
Collisions and Near-Collisions for

Reduced-Round Tiger

John Kelsey1, Stefan Lucks2

1 NIST, USA, john.kelsey@nist.gov
2 University of Mannheim, Germany,
http://th.informatik.uni-mannheim.de/people/lucks/

Abstract. We describe a collision-finding attack on 16 rounds of the
Tiger hash function requiring the time for about 244 compression func-
tion invocations. This extends to a collision-finding attack on 17 rounds
of the Tiger hash function in time of about 249 compression function invo-
cations. Another attack generates circular near-collisions, for 20 rounds
of Tiger with work less than that of 249 compression function invocations.
Since Tiger has only 24 rounds, these attacks may raise some questions
about the security of Tiger. In developing these attacks, we adapt the
ideas of message modification attacks and neutral bits, developed in the
analysis of MD4 family hashes, to a completely different hash function
design.

Keywords: Tiger, hash function, collisions, attack

1 Introduction

In the past two years, a flood of cryptanalytic results [5–9, 2, 3] has washed away
most of the practical hash functions used so far. Design-wise, all these hash func-
tions (including MD5, RIPEMD, SHA0, and SHA1) descend from MD4. This has
led to a growing interest into alternative hash function designs, which had been
mostly overlooked by cryptanalysts so far. One such alternative construction is
Tiger, designed by Anderson and Biham in 1996 [1]. Like the MD4-descendants,
Tiger iterates an internal compression function for hashing arbitrarily long1

messages. Tiger’s compression function, however, is very different from the com-
pression functions of the MD4 family.

Because the compression functions are so different internally, the attacks
against the MD4 family would appear unlikely to be directly useful in attacking
Tiger. Our analysis bears this out to some extent–the message modification
techniques we use differ in important ways from those in [5–8]. However, we use
message modification against Tiger for the same broad purpose as it is used in
[7, 8]–to control the differences in the first few rounds by the choice of message
values, despite having the message differences forced on us by our analysis of

1 Tiger appears to restrict messages to 264 bits maximum, based on the size of the
message length field.



the message schedule. Further, the use of neutral parts of the message in [2]
is directly applicable to our approach in attacking Tiger. In some sense, this
is a hopeful sign; it implies that we may hope to take the attack techniques
developed against the MD4 family, and apply them, in suitably altered form, to
hash functions built on entirely different lines.

Below, we describe a collision-finding attack on Tiger reduced to 16 rounds.
As the full Tiger operates on 24 rounds, this attack gets through two thirds
of Tiger, with work equivalent to 244 compression function invocations. Tiger
produces a 192-bit hash, so a collision should ideally take 296 such invocations.

We describe how to extend this attack to 17 rounds of Tiger, increasing the
work to no more than 249 compression function invocations.

Also, we describe an attack to choose two input chaining values with a small
(namely, six bit) Hamming distance, which generates a near-colliding compres-
sion function outputs with the same Hamming distance – following, in fact,
the same differential pattern as the input. In this sence, we describe our near-
collisions as circular. (One could also describe them as pseudo-near-collisions.)
This third attack gets through more than 80 % of Tiger (20 / 24 rounds), with
work equivalent to less than 249 compression function invocations. An ideal 192-
bit hash should need approximately

√

2192/
(

192

6

)

≈ 280 compression function invocations

for near-collisions with six bits of Hamming distance, instead of < 249.

The remainder of this paper is organized as follows. Section 2 provides a
description of Tiger, in sufficient detail to follow our attacks. Section 3 provides
an overview over the collision attack and describes some of the details. Sections
4 and 5 deal with the core of the attack: the message modification technique.
Section 6 introduces techniques to extend our attack to more than 16 rounds.
These are demonstrated by a collision attack against 17 rounds of Tiger, and by
a circular near-collision attack against 20 rounds. Section 7 briefly discusses the
security of Tiger, and outlines some lessons learned from the attack.

