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Collisionless Microinstabilities in Configurations

"With Periodic Magnetic Curvature

B. Coppi, G. Laval, R. Pellat, and M. N. Rosenbluth
International Center for Theoretical Physics, Trieste, Italy

ABSTRACT

In view of investigating the stability of a closed (toroidal)

configuration in the high temperature collisionless regime, a

one-dimensional model simulating the effects of magnetic

curvature variation, magnetic shear, and particle trapping is

adopted. Use is made of the Vlasov equation including finite

Larmor radius and wave-particle resonance effects. Low

frequency electrostatic modes are considered. Then two types

of wave having the same periodicity L as the magnetic curva-

ture, or localized in a region where curvature is unfavorable,

are found. One has the frequency of the known drift wave, and

the other (the flute-"gravitational" wave) has frequency deter-

mined by the average favorable curvature along the lines of

force. The latter wave is stabilized by imposing that L be

sufficiently short as to ensure good ion communication making

ion Landau damping effective. The former one by imposing that

L make the effects of longitudinal ion sound wave prevail over

the effects of ion inertia on their transverse motion. If the

lines of force are not closed or if they are closed but their

length is much larger than L , drift waves with wavelength
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larger than L have to be considered. In the first case they

can be stabilized by shear, in the second case waves with

transverse wavelengths short enough as to make the effects

of transverse inertia prevail over those of longitudinal ion

inertia remain unstable. The influence of trapped particles

is investigated finding that it contributes to reducing growth

rates. Stability conditions are given for the most significant

cases observing that, for non-hydromagnetic types of mode,

they are easier than those obtained for the collisional regime.

It is recalled that while no wave localized in a region of

unfavorable curvature was found in the high temperature

collisional regime, a wave driven by the known drift mechanism

but localized over distances shorter than h can be found in

the collisionless regime.
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INTRODUCTION

It has been shown previously that configurations which have favorable

average magnetic curvature (e. g. , are €> dJL/B stable) but have no shear

can be unstable in the presence of electron-ion collisions. The aim of the

present work is to give an analysis for a model of this type of configuration

considering the collisionless regime where wave-particle resonances replace

the effects of electron-ion collisions. We limit ourselves to investigating

electrostatic modes, considering the low /3 limit. Then the paper is struc-

tured as follows: In Sec. A we define the equilibrium and discuss the

analytical aspects of the stability problem. In Sec. B we recognize the

relevance of waves having the same periodicity as the magnetic curvature

and study one of them, the "gravitational" wave, having its frequency

determined by the average favorable magnetic curvature. In Sec. C we

analyze the possibility of shear stabilization of this wave. In Sec. D, the

drift wave is investigated showing that it can be stabilized either when the

magnetic field lines close, and the wavelength along them has an upper bound,

or by magnetic shear. Section E is devoted to the possible modifications

of the results if the resonant particles responsible for the instabilities are

trapped between local magnetic mirrors. The conclusions are finally given.



SECTION A

1. The Equilibrium

As a model of a system possessing shear and variable magnetic curva-

ture with negative V" , a plasma layer is considered,perpendicular to the

x direction, where the magnetic field is represented by:

B = B I 1 " n X,»\ I e + B - 2 - e (l.A)

° y R(& ) o L y

Since we treat a low j3 system, we neglect diamagnetic effects and

imagine these field changes, so simulating the vacuum magnetic field of

external windings. Moreover, B x/L. represents the "shear" and

B [1 - x/R {£)] the main magnetic field and its curvature variation, £

being a linear coordinate along the lines of force.

The *D d$./B stable configuration is represented by the curvature profile

n ? > R I
C O S

 L -
h

where 0 < h < 1 . The scale lengths here introduced will be considered in

the ordering x < ^ r < h < R < L , where r = - (d£n n /dx) n being
c s o o

the particle density. Later on we shall introduce an additional modulation

of B to take into account the effects of trapped particles.

To deal with the collisionless regime we adopt the Vlasov equation, so

that the equilibrium is described by:

v V f . + - 1 ( E + v X B ) - V f . = 0 ( 2 . A)
«~ o j m . —o ~» —o v oj
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We assume that no electric field exists, E = 0 , and choose as solution
o

of Eq. (2. A) a suitable f close to thermal equilibrium. Then

3/2 2

( a. \ -a. v r v x

-J- In e
 J

 1 - - W x + <^)
7 T / o I * \ Q

r \ j

2x
R

(3.A)

where only the largest terms of the expansion in x/r are included,

_ ,-2 -1 *-l -1
<2. = 'vth anc* r = r - 2R . The diamagnetic velocities are

* -1 * -1
v = - (2 a. 0. r ) and v, = {2 a £2 r }
ai ii de e e

2. The Stability

Dealing with a system having low $, we limit consideration to electro-

static perturbations from the equilibrium, having phase velocity less than

the Alfven velocity.

Then, linearizing the Vlasov equation and integrating along particle

trajectories, we have:

if
e. ~t

f. = -J- \ dt' V f , ; V
v oj L e

i J j
d 3 v

If a. represents the gyration radius, for a, < r « L , the lowest

order expression for the particle orbits around x = 0 is

V

/ x(t') - x

y(t') - y

<

= - ~ I sin {9 - &t') + sin0

(101

-5-
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where £ = z - (x/l, ) y « Z1 In consistence with our previous ordering
s

of the scale length distances, we have taken into account only the curvature

drift and neglected its velocity dependence. This will limit us to consider

instabilities with frequency:

CO » —

aJ J
R

k a
'thi

i R

with the reasonable assumption that resonances with this drift frequency do

not affect in an essential way the conclusions we shall derive.

