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ABSTRACT

Collisions are the core agent of planet formation. In this work, we derive an analytic description of the dynamical
outcome for any collision between gravity-dominated bodies. We conduct high-resolution simulations of collisions
between planetesimals; the results are used to isolate the effects of different impact parameters on collision
outcome. During growth from planetesimals to planets, collision outcomes span multiple regimes: cratering,
merging, disruption, super-catastrophic disruption, and hit-and-run events. We derive equations (scaling laws) to
demarcate the transition between collision regimes and to describe the size and velocity distributions of the post-
collision bodies. The scaling laws are used to calculate maps of collision outcomes as a function of mass ratio,
impact angle, and impact velocity, and we discuss the implications of the probability of each collision regime
during planet formation. Collision outcomes are described in terms of the impact conditions and the catastrophic
disruption criteria, Q∗

RD—the specific energy required to disperse half the total colliding mass. All planet formation
and collisional evolution studies have assumed that catastrophic disruption follows pure energy scaling; however,
we find that catastrophic disruption follows nearly pure momentum scaling. As a result, Q∗

RD is strongly dependent
on the impact velocity and projectile-to-target mass ratio in addition to the total mass and impact angle. To account
for the impact angle, we derive the interacting mass fraction of the projectile; the outcome of a collision is dependent
on the kinetic energy of the interacting mass rather than the kinetic energy of the total mass. We also introduce a
new material parameter, c∗, that defines the catastrophic disruption criteria between equal-mass bodies in units of
the specific gravitational binding energy. For a diverse range of planetesimal compositions and internal structures,
c∗ has a value of 5 ± 2; whereas for strengthless planets, we find c∗ = 1.9 ± 0.3. We refer to the catastrophic
disruption criteria for equal-mass bodies as the principal disruption curve, which is used as the reference value in the
calculation of Q∗

RD for any collision scenario. The analytic collision model presented in this work will significantly
improve the physics of collisions in numerical simulations of planet formation and collisional evolution.
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1. INTRODUCTION

Planet formation is common and the number and diversity of
planets found increases almost daily (e.g., Borucki et al. 2011;
Howard et al. 2011). As a result, planet formation theory is
a rapidly evolving area of research. At present, observations
principally provide snapshots of either early protoplanetary
disks or stable planetary systems. Little direct information
is available to connect these two stages of planet formation,
therefore, numerical simulations are used to infer the details
of possible intermediate stages. However, the diversity of
extrasolar planetary systems continues to surprise observers and
theorists alike.

A complete model of planet formation has eluded the as-
trophysics community because of both incomplete physics in
numerical simulations and computational constraints. In order
to make the problem of planet formation more tractable, the pro-
cess is often divided into separate stages, which are then tackled
in isolation. This method has had some success. For example,
N-body simulations show that large (∼100 km) planetesimals
may grow into protoplanets of about a lunar mass on million
year timescales (e.g., Kokubo & Ida 2002). Other simulations,
focusing on later stages of planet formation, created a variety of
stable planetary systems from initial distributions of protoplanet
size bodies (e.g., Chambers 2001; Agnor et al. 1999). Recently,
the distribution of stable planets has been investigated in popu-
lation synthesis models (e.g., Mordasini et al. 2009; Ida & Lin

2010; Schlaufman et al. 2010; Alibert et al. 2011). However,
given the complexity of planet formation, it is unsurprising that
the predictions from the first population synthesis models have
been overturned by the rapidly growing catalog of exoplanets
(Howard et al. 2010, 2011). Hence, the diversity of the extrasolar
planets is still unexplained.

At the heart of the standard core-accretion model of planet
formation is the growth of planetestimals. The evolution of
planetesimals is dominated by a series of individual collisions
with other planetesimals (e.g., Beauge & Aarseth 1990; Lissauer
1993). The outcome of each collision depends on the specific
impact conditions: target size, projectile size, impact parameter,
impact velocity, and some internal properties of the target and
projectile, such as composition and strength. In the past, direct
global simulations of planetesimal evolution have assumed very
simplified collision models. In N-body simulations, terrestrial
planet embryos were shown to grow easily from an annulus
of large planetesimals if the only outcome of collisions is
merging (e.g., Kokubo & Ida 2002). However, the computational
demands of such numerical methods did not allow for the
tracking of the very large numbers of bodies necessary to be able
to include direct calculations of the erosion of planetesimals.