2 High-Level Description of Tiger

Tiger’s compression function is based on applying an internal “block cipher like”
function, which takes a 192-bit “plaintext” and a 512-bit key to compute a 192-
bit “ciphertext”. The “block cipher like” function is applied according to the
Davies-Meyer construction: a 512-bit message block is used as a key to encrypt
the 192-bit chaining value, and then the input chaining value is fed forward to
make the whole function non-invertible. In the remainder of this section, we will
describe Tiger in sufficient detail to follow the course of our attack. Note that
if, for any given input chaining value, we can generate two different messages
yielding the same output chaining value, then we have found a collision for Tiger.

2



Tiger was designed with 64-bit architectures in mind. Accordingly, we will
denote a 64-bit unsigned integer as a “word”. We will represent a word as a hex-
adecimal number. Tiger uses arithmetic operations (addition, subtraction and
multiplication by small constants), bit-wise XOR, NOT, logical shift operations
and S-Box applications. The arithmetic operations over words are modulo 264.
The chaining value is represented internally as three 64-bit words, the message
block as eight 64-bit words.

Thus, three words A, B, C describing the input chaining value and eight
message words X0, . . . , X7 are fed into the compression function, which generates
three words A′, B′, C′ describing the output chaining value. The compression
function’s final output A′′, B′′, C′′ is generated by the feedforward function

A′′ := A ⊕ A′,

B′′ := B − B′, and

C′′ := C + C′.

2.1 The Tiger Round Function

In the terminology of [4], Tiger’s block cipher like function is a “target-heavy
unbalanced Feistel cipher”. The block is broken into three words, labeled A, B,
and C. Each round, a message word X is XORed into C:

C := C ⊕ X.

Then A and B are modified:

A := A − even(C),

B := B + odd(C),

B := B × (const),

with a round-dependent constant (const) ∈ {5, 7, 9}. The results are then shifted
around, so that A,B,C becomes B,C,A. See Figure 1.

i−1

A i CiB i

B i−1 XiA

(const)

even
odd

Ci−1

Fig. 1. The round function of Tiger

3



For the definition of even and odd, consider the word C being split into
eight bytes C[0], . . . , C[7], with the most significant byte C[0]. The functions
even and odd employ four S-Boxes T1, . . . , T4 : {0, 1}8 → {0, 1}64 as follows:

even(C) := T1(C[0]) ⊕ T2(C[2]) ⊕ T3(C[4]) ⊕ T4(C[6]) and

odd(C) := T1(C[7]) ⊕ T2(C[5]) ⊕ T3(C[3]) ⊕ T4(C[1]).

The “even bytes” and the “odd bytes” of a word W are defined as

W [even] = (W [0], W [2], W [4], W [6]) ∈ ({0, 1}8)4 and

W [odd] = (W [7], W [5], W [3], W [1]) ∈ ({0, 1}8)4.

The round function spreads changes around very quickly – a one-bit difference
introduced into C in the first round will change about half the bits of the block
by the end of the third round. Tiger seems to be much better at this than the
members of the MD4 family.

It is easy to produce local collisions for the Tiger round function, using some
pattern (α, β, 0, α′). Here, α is an input difference to the even bytes of the S-
boxes, β is an XOR difference which is expected to cancel out the result of that
difference on the even function, and α′ is α multiplied by (const), being expected
to cancel out the original introduced change of α. However, local collisions of
this form are surprisingly hard to use in attacks on more than eight rounds of
Tiger – the key schedule seems to be quite effective at destroying such patterns.

2.2 The Key Schedule

Tiger consists of 24 rounds. Each round uses one message word Xi as its round
key. The first eight round keys X0, . . . , X7 are identical to the 512-bit cipher
key (or rather, to the 512-bit message block). The remaining 16 round keys are
generated by applying the key schedule function:

(X8, . . . , X15) := KeySchedule(X0, . . . , X7)

(X16, . . . , X23) := KeySchedule(X8, . . . , X15)

The key schedule uses logical shifts on words, denoted by ≪ and ≫, e.g.,

– 1111 5555 9999 FFFF ≪ 5 = 222A AAB3 333F FFE0, and

– 222A AAB3 333F FFE0 ≫ 9 = 0011 1555 5999 9FFF.

