2s =
as
2
exp (−βsqs(ϕ+ iuxsA

1)), (A3)

c3s =
as
2
exp (−βsqs(ϕ− iuxsA

1)), (A4)

c4s = bs exp (−βsqsϕ). (A5)

The four-current density Jµ = (cρ, J1, J2, J3) is defined as

Jµ = c
∑
s

qs

∫
d4w wµfs δ(wνw

ν − c2). (A6)

To evaluate the normalisation constant fs0, we make use of the zeroth component of the

four-current (the charge density ρ =
∑

s qsns) to calculate the charge number density,

n0sñ =

∫
d4w w0fs δ(wνw

ν − c2) (A7)

= n1s + n2s + n3s + n4s, (A8)

where n0s is the mean particle density. The first charge number density integral can be

written as

n1s =

∫
d4w w0f1s(w

0, w2) δ(wνw
ν − c2)

=

∫
d3w f1s(w

0, w2). (A9)

To solve the first density integral a coordinate transformation defined by Eq.(25) is per-

formed,

n1s = γ1s

∫
d3w̄ f1s(w

0̄). (A10)
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Recall that the new set of variables are denoted by an overbar, where

f1s = fs0c1s exp (−cβsmsw
0̄/γ1). (A11)

As detailed in section III, the inner product of the four-velocity with itself can be used

to obtain w0̄ =
√

c2 + (w)2. The integral can now be simply evaluated after changing to

spherical coordinates, making use of the Jüttner transformation, w/c = sinh x, and using

the known definite integral26∫ ∞

0

exp (−β coshx) sinh γx sinhxdx =
γ

β
Kγ(β), (A12)

where K is the modified Bessel function of the second kind. Therefore the first integral

becomes

n1s =
4πc3fs0γ1sK2(Λ1s)

Λ1s

exp (−βsqs(ϕ− uysA
2)). (A13)

The remaining density integrals can be evaluated in a similar fashion using Eq. (A12).

Whereas n2s and n3s make us of the coordinate transformation defined by Eq. (31), this is

not required for evaluating n4s. Therefore,

n0sñ

fs0
=

4πc

msβs

exp (−βsqsϕ)[γ
2
1sK2(Λ1s) exp (βsqsuysA

2)

+asγ
2
2sK2(Λ2s) cos (βsqsuxsA

1)

+bsK2(Λ3s)]. (A14)

By letting

ñ = exp (−βsqsϕ)[γ
2
1sK2(Λ1s) exp (βsqsuysA

2)

+asγ
2
2sK2(Λ2s) cos (βsqsuxsA

1)

+bsK2(Λ3s)], (A15)

we find that the normalisation constant is given by

fs0 =
n0smsβs

4πc
. (A16)

Appendix B: Jγ = ∂P/∂Aγ Relations

This appendix details the derivation of the Jγ = ∂P/∂Aγ relations required for the

calculation of the relativistic force-free Harris sheet following the work of Otto27. In the

14
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kinetic treatment outlined in this manuscript the δδ−component of the energy-momentum

tensor ((Tαβ)plasma = pαNβ) is defined by the integral

P = mc

∫
d4w (wδ)2f δ(wνw

ν − c2). (B1)

This is the plasma pressure. Note that for clarity we suspend momentarily the use of the

particle species subscript s. For a distribution function f = f(P ν), we make the substitution

h = 2wδ (hence dwδ = 1
2
dh) in the subsequent calculations. Taking the derivative of the

plasma pressure with respect to Aγ yields

∂P

∂Aγ
= mc

∫
dwαdwβdwγdwδ (wδ)2

∂f

∂Aγ
δ(wνw

ν − c2)

=
mc

8

∫
dwαdwβdwγdh h2∂P

γ

∂Aγ

∂f

∂P γ
δ(g(w))

=
qc

8

∫
dwαdwβdwγdh h2 ∂f

∂wγ
δ(g(w))

=
qc

2

∫
dwαdwβdwγ(g(w) + h2/4)

∂f

∂wγ
, (B2)

where g(w) is defined as

g(w) = (wα)2 − (wβ)2 − (wγ)2 − h2

4
− c2. (B3)

This can be simplified by integrating the wγ integral by parts,

∂P

∂Aγ
=

qc

2

(
[(wνw

ν + (wδ)2 − c2)f ]+∞
−∞ ± 2

∫
wγfdwγ

)
×
∫

dwαdwβ

= ±qc

∫
dwαdwβdwγ wγf

= ±qc

∫
dwδ δ(wνw

ν − c2)

∫
dwαdwβdwγ wγf

= ±qc

∫
d4w wγf δ(wνw

ν − c2)

= ±Jγ. (B4)

Note that
∫
dwδ δ(wνw

ν − c2) = 1. Where the lower sign corresponds to the zeroth compo-

nent case (γ = 0). Therefore

ρ = −∂P

∂ϕ
, (B5)

J1 =
∂P

∂A1
, (B6)

J2 =
∂P

∂A2
. (B7)
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