3. Normal Mode Equations in the Absence of Shear

To represent this case we take L = °° . Moreover we neglect for

5

simplicity the Debye distance in comparison with the Larmor radii. Then,

we consider modes of the form

i(ky •
= <p (x, z) e (4.A)

assuming that they are localized in the x direction and k » 9/9x . This

leads us to consider <p (x, z) ~ 0 (z) and n and dn/dx as constants in

lowest order. The dispersion relation is obtained by setting n.(z) = n (z) .

In particular, defining T = T /T. , we obtain after carrying out standard
6 J.

integrations of the orbit method :

n i =

x y

0(Z) - i

d t 1 0 (zT) e

"(T)
kv L

2 v.

1/2

Io(b» e
- b r+0°

J
 d v

i
•-Loo

-Qv,

- (sin 2Z' / IJ - sin 2z/L)

X

(5.A)
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n =
e

a
1/2

_oo
v

r. dt1
+ i kv T/2V (sin 2z'/L - sin 2z/jL)

(6. A)

where v = jv I , h= r ( k a . ) , v = a . /R v , . (the ion curva ture
a di 2 i g x c thi

drift), it), = (JO + k h v , U) = O J - k h v T , and z' s z + v t 1 . The
i g e g li

electron L a r m o r radius has been taken as negligible.

We can c a r r y out the integrat ion over t1 by expanding

j ^ i k v L, /2v (sin 2 z ' / L - sin 2z/L)

in series of Bessel function, as was done before integration over v for the

7 ~* ~ " 7 /T

gyration part of the orbit, and considering a solution (ft (z) = L <j> e
n n

as suggested by the form of Eqs. (5. A) and (6. A) in analogy to the solution

for Hill's types of equation. Then we obtain:

-b
0 = (1 + T)

• n / , r

r

T ( W - k v , ) I (b) e
a o ?) L d v.. e

I
m

J (kv L / 2 v J J . (kv L/2Vl l)m g II m+n-r g II
U), + (m + n) 2v /L

0!
1/2

— - ) X
IT }

r+0°
•J - 00

d v.. e I
m

CO + (m + n) 2v,,/L
e II

(7.A)

The dispersion relation results from setting equal to zero the Hill det 3;:minant

resulting from Eqs. (7. A).

- 7 -
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SECTION B

1. Modes with Bad Ion Communication

It is most interesting, as we shall also prove in Appendix 1, to consider

modes with frequency v i L . /L < (t> < v . /L , where W - U) - iv and
tin K ~ the R

7 « W-n • Modes of this type are in fact characterized by poor ion com-

munication over the distance L , while the electron Landau damping is

expected to allow the instability. Since we have assumed kv < W in order

g
to neglect the velocity (spread) dependence of the curvature drift, we have

for consistency v , /L > kv T . Therefore, for the last term of Eq. (7. A)
the g

we can take the small argument expansion of the Bessel functions there con-

tained or, more simply, expand the corresponding exponential in Eq. (6. A).

We will be allowed to make a similar expansion for the ion term if

v /L > kv (implying ka. < R /L, , a reasonable assumption. As a con-

sequence, we notice that if CO as k v r as it is found for the usual drift

a
(universal) instability, we shall not be allowed to consider V.T "" v

d g

corresponding to T /T. ~ h r/R , the limit where the drift instability is

stabilized by the effects of good curvature. On the other hand, this limit

is difficult to achieve in practice, so that we can be justified in not devoting

special attention to it.

Limiting the expansion of the Bessel functions in Eqs. (7. A) to the terms

of first order in their argument, the Hill determinant reduces to one with three

nonzero elements per line, centered around the diagonal. If we consider

modes with y « iO and study the order of magnitude of the various terms

- 8 -
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recal l ing our assumpt ions on k a . and r / R we a r e led to recognize two

types of wave:

a drift wave with CO = • k v . T , which cor responds to the vanishing
' K. a

in lowest order of the coefficients of 0 with 1 < n < k v T / ( 2 V /L.)
n — d tni

a gravitational wave, which corresponds to the vanishing in lowest order

of the coefficient of 0 . This leads us to exclude consideration of
o

instabilities localized over a distance less than L along the magnetic field

lines. To this purpose we should in fact construct wave packets, utilizing

such high values of n that the influence of the ion inertia along the field or the ion

Landau damping would be sufficient to eliminate the instability. This general

picture is not changed when we introduce the effects of the magnetic curvature
4

component lying within the magnetic surface.

2. Nonresonant Gravitational Wave

We shall consider at first the latest type of wave. Then in lowest order

we have, for the real part of the frequency:

W (W - kv ){1 - I (b) e"b) - h(l + T) k2 v vd = 0 (1. B)

Choosing at first the smaller {negative) root we see that, *in order to obtain

li) > kv , we have to take b « 1 , and then
g

T) I"

. 9 -
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In order to have bad ion communication, i. e. „ Of > 2 v /L , Eq. (2. B)
thi

demands

(3.B)

Therefore, the system can be considered as stable against these waves,

when

") £- < 1
C

and good communication exists (Appendix 1).

2
If we assume h(l + T ) L / rR > 1 we are led to consider

2 2 L2

b< 2h ( 1 + T ) • — - i .e . , ka. < 2h( l+r ) L./R
R * * C

c

If we analyze the order of magnitude of the coefficients of the expanded

Eqs. (7. A), we can see that the diagonal ones are much larger than the off

diagonal ones. In fact, we have, for n = 0 and CO = - W + 6 CO
°

o d j ^ ^
the

i f
 U>

o
L

-kv kvd+COo-{kvdr-COo)i^2-
L the

and, for n = 1 ,

-10-
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2
L \ ,C0 x 2 v + u . CO + k v ,

i ^c i , , . r o \ / o . \ . t h i o d
k v , ) 6 c o - 1 + W T T CO I — - k vo d ' \ 2 v J O \ T d / T 2 CO

I J O

i r
2k V k vd+ " - ^ V ^ ^2 k Vg k v d o V ^ 2 7

L the

A similar equation is obtained for n = -1 . We can verify that the relative

order of magnitude of the coefficients does not change for higher values of

n . In this regard, we notice that for b > (r/R ) h , to * (kv /b) h and

that the diagonal terms are of order kv /b (Ct> /T - kv ) as compared
6

with kv (kv + W ), the order of the diagonal ones.