Further, it uses the bit-wise NOT function, e.g. for X = EEEE AAAA 6666 0000,
the negation of X is X = 1111 5555 9999 FFFF. The key schedule modifies its

4



input (x0, . . . , x7) in two passes:

first pass second pass
1. x0 := x0 − (x7 ⊕ Const1) 9. x0 := x0 + x7

2. x1 := x1 ⊕ x0 10. x1 := x1 − (x0 ⊕ (x7 ≪ 19))
3. x2 := x2 + x1 11. x2 := x2 ⊕ x1

4. x3 := x3 − (x2 ⊕ (x1 ≪ 19)) 12. x3 := x3 + x2

5. x4 := x4 ⊕ x3 13. x4 := x4 − (x3 ⊕ x2 ≫ 23))
6. x5 := x5 + x4 14. x5 := x5 ⊕ x4

7. x6 := x6 − (x5 ⊕ (x4 ≫ 23)) 15. x6 := x6 + x5

8. x7 := x7 ⊕ x6 16. x7 := x7 − (x6 ⊕ Const2)

The final values (x0, . . . , x7) are used as the key schedule output. The constants
are Const1 = A5A5 . . . A5A5 and Const2 = 0123 . . . CDEF.

3 The Attack

We propose a differential attack on Tiger in three parts. Throughout the attack,
we are switching between XOR-differences and additive differences. In general,
switching between differences holds with some nonzero probability; for example,
an additive difference of 1 can be represented as an XOR difference of 1, with
probability 1/2 of being correct.

3.1 Conventions

Transforming one type of difference into another is typically probabilistic, but
for some values, it has probability one.

– If X − Y = 2i, then Pr[X ⊕ Y = 2i] = 1/2. The exception is i = 63, where
Pr[X ⊕ Y = 2i] = 1.

– Let I := 263. Switching between the additive difference I and the XOR-
difference I succeeds with probability 1. In other words, when dealing with
a difference I, we need not care what type of difference this actually is. Our
attack will make extensive use of this simple fact.

– Note that a difference I in a word W remains the same, even if W is multi-
plied by some odd constant (const), as done in the Tiger compression func-
tion.

We start counting rounds by 0, and we write Xi for the message word input
of the i-th round, and Ai, Bi, Ci for the output of round i – which just happens
to be the input chaining values for round i + 1. Accordingly, the chaining value
input for the round 0 (the first round) is A−1, B−1, C−1.

The differences in message words are most usefully seen as XOR-differences,
since the message word (or the “round key”) Xi is XORed into the state. Additive
differences are what we need to know when dealing with the two target words in
the round (the two words that get altered), because the arithmetic differences

5



are all mod 264. For the S-box inputs in the message modification step, XOR
differences are most useful.

We will use the following notation for the differences which occur in some
word W :

– ∆+(W ) = W − W ∗ mod 264 for additive differences and

– ∆⊕(W ) = W ⊕ W ′ for word-wise differences.

3.2 Outline of the Attack

The attack can be broken into three pieces:

1. Differential characteristic (I, I, I, I, 0, 0, 0, 0) → (I, I, 0, 0, 0, 0, 0, 0) in the key
schedule.

2. Differential characteristic (I, I, 0) → (0, 0, 0) in rounds 6-9 of the round
function. (Because the message words in rounds 10-15 are unchanged, this
leads to a collision after 16 rounds.)

3. Message modification to force the difference in the round function after round
6 to (I, I, 0).

3.3 Key Schedule Differences

Consider a difference of the form (I, I, I, I, 0, 0, 0, 0) in the message words. The
first pass of the key schedule turns this into an intermediate difference pattern
(I, 0, I, 0, 0, 0, 0, 0). The second pass turns this into (I, I, 0, 0, 0, 0, 0, 0). This is
the differential pattern we will use for our attack; it holds with probability one,
and covers the expanded message words used for rounds 0-15.

The colliding messages will differ only in the high order bits of their first four
words. The expanded message words will differ for rounds 8-9, only in their high
order bits. Expanded message words 10-15 will have no differences. This means
that if the states of the compression functions processing the two messages are
equal after round 9, they will remain equal until the end of round 15, yielding a
16-round collision.

3.4 Round Function Differences

Given the key schedule differential characteristic above, we can specify a differ-
ential characteristic for the round function from the end of round 6 to the end
of round 9, going from (I, I, 0) → (0, 0, 0) by canceling with the differences in
rounds 8-9. The expanded message words from rounds 10-15 have no differences,
and thus a collision after round 9 becomes a collision for 16 rounds of Tiger.
Figure 2 shows this characteristic.

