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Collisionless Microinstabilities in Configurations
With Periodic Magnetic Curvature

B. Coppi, G. Laval, R. Pellat, and M. N. Rosenbluth
International Center for Theoretical Physics, Trieste, Italy

ABSTRACT

In view of investigating the stability of a closed (toroidal)
configuration in the high temperature collisionless regime, a
cne-dimensional model simulating the effects of magnetic
curvature variation, magnetic shear, and particle trépping is
adopted. Use is made of the Vlasov equation including finite
Larmor radius and wave-particle resonance effects. Low
.frequenc:y electrostatic modes are considered. Then two types
of wave having the same periodicity L as the magnetic curva-
ture, or localized in a.region where curvature is unfavorable,
are found. One has the frequency of the known drift wave, and
the other (the flute-'gravitational'' wave) has frequency deter-
mined by the average favorable curvature along the lines of
force. The latter wave is stabilized by imposing that L be
sufficiently short as to ensure good ion communication making
ion Landau damping effective. The former one by imposing that
L make the effects of longitudinal ion sound wave ~prevail over
the effects of ion inertia on their transverse motion. If the
lines of force are not closed or if they are closed but their

length is much larger than L., drift waves with wavelength
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larger than L have to be considered. In the first case they
can be stabilized by shear, in the second case waves with
transverse wavelengths short enough as to make the effects
of transverse inertia pl;evail over those of longitudinal ion
inertia remain unstable. The influence of trapped particles
is investigated finding that it contributes to reducing growth
rates. Stability conditions are given for the most significant
cases observing that, for non-hydromagnetic types of méde.
they are easier than those obtained for the collisional regime.
It is recalled that while no wave localized in a region of
unfavorable curvature was found in the high temperature
collisional regime, a wave driven by the known drift mechanism
but localized over distances shorter than L can be found in

the collisionless regime.
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INTRODUCTION

It has been shown prfs:viously1 that configurations which have favorable
average magnetic curvature (e.g., are j:» df/B stable) but have no shear
can be unstable in the presence of electron-~ion collisions. The aim of the
present work is to give an analysis for a model of this type of configuration
considering the collisionless regime where wave-particle resonances replace
the effects of electron-ion collisions. We limit ourselves to investigating
electrostatic modes, considering the low § limit. Then the paper is struc-
tured as follows: In Sec. A we define the equilibrium and discuss the
analytical aspects of the stability problem. In Sec. B we recognize the
relevance of waves having the same pericdicity as the magnetic curvature
and study one of them, the 'gravitational' wave, having its frequency
determined by the average favorable magnetic curvature. In Sec. C we
analyze the possibility of shear stabilization of this wave. In Sec. IJ, the
drift wave is investigated showing that it can be stabilized either when the
magnetic field lines close, and the wavelength along them has an upper bound,
or by magnetic shear. Section E is devoted to the possible modifications
of the results if the resonant particles responsible for the instabilities are

trapped between local magnetic mirrors. The conclusions are finally given.




SECTION A

. The Equilibrium

As a model of a system possessing shear and variable magnetic curva-
ture with negative V' , a plasma layer is considered,perpendicular to the

x direction, where the magnetic field is represented by:

- X x
B = B_ (1- RO(C)) .t BT (1. A)

s

Since we treat a low B system, we neglect diamagnetic effects and
imagine these field changes, so simulating the vacuum magnetic field of
external windings. More_gver, BO X/LS represents the '"shear' and
BO [1- x/Ro( £)] the main magnetic field and its curvature variation, ¢
being a linear coordinate along the lines of force.

The §dﬁ/}3 stable configuration is represented by the curvature profile

S SR 2L
R (C) = R[cos L -h]
(o} C

where 0< h< 1. The scale lengths here introduced will be considered in
the ordering x g r < L< Rc< LS , where r = - {difn no/dx)-1 no being
the particle density. Later on we shall introduce an additional modulation
of B0 to take into account the effects of trapped particles.

To deal with the collisionless regime we adopt the Vlasov equation, so

that the equilibrium is described by:

v VI 4+

(E + vXB).-V f, =0 (2. A)
O - e v 0}
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We assume that no electric field exists, E =

0, and choose as solution

of Eq. (2. A) a suitable f0 close to thermal equilibrium. Then

3/2
() n M7 {1 oL foor o) s 2
f = ) -— — . ‘
oj T By ® [1 *(x +Q,)+ R (3 A),
r j c
where only the largest terms of the expansion in x/r;': are included,
= -2 -1 *-] -1 . . -
a, = (v .]) and r = r - 2R The diamagnetic velocities are
i thi c
v, = -(2a. 8 *)'1 d = 2a 9 )t
AT a & r and v, = { a, er} .

2. The Stability

Dealing with a system having low 8, we limit consideration to electro-

static perturbations from the equilibrium, having phase velocity less than

the Alfven velocity.

Then, linearizing the Vlasov equation and integrating along particle

trajectories, we have:

-

e, t - 2~ VoA 2
f,s-—‘LS‘ a' V¢ - ¥ f.;V¢=Ze.Sf.dv
ioom g v o) ORIV

J

If a.j represents the gyration radius, for a, < r << LS , the lowest

order expression for the particle orbits around x =0 is

v
/ x(t'} - x - -s';— [sin (¢ - Qt') + sinel

v
< y(t') -y —é—[cos (0 - 2t") - cosG] + all;:ct'
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where £ = z - (x/LS) y = z' In consistence with our previous ordering
of the scale length distances, we have taken into account only the curvature
drift and neglected its velocity dependence. This will limit us to consider

instabilities with frequency:

k
w —— e et ~
> & e R i R
i J ¢ c
with the reasonable assumption that resonances with this drift frequency do

not affect in an essential way the conclusions we shall derive.

3. Normal Mode Equations in the Absence of Shear

To represent this case we take LS = ® , Moreover we neglect for
simplicity the Debye distance in comparison with the Larmor radii. Then,

we consider modes of the form

- - i{ky + wt)
¢ = ¢ (x, z) e (4.A)

assuming that they are localized in the x direction and k >> 3/8x . This
leads us to consider ¢ {x,2) ® ¢ (z) and n and dn/dx as constants in
lowest order. The dispersion relation is obtained by setting ni(z) = ne(z} .