Then, in lowest order, the Hill determinant can be reduced to that of

a 3 X 3 matrix formed by the central elements. This leads to the dispersion

relation,

b(2C0 + kvJoCO + ^—^ — k 2 v 2 (kv T - CO )
o d' 4 v t h e g d o

2 v , . CO + k v , CO / i \TTT CO

X b(2C0 + k v j f i CO + ^ " ••-• - —(CO - k v . T ) 1 + — r —
I o d 2 CO T o d \ Zv,,

T, o \ the

r ( k v , + CO ) k v , + CO + 2 i-sflT ~ {CO - k v T)
2 d o l d o Z v , o d1 the

If CO ^ k v i we have in lowest order

° r LCO
.22 f , 2 Wfl

1
 o , 2 2

(5.B)

2 b c o { 2 c o + k v J ( k v T - c o )
o o d d o

and see that instability occurs for CO < kv T , equivalent to

h ^ ilL r_
b > T R , (7.B)

c

- 1 1 -
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where Im(W) < 0 . A very similar circumstance was found in the col-

lisional regime where the unstable gravitational wave was associated with

the effects of resistivity.

We notice that now the order of magnitude of the growth rate is

- k - , (8.B)
V

I 2 2T

k v L
' b v , 2 v ,

the R the
c

and therefore rather small.

If we utilize condition (7. B) to evaluate the limit in which good ion

communication occurs, we have

c

We have verified that the larger root of Eq. (1. B) is stable.

3. The Resonant Case

Equation (6. B) shows that a resonance occurs for the growth rate when

OJ » kv T , for bT ~ 2hr/R , which is the frequency of the drift
o d c

wave. This is also a circumstance which is common to the resistive case.

Taking Eq. {5. B) we now obtain in lowest order

2
CO + k v , CO / U> JL'

o d . c

o \ the

2
= "7 |kv_(W Q + k v d ) | (10. B)

where Aw = kv.T -ft)
o do

-12-
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We notice that, in order to reduce consistently the Hill determinant to the

3 X 3 one corresponding to Eq. (10, B) , we need impose that

the diagonal elements are larger than the off diagonal ones. For the lowest

values of n , this implies v / L kv /GO > k v v_ and since
thi do g d

2 2.
CO « hkv /b , R > L h , which is an acceptable condition. Now,

o g c

writing Eq. (10. B) in dimensionless form:

(1 +in)(6UJ + AGO ) 600 + I 60O = C ,
o

we have 6oJ s fiw/kv.T , I s l/b (2r/l/r)2 (1 + T) ,
a

- , , 22 r kv.TL

C s i /£_\ /L + T\ 1 _ , N/TT d
V the

F o r G CO = 6 CO - i y , we h a v e

- 1
+ C0R j

and
C - I 5 R

o R

with

R
= - (I 4- ACO ) + \ | 4 C + (I + AGO )

o — » o

The negative root i s damped (y < 0) for all A to , On the other hand,

the posit ive one:

C +1 /2 1 (I + AW J

Y/c

-13-
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is unstable for A 0) » - C/l . We can recover as a special case, the

result of (6. B) in the limit where ACO > I > C . In particular, the

maximum growth rate corresponds to Au> = I , where

o

= \ p ( \ / l 2 + C - I)

2 4 3
In the further limit where I > C , i. e. , L /r R < 4T (1 + r)/h ,

c

we have:

v _ ^ (1 + T) T 1 / Z / m \ l / Z

r " l 6 l + 2T IM^

-14-
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SECTION C

Influence of Magnetic Shear on the Gravitational Wave

We represent the magnetic shear by introducing in the equilibrium the

field component (x/L ) B e , with L » L, . Then, if we consider the
s o —y s

rotating coordinates £ = z +(x/L )y following the magnetic lines and
s

X - y - xz/L perpendicular to them, we look for'quasi-modes11 of the form

- Defining £ - 2^/L , the equation for the perturbed ion density

acquires the form

r
•'L

i kv JL

- fi (sin P - sin 0
2v,, ^ ^ '

dt1

4L
s

(l.C)

where $' = £ + 2v t'/L and l}/A\} « 1.
II S

In order to see the influence of shear on the modes found in its absence

and represented by Eqs. (1. B), we consider wave packets of the form

die. (2.C)

n

where clearly K -* 0 for L/L —> 0 .
s

Therefore, we take the Fourier transform of Eq. (l.C) and the corre-

sponding one for n , set n. (K) = n (K) and repeat the procedure which
6 1 6

led to Eqs. (7. A).

-15-
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Then we obtain, in the small b limit*

0 = (1 + -L) ?(n+«) - V

+ —

where

(CO - k v d ) 1 - b/l - X

) L1
) L

-a. v , J (u) j (VJ)

, i II \ m m-r+n
a v e / •' —

II /_, 0). + (m + n + K) 2 V | i / L

m
1/2

7T )
d v,. e

W + (m + n + K) 2 V . / I -

m

( r + K )

(3.C)

V = kv L/2v and Z = L,2/4L,2

g II s

As in the previous sections we consider modes with 2v ./L, < W < 2 /L
thi the

and suppose that shear is so small that 0) > ZK V , /L , for K « 1 . Then,
the

with the intention of examining the gravitational wave, we obtain for n = 0

k2v v jh{l +T) + ( ^
g d

(4-C)

where p = - 's/V Ct)L>/2v . For n = 1 we have, to lowest order,

2

- kv ) b
d

( • •

the

2 Zv
+ k2 v V j h (1 + T) + W(O> - k v j

g d d

0 (1) = - k v kv -O) - (kv T +W)ip + <P(2)\ .