6



(A )6 (B )6 (C )6

(C )9(B )9(A )9

00II

I 0 I

I0 0 I

I

0 0 0

Fig. 2. Probability one characteristic from round 6-9.

3.5 Message Modification

The main difficulty of the attack is in the message modification step. Recall that
our target difference at the end of round 6 is

∆+(A6) = I, ∆+(B6) = I, ∆+(C6) = 0.

Independently from the choice of message words, we know ∆+(C5) and ∆+(C4).
Also, since ∆+(X6) = 0, we need ∆+(C5) = ∆+(B6) = I. Similarly, we know
the relationship ∆+(C4) = I + ∆+(odd(B6)).

4 Local Message Modification by Meeting in the Middle

Assume we know inputs (Ai−1, Bi−1, Ci−1) and (A∗
i−1, B∗

i−1, C∗
i−1), and some

XOR differences in the message words Xi and Xi+1. We want to force some
additive difference ∆+(Ci+1) to δ∗ = Ci+1 − C∗

i+1. As depicted in Figure 3,
the difference ∆+(Ci+1) depends on ∆+(Bi−1), the additive output difference of
the odd function from round i, and the additive output difference of the even

function from round i + 1.

4.1 Plain Message Modifications

First consider the even function, which, after computing Bi+1 := Ci ⊕ Xi+1,
evaluates as

even(Bi+1) := T1(Bi+1[0]) ⊕ T2(Bi+1[2]) ⊕ T3(Bi+1[4]) ⊕ T4(Bi+1[6]).

7



i−1

A i CiB i

B i−1 Xi

A i+1 B i+1

Xi+1

Ci+1

A

(const)

even
odd

Ci−1

(const)

even
odd

Fig. 3. The information flow from Bi−1 to Ci+1.

For any nonzero XOR difference between words Bi+1 and B∗
i+1, we expect about

232 different additive output differences of the form δeven = even(Bi+1) −
even(B∗

i+1). Similarly, when we consider the odd function

odd(Bi) := T1(Bi[7]) ⊕ T2(Bi[5]) ⊕ T3(Bi[3]) ⊕ T4(Bi[1]),

we expect close to 232 different additive output differences of the form δodd =
odd(Bi) − odd(B∗

i ).
Thus, if the differences in Bi+1[even] and in Bi[odd] both are nonzero, we

can apply a meet-in-the-middle (MITM) approach to force

(∆+(Bi−1) + δodd) × const − δeven = δ∗

– Store the 232 candidates for δodd in a table.
– For all 232 candidates for δeven, test if δodd exists with

δeven = (∆+(Bi−1) + δodd) × (const) − δ∗,

or rather
δodd = (δeven + δ∗)/(const) − ∆+(Bi−1) (1)

(note that since (const) is odd, division by (const) mod 264 is well-defined).

This technique takes some 232 evaluations of each of the functions even and
odd, which is equivalent to about 228 evaluations of the compression function
– and, of course, some 232 units of storage space.

We estimate that for given ∆+(Bi−1) and δ∗, the meet-in-the-middle ap-
proach succeeds with a probability close to 1/2. In the attack scenario, we will

8



repeat the approach with another ∆+(Bi−1) or another target difference δ∗, if
necessary.

Assume Xi[even] has been fixed and the MITM delivered δeven and δodd
satisfying Equation 1. We can now determine value for Bi+1[even] and Bi[odd]
which will produce the desired differences, and thus will map the input differ-
ence to the output difference as required. During the MITM step, each candi-
date additive difference for δeven is produced by one or more specific values of
Bi+1[even], and likewise, each value of δodd is produced by one or more specific
values of Bi[odd].

Finally, we are able to compute 64 local message bits:

Xi[odd] := Ci−1[odd] ⊕ Bi[odd] and

Xi+1[even] := Ci[even] ⊕ Bi+1[even].

Note that Ci has been defined by fixing Xi[even].
In the attacks below, we use two variations on these ideas.