In particular, defining 7 = Te/Ti ., we obtain after carrying out standard

2
integrations of the orbit method :

Y

. . N ai 1/2 b 40 -avﬁ
- —— o3 _ —_ - X
n, : hz o(z) - i{w kvd)( p ) Io(b) e S:m dv” e
D kv L
iw.th - i*———g——z —— - (sin 2z'/L - sin 2z/L) (5. A)

e -~ 1
X S at' ¢ (z'} e I
o0

-—




i i 0 V2 e
n = —5— {¢(z)-i(W+kv T)(—E") S dv. e °© X
e e d n 00 il
D -
) - iw t' + ikv -r/.zvl (sin 22'/L - sin 2z/L) l '
X 51 dat' ¢(z') e € g ‘
. | ]
(6. A)
where v, = |v l . b= L (ka )2 v = a, /R v (the ion curvature
d di 2 i g i"7c¢ thi
drift), wi =& + khv , @ = W - khvg'r . and z' = z +v”t' . The

electron Larmor radius has been taken as negligible.
We can carry out the integration over t' by expanding

iikvg L/Zv“ (sin 22'/L - sin 2z/L)
e

in series of Bessel function, as was done before integration over v  for the
2 ~ ~ i2
gyration part of the orbit, and considering a solution ¢ (z) = En¢n e “r 2/L

as suggested by the form of Egqs. (5.A) and (6. A) in analogy to the solution

for Hill's types of equation. Then we obtain:

1/2 2
~ X~ -b (% e Y
0 = (1+71) ¢n- Z ¢r T(w-kvd)lo(b)e (—1}-) S dv”e
. - 00
I (kv L/2v.)J (kv_L/2v.) a M?
" m g B "mén-r' g I ) (___)
Z W, + (m +n) Zv"/L v i-kvd'r) T X
m i
« +0 . -0t v, Jm(- kvg:LlZv") Jm_m_r(-kvi'rL/Zv“) B
o I we + (m +n) Zv”/L l

(7.4)

The dispersion relation results from setting equal to zero the Hill det z:xminant

resulting from Eqgs. (7. A).
==




SECTION B
1. Modes with Bad Ion Communication

It is most interesting, as we shall also prove in Appendix 1, to consider

modes with frequency vth,/L < W_ < v, /L , where w=w
1

R < the - iy and

R
Y << wR . Modes of this type are in fact characterized by poor ion com-
munication over the distance L , while the electron Landau damping is
expected to allow the instability. Since we have assumed kvg < W in order
to neglect the velocity (spread) dependence of the curvature drift, we have

for consistency vthe/L > kvg'r . Therefore, for the last term of Eq. {7.A)
we can take the small argument expansion of the Bessel functions there con-
tained or, more simply, expand the corresponding exponential in Eq. (6. A).
We will be allowed to make a similar expansion for the ion term if

vthi/L > kvg. implying ka.l< RC/L , a reasonable assumption. As a con-
sequence, we notice thatif W = kv _ T as it is found for the usual drift

d

{universal) instability, we shall not be allowed to consider vd'r ~ vg
corresponding to Te/Ti ~ h r/RC , the limit where the drift instability isl
stabilized by the effects of good curvature. 3 On the other hand, this limit
is difficult to achieve in practice, so that we can be justified in not devoting
special attention to it,

Limiting the expansion of the Bessel functions in Eés. {7. A) to the terms
of first order in their argument, the Hill determinant reduces to one with three

nonzero elements per line, centered around the diagonal. If we consider

modes with 7y << wR and study the order of magnitude of the various terms

=8
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recalling our assumptions on kai and r/Rc we are led to recognize two
types of wave:

a drift wave with wR = - kvd'r , which corresponds to the vanishing

in lowest order of the coefficients of ;n with 1< In | < kvdT/(thhi/L)

a gravitational wave, which corresponds to the vanishing in lowest order

of the coefficient of ;0 . This leads us to exclude consideration of

instabilities localized over a distance less than L along the magnetic field
lines. To this purpose we should in fact construct wave packets, utilizing

such high values of n that the influence of the ion inertia alongthe field or theion

Landau damping would be sufficient to eliminate the instability. This general

picture is not changed when we introduce the effects of the magnetic curvature

component lying within the magnetic surface.

2. Nonresonant Gravitational Wave

We shall consider at first the latest type of wave. Then in lowest order

we have, for the real part of the frequency:

w{w - kvd)(l - I-O(b) e-b) - h(l +7) kzvg Vg = 0 {1. B)

Choosing at first the smaller {negative) root we see that, in order to obtain
w > kvg , we have to take b << 1, and then

v
_ _ b r E thi
w = -wo_ \/ 3 + hi{l +7) —-—R - \/8 " (2. B)

c

e
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In order to have bad ion communication, i.e., W > thhi/L , Eq. {2.B)
demands
2

L
4r R
c

h(l + ) > 1+ % . (3. B)

NG
L2 ]

Therefore, the system can be considered as stable against these waves,

when

2

hi{l + 7)
r RC

and good communication exists (Appendix 1).
If we assume hil + 1) Lzlr Rr > 1 we are led to consider

LZ

RZ
c

b < 2h2(1+'r)2 @, kai< 2h{l + 1) L/Rc

If we analyze the order of magnitude of the coefficients of the expanded

Egs. (7. A), we can see that the diagonal ones are much larger than the off

diagonal ones. In fact, we have, for n=0 and W= - wo + 6w
kzvz N
[b(2w0+kvd)6w + iWN7 ZI;T zg (kvd-r -wo)] ¢,
the
Liv [kv +w - {kv,T -w )iNT Yo ](;{ +e) = 0 (4. B)
2 g d o d o thhe -1 1

and, for n=1,

=] 0=

| SRR
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(.OOL wo thhi wo +k'~i’d ~
()] - i —
b(2 o+kvd)6w (1+1\Fn > )wo(-r kvd) + > o ¢,

the L o
1 wo L ~ ~
- =k k + w - - inf =
2 vg V4 o (kvd'r wo) iNT 2 v (950 + ¢2) 0
the
A similar equation is obtained for n = -1 . We can verify that the relative

order of magnitude of the coefficients does not change for higher values of
n . In this regard, we notice that for b > (r/Rc), h,w= (kvg/b) h and
that the diagonal terms are of order kvg/b (wol-r - kvd) as compared
with kvg (k V4 + wo), the order of the diagonal ones.