Statistical methods are required to describe the full popula-
tion of bodies from dust size to planets. For example, Kenyon &
Bromley (2009) conducted simulations that included fragmen-
tation but still relied upon a simple collision model. Specifically,
their simulations did not fully account for the effects of the mass
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ratio, impact velocity, or impact angle on the collision outcome.
In order to overcome these simplifications some previous stud-
ies have employed a multi-scale approach that includes direct
simulations of collision outcomes within a top-level simula-
tion of planet growth (Leinhardt & Richardson 2005; Leinhardt
et al. 2009; Genda et al. 2011a). However, multi-scale calcula-
tions significantly increase the computational requirements. In
addition, the numerical methods employed in previous studies
were only valid for a specific impact velocity regime. In the case
of Leinhardt & Richardson (2005) and Leinhardt et al. (2009),
the collision model assumed subsonic collisions and could not
be extended past oligarchic growth. In the case of Genda et al.
(2011a), the technique assumed strengthless bodies and cannot
be used in the early phases of planetesimal growth.

A general description of collision outcomes that spans the
growth from dust to planets is required to build a self-consistent
model for planet formation. In previous work, the description
of collision outcomes drew upon a combination of laboratory
experiments and limited numerical simulations of collisions be-
tween two planetary-scale bodies (see the review by Holsapple
et al. 2002). Collision outcomes themselves are quite diverse,
and several distinct collision regimes are encountered during
planet formation: cratering, merging/accretion, fragmentation/
erosion, and hit-and-run encounters.

Individual collision regimes have been described in quite
varying detail. In the laboratory, the erosive regimes (crater-
ing and disruption) have been studied most comprehensively
(Holsapple 1993; Holsapple et al. 2002); however, even these
regimes lack a complete description of the dependence on all im-
pact parameters (particularly mass ratio and impact angle). Re-
cently, numerical studies of collisions between self-gravitating
bodies of similar size have identified new types of collision
outcomes including hit-and-run and mantle-stripping events
(Agnor & Asphaug 2004a; Asphaug et al. 2006, 2010;
Marcus et al. 2009, 2010b; Leinhardt et al. 2010; Kokubo &
Genda 2010; Benz et al. 2007; Genda et al. 2011b). Up to this
point our understanding of these new regimes has not been suffi-
cient to implement the diversity of collision outcomes in planet
formation codes. In addition, the transitions between regimes
are not clearly demarcated in the literature.

In the work reported here, we present a complete description
of collision outcomes for gravity-dominated bodies. Using a
combination of published hydrocode and new and published
N-body gravity code simulation results, we derive analytic
equations to demarcate the transitions between collision regimes
and the size and velocity distributions of the post-collision
bodies. We describe how these scaling laws can be used to
increase the accuracy of numerical simulations of collisional
evolution without sacrificing efficiency. In a companion paper
(Stewart & Leinhardt 2011), we apply these scaling laws to the
end stage of terrestrial planet formation by analyzing the range
of collision outcomes from recent N-body simulations.

This paper is organized as follows: Section 2 summarizes the
numerical method for the new N-body simulations. Section 3
derives a general catastrophic disruption scaling law. Then, we
develop general scaling laws for the size and velocity distri-
butions of fragments in the disruption regime. Section 4 de-
fines the super-catastrophic and hit-and-run regimes. Section 5
presents the transition boundaries between collision outcome
regimes from our numerical simulations and our analytic model.
Section 6 discusses the range of applicability of our results, ar-
eas needing future work, and the implications of the scaling laws
on aspects of planet formation. The Appendix summarizes the

implementation of the scaling laws in numerical simulations of
planet formation and collisional evolution.