4.2 Message Modification to get an XOR Difference

In step 3 of the attack below, we need a specific XOR difference in C3. However,
the meet-in-the-middle technique above takes an additive difference, not an XOR
difference, as input. Our solution to this is to throw brute force computation at
the problem: For a desired XOR difference of Hamming weight k, we simply go
through the meet-in-the-middle search for each additive difference which could
be produced by the XOR difference, until we run out of choices or find an additive
difference which both matches and yields the desired XOR difference when we
compute it forward.

An additive difference which can lead to a given k-bit XOR difference has
about a 2−k probability of doing so2 This means we expect to need to try about
2k additive differences which are consistent with the k-bit XOR difference before
we succeed in finding a match. Since each MITM step succeeds in finding a
matching additive difference about half the time, we will need to do a total
of 2k+1 MITM steps. However, we can optimize this in a simple way, by only
redoing one side of the MITM search for each new targeted additive difference.
The expected work is thus bounded by 228+k.

4.3 Message Modification with Constraints

Two of the MITM steps (steps 4 and 5) in the attack below must live with
constraints on the selection of message bits. The constraints come from the
transition between an XOR difference in C3 and an additive difference in B4.

2 A k-bit XOR difference has either 2k or 2k−1 additive differences consistent with
it. For a flipped bit in position j, this represents the choice of whether to add or
subtract 2j . A flipped high order bit always matches both +263 and −263 in mod
264 arithmetic.

9



Since the XOR difference has k bits active, and the additive difference is con-
sistent with only one set of values for those bits, k bits of message word X4 are
constrained3.

Constrained message modification is relatively simple: Instead of searching
over 232 possible additive differences from each side, we search over a smaller
number, with the constrained bits of the message fixed to their required values.
For the sake of simplicity, we assume that k/2 bits are constrained in the even
bytes, and k/2 in the odd bytes. However, the probability of success is decreased
in a corresponding way; with only 228 choices from one side, and 232 from the
other, we expect about a 2−4 probability of a match. Thus, we expect to have
to repeat an MITM search with 4 constrained bits about 16 times.

5 The Global Message Modification Scenario

0. Do a one-time precomputation to find a additive difference L with a low
Hamming weight corresponding XOR difference which we can cancel out by
our choice of the even bytes of X6. (Note that the specific value of X6 is
not determined yet; we are simply ensuring that this additive difference will
permit a choice of X6 that will cancel the resulting difference out.) This costs
227 Tiger-16 hash function equivalents, and we expect it to yield an additive
difference which is consistent with an 8-bit XOR difference4

1. Choose X0 and X1[even] to ensure that C0 and C1 have useful (that is,
nonzero in both the even and odd bytes) differences. Note that at the end
of this step, we know ∆⊕(C1) and ∆⊕(C2). We use these in the next step.
The work here is negligible.

2. Choose X1[odd] and X2[even] to ensure that C2 has a useful difference. Note
that at the end of this step, we know ∆⊕(C2). We use this XOR difference
in the next step. The work here is negligible.

3. Do a message modification step to get XOR difference ∆⊕ in C3 which is
consistent with the additive difference L. This is described above. The ex-
pected work here is about 236 Tiger-16 hash equivalents, and we determine
X2[odd], X3[even].

4. Do a constrained meet in the middle step, choosing X3[odd], X4[even] to
get ∆C4 = I. We expect there to be four constrained bits, meaning that
we expect to have to try this 16 times before we get a match. Each failed
attempt requires that we go back to step 2. We thus expect to spend about
24236 = 240 Tiger-16 equivalents completing this step of the attack.

3 For example, an XOR difference of 1 is consistent with an additive difference of
either -1 or +1. If the low bit in C3 is 0, the low bit in C∗

3 will be 1, and reaching
an additive difference of -1 will require fixing the low bit of X4 to 1.

4 We expect this because in a set of 232 random 64-bit integers, we expect about one
with a Hamming weight of 8, since 64-bit integers with Hamming weight 8 make up
about 2−32 of all 64-bit integers. In this case, a 9-bit XOR difference where one of
the active bits is the high-order bit gives identical results in the remainder of the
attack.