Then, in lowest order, the Hill determinant can be reduced to that of

a 3 X 3 matrix formed by the central elements. This leads to the dispersion

relation,

2 —_— = k - W l X
[b( w +kv])6w+ v (kV T )

4
the
zvfhi wotkvy W@ in w L
x - = - —_————
M2w°+kv£6(u+ > @ T(w0 kaT) 1+ v
L 0 the
2 .
kzv woL
= —-——g—z (kvd+w0) [kvd+wo+ Zlmf_n'zv (wo-kvd'r)]
the
{5.B)
If w # kv_,, we have in lowest order
o d Lw _
. >
k2v~2'r [(w tkv )2 B Q- kzv (1 +—r)2]
& © d 2 vthe d
6 w= ’ (6' B)
wao (Zwo +kvd) (kvd'r - wo)
and see that instability occurs for wo < kvd'r , equivalent to
Zh r
b > - RC 7 (7' B)

-ll=
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where Im(w} < 0. A very similar circumstance was found in the col-

. . \ 1 ,
lisional regime’ where the unstable gravitational wave was associated with
the effects of resistivity.

We notice that now the order of magnitude of the growth rate is

k2 v2 1, v2 )
- g thi L
v T - = 7 - . (8. B)
the Rc the
and therefore rather small.
If we utilize condition (7. B) to evaluate the limit in which good ion
communication occurs, we have
2
hL 4
r Rc < T (9. B)

We have verified that the larger root of Eq. (1. B} is stable.

3. The Resonant Case

Equation (6. B) shows that a resonance occurs for the growth rate when
wo = kvd"r , for bt = Zhr /Rc , which is the frequency of the drift

wave. This is also a circumstance which is common to the resistive case.

Taking Eq. {5.B) we now obtain in lowest order

vth' w -f-k_vd w w L
b2w +kv,)6w [2 . + == {1 +iNg —— ) (6w + Aw )
o d 2 w T v o
1, o the
1 2
= = 10. B
> [kvg(wo+kvd)] { }
where AW = kv.T1T -
o d o
_]l2e
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We notice that, in order to reduce consistently the Hill determinant to the
3 X 3 one corresponding to Eq. (10. B) , we need impose that
the diagonal elements are larger than the off diagonal ones. For the lowest
values of n, this implies vz /LZ kv /w > kzv v . and since |
' P thi d" o g d
2

2
wo = hkvg/b ) Rc > L h, which is an acceptable condition. Now,

writing Eq. (10. B} in dimensionless form:

(1 +ip)6w + AJO)acE +1 6w = C,

1/b (Zr/L'r)z 1+7),

]
]

we have §W ﬁw/kvd'r , I

C=£ L21+Tz 1 and = ﬁr.l_{.:cl.ll:_
_bR)(T)l-i-ZT’n P T2 Ty
c the
For §w = G(FR -i')j , we have
— A— —.]=
GwR[I+ w04-6wR C ,
and _
= C—IﬁwR
Yip T T+vAaB 1260 ’
0 R
with
26w = I+ Aw ) + J;cz+(1+ Aw )
R o - o

The negative root is damped ()7 < 0) for all A(;o » On the other hand,

the positive one}

C+1/21(1+ AJO)

[o¥] Lag

v/ e
P 2 \[CZ+(AwO+I)2/4

~13-




is unstable for

-14 -

Aw >> - C/I. We can recover as a special case, the
o

result of (6. B) in the limit where A(;o > I » C ., Inparticular, the

maximum growth rate corresponds to Aw = I, where
o

In the further

we have:

y = lz-p( “+c-1

4 3
limit where IZ> C, i.e., L /rRC < 471 (1 +7)/h,

ﬁ 1+ 71/2 E)l/z h L _thi
16 1+27 M (Rc r
14—
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SECTION C

Influence of Magnetic Shear on the Gravitational Wave

We represent the magnetic shear by introducing in the equilibrium the;
field component (x/Ls) B0 '?"Y , with I.J!;J >> L . Then, if we consider the
rotating coordinates § = z +(x/L8)y, following the magnetic lines and
X=Y- xz/I..s perpendicular to them, we look for'quasi-modes’ of the form
;(C) eikx . Defining E = 2¢/L, the equation for the perturbed ion density

acquires the form

1/2 2
1l ~& @5 e "XV
- :;_,\—2— ni(g) = ¢(§) - ifw - kvd)(?) S:w dv,”e X
D
ikv L _ _
o iwit' © I (sin ' - sin {) 2
5 ~ : 1 b L -2 -b
dt' ' I(b - = €' blI (b)-1(b

§ avs@e T (1,00 - 100

| (1. C)

_ . 2 2
where {'= { + 2v" t'/L and L /4LS << 1.
In order to see the influence of shear on the modes found in its absence

and represented by Eqgs. (1. B), we consider wave packets of the forml

$(@) = Z S Pn+r)e ™ tRC ax (2.C)
n

where clearly gk — 0 for L/Ls - 0.

Therefore, we take the Féurier transform of Eq. (1. C) and the corre-

sponding one for n_ . set n, {K) n, (k) and repeat the procedure which

led to Egs. (7.A).

15—
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Then we obtain, in the small b limits

1.~ \ c'l2
0=(1+—)¢(n+x)-2/ (w-kv)]i-bf1- &2 — X
T d dKz

r

1/2 2
o, / +e0 -a,v, . J (v7 (vl
% (_____1_) S dv e * 1] Z m m-r+n
m o Il wi+(m +n +K)2.v“/L
m
o 1/2 +00 - vz . J_(~uT)J (-uTt}) ~
-!-('(‘LJ +kv “-E) dv. e © ! = m-rin ¢ (r +K)
u d/\ = e , W_+(m+n+g)2v /L
m

(3.C)

where

v = kng/‘?.vII and X = L2/4Lg

As in the previous sections we consider modes with thhi/I_. < W< Zt /L

he

and suppose that shear is so small that w > 2 vthe/L , for K << 1. Then,

with the intention of examining the gravitational wave, we obtain for n = 0

2 ZVZ
- -kv,) b1 - Ei-i + kv vdh(1+‘r)+w(g:—+kvd)-—-2m—ez e
dk & LS w
+ R TP kv ot o)t = Lk [kv cw-(kv._ T+ Wi ] P +3(-1)
TPV (v, Pl = Fhv [kvy 4 p[¢ 3 ]
(4. C)
where p = - N wL/ZVthe For n=1 we have, to 10wast! order,
2
a* 2 2 Ving
-w(w -kvd)b - -3 + k v vdh(1+'r) + w{w -kvd) 35 5
dx B L% w
w -C'-J+k +iplle = l—k k w k + W) [_(K-)+_(2.)
ST Hlevg A+ ) = TRy v - @ - (kv o+ @lip] {3660 49
(5.C)
and an analogous equation for n= -1.