2. NUMERICAL METHOD

In this section, we describe the numerical method used in
the new impact simulations presented in this work. Simulations
of relatively slow subsonic impacts were conducted using an
N-body code with finite-sized spherical particles, PKDGRAV
(Stadel 2001), which has been extensively used to study the
dynamics of collisions between small bodies (e.g., Leinhardt
et al. 2000; Michel et al. 2001; Leinhardt & Richardson 2002,
2005; Durda et al. 2004; Leinhardt & Stewart 2009; Leinhardt
et al. 2010).

Both the target and projectile are assumed to be rubble
piles: gravitational aggregates with no bulk tensile strength
(Richardson et al. 2002). The rubble-pile particles are bound
together purely by self-gravity. The particles themselves are
indestructible and have a fixed mass and radius (for cases
without merging). The equations of motion of the particles are
governed by gravity and inelastic collisions. The amount of
energy lost in each particle–particle collision is parameterized
through the normal and tangential coefficients of restitution.
The rubble piles are created by placing particles randomly
in a spherical cloud and allowing the cloud to gravitationally
collapse with highly inelastic particle collisions. Randomizing
the internal structure of the rubble piles avoids spurious collision
results due to crystalline structure of hexagonal close packing
(see Leinhardt et al. 2000; Leinhardt & Richardson 2002). The
crystalline structure can cause large uncertainties in collision
outcomes for super-catastrophic events.

All simulations had a target with radius of 10 km, mass of
4.2×1015 kg, bulk density of 1000 kg m−3, and escape velocity
of 7.5 m s−1. The current study includes four projectile-to-
target mass ratios (γ ), four impact angles (θ ), and a range
of impact velocities spanning merging to super-catastrophic
disruption. These results for a single size target body are used to
derive scaling laws for any size body in the gravity regime. The
target and projectile are initially separated by the sum of their
respective radii to ensure that the impact angle of the impact is
unchanged from the initial trajectory.

In order to resolve the size distribution after the collisions,
each body needs a relatively high number of particles (Ntarg ∼
104, Np ∼ 250–104 depending on the mass ratio). However,
large numbers of particles are also time consuming to integrate,
especially in a rubble-pile configuration where there is a high
frequency of particle–particle collisions. Each simulation here
uses high resolution with inelastic particle collisions to resolve
the initial impact. Once the velocity field is well established,
the particles are allowed to merge with one another. Thus, our
method has both accuracy and efficiency, resolving the size
distribution to small fragments and completing the simulations
as quickly as possible.

We considered the possible influence of the time of the tran-
sition from inelastic bouncing to perfect merging. Figure 1
presents a test case using a head-on catastrophic impact be-
tween equal-sized objects (mass ratio γ = 1). Each body has
∼104 particles; in the inelastic bouncing phase, each particle has
a normal coefficient of restitution, ǫn = 0.5, and a tangential
coefficient of restitution, ǫt = 1, consistent with field observa-
tions and friction experiments on rocky materials (e.g., Chau
et al. 2002). At a certain time, the colliding particles are al-
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Figure 1. Cumulative size distribution of collisional debris after the catastrophic
impact between two 20 km diameter bodies. Line colors represent different
handoff times from inelastic bouncing to perfect merging for the outcome of
collisions between pairs of PKDGRAV particles. Each step corresponds to
1 minute in simulation time. The same initial impact is used for all distributions
shown: γ = 1, Vi = 30 m s−1, θ = 0, Ntarg = Np = 1 × 104.

(A color version of this figure is available in the online journal.)

lowed to merge, producing one particle with the same mass and
bulk density as the two original particles. If merging is turned
on too early, the mass of the largest remnant is overestimated
(magenta and cyan lines) due to a geometric effect known as
runaway merging (Leinhardt & Stewart 2009). The results of
this numerical test show that the mass distribution is stable if
merging is turned on after 50 steps, where one step is one minute
in simulation time in the frame of the particles. However, we
choose to be conservative and merge after 250 steps of inelastic
bouncing in all of the new simulations presented in this paper.
All simulations were run for at least 0.2 years, at which point
the size distribution had stabilized and clumps of rubble-pile
fragments were easily identifiable.