10



5. Do a constrained meet in the middle step, choosing X4[odd], X5[even] to
force ∆C5 = I. As before, we expect this to be constrained by four bits,
and thus to need to be repeated 16 times. Each failure requires that we go
back to step 2. This step thus is expected to be completed after doing about
24240 = 244 Tiger-16 hash equivalents of work.

6. Given the value of C5, we use the results of step 0’s search to determine the
value for the even bytes of X6. This is negligible work, and never fails.

The result of this is an additive difference in the output of of I, 0, I in the
output of round 7. With probability one, this cancels out with the key schedule
characteristic, leading to a 16-round collision.

5.1 Neutral Bits

The above attack has specified message words X0,1,2,3,4 and the even bytes of
message words X5,6. This leaves an enormous number of bits of the message
which can be varied without interfering with the 16-round collision. After having
found the collision, we may freely determine the values for the odd bytes of X5,6

and all of X7. The above attack thus finds 2128 16-round collisions for Tiger.

For example, consider varying the bytes of X
[
5odd]. This alters the output of

the odd function in round 5, and thus the value of A6. However, since there is no
difference active in the odd bytes of B5, changing the input to the odd function in
round 5 adds the same change to A6 and A∗

6. This leaves the additive difference
in A6 unchanged, which means that the same difference in the even function in
round 6 will cancel it out. Similarly, a change to the odd bytes of X5 changes
the value of B5, but doesn’t change the additive difference B∗

5 − B5, as it adds
the same amount to both. The same kind of analysis applies to all the neutral
bits.

5.2 Free Bits

The attack also imposes almost no constraints on X0,1 or the even bytes of X2.
We need control of about 12 of those bits during the attack. A natural thing
to do is to choose X0,1 freely at the beginning of the attack in any way that is
convenient, and then use the even bytes of X2 to provide multiple trials for the
message modification steps.

6 Going beyond 16 Rounds

In this section, we will apply the 16-round collision finding technique from above
as some subroutine, to attack more rounds of Tiger. Make the following two
assumptions

1. The round keys X8, . . . , X15 observe the characteristic (I, I, I, I, 0, 0, 0, 0).
2. The input difference (∆+(A7), ∆

+(B7), ∆
+(C7)) to round eight is (0, 0, 0).

11



If both assumptions hold, we can apply the 16-round technique from above to
compute an “intermediate-message” (X8, . . . , X15), such that we get a collision
after round 23. As the key schedule is invertible, the “real message” (X0, . . . , X7)
can easily be computed by by running the key schedule backwards.

6.1 A Round Key Differential

Set I∗ := I ≫ 23 = 240 and I∗∗ := I ′∗ ≫ 23 = 217. Assume that the eight mes-
sage words observe the differential characteristic (I, I, 0, 0, I + I∗, I + I∗, I∗ +
I∗∗, 0). With the probability ≈ 1/16, we expect the first pass through the
message schedule turns this characteristic into (I, 0, 0, 0, I + I∗, 0, 0, 0). If this
happens, then we expect the second pass to produce our target characteristic
(I, I, I, I, 0, 0, 0, 0) with probability 1/2.

To summarise, we expect the differential characteristic

(I, I, 0, 0, I + I∗, I + I∗, I∗ + I∗∗, 0) −→ (I, I, I, I, 0, 0, 0, 0) (2)

to hold with a probability of about 1/32. We have verified this experimentically.
(Actually, our results seem to indicate a slightly better probability of approxi-
mately 1/28. But for simplicity, we use 1/32 = 2−5 for our analysis.)

6.2 Attacking 17 rounds of Tiger

Now we describe an attack on 17 rounds of Tiger, namely rounds 7 to 23:

1. Given the initial value (A6, B6, C6), choose the message word X7 and apply
one round of Tiger to get (A7, B7, C7).

2. Apply the 16-round attack to get a message (X8, . . . , X14, X15) colliding with
(X8, . . . , X14, X15) + (I, I, I, I, 0, 0, 0, 0).

Recall that (X8, . . . , X14, X15) contains 128 neutral bits, including all the 64
bits of X15. I.e., any choice of X15 will produce a collision.

3. Now run the key schedule backwards to get (X0, . . . , X7). As X7 has already
been chosen, we have to observe a little twist here: Given X7, . . . , X14, but
ignoring X15, we compute the remaining seven message words X0, . . . , X6 as
explained below.