=16=
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If we consider the operator acting upon ¢(1}) in Eq. (5.C), for the
modes we study, the prevailing terms are: W(Ww - kvd) va'h,/L2 wz -
. i
ww/T + kvd)(l +ip) . The latter term is the more important when we do

not consider the resonant condition, i.e., |w]| < kvd'r . We are then

led to the equation, defining p = -1/2 A1 W L/vth ,
e

a° w v 2
b Zww-kv,) S—= + 2(¥ + kv )P % w-kv)b
a 2 T & T2 2 d
dx L w

kv, T
2 i 2 2 d
k —
+ vgvdh(l +T) + 2pk vg (1+ P )

1 2 2 kvd-w-Zip(w-!-kvd'r)

- = kv kv, - w)
2 g d 2 2 2 .
w(w -.kvd)thhe/L w - ww/T +kvd)(1 +ip)
(6.C)
—ok’/2

which is of the Weber type. We consider the lowest eigensolution e
In order to have localized solﬁtions we require Re¢g > 0 and for the
validity of the equation we require ki af/Z < 1 which corresponds to
boX< 1 and W > 2k vthe/L . Then, we obtain:

wW+kv,T 2

v
azz=-% : d (t‘;e) ) (7. C)
w(w-kvd}r

2
k vgvdh(l +T) - WWw - kvd)b -G

o L= S@ TE VT » (8.C)

where G represents the terms due to the unfavorable periodic curvature.
Then we shall distinguish three cases:
1) b > (2 h/'r)(r/Rc), corresponding to condition (7. B) for instability of

the gravitational wave due to the unfavorable curvature. From the dispersion

e

P(x)=0,
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relation resulting from Eqs. (7.C) and (8.C), with G =0 we can verify

that no unstable localized solution can be found. Defining S = (M/rn)(r/Ls)2

and w = w/kv . we have, in fact,

d

s [ Ww-1) - (2h/0)(1 + 1) r/RC]Z

=z = - — (9. C)
b (@ + 7)1 - w)

and can consider the solutions of the dispersion relation as intersections of

two curves, indicated in Fig. L.

A ——p gy

Fig. 1

There are four roots: two real and two complex. One of the real roots is

never localized as -7 < ;)1 < -03? . The second real root is localized only

if -tc< 62< E’? , correspondiﬁg to Sl/z< 2hil +-r)/'r1/2 r/Rc . The

remaining two complex roots are always nonlocalized. If now we take into

-18w
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account the unfavorable curvature terms, G # 0, we have to distinguish

two subcases:

a) S

Then if we set W= W

‘1:'+ §w , with 6§ ® due to the

unfavorable curvature terms and representing the growth rate, we have

G/2 1@ +m -5y

b 2w, - 1)

<

bw = +

the only localized root is the positive one. The shear does not stabilize this
. P o
root and introduces only a shift in the real part of the frequency , - Then, we

verify the conditions of validity of Eq. (9.C). One is satisfied as

(1-26i)b55
bZo = —r— < 1
wl(wl - 1)

and the other, W > vathe/L, reads

2h(l + 7) 1/2

L 5 S
b-rl/2 Rc

and is also satisfied.

/

b) Increase the shear to a value suchrthat Sl/2 > 2h(l + ‘r)/'rl 2 (r/Rc) .
In this case, neglecting the unfavorable curvature terms, the roots of the
dispersion relation are all nonlocalized. If we include these small terms,

the roots remain nonlocalized. Consequently, we can consider the condition

1/2

S > 2h(1l + 'r)/'r]/z (r/Rc) as a condition of stability of the pi‘esent mode.

~19-
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We recall that this condition is of the same type as the one given in Rei. 1,
for the inertial mode due to unfavorable curvature.

2) be(2 h/-r)(r/Rc). Then, referring to Eq. (9.C}, the relevant roots
of the dispersion relation without the unfavorable curvature terms are

represented in Fig. 2.

LB X

Fig. 2

We can see that if the shear is sufficiently small an unstable solution can be
found. For this, we need to prove that the corresponding mode is localized.
In particular, considering the condition of marginal stability, where the

- O




2]-

horizontal line is tangent in w we find GM <0 if b< h {r/RC} -7/,

M 3
which is compatible with the condition posed above. Then we can give as a

sufficient condition for stability for any value of b,

A
2h(l +7 r
S><__(I72._lf{—> {10. C)
T C

which can be easily satisfied.

When this condition is not satisfied the relevant instability is of the same
type as the one associated with the drift wave when, for br < Zhr/Rc , the
growth is related with the term due to periodic curvature.

When this condition is satisfied, we have to study the influence of the

/

i 2
periodic curvature terms. Since S /2 > 2h(l + -r)/'rl (r/RC) the root of the

dispersion relation will be close to -T . We can use this information to

keep only the most important terms in Eq. (7. C). More precisely, we take:

kz vz (kvd - w)z

G = 13 z 2. 2
Ww - kvd) thhi/L w - ww/T +kvd)(1 +1ip)

Then, if we set 65 = (W +kvt/kvT, we get the dispersion relation

56 = IS+T legr + E' l
T ¢ I'+8W(l+ ip)l
with C' = 2(1 +7)/7 (r/RC)Z I = (L+T) (21-/1_,1-)2 1/b , and obtain

the root:

1L+ [Zhr ]2
< 1

6wR ST R
c

-2l




_22-

Correspondingly, we obtain the growth rate

& w

— 4(1+7T1) hr R
Y =p—(57—l§-0'

2 —
Y +ow

c f(x) o R ]

Now we verify the conditions of validity of our derivation and precisely,

cb X = Z.hr/Rc << 1, which is always satisfied, and @ > ZKvthe/L

which gives:

u
H

(11. C)

o |

In conclusion, we see that for the present mode we do not have a condi-
tion for stability but one for the breakdown of the asymptotic approximation

1/2

when r/Ls > | hr/RC (m/M)] This condition is more severe than
(10. C) previously obtained, but is still rather mild. To have an estimate

for the order of magnitude of the growth rate, we take

hr 2hr
S R ., b R , and hL < RC '
c c
obtaining
3
2 2 1/2 v
L h r m thi
y = 2w (1+T)[rRC] R T (M) R (12. C)

For higher values of shear, c9rre5ponding to W < vathe/L we nea'd to
turn our attention to non-normal mode types of solutions which are digcussed
elsewhere.