(5 .C)

and an analogous equation for n = -1 .

- 1 6 -
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If we consider the operator acting upon #(1) in Eq. (5. C), for the

modes we study, the prevai l ing t e r m s a r e : tti(b) - kv ) Zv / L W
d thi

W(UJ/T + k v )(1 + ip) . The la t te r t e r m is the m o r e impor tant when we do

not consider the resonant condition, i . e . , | (0 j < k v T . We a r e then

led to the equation, defining p = -1/2 \fit to L /v ,

2 v 2

v d to the 2
> E to{0> - k v , ) + 2(— + k v , ) —-—— K - W(to - k v , ) b

d dK2 T d L 2 t o 2 d

2 i 7 7 /
 k v

^
T

+ k v v , h(l + T) + \p k v I 1 + —

k v d - 0 ) - 2 i p ( t o + k v d T )
- r k v (kv, - W)

° u £i>(to -.kv,) Zv". /L^w" - to(Ct)/T + kv )(1 + ip)
d the d

(6.C)

2/2
which is of the Weber type. We consider the lowest eigensolution e

In order to have localized solutions we require Re a > 0 and for the

validity of the equation we require k a./2 < 1 which corresponds to

b Q £ < 1 and 0) > 2« v , /L . Then, we obtain:
the

•>

, , W+kv,T
c ^ c. a

b OJ2(W - k v j T V L

d

k v v , h ( l + T) - OJ(W - k v . ) b - G
Q E =

 u><a> - kv J b '
 ( 8 t C )

d

where G rep re sen t s the t e r m s due to the unfavorable periodic curva ture .

Then we shall distinguish three c a s e s :

1) b > ( 2 h / r H r / R ), corresponding to condition (7.B) for instabili ty of

the gravitat ional wave due to the unfavorable curva tu re . F r o m the d ispers ion

- 1 7 -
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re la t ion resul t ing from Eqs . (7.C) and (8. C), with G = 0 we can verify-

that no unstable localized solution can be found. Defining S = ( M / m ) ( r / L )'

s
and <*> = we have, in fact,

- 1) - (2h/b)(l + T) r / R
(9.C)

b (<y + T)(1 - to)

and can consider the solutions of the dispersion relation as intersections of

two curves, indicated in Fig. 1.

Fig. 1

There are four roots: two real and two complex. One of the real roots is

never localized as -T < W.. < Ui . The second real root is localized only

if -T < OJ, < (0° , corresponding to S < 2h{l + T)/T ' r/R . The
c i c

remaining two complex roots are always nonlocalized. If now we take into

-18-
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account the unfavorable curvature terms, G =£ 0 , we have to distinguish

two subcases:

1/2 2h(l+T) r
a) s K

 1/2 F
T C

Then if we set 0) = QJ° + 5 0) ° + 6 W , with 6 to due to the
1 1

unfavorable curvature terms and representing the growth rate, we have

1/2 [<«. +T)(1 - w.

= ±
( 2 5 . - 1 )

the only localized root is the positive one- The shear does not stabilize this

root and introduces only a shift in the real part of the frequency to . Then, we

verify the conditions of validity of Eq. (9- C). One is satisfied as

(1 - 2OJ.) b 6 w

b S a = __Q _ p
1 < 1

CO (W - 1)

1 1

and the other , 0> > 2 K V, /L. , reads
the

2h(l + T) _£ 1/2
, 1 / 2 R > S

b i ' c

and is also satisfied.

b) Increase the shear to a value such that S ' > 2h(l + T)/T (r/R )

In this case, neglecting the unfavorable curvature terms, the roots of the

dispersion relation are all nonlocalized. If we include these small terms,

the roots remain nonlocalized. Consequently, we can consider the condition

S > 2 h (1 + T)/T (r/R ) as a condition of stability of the present mode.

-19 -
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We recall that this condition is of the same type as the one given in Ref. 1,

for the inertial mode due to unfavorable curvature.

2) b<(2h/T)(r/R ). Then, referring to Eq. (9. C), the relevant roots

of the dispersion relation without the unfavorable curvature terms are

represented in Fig. 2.

S/b(

Fig. 2

We can see that if the shear is sufficiently small an unstable solution can be

found- For this, we need to prove that the corresponding mode is localized.

In particular, considering the condition of marginal stability, where the

-20-
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horizontal line is tangent in O> , we find CO < 0 if b < h (r/R ) (1 - T) /T ,
M M ' c

which is compatible with the condition posed above. Then we can give as a

sufficient condition for stability for any value of b ,

F" <
10

-
c
>

\ T " " c /

which can be easily satisfied.

When this condition is not satisfied the relevant instability is of the same

type as the one associated with the drift wave when, for br < 2hr/R , the

growth is related with the term due to periodic curvature.