Previous studies using PKDGRAV did not have the numerical
resolution to determine an accurate size or velocity distribution
of the collisional remnants (e.g., Ntarg ∼ 103; Leinhardt et al.
2000). In this work, we present more extensive simulations
at an order of magnitude higher resolution (Ntarg ∼ 104).

Note that N = 104 is high resolution for N-body simulations
of colliding rubble-pile bodies with bouncing particles. We
conducted several resolution tests and find that the random error
on the mass of the largest remnant is a few percent of the total
system mass. Hence, the super-catastrophic impacts, where the
largest remnant mass is a few percent of the total system mass,
have the highest error. We achieve excellent reproducibility of
the slope of the size and velocity distributions with the nominal
resolution compared to the higher resolution tests.

Note that N-body simulations are inherently higher resolu-
tion compared to smoothed particle hydrodynamics (SPH) sim-
ulations. Our simulations resolve over a decade in fragment
size, comparable to SPH simulations using an order of mag-
nitude more particles (Durda et al. 2004). Fragments of radius

0.5 km are considered the smallest usable fragments in these
simulations.

In the following sections, we also include published results
of subsonic and supersonic collisions from previous work
(Leinhardt & Stewart 2009; Agnor & Asphaug 2004a, 2004b;
Marcus et al. 2009, 2010b; Durda et al. 2004, 2007; Jutzi
et al. 2010; Benz & Asphaug 1999; Benz 2000; Stewart &
Leinhardt 2009; Korycansky & Asphaug 2009; Nesvorný et al.
2006; Benz et al. 2007). Studies of supersonic collisions utilize
shock physics codes, which include the effects of irreversible
shock deformation. For computational efficiency, the shock
code is generally used to calculate only the early stages of
an impact event; after a few times the shock wave crossing
time, the amplitude of the shock decays to the point where
further deformation is negligible. After the hydrocode step, the
gravitational reaccumulation stage of disruptive events has been
calculated directly using PKDGRAV (e.g., Leinhardt & Stewart
2009; Durda et al. 2004; Michel et al. 2002) or indirectly by
iteratively solving for the mass bound to the largest fragment
(e.g., Benz & Asphaug 1999; Benz 2000; Marcus et al. 2009).

3. RESULTS: THE DISRUPTION REGIME

In our model, the boundaries between collision outcome
regimes are defined using the catastrophic disruption criteria,
the specific energy required to gravitationally disperse half the
total mass, because it provides a convenient means of calculating
the mass of the largest remnant. Our definition of the disruption
regime refers to collisions in which the energy of the event
results in mass loss (fragmentation) between about 10% and
90% of the total mass. More quantitatively, the disruption regime
is defined as collision that result in the largest remnant having a
linear dependence on the specific impact energy. The rationale
for this definition will become apparent in Section 3.1.1.

This section focuses on deriving the dynamical outcome (the
mass and velocity distributions of post-collision fragments) in
the disruption regime. Other collision regimes are discussed in
Section 4. Before discussing the results of our new numerical
simulations, we briefly review the catastrophic disruption crite-
rion, as it is a fundamental part of our story.

In the literature on planetary collisions, Q traditionally
denotes the specific energy of the impact (kinetic energy of
the projectile/target mass) and Q∗ indicates the catastrophic
disruption criterion, where the largest remnant has half the
target mass. Upon recognition that gravitational dispersal was
important, Q∗

S and Q∗
D denoted the criteria for shattering in the

strength regime and dispersal in the gravity regime, respectively.
All of the previous definitions for Q∗ assumed that the projectile
mass, Mp, was much smaller than the target mass, Mtarg;
however, in several phases of planet formation it is expected
that Mp ∼ Mtarg. Therefore, in previous work, we developed a
disruption criterion in the center of mass reference frame in order
to study collisions between comparably sized bodies (Stewart &
Leinhardt 2009). The subscript R was added in the modification
of the specific energy definition to denote reduced mass. The
center of mass specific impact energy is given by