3) For b=2 hr/RC'r » a resonance between the gravitatiopal and the

drift wave occurs. Then, in lowest order, the relevant equation jai

" e




w23

v

thi 1+

2 = 4 kv, (1 +iplbw + Aw )| {bkv, 1 +27) 6w
LZ T d : o d

2
2 (bw+Aw ) v
+ zoekiVirarn S o _the 2
d 2 2 P
dK kvd'r L 3

1 2 2. 2 2 2 — ;
- 2k vgk vd(1+'r) ¢lo) = 0 - {13. C)

Using the notations of Sec. B, this can be wriiten as:

2
4

2
dx

—~ M b 2 C
6w DT T T ¢

fw + I (o) = 0,

I+{(w+I)(1 +ip)

where Eo = (L2/4 Lz)(l + 1/ + 21) and AJO has been taken equal to 1.

2
-gu /2 .
Then, the dispersion relation for the solution e w'/ i

iTX 2
Cree) (3 s ) = | 0@ - ) ’
m b{l +2T) I+ (6w +IXL +ip)

with
—~ C
I+ (6w+INL+ip)

We know from the analysis of the dispersion relation, without shear,
o o . o]
that we have two roots, Gwl > and sz < 0, of which only Owl
satisfied the conditions of validity of the equation. Now, the dispersion
relation with shear has four roots. If we ignore the small ip terms, two
of these roots are real and close to ﬁw;’ . The root which is smaller than

LC . . .
Gwl is nonlocalized, the other one, when increasing the shear, goes into

the root studied in case 2. For the two other roots which are in the vicinity

23
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o
of sz and correspond to the drift wave, the equation is not valid. We
can conclude that a very small shear is sufficient to make the resonance

disappear.

24~
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SECTION D
The Drift Wave

1) As previously said, examining the order of magnitude of the diagonal
terms in the Hill determinant, we see that the other interesting wave is the

drift wave with frequency w = -kv 71, for bg 1. Since kvd = Nb/2 (Vth'/r) T,
1

d

we conclude that, for values of b such that:

2

r
b < 8(1—‘;) ’ (1. D)

this wave is stabilized as @ g 2 v, . /L and good ion communication

thi

exists. This is actually too stringent a condition as we will see that for

b < 1 the requirement

2
L 2 1 (1'. D)
— < a———
r =~ kY a.1 7
is sufficient. If in addition,
L 22
T< Y . (2. D)

the wave is stabilized for all values of b. For b > 1, w= - kvd'r/'\/_b
and the same condition holds. Condition (2. D) eliminates also the instability

associated withthe gravitational wave as it occurs for |w | < kv 7, i.e.,

d
br 22hr/R_ .
However, it is clear that condition (2. D) does not apply to the case
i k" Z 2inz/L
where we consider perturbations of the form e Zgbn e with
n
k|| < 1/L, as we do at the end of this section. This is an important point

for consideration, as in configurations with closed lines of force 1/k "

25~
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cannot be chosen arbitrarily large but will have to be of the order of the
circumference length. If L. is of the order of this length, the criteria

given above then hold for all possible low-frequency instabilities.

2) We now assume that condition (1. D) is not satisfied.

In order to derive some conclusions valid for b < 1 we return to con-

sider the 3 X 3 determinant with the intention of justifying later its

b

consistency. Then, for @ = -~kv T + §Ww and F{(b)

d 1- Io(b) e

we obtain

hi(l +71) kz vgv - kz vz'r(l +T) F{b){ I h(l + 1) k2 vgv - k‘2 v(zi'r(l + 1) F(b)

d d
2v kv TvL 2
i - 1 2 -
— g i ) e P kv sw{t +ive —— W = Ly v.a4mr e®
2 o d 2v 2 g d o
LT the
(3. D)
so that, for b << 1,
2
kvd'rL 1 v2 vd
6w = (1+7)1-iNg —— Jkv ——5—7—
thhe d| 2 hvg vd--rb
2
hvg thhi
+ bT- v - 2 2 2 * (4‘D)

where vg/v Zr/Rc .

d

e J -




=27~

Consider the three terms inside brackets:

- the first one represents the effect of the bad curvature and is
destabilizing for br < zm—/r{c .

- the second one represents the usual drift instability mechanism,
connectéd with the ion inertia across the field which is counteracted by
the average good curvature, and is destabilizing for br > Zhr/Rc .

- the third one represents the stabilizing effect of the ion inertia

along the lines of force. We can then derive the following conclusions:

(a) For br< 2 hr/RC the drift mechanism is ineffective and, since
a fortiori br < Zhch/Lz for Ri > L2 , the stabilizing ion term pre-
vails over the one due to the bad curvature.

(b) For 2h r/RC < br < 2 r/L the ion term dominates the drift desta-
bilizing one and the wave is again stable.

{(c) For br> 2 r/L> 2h r/RC , the wave is unstable to the usual drift
mechanism.

In all cases for consistency of the derivation, we require that the ion
term in the n = 2 diagonal element be larger than the off diagonal term.

This is verified for br< r RC/Z I.,z » which is compatible with the limits

considered above.

27—
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3) For b¥> r RC/ZLZ we cannot reduce the Hill determinant to a

3 X 3 determinant. We have to keep all the elements as given by the

equations:
~ . 2 ~ o~ | Y b
- ww -k\rd) Fb) +hl +1) k VeVa i - o+t $ 173 (kvd-w)Io(b)e =0,
- b anvzh_ 7 2 w kv TL
npn - w(w - kvd)[F(b) - Ig!b' ——2"“‘%:2- +hil+7)k vgvd-:(w +kvdT)(1+iﬁ2hv )
w L] : . “" “the
- -] kv, b
- ¢n+1 + ¢n-—1 3 (kvd - W) Io e = 0 (5. D)
for values of n, such that w > an Vthi/L) and ;n ~ 0 for values for n, such
that W = an vthi/L. Now looking for the drift wave with b < 1, we set

W = kvd't'(bw - 1) and we have for n # 0 :

P~ — 2 ' 2 ]
= ¢, 6w(1+i|£—t)-(1+ﬂb L AnTQ#T) r zh11+~qr]

*p LZ RCT
T ~ - , 6.D
TEAAL l¢n+l ¥ ¢n—1] (6. D)
{__\kvdf
with |6 | = o
L'vl:ha

If we neglect the resonant particle effects, proportional to |5 ] , We can

reduce the relevant dispersion equation to a Mathieu equation. We can then

compute the growth rate of the drift wave by perturbation. In Appendix II we

a

construct a general quadratic form which could give the same result.