When this condition is satisfied, we have to study the influence of the

l/2 l/2
periodic curvature terms. Since S > 2h(l + T)/T (r/R ) the root of the

dispersion relation will be close to - T . We can use this information to

keep only the most important terms in Eq. (7. C). More precisely, we take:

2 2 , ,2

k v (kv - W)

G = - ^ r-^- k v j 2v2 , / L W W(W/T +kv , )
a thi a

Then, if we set 6 Ctf = (W +kvT)/kvr , we get the dispersion relation

' =
 S T

2 h r

R c I1 + 6cu(l + ip)

with C = 2(1 + T) /T (r/R )2 ; I1 = (1 + T) (2 T / L T ) 2 l/b , and obtain
c

the root:

i2

"R S T I R " < X

c

- 2 1 -
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Correspondingly, we obtain the growth rate

V = P
 4

 I t*
 T) ¥ C 5 - ^ -

Now we verify the conditions of validity of our derivation and precisely,

Ob Z> on 2hr/R « 1 , which is always satisfied, and OJ > 2 K V .
c the

which gives:

c

In conclusion, we see that for the present mode we do not have a condi-

tion for stability but one for the breakdown of the asymptotic approximation

1/2
when r /L > [ h r/R (m/M)] . This condition is more severe than

s c

(10. C) previously obtained, but is still rather mild. To have an estimate

for the order of magnitude of the growth rate, we take

S "" ~ * b "** ~̂ r » and h L< < R ,
K K c

c c

obtaining

For higher values of shear, corresponding to W < 2Kv /h we need to
; the

turn our attention to non-normal mode types of solutiorus which are

elsewhere.

3 ) For b = 2 h r/R T , a resonance between the gravitational ftnd the

drift wave occurs. Then, in lowest order, the relevant equation is I

-22-
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2 ^JhL L±X + k v , (1 + ip)(6co + Aeo ) b k v j (1 + ZT) Co)
} T d

 ° J I

b k . 2
d« kv,T L

d

K

1 ,2 2 2 2 2
— k v k v , (1 + T)
L e d = 0

Using the notations of Sec. B, this can be written as:

- (flw + I) I
m

{13. C)

0(o) =

where E = (L /4 L ) (1 + T)/{L + 2T) and Aw has been taken equal to I
o s o -

-CTu /2
Then, the dispersion relation for the solution e IB

l T

m (5

with

ip)

We know from the analysis of the dispersion relation, without shear,

that we have two roots, 6W > and 6U) < 0 , of which only $W

satisfied the conditions of validity of the equation. Now, the dispersion

relation with shear has four roots. If we ignore the small ip terms, two

of these roots are real and close to 6w. • The root which is smaller than

6 <t> is nonlocalized, the other one, when increasing the shear, goes into

the root studied in case 2. For the two other roots which are in the vicinity

- 2 3 -
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of 6w and correspond to the drift wave, the equation is not valid. We

can conclude that a very small shear is sufficient to make the resonance

disappear.
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SECTION D

The Drift Wave

1) As previously said, examining the order of magnitude of the diagonal

terms in the Hill determinant, we see that the other interesting wave is the

drift wave with frequency UJ = -kv T , for b <, 1 . Since kv = \fb/Z (v /r) T ,

we conclude that, for values of b such that:

< *IT-\ (l.D)

this wave is stabilized as ( 0 ^ 2 v /L and good ion communication

exists. This is actually too stringent a condition as we will see that for

b < 1 the requirement

L I Z \ 1

\ y i /
is sufficient. If in addition,

L

r (2-°)
the wave is stabilized for all values of b . For b > 1 , 0) » - kv r/\Th

a

and the same condition holds. Condition (2.D) eliminates also the instability

associated with the gravitational wave as it occurs for jtoj <̂  kv T • i-e> >

b T > 2 h r/R
~ c

However, it is clear that condition (2. D) does not apply to the case

ik z ^ 2 i n Z / L

where we consider perturbations of the form e f<f> e with

n
k < l/Li , as we do at the end of this section. This is an important point

for consideration, as in configurations with closed lines of force l/k

-25-
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cannot be chosen arbitrarily large but will have to be of the order of the

circumference length. If L, is of the order of this length, the criteria

given above then hold for all possible low-frequency instabilities.

2) We now assume that condition (1. D) is not satisfied.

In order to derive some conclusions valid for b < 1 we return to con-

sider the 3 X 3 determinant with the intention of justifying later its

consistency. Then, for (0 = - k v , T + 6 CO and F{b) = 1 - I (b) e"

d o
we obtain

T) k 2 v v - k2v2T(l + T) F(b)
g d d

(b)

so that, for b « 1 ,

>W = (1 + T)[l - i

h(l + T) k" v v, - k" V"T(1 + T) F(b)
g d d

k v

'the/

kvjL
d

2 v
I k v

the

Z, 2
, v /v
1 g d
2 h v /v , - Tb

g d

bT -

d U
2 2

k v T

d«
where v / v , - 2 r/R .

g d c

(3.D)

(4.D)
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Consider the three terms inside brackets:

- the first one represents the effect of the bad curvature and is

destabilizing for br < Zhr/R .

- the second one represents the usual drift instability mechanism,

connected with the ion inertia across the field which is counteracted by

the average good curvature, and is destabilizing for bT > 2hr/R

c

- the third one represents the stabilizing effect of the ion inertia

along the lines of force. We can then derive the following conclusions:

(a) For bT < 2 hr/R the drift mechanism is ineffective and, since
i C

2 2 2
a fortiori bT < 2hrR /L, for R > L, , the stabilizing ion term pre-

c c

vails over the one due to the bad curvature.

(b) For 2h r/R < bT < 2 r /L the ion term dominates the drift desta-

bilizing one and the wave is again stable.

(c) For bT > 2 r /L > 2h r/R , the wave is unstable to the usual drift
c

mechanism.

In all cases for consistency of the derivation, we require that the ion

term in the n = 2 diagonal element be larger than the off diagonal term.