QR =
(

0.5MpV
2

p + 0.5MtargV
2

targ

)/

Mtot,

= 0.5µV 2
i

/

Mtot, (1)

where Mtot = Mp + Mtarg, µ is the reduced mass MpMtarg/Mtot,
Vi is the impact velocity, and Vp and Vtarg are the speed of
the projectile and target with respect to the center of mass,
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respectively. At exactly the catastrophic disruption threshold,

Q∗
RD = 0.5µV ∗2

/Mtot, (2)

where we explicitly define V ∗ to be the critical impact velocity
required to disperse half of the total mass for a specific impact
scenario (total mass and mass ratio).

The catastrophic disruption criterion is a strong function
of size with two components: a strength regime where the
critical specific energy decreases with increasing size and a
gravity regime where the critical specific energy increases with
increasing size. The transition between regimes occurs between
a few 100 m and few km radius, depending on the strength of the
bodies (see Figure 2 of Stewart & Leinhardt 2009). A general
formula for Q∗

RD as a function of size was derived by Housen &
Holsapple (1990) using π -scaling theory,

Q∗
RD = qs (S/ρ1)3µ̄(φ+3)/(2φ+3) R

9µ̄/(3−2φ)

C1 V ∗(2−3µ̄)

+ qg (ρ1G)3µ̄/2 R
3µ̄

C1V
∗(2−3µ̄), (3)

where the first term represents the strength regime and the
second the gravity regime. RC1 is the spherical radius of
the combined projectile and target masses at a density of
ρ1 ≡ 1000 kg m−3. The variable RC1 was introduced by Stewart
& Leinhardt (2009) in order to fit and compare the disruption
criteria for collisions with different projectile-to-target mass
ratios and to account for bodies with different bulk densities
(e.g., rock and ice). G is the gravitational constant; qs and qg are
dimensionless coefficients with values near 1. S is a measure of
the material strength in units of Pa s3/(φ+3), and the remaining
variables, φ and µ̄, are dimensionless material constants. φ is a
measure of the strain-rate dependence of the material strength
with values ranging from 6 to 9 (e.g., Housen & Holsapple
1990, 1999). µ̄ is a measure of how energy and momentum
from the projectile are coupled to the target; µ̄ is constrained to
fall between 1/3 for pure momentum scaling and 2/3 for pure
energy scaling (Holsapple & Schmidt 1987). Note that the form
of Equation (3) assumes that the projectile and target have the
same density.

In the strength regime, the largest post-collision remnant is a
mechanically intact fragment. The catastrophic disruption cri-
terion decreases with increasing target size because more flaws
grow and coalesce during the longer loading duration in larger
impact events (e.g., Housen & Holsapple 1999). In the grav-
ity regime, disruption requires both fracturing and gravitational
dispersal (Melosh & Ryan 1997; Benz & Asphaug 1999); hence
the disruption criterion increases with increasing target size.
In this regime, the largest remnant is a gravitational aggregate
composed of smaller intact fragments. In both regimes, the dis-
ruption criteria increases with impact velocity because more of
the impact kinetic energy is dissipated by shock deformation
at higher velocities (Housen & Holsapple 1990). This work fo-
cuses on the gravity regime; the strength regime will be the
subject of future studies.

Both Equations (2) and (3) are satisfied by collisions at exactly
the catastrophic disruption threshold. The general formula
for catastrophic disruption given by Equation (3) describes a
family of curves that depend on size, impact velocity, and
material parameters (qg and µ̄). Most previous work fit the
material parameters in Equation (3) to planetary bodies of a
particular composition under various assumptions (e.g., a fixed
impact velocity). Next (Sections 3.1.2–3.1.4), we present a
general method to calculate the values for the disruption energy

Figure 2. Schematic of the collision geometry. The target is stationary and the
projectile is moving from right to left with speed Vi. The impact angle, θ , is
defined at the time of first contact as the angle between the line connecting the
centers of the two bodies and the normal to the projectile velocity vector. The
impact parameter is b = sin θ .

and critical impact velocity for specific impact scenarios and
materials.