The
corresponding Mathieu equation to Eq. (6.D} is:
24%¢ ~
L—-%-(a+qc052z)¢=0 , (7. D)

dz

-28-
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with

- 2
a={sw,- (1+7) b 4 2REFTrl (Lr) b
R Rr r 1+~
2
2r LT b
= - {== X
1 IRT{1+T) ( T ) 1+ (8-D)

For the values of b we consider, we have q > 1 and we can obtain a
localized solution of the Mathieu equation, expanding the cosine function for

z < L ; then Eq. {(7.D) reduces to a Weber type equation:

2 2 2
2 de¢ LT b - 4r z
L o) T {55“’ R T Lz} (9-D)

with

o ow = GGR-(HT) {b+%—£ (l-h)}

Ny

2
the lowest eigensolution, exp(- ozZ/Z L), leads to find:

0‘2 _4rr (_I_J)Z
- R r

and

/2

) (10. D)

2r 1 +71
66w = - T (

bT

then if we set 6-(-1-.) = GGR - i'_'}'; , we obtain: 5

|'¢
4 r nn
- - ko
y = 6w |6 | 1’2’:‘,"2“ (11. D)
Z, ,@n]
with
r
2
~ 1 dz —o'zv:.z/ZLZ - 2inz/L o 1 e-Zn /o
¢n T 2r L ° Zro
-T
I L0 LY
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then using the expression of 560 we get:
2
-4n" /o
— 2 2 -1
R 1N Y MO PSR 2 4 [br1+m)] % >_‘ e
TgQ Rt L s n
Vignev, (13.D)
(]
In the expression for -): , we can recognize the stabili'zing contributions (i.e.,
favorable curvature term, in this case always smaller than the term repre-
senting the unfavorable curvature, and longitudinal ion inertia term} and ‘the
destabilizing ones. The growth rate ; is of the same order as usual if we
take n=1, ¢ ® 4. On the other hand this "ballooning'' type of mode cannot
5 :
be found if ¢ < 1, implying the stability criterion:

LZ

rR
c

< _ri (14. D)
valid for any value of b.

We come to the conclusion that as long as it is possible to establish a
drift mode in the region where curvature is unfavorable to stability, the
criterion of stabilizing the relevant mode by a deep average well depth is not
valid. Stability is instead achieved by having relatively short connection
lengths. We recall that, contrary to this case, '"ballooning' types of mode
localized in régions of unfavorable curvature had not beén found in the ﬁigh
temperature collisional regime. The reason is that in the two cases the
equations for the reievant modes have two diffeJ.:'ent parts which are set equal
zero to lowest order to obtain the real part of the frequenay. Therefore in
one case we have to lowest order solutions which can involve all the terms of
the Hill determinant and on the other solutions involving just the 3 X 3

center elements of it.

~30-
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In the first case it is important to observe that since the drift wave
can also be localized in one region of unfavorable curvature, this wave is
insensitive to the fact that Lt' > I, or Lt .>> L., or that the lines of force
do not close, provided that nc shear exist in the equilibrium. The relevant
stability criterion has been given (14.D} and, as reasonable to expect, is
insensitive to the value of the average well depth. Let us suppose now
that criterion (14. D) is satisfied. Then, as previously shown on the 3 X 3
determinant, the drift wave is unstable for values of b such that bt > Zr/L
and is expected to be cured only by shear as indicated in Reif. 5.

Introducing shear in the equilibrium we may expect to Tnake possible the
existence of waves with k" < I/L . The relevant perturbation then sees
only the average magnetic curvature and in'low b limit we obtain out of the

Hill determinant the following equation in ¢(k)

2 2
. dZ . 2 ¢k Vthi
-w(w-kvd)bl- z — + k v vdh(1+-r)+w(w-kvd) —5 7
d K & L w
W ) -
- w(;_—+ kv )L+ ip(K)} (k) = 0 (15. D)
with plk)y = - N wL/ZKvthe . For values of b > Zhr/R'r. .

this equation reduces to the known equation for drift instabilities with shear,

after the change of variable 2x/L = k” = kx/Ls , and provides the
stability criterions approximately of the form

Ls/r < (M/m)l/z T—l/z(k ai)-l (16. D)

3l




SECTION E

Influence of Trapped Particles

The model we have so far proposed and studied has been taking into
account the longitudinal modulation of the magnetic field, suchasthat existing
in a system with negative V"' , only by considering the relevant periodic
variation along the lines of force for the azimuthal {y) component of the
curvature drift. In particular, the instabilities we have considered involve
particles resonating with the wave and having velocity WL < Vihe Particles
of this type are likely to be trapped in the varying magnetic field and it is
interesting to study the modification to the obtained conclusions due to this
effect. Obviously, this problem did not arise in studying the resistive regime

where Vs > L . Since we think of a configuration with a constant

Vthe/
strong magnetic field on which a modulated one is superimposed, we consider

a model ad hoc as in Sec. A, where Bo is replaced by Eo{l - @ cos 2z/L).

In fact we do not consider here flute instabilities; which may be due to the trapped
particles. Then, for‘ our purpose it is sufficient to insert the orbits of the
trapped electrons into Eq. {6.A) and leave the ion equation, Eq. (5. A)

unchanged. So, if we imagine writing the dispersion relation, setting the
relevant Hill determinant equal to zero, we can again recognize in lowest

order two types of waves: the gravitational wave, obtained ;.s suming that

the perturbation is constant along the magnetic field lines, and the drift

wave. Therefore, the resonant electrons do not affect, in lowest order, the

real part of the frequency but just the imaginary part. Now, on the basis

- D
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of the quadratic form discussed in Appendix II, where we see that the sign
of the imaginary part of the frequency depends on that of the real part, we
may argue that introducing the effect of trapped particles will modify the

growth rate but not change its sign.