This is verified for bT < r R /Z L , which is compatible with the limits
c

considered above.
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3) For b f > r R /2L we cannot reduce the Hill determinant to a

3 X 3 determinant. We have to keep all the elements as given by the

equations:

- kv . ) F(b) + h(l + T) k v V jd g d

kv
- ^ ( k v , - = 0 ,

- k v d ) | F ( b ) - I j
V I

 k v
H

T
'

L

'+h(l+T)k v vj--(CO+kvJT)(l+i\jTT —
g d T a -*

CO2!,2 the

k v
—-* (kv -
2 d

e " b . 0 , (5.D)

for values of n such that U)> Z n. v i U . / L , and 0 ~ 0 for values for n such
* i tni ) n 2

c. tni

- 1) and we hav© for n ^ 0 :

that OJ » 2n 2 v ^ . / L . NOW looking for the drift wave with b < 1, we set

n
i I -

' n
4nZ(l 2h(l + T) r

(6.D)

with 5

k v T
d

h vthe

If we neglect the resonant particle effects, proportional to j 6 ] , we can

reduce the relevant dispersion equation to a Mathieu equation. We can then

compute the growth rate of the drift wave by perturbation. In Appendix II we

construct a general quadratic form which could give the same result. The

corresponding Mathieu equation to Eq. (6. D) is :

.2
2 d q cos 2z) </> = 0 (7.D)

- 2 8 -
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with

a = 5wR- (l +T )

q = -
2r

RT

2h(l -f T) r

RT

(hi.)2
 JL_

\ r / 1 + T

x
I 1

\ x I 1 + T

(8.D)

For the values of b we consider, we have q > 1 and we can obtain a

localized solution of the Mathieu equation, expanding the cosine function for

z < L ; then Eq. (7. D) reduces to a Weber type equation:

2 l

4
dz

+ T)

with

6 6U> = fid) - ( 1 + T ) ( b + — (1 - h)>
R
 (

 R
C

T
 )

the lowest eigensolution, exp(- az / 2 L ), leads to find:

(9.D)

and

r , 1 + T ' (10. D)

then if we set 6 ti) = 6 W - iy , we obtain^

with

4

4 r
y =

2r J L,

\ ~ i
2

\<P
n rn '

-oz /2.L, - 2inz/L

V

(11. D)

(12. D)
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then using the expression of 6 6W we get:

In the expression for y , we can recognize the stabilizing contributions (i.e.

favorable curvature term, in this case always smaller than the term repre-

senting the unfavorable curvature, and longitudinal ion inertia term) and the

destabilizing ones. The growth rate y is of the same order as usual if we

take n = 1, a ~ 4 . On the other hand this "ballooning" type of mode cannot

be found if a < 1, implying the stability criterion:

TiT < 7 <14-D>

valid for any value of b.

We come to the conclusion that as long as it is possible to establish a

drift mode in the region where curvature is unfavorable to stability, the

criterion of stabilizing the relevant mode by a deep average well depth is not

valid. Stability is instead achieved by having relatively short connection

lengths. We recall that, contrary to this case, "ballooning" types of mode

localized in regions of unfavorable curvature had not been found in the high

temperature collisional regime. The reason is that in the two cases the

equations for the relevant modes have two different parts which are set equal

zero to lowest order to obtain the real part of the frequenoy. Therefore in

one case we have to lowest order solutions which can involve all the terms of

the Hill determinant and on the other solutions involving just the 3 X 3

center elements of it.

-30-

'K: '• ".II . .si *



In the first case it is important to observe that since the drift wave

can also be localized in one region of unfavorable curvature, this wave is

insensitive to the fact that L > L or L » L, , or that the lines of force

do not close, provided that no shear exist in the equilibrium.. The relevant

stability criterion has been given (14. D) and, as reasonable to expect, is

insensitive to the value of the average well depth. Let us suppose now

that criterion (14. D) is satisfied. Then, as previously shown on the 3 X 3

determinant, the drift wave is unstable for values of b such that br > Zr/L

and is expected to be cured only by shear as indicated in Ref. 5.

Introducing shear in the equilibrium we may expect to make possible the

existence of waves with k. < l/L . The relevant perturbation then sees

only the average magnetic curvature and in low b limit we obtain out of the

Hill determinant the following equation in ^

1 -

2 2

(
1- £ S_V+k v

«? 0(K) = 0 , (15. D)

with p(K) = - 'in 0DL,/2KV . For values of b > 2 h r / R r ,

this equation reduces to the known equation for drift instabilities with shear,

•a.

after the change of variable 2K/L = k = kx/L. , and provides the

stability criterion approximately of the form

L /r < (M/m) l /Z x ' l / 2(k a.)"1 (16. D)
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SECTION E

Influence of Trapped Particles

The model we have so far proposed and studied has been taking into

account the longitudinal modulation of the magnetic field, such as that existing

in a system with negative V" , only by considering the relevant periodic

variation along the lines of force for the azimuthal (y) component of the

curvature drift. In particular, the instabilities we have considered involve

particles resonating with the wave and having velocity WL < v . Particles

of this type are likely to be trapped in the varying magnetic field and it is

interesting to study the modification to the obtained conclusions due to this

effect. Obviously, this problem did not arise in studying the resistive regime

where y . > v , /L . Since we think of a configuration with a constant
ei the e

strong magnetic field on which a modulated one is superimposed, we consider

a model ad hoc as in Sec. A, where B is replaced by B (1 - a cos 2z/Li).

In fact we do not consider here flute instabilities, which may be due to the trapped

particles. Then, for our purpose it is sufficient to insert the orbits of the

trapped electrons into Eq. {6. A) and leave the ion equation, Eq. (5. A)

unchanged. So, if we imagine writing the dispersion relation, setting the

relevant Hill determinant equal to zero, we can again recognize in lowest

order two types of waves: the gravitational wave, obtained assuming that

the perturbation is constant along the magnetic field lines, and the drift

wave. Therefore, the resonant electrons do not affect, in lowest order, the

real part of the frequency but just the imaginary part. Now, on the basis
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of the quadratic form discussed in Appendix II, where we see that the sign

of the imaginary part of the frequency depends on that of the real part, we

may argue that introducing the effect of trapped particles will modify the

growth rate but not change its sign.