3.1. Derivation of a General Catastrophic Disruption Law
in the Gravity Regime

3.1.1. The Universal Law

In previous work, using simulations of head-on impacts, we
determined the value of Q∗

RD for a particular pair of planetary
bodies by fitting the mass of the largest post-collision remnant,
Mlr, as a function of the specific impact energy, QR. The
simulations held the projectile-to-target mass ratio fixed and
varied the impact velocity. For a wide range of target masses,
projectile-to-target mass ratios, and critical impact velocities,
we found that the mass of the largest remnant is approximated
by a single linear relation,

Mlr/Mtot = −0.5(QR/Q∗
RD − 1) + 0.5, (4)

where Q∗
RD was fitted to be the specific energy such that

Mlr = 0.5Mtot (Stewart & Leinhardt 2009; Leinhardt & Stewart
2009). We found that a single slope agreed well with results
from both laboratory experiments and numerical simulations.
Furthermore, the dimensional analysis by Housen & Holsapple
(1990) supports the linearity of the largest remnant mass with
impact energy near the catastrophic disruption threshold. Hence,
we refer to Equation (4) as the “universal law” for the mass of
the largest remnant.

However, the most likely collision between two planetary
bodies is not a head-on collision; a 45◦ impact angle is most
probable (Shoemaker 1962). The impact parameter is given by
b = sin θ , where θ is the angle between the centers of the
bodies and the velocity vector at the time of contact (Figure 2).
The impact parameter has a significant effect on the collision
outcome because the energy of the projectile may not completely
intersect the target when the impact is oblique. For example,
in the collision geometry shown in Figure 2, the top of the
projectile does not directly hit the target (above the dotted line).
As a result, a portion of the projectile may shear off and only the
kinetic energy of the interacting fraction of the projectile will be
involved in disrupting the target. Thus, a higher specific impact
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Figure 3. Normalized mass of the largest post-collision remnant vs. normalized
impact energy for all collisions in the disruption regime. The impact energy is
scaled by the empirical catastrophic disruption criteria Q′∗

RD (Table 1). The solid
lines are the universal law for the mass of the largest remnant (Equation (4));
see the text for discussion of 1:1 oblique impacts. The symbol denotes the
projectile-to-target mass ratio, and the color denotes the impact parameter.

(A color version of this figure is available in the online journal.)

energy is required to reach the catastrophic disruption threshold
for an oblique impact.

The new PKDGRAV simulations conducted for this study
were used to develop a generalized catastrophic disruption law,
as previous work did not independently vary critical parameters.
Table 1 presents the subset of the simulations discussed in detail
below; for a complete listing see Table 4 in the Appendix. The
simulations are grouped by impact scenario: fixed mass ratio and
impact angle. The value for the catastrophic disruption criterion,
Q′∗

RD, is found by fitting a line to the mass of the largest remnant
as a function of increasing impact energy in each group. The
prime notation in the catastrophic disruption criterion indicates
an impact condition that may be oblique (b > 0).

With the new data, we first consider how impact angle in-
fluences the universal law for the mass of the largest remnant.
Figure 3 presents the normalized mass of the largest remnant
versus normalized specific impact energy. Our previous simu-
lations (all at b = 0) are shown on the same universal law in
Stewart & Leinhardt (2009). Note that comparable mass col-
lisions with b > 0 need to be considered carefully (offset for
emphasis in Figure 3). Such collisions transition from merging
to an inelastic bouncing regime (called hit-and-run, discussed
in Section 3.1.2) before reaching the disruption regime. As a re-
sult, the mass of the largest remnant has a discontinuity between
Mtot and Mtarg with increasing impact energy. So, in the case of
equal-mass collisions,3 only the fragments with Mlr < Mtarg are
fit by a line of slope −0.5.