4. Now we check our differential characteristic (2). If it holds, we have found a
17-round collision for rounds 7 to 23 and are done.

Else, we go back to the first step.

On the average, the characteristic (2) holds at least one in 32 = 25 times. Thus,
the attack on 17 rounds of Tiger takes the time of about

25 ∗ 244 = 249

compression function invocations.

12



What about step 3 of the attack, i.e., running the key schedule back-

wards? Given X7 and X8, . . . , X14, we have to compute X0, . . . , X6. We write
Y0, . . . , Y7 for the output of the first key schedule pass when computing

(X8, . . . , X14, X
∗

15) = KeySchedule(X0, . . . , X7).

(Note that we actually know X8, . . . , X14, while X∗
15 is unknown.)

Inverting steps 11–15 of the second pass is straightforward:

Y6 := X14 − X13

Y5 := X13 ⊕ X12

Y4 := X12 + (X11 ⊕ (X10 ≫ 23))

Y3 := X11 − X10

Y2 := X10 ⊕ X9

We get the value Y7 by inverting step 8 of the first pass:

Y7 := X7 ⊕ Y6

Finally, we can invert those steps of second pass which depend on Y7:

Y6 := X9 + (X8 ⊕ (Y7 ≪ 19))

Y0 := X8 − Y7

Inverting steps 1 to 7 of the first pass is quite similar.

6.3 Circular Near-Collisions for 20 rounds of Tiger

Now we go even further, to 20 rounds of Tiger, at the cost of dealing with
a weaker attack model. Instead of a collision-attack, we provide circular near-
collisions with small Hamming weight (Hamming weight 6). We attack rounds
4 to 23 (i.e., all but the first four rounds). Hence, we denote the input chaining
values by A3, B3, C3. The attack works as follows:

1. Arbitrarily choose the chaining values A7, B7, C7 for round 8.
2. Employ the 16-round attack, to find message words X8, . . . , X15 such that

the output after round 23 collides.
3. Run the key schedule backwards, to compute the “real” message words

X0, . . . , X7.
If the characteristic (2) does not hold, go back to step 2.

4. Run the rounds 7, 6, 5, and 4 backwards to compute the initial values
A3, B3, C3. The differences in the message words induce the same differences
in the initial values, namely

∆⊕(A3) = I + I∗ = ∆⊕(B3) and ∆⊕(C3) = I∗ + I∗∗.

13



5. The feedforward destroys the collision, of course. But with very high prob-
ability, it leaves us with a low Hamming weight near-collision. With proba-
bility 2−3 the feedforward output follows the same differential pattern than
the input chaining values:

∆⊕(A23) = I + I∗ = ∆⊕(B23) and ∆⊕(C23) = I∗ + I∗∗.

If it doesn’t follow this pattern, then randomly vary the neutral bits in
X13,14,15 until it does hold. We expect to need to try about 23 = 8 sets of
neutral bits for this.

Similarly to Section 6.2, we expect to iterate the 16-round attack no more
than 25 times, on the average. In total, we expect a running time of about 249

Tiger-20 equivalents. Varying the neutral bits in the last step adds negligible cost.
Thus, the Tiger-20 near-collision attack costs less work than iterating Tiger-20
240 times.

7 Conclusions and Open Questions

In this paper, we have developed collision attacks:

– an attack against 16 rounds of Tiger, requiring work equivalent to about 244

compression function computations and
– an attack gainst 17 rounds of Tiger, being no more than 32 times slower –

work equivalent to about 244 compression function computations.

These attacks heavily use message modification techniques.
We have further exploited this technique for a near-collision attack (with

adversarially chosen input chaining values) against the last 20 rounds of Tiger,
also for about 249 compression function computations worth of work. These
near-collisions are circular, i.e., the input and the output chaining values have
identical differences (with a Hamming weight of 6).

7.1 The Security of Tiger

All of our results are based on message modification techniques, which mean
that we choose both the XOR differences in the message, and also specific values
for most or all of the message bits. This constrains the attack in many ways.
For example, we can see no way to adapt our current techniques to collisions
against an application using 16-round Tiger in the HMAC construction–our lack
of knowledge of the chaining values would make our approach impossible.