We can assume for our purpose <X< 1 , i.e. t small field modulation.

Then we can see from a simple argument that if WL/v > > Of , the

resonating particles giving rise to the relevant Landau damping are free

or have their trajectories Tslightly modulated as a consequence of the

magnetic field variation. To evaluate the influence of this on the growth

rate we have in fact computed the power associated with

the perburbed electron current and verified that the growth rate is not

significantly changed. The relative variation is found to be

/
£ " o S- K •*

where € = (WL/v ) and £ = v./v •. This expression reduces to
the J- the

1 for £ > > a ,

/
I /2v

t > , i a and the particles

resonating with the wave are trapped. We consider for simplicity the case

where these are so slow that £ < < a . Then their equation of motion along

C is

d J° r~i /_ ' TF~
(1. E)

where C = v +• v represents the energy and \i = v /B the magnetic

moment of each particle, and since z « L

r o 2
L

- 3 3 -
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The solution of this is

= T A c o s (t/T (3.E)

with

A =
C - - a)

1/2

, and T =
1/2 Jjl

In particular, the power associated with the perturbed electron current for a

tube of flux of length, ffL, is proportional to

- - J o

C d Zap \io> eBQ C d

Now we recall that

6

, where = p^—r

D n

e 1 ^ / ^ - i t a ^ + k v ^ ) ] 1 dt 'e i(2n/L)z(t')

' - 0 0

where z « £ , and we have neglected terms of order kv in comparison

with CO . Clearly we are interested in the real part of P . Therefore if

we take the first three terms in the expansion for <p we are reduced to

consider

R e ( P ) = R e j - L - t t > ( a r t - k v d i T ) \f\Z B Q f&Z, d\l fg T

D

I d t e l W t / d /̂ exp[i A cos ( i ± l + i//) - i A cos (•!-
J«o Jo ' T T
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where we have set t = t - t . Now we carry out the integration over

expanding the exponentials in series of Bessel functions as indicated in

Ref. Z. The real part of P is then proportional to

_oo

e . ,

where now A =[2S - (1 - a) W2 L,2/(« £2)Mw L2/(2i )]

A< 1, we require that C w OJ2L /(2a£2) = [e2/(2a£2)l

the expression in Eq. (6.E) becomes nearly equal to

(4.E)

(5.E)

( 6 - E )

. In order for

. Therefore

The factor within brackets then represents the relative change of the growth

rate when the wave resonates with particles trapped at the "bottom" of the

magnetic well so that the wave frequency is equal or in a multiple of the

bouncing frequency. So we see that the relative reduction of the growth rate

is of the order of

2
the
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CONCLUSIONS

We have considered a one-dimensional model of a toroidal equilibrium

configuration. The aim is to study the influence of the periodically varying

magnetic curvature along the field lines on stability in the coilisionless

regime. For this we have made use of the Vlasov equation including finite

Larmor radius and wave-particle resonance effects. Then considering a

system with negative V"j i. e. , with average favorable curvature around

the torus, the existence of two types of wave, with the same periodicity as

that of magnetic curvature, is recognized:

a) a "gravitational" wave with frequency O> « Ehv, /(R k a. ){1 + T /T ),
o thi c y i e 1

representing the azimuthal wave number, R the maximum radius of mag-

netic curvature, v the ion thermal velocity, a. the ion Larmor radius,
thi i

h/R the average favorable curva ture (well depth), and T . the t e m p e r a t u r e ;

b) a drift wave with frequency W « k a, (v.,./2r) T / T . , r being the
1 y i thi e i

scale length associated with the density gradient.

In addition drift waves localized in one region of unfavorable curvature

can also be found, therefore giving rise to a sort of "ballooning" mode. The

main difference from hydromagnetic "ballooning" modes is that in the present

case the magnetic curvature is not driving the instability but just determining

its topology. AB a consequence this type of wave is not stabilized by

increasing the well depth nor resent from the fact that the lines of force

close around the toroid. The relevant stability criterion comes from

inforcing that the "connection" length L be sufficiently short as to insure
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that the stabilizing effects of longitudinal ion inertia {e.g. , sound wave along

the magnetic field and ion Landau damping) are not negligible. It reads

T 2 T

rR < T
c e

L representing the extension of the unfavorable curvature. We recall that

localized waves of this type were not found in the high temperature collisional

1
regime.

The gravitational wave is unstable if W < d) (more precisely, for

2 2
T /T. • k a. > 4hr/R ) and corresponds to the instability driven by the

e i y i — c
 r

"drift" mechanism and due to favorable curvature discussed in the appendix

4
of Ref. 1 for the collisional regime. The periodically varying curvature

couples this wave with the drift wave having periodicity L so that for

2 2
k a. = (4hr/R ) T./T a resonance occurs. There a growth rate of order
y l c l e

l/2 3
(m/M) h (L/R ) v , , /r can be obtained. For instability of these waves

c thi

bad ion communication is also required so that v < GU L < v and
^ thi o the

ion Landau damping can be neglected. Then the stability condition corresponding

to good ion communication is, for the gravitational wave,

< 4

rR T
c e

The drift wave with periodicity L can be unstable to the periodic magnetic

2
curvature for long transverse wavelengths, such that (k a.) < 4(hr/R ) T./T

and for h < y l / 2 . For this however the longitudinal ion inertia (sound wave)

provides a relatively easy stability condition

L < 2 R
c
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For (k a.) > (2hr/R ) T./T the same drift wave is little affected by
y i c i e 7

magnetic curvature and the relevant instability is driven by the known "drift"

mechanism associated with transverse ion inertia and radial gradient of the

longitudinal electron pressure. Then the stabilizing longitudinal ion inertia

provides the criterion

r ~ T Ik a.
e i y i

valid for k- < a. . Now we distinguish two situations:

1. The lines of force close around the torus and have a length L> >_ I_> ,
t ""

Then if L ~ L , the waves discussed above are the only significant ones

and the same criteria as given above apply, with the only reservation that

if L ~ R they can be fulfilled only in toroidal multipole devices. If

IJ » Li , then -we have to consider besides the waves with periodicity L ,

drift and gravitational waves with longitudinal wavelength L, < l/k <, L .