We can assume for our purpose @< 1 , i.e., small field modulation,

1/2

Then we can see from a simple argument that if wL/vthe> > s the

resonating particles giving rise to the relevant l.andau damping are free

or have their trajectories slightly modulated as a consequence of the

magnetic field variation. To evaluate the influence of this on the growth

rate we have in fact computed the power associated with
the perburbed electron current and verified that the growth rate is not

significantly changed., The relative variation is found to be

€ /oz(£+1)

z..;f ag <> 3f [25 (“” ]

E

. 2
where EZ = {WL/v )2' and £ = vzlv . This expression reduces to
the 1" the

1 for €2>>a

1/2

The most interesting case is that in which wL/v <a and the particles

the ~

resonating with the wave are trapped. We consider for simplicity the case

2 . . .
where these are so slow that € < <@ . Then their equation of motion along

- = - .?‘_g
‘/8 uB \/8 uB_ +puB acos (1. E)

2
where & = vy + V.L represents the energy and u = vi/B the magnetic

£ is

moment of each particle, and since z << L

p
- - el
\/8 UB (1-a)-pB a 2 (2. E)
-33-
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The solution of this is

L
t = S A cos t/T +¥Y (3. E)
with
£-uB (- a)]/?
A= l2—a »oend T = L1/2"1/l£
H 5, (ZapBJ a v,

In particular, the power associated with the perturbed electron current for a

tube of flux of length, 7L, is proportional to

L TL 7L
~ ~dt ~ e~ qC ~ ~ £d
P:BOSJr E - j = - V¢'J—=eBS‘ dtiweg \ f -l——‘,‘—
o ke B e v“

G L¢]

27 ~
= iw eBoSdCdy g d¥ T f ¢ . where Tay = %%[
o ]

Now we recall that

- f
e

f

, ~ . t . .

- Z ’ e1(2n/L)z (W + kv T)S' ! e1wt' +i{2n/L)z(t")
e n 47 J
n

2
e AD
where z & { , and we have neglected terms of order kvg in comparison
with w . Clearly we are interested in the real part of P . Therefore if

~t
we take the first three terms in the expansion for ¢ we are reduced to

consider

Re (P) = 'Re;izw(mkvdir)lﬁ'llz BQ[dE dpf T
A

D
o Y | -
f dt elwtf ay exp[iAcos (t;,t +\p}-iAcos(£.T+gp) s
-0 [+ ot

=34~
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- 1

where we have set t=t -t . Now we carry out the integration over
expanding the exponentials in series of Bessel functions as indicated in

Ref. 2. The real part of P is then proportional to

0 . '
BOS\ Tf dEdp Z JE(A) S R L
_ﬁ - 90
i.e.,
B S"r f 48 dp 25 JZ(AJ
o e [ d(w + £/T) (5. E)
ﬂ .
1 g L° g 2
= ngeds G0+ ) = d(F) I
?
A 12 2
=A45fed8 TR L (6. E)
4
where now A =[28 - (1 - @) w? LZ/(a 12)]/[w21,2/(2 nz)] . Inorder for

2 2
A< 1, we require that E~rwL /(Zaﬂz) = [Ez/(Zaﬂz)] vfhe . Therefore

the expression in Eq. (6. E) becomes nearly equal to

5
n L 2 2 2

o €” ~e f(al™) 1 2

. 32 e -3fdA 3g (A)f : (7.E)
the )

[

The factor within brackets then represents the relative change of the growth
rate when the wave resonates with particles trapped at th‘e "bottom'' of the
magnetic well so that the wave frequency is equal or in a multiple of the
bouncing frequency. So we see that the relative reduction of the growth rate

is of the order of

2.2
<l .

the
~35m
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CONCLUSIONS

We have considered a one-dimensional model of a toroidal equilibrium
configuration. The aim is to study the influence of the periodically varying
magnetic curvature along the field lines on stability in the c¢oilisionless
regime. For this we have made use of the Vlasov equation including finite
Larmor radius and wave-particle resonance effects. Then considering a
system with negative V', i.e., with average favorable curvature around
the torus, the existence of two types of wave, with the same periodicity as
that of magnetic curvature, is recognized:

a) a 'gravitational' wave \fvith frequency w = Zhvthi/(Rckyai)(-l + Te/Ti)' k?
representing the azimuthal wave number, Rc the maximum radius of mag-
netic curvature, v __ . the ion thermal velocity, ai the ion Larmor radius,

thi

h/RC the average favorable curvature (well depth), and ’I‘e i the temperature;

»

b) a drift wave with frequency w, =~ kyai (vthi/Zr) Te/Ti , r being the
scale length associated with the density gradient.

In addition drift waves localized in one region of unfavorable curvature
can also be found, therefore giving rise to a sort of ""ballooning'" mode. The
main difference from hydromagnetic ""ballooning'' modes is that in the present
case the magnetic curvature is not driving the instability but just determining
its topology. As a consequence this type of wave is not stabilized by
increasing the well depth nor resent from the fact that the lines of force

close around the toroid. The relevant stability criterion comes from

inforcing that the ""connection' length L. be sufficiently short as to insure

—36=
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that the stabilizing effects of longitudinal ion inertia (e.g., sound wave along

the magnetic field and ion Landau damping) are not negligible. It reads

2
L . T
rR T
[od e

L representing the extension of the unfavorable curvature. We recall that
localized waves of this type were not found in the high temperature collisional
regime.

The gravitational wave is unstable if wo < wl {more precisely, for

2
Te/Ti . kyaiz > 4h'r/Rc) and corresponds to the instability driven by the

""drift" mechanism and due to favorable curvature discussed in the appendix
4
of Ref. 1 for the collisional regime. The periodically varying curvature

couples this wave with the drift wave having periodicity L. so that for

2

kf(ai = (4hr/RC) Ti/'I‘e a resonance occurs. There a growth rate of order
1/2 3 ) . .

(m/M) h (L/RC) Vthi/r can be obtained. For instability of these waves

bad ion cormmunication is also required so that v ; < wo L< v and

th the

ion Landau damping can be neglected. Then the stability condition corresponding

to good ion communication is, for the gravitational wave,

rR T
Lo4 e

The drift wave with periodicity L can be unstable to the periodic magnetic
: 2
curvature for long transverse wavelengths, such that (kyai) < 4(hr/Rc) Ti/Te

and for h< \/ 172 . For this however the longitudinal ion inertia (sound wave)

provides a relatively easy stability condition

L < 2 R
[

~37~




For (kyai)2 > (Zhr/RC) Ti/Te the same drift wave is little affected by
magnetic curvature and the relevant instability is driven by the known ''drift"
mechanism associated with transverse jon inertia and radial gradient of the
longitudinal electron pressure. Then the stabilizing longitudinal ion inertia

provides the criterion

£<f_i(2
r ~ 7T k a,
e 'y i

valid for ky-l < a, . ‘Now we distinguish two situations:

1. The lines of force close around the torus and have a length Lt > L,
Then if L ~ Lt , the waves discussed above are the only significant ones
and the same criteria as given above apply, with the only reservation that
if Lt ~ Rc they can be fulfilled‘only in toroidal multipole devices. 1\;

Lt >> L, then we have to consider besides the waves with periodicity L,

drift and gravitational waves with longitudinal wavelength L < l/k| < Lt .