Second-preimage attacks on a single compression function computation also
appear to be very difficult using our techniques. Both the difference between the
colliding message blocks and the specific values of the messages are constrained
by our attack; it appears to be very difficult to “work backward” from a speci-
fied message block with some hash output to a colliding message block. Second
preimages are trivial to find for up to 8 rounds, and appear possible to find for

14



up to 11 rounds using local collisions, but we have not investigated this line of
attack in much detail yet.

We are more concerned with the possibility of extending the collision attack
to more rounds. As Tiger has only 24 rounds, attaking 16–20 rounds is threaten-
ing. A relatively small improvement might make the attack techniques applicable
to the full hash function. We definitely do not believe that the attack techniques
presented here have been fully exploited in the current attack.

We point out that pseudo-collisions and near-collisions can be more than
just certificational weaknesses. Some of the attacks against ciphers from the
MD4 family employ pseudo- and near-collisions in attack scenarios with more
than one message block, to find plain collisions for the hash function itself (see,
e.g., [6]).

7.2 What We’ve Learned About Tiger

We draw two broad lessons from the analysis so far. First, we believe that Tiger
has too few rounds. Message modification techniques allow us to almost com-
pletely control what happens in the first third of the hash function at present,
allowing us to place differences in the remaining rounds almost without con-
straint. Second, the use of large S-boxes and mixing between addition and XOR
operations is an excellent strategy for building a block cipher, but it works very
differently inside a hash function. Large S-boxes tend to have a large set of
equally good differentials, but which differential will pass the next round de-
pends on the value of the internal state of the hash function; the attacker facing
a block cipher with such large S-boxes must guess which differential to try; the
attacker facing a hash function can often choose those values to make his differ-
ential work, or at least look inside the state of the hash function to determine
the best differential path to try.

7.3 Applicability of the Tools of the MD4 Family Attacks

We have also seen some overlap in the tools used to attack the MD4 family, and
our results on reduced-round Tiger. Broadly, we analyze the message expansion
for the hash function, and form a differential characteristic which, if entered
after round 7, will lead to a collision in the full hash function. We then use
message modification to force the hash states processing a pair of messages with
our desired difference onto this differential characteristic after round 7. This is
quite similar to the techniques used in [7] and [8], though without (yet) the
use of advanced message modification techniques. Similarly, a variation on the
neutral bit techniques of [2] are used to make our 20-round pseudo-near-collision
attack more efficient. While the details of using these attack tools are different
for Tiger, the high level similarities in approach suggest that we may be learning
generally useful attack techniques against hash functions from the recent results
on the MD4 family of hash functions.

15



8 Acknowledgements

The authors wish to thank Eli Biham, Lily Chen, Orr Dunkelman, Morris Dworkin,
Matt Fanto, and the anonymous referees for useful comments and discussions.

References

1. Anderson, R., Biham, E., Tiger: A Fast New Hash Function, Fast Software Encryp-
tion, FSE’96, LNCS 1039, 1996.

2. E. Biham, R. Chen. Near-Collisions of SHA-0. Crypto 04, LNCS 3152.
3. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, W. Jalby. Collisions of

SHA-0 and reduced SHA-1. Eurocrypt 2005, LNCS 3494, 36–57.
4. B. Schneier, J. Kelsey. Unbalanced Feistel Networks and Block Cipher Design. FSE

1996, LNCS, 121–144.
5. X. Wang, X. Lai, D. Feng, H. Cheng, X. Yu. Cryptanalyisis of the hash functions

MD4 and RIPEMD. Eurocrypt 2005, LNCS 3494, 1–18.
6. X. Wang, H. Yu. How to break MD5 and other hash functions. Eurocrypt 2005,

LNCS 3494, 19–35.
7. X. Wang, H. Yu, Y. L. Yin. Efficient collision search attacks on SHA0. Crypto 2005.
8. X. Wang, Y. L. Yin, H. Yu. Finding collisions in the full SHA1. Crypto 2005.
9. X. Wang, A. Yao, F. Yao. New Collision Search for SHA-1. Presentation at rump

session of Crypto 2005 (communicated by A. Shamir).

16