The stability criterion against drift waves of this type is

T ' 2 2

* T k a.

assuming 2hr /R < T /T, as is usually the case. This condition can be

of practical importance if, by estimate of diffusion coefficients, we rule out

short transverse wavelengths k ~ a. as being irrelevant. If, instead

waves with (k &./Z) > (r/L HT./T ) give an important diffusion coefficient
y x t i c

shear stabilization has to be considered. Finally gravitational waves with

(l/L. ) < k.. < 1/L are to be ruled out if

I* < * R2 .
t m e

an easy condition to be satisfied.
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2. The lines of force do not close around the torus and magnetic shear

exists in the equilibrium. Then drift waves with k.. < l/L which "see11

only the average good curvature can be considered as the most relevant ones.

Assuming 2hr/R < T /T. , the stability condition against the resulting

convective modes is, with good approximation,

T
i 1/2

M T.
n

where L is the shearing distance and n the number of exponentation
s

after which a convective mode can be considered as dangerous. If instead

Ehr/R > T /T. stability occurs for all drift waves with k < l/L. For

waves with periodicity L this limit has not been investigated here because

when it is occurs the relevant dispersion relation cannot be solved analytically.

The drift wave can be unstable to the effect of magnetic curvature if

^ k y ai>

of the relevant normal mode is

a.) < (T /T.) 2hr/R . In this case the condition for the disappearance

m r h
M R

1/2

On the other hand the condition against gravitational waves is

1/2
L

M T"

R

s

and is quite easy to satisfy.
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ir, conclusion the present analysis shows that,

- atoroidal configuration possessing. MHD stability can be made stable

against microinstabiiities more easily in the collisionless regime than in the

collisional one

- short connection lengths JL , defining the periodicity of magnetic

curvature along the lines of force, and strong shear, if the total length L

of the lines of force around the torus is larger than L , are indicated as

the safe mean to achieve stability

- configurations with closed lines of force and L, not much larger

than L can also be made stable to low frequency modes provided they

satisfy the criteria listed above. This last circumstance may serve as an

explanation for the low diffusion coefficients recently observed in toroidal

multipole devices.
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APPENDIX I

Now we shall demonstrate that if there is good communication for ions

and electrons the gravitational wave is stable. The relevant equations are

in fact:

2
g

( k v d "

k
2
v Vjh<l+T) - ±&- — k V

g d 4 v
t h i g

= 0

0(0)

th i

L c o

2 g
i\T7T

1

2 vthi
= 0

where we have neglected the electron Landau damping in comparison with

the one due to the ions.

If we proceed as in Sec B and call - U> the frequency of the gravita-

tional wave, we have, for t -= 1 and p .J?/(2rthl),

, , kv ,+ OJ w + kv
, , , , . _ i , 2 2 x d o 1 , 2 2 o *
b(20) + k v , ) 6 d ) = r p k v ;—

o a u g w
- — k v ,

2 g ,.,2

.2 2

(1 + - ) - W {OJ + k v
o T 00

so tha t

_
(W + k v . )

2 Sb(2W + k v J f l W = & k v — 2 -
o d I 2 g W

<U)

1 -

Then 6 to > 0 and the wave is stable.
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APPENDIX II

Here we construct a quadratic form which can be useful to verify the

validity of the results of the analysis made by the Hill determinant. For

this purpose, let us compute the quantity 1/|

Eq. (5. A) we have:

n i * { — \

dz n . 0 (z). Using

1/2
b a

dz - i(0) - k v j I e" — X
d o if

k v L.

i 0).t - i y "—[ sin(z + v t) - sin z

_oo

i 2v
dt' 0{z + v t 1 ) e

_oO

If we study solutions of the type: 0(z) = \ 'p e and adopt the

expansion:

k v L

-i ^ ^— [ sin (z + v t) - sin z]
2im v.t

-I
/k v L \ /k v L,

m, £

we can write after integration upon time:

2
r j dz n. 0 (z) = -

1/2

I I?. - {(i) - kvj I e
d o £) 1

-a. v,
d v e X

n

I
2 i —(n-n' + H-m)

n
, n , m ,

J
m

( k
y

V
g

L /
VVV g

L /
V

W. + 2(n-m) v /L

W e h a v e i n d i c a t e d z = z 2 / L , V, = v l t 2 / L , , a n d I s - I ( b ) .
II II 00
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We then integrate over z and, making the change of variables n - m = M ,

we obtain:

nL7T _,

_ \ d z n tf> ?„
1/2

) .
_co

M

?" J . Jk v L/v,,)
n r n n-M y B II

CO. + Z M V / L
I II

Then we can construct the quadratic form as:

0 = -
A__ n /I-IJIT

D o (
T Lff J_

dz (n. - n ) 6 (z) =
I e

1/2

n

-(C-kv^-j Ioe

d v

(* J i ItV n Pn n -M y

M

2 M v / L
I li

) \

y n n - M ' y g

Z

Z-- + 2 M v / L
M

The interesting property of this quadratic form is that the sign of the

contribution due to resonant particles depends only on (CO - kv ) for ions

and on (CO +kv .T) for electrons,
d
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