}

The stability criterion against drift waves of this type is

2
D[
r ~ T k a,

e | yi

assuming Zhr/Rc < Te/Ti as is usually the case. This condition can be
of practical importance if, by erstimate of diffusion ceoefficients, we rule out
short transverse wavelengths k;l ~a, as being irrelevant. If, instead
waves with (k'Y a.i/Z)2 > (r/LtHTi/Te) give an important diffusion coefficient

shear stabilization has to be considered. Finally gravitational waves with

+

(1/Lt) < k" < l/L are to be ruled out if
LZ < M R2 ;
t m C

an easy condition to be satisfied.
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Z. The lines of force do not close around the torus and magnetic shear
exists in the equilibrium. Then drift waves with k“ < 1/1L which "see"
only the average good curvature can be considered as the most relevant ones.

Assuming Zhr/Rc < T“_:/'I‘i , the stability condition against the resulting

convective modes is, with good approximation,

T \1/2 k a,

o, (m e L i
L M T_] o
B 1 n

where J;..S is the shearing distance and n° the number of exponentation

after which a convective mode can be considered as dangerous. If instead
Zhr/RC > Te/Ti stability occurs for all drift waves with k, < 1/L. For
waves with periodicity L this limit has not been investigated here because
when it is occurs the relevant dispersion relation cannot be solved analytically.
The drift wave can be unstable to the effect of magnetic curvature if

}2-(1(Y a.i)z' < (Te/Ti) Zhr/RC . In this case the condition for the disappearance

of the relevant normal mode is

r, (mzh
L M R
s [l

1/2

and is quite easy to satisfy.
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in conclusion the present analysis shows that,

- atoroidal configuration possessing MHD stability can be made stable
against microinstabilities more easily in the collisionless regime than in the
collisional one

- short connection lengths L , defining the periodicity of magnetic
curvature along the lines of force, and strong shear, if the total length Lt
of the lines of force around the torus is larger than L , are indicated as
the safe mean to achieve stability

- configurations with closed lines of force and Lt not much larger
than L can also be made stable to low frequency modes provided they
satisfy the criteria listed.above. This last circumstance may serve as an
explanation for the low diffusion coefficients recently observed in toroidal

rmultipole devices.
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APPENDIX I

Now we shall demonstrate that if there is good communication for ions

and electrons the gravitational wave is stable. The relevant equations are

in fact:
. kv, ~ w)
2 iNg Lw 2 2 d ~ :
- w(w - kvd) b + k vgvdh(l +T) - 1 v——-. k Vg o ¢(o)
thi
_ -l—kv kv, - w) iNg Lw ;(1) + ;(_1) = {
2 g d 2 Vihi

{\m(l )+ TW - kv,) (_lg_'-_-i) } 5(1)
. thi

iNT L

1 b ~
- -z-kvg (kvd-w) 5 - #{o) = O

where we have neglected the electron Landau damping in comparison with
the one due to the ions.

If we proceed as in Sec. B and call - wo the frequency of the gravita-

tional wave, we have, for T = 1 and 0 = wQLJF/(evthi)’

Z2 2
(wo-l-kvd) P

(kv +w )
2 2 2 2
b(2w0+kvd)6w = lzpk vg“—‘%—-g— -'lé-k vg > 7
w L. .
o 0(1+_r) wo(w°+kvd)1p
so that
_ 2 2
(w +kv,) {(w +kv,)p
b(2 w +kvd)6w1=%kzvz—-°—w-—~*-§- 1- —5 1‘; d >
° g o wi L +=)" + (W +kv)p
0 T 0 d

Then 0o wI > 0 and the wave is stable,

wlle

}
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APPENDIX II

Here we construct a quadratic form which can be useful to verify the

validity of the results of the analysis made by the Hill determinant. For
La

this purpose, let us compute the quantity l/(LTr) S dz 1: t;ﬁ (z}. Using
o
Eqg. (5. A) we have:
L Ly 2 o, 1/2
L r dzn. ¢ (z) = ——— {-L | o] dz -i(w-kv)I e =+  x
Lm ), i 2 |Lw g1 dz -1 d Yo 7
D k v L
2 iwt - i=B—{sin(Z+7 t)-sinz,

1 ~ aiv" (o] - i Zv” i .
— ' !

L 5 dz ¢ {Z}S S‘ dat' ¢{z + v"t )e

- 00
. ~ "~ 2inz/L
If we study solutions of the type: ¢{z} = ¢n e and adopt the
expansion:
k v L Zimv"t z

-i —Lg—z v [ sin(z + v"t) - sinz] -— ¢t 21(2—m)-1: he v L K v L

e - z e () (e
m\ vy /Ay
m, £
we can write after integration upon time:
/2 A
~ . ~ 2 % /2 Yy
—_ = - - — X
S dzn ¢(z) > Z |¢n| (w kvd)Ioe (ﬂ) de”e
A€
D n

2i E(n—m' + £-m)
L (k v Ljv )Jﬂ(kyvg L/vH)

- g T m v g
Z 9a’n' ¢ne w, + Z(n-m)v"/L ’

n',nm,¢

We have indicated z

z2/L, v, = v _2/L, and I =1 (b).
Il ] o o

—42~
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We then integrate over z and, making the change of variables n-m =M,

we obtain:
1/2
Lr . ™ | 2 o, / +90 -a.vz
Lf—S dz n, ¢ (z) = - 1), 19,1 -(w-kv)(-—l*) Ie“bg av.e 11 x
T o i e ;- n d'\ 7w o Lo Il
o n
2; 51 (kv L/v) °
n ¢n n-M g H
w,+2MvML
M i
Then we can construct the quadratic form as;
eA n \L?T
D o ~ #*
0 = - —T— 3 dz (n, - n ) ¢ (z) =
o
~ 2
~ 2 ai 1/2 b L+ _aivﬁ Zntpnjn-M(kyng/vil)
=(1+T)Z | ¢, '(w'kvd)(}_) I,e Smdvne Z W + 2M~v /L
a i i
n M
a V2 e P D NN R &
- (W +ky T)(—‘e dv e e 1Y n n aM vy g I
d ‘\7 o N L w +2ZMv/L

The interesting property of this quadratic form is that the sign of the
contribution due to resonant particles depends only on (W - kvd) for ions

and on (W +kv, K T) for electrons.
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