Our new results demonstrate that the same universal law for
the mass of the largest remnant found for head-on collisions can

3 A robust fit requires several points between 0.1Mtot and Mtarg. A similar
procedure was applied to fit the Q′∗

RD for the b = 0.5, γ = 1, and γ = 0.5
simulations from Marcus et al. (2010b) that are shown in Figure 4.

be generalized to any impact angle:

Mlr/Mtot = −0.5(QR/Q′'
RD − 1) + 0.5. (5)

In detail, the mass of the largest fragment for a specific subset
of simulations may deviate slightly from the universal law
(Figure 3). Note that the deviations vary between subsets,
with some results systematically sloped more steeply and
others sloped more shallowly. The deviations in Mlr/Mtot from
Equation (5) are about 10% for near-normal impacts (b = 0.00
and b = 0.35) and somewhat larger and more varied for highly
oblique impacts.

Overall, the universal law provides an excellent representation
for mass of the largest remnant for all disruptive collisions in
the gravity regime. As a result, we have chosen to use the range
of impact energies that satisfy the universal law for the mass of
the largest remnant as the technical definition of the disruption
regime. At higher specific impact energies, the linear universal
law breaks down in a transition to the super-catastrophic regime
(QR/Q∗

RD ! 1.8, see Section 4.1). At lower specific impact
energies, the outcomes are merging or cratering (Section 5).
Using our definition, the disruption regime encompasses less
than a factor of two in specific impact energy. The outcomes
in the disruption regime span partial accretion of the projectile
onto the target to partial erosion of the target body.

Note that the derived values for Q′∗
RD are strong functions of

both the mass ratio and the impact parameter (Table 1). The
catastrophic disruption energy rises with smaller projectiles and
larger impact parameters. Benz & Asphaug (1999) investigated
the effect of impact parameter on the disruption criterion;
however, their study fixed the impact velocity and varied the
mass ratio of the bodies. Hence, the individual roles of the
impact parameter and mass ratio cannot be discerned from their
data. In the next two sections, the influence of each factor is
isolated and quantified.

3.1.2. Dependence of Disruption on Impact Angle and
Derivation of the Interacting Mass

In order to describe the dependence of catastrophic disruption
on impact angle, we introduce two geometrical collision groups
(Figure 2): non-grazing—most of the projectile interacts with
the target and grazing—less than half the projectile interacts
with the target. Following Asphaug (2010), the critical impact
parameter,

bcrit =

(

R

R + r

)

, (6)

is reached when the center of the projectile (radius r) is tangent to
the surface of the target (radius R). Grazing impacts are defined
to occur when b > bcrit.

When considering a non-grazing impact scenario with a
particular b and γ , the collision outcome transitions smoothly
from merging to disruption as the impact velocity increases.
For grazing impacts, however, the collision outcome transitions
abruptly from merging (Mlr ∼ Mtot) to hit-and-run (Mlr ∼
Mtarg) and then (less abruptly) to disruption (see Section 5).
Thus, only collision energies that result in Mlr < Mtarg should
be used in the derivation of Q′∗

RD in the grazing regime, as done
for the γ = 1 results shown in Figure 3.

During oblique impact events, a significant fraction of the
projectile may not actually interact with the target, particularly
for comparable mass bodies. For gravity-dominated bodies, the
projectile is decapitated and a portion of the mass misses the
target entirely. As a result, only a fraction of the projectile’s total
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Table 1

Summary of Parameters and Results from Selected PKDGRAV Simulations (for Full List of Simulations See the Appendix)

Mp b Vi Mlr Mslr β QR Q′∗
RD α Mlr/Mtot Mslr/Mtot

Mtarg – (m s−1) Mtot Mtot – (J kg−1) (J kg−1) – Predicted Predicted

1.00 0.00 24 0.76 0.004 4.0 7.2 × 101 0.67 0.01

1.00∗ 0.00 30 0.50 0.01 3.2 1.1 × 102 1.1 × 102 1 0.49 0.01

1.00 0.00 35 0.12 0.05 2.9 1.5 × 102 0.31 0.02

1.00 0.35 17 0.48 0.46 4.8 3.6 × 101 0.44† 0.44†

1.00 0.35 30 0.23 0.20 3.1 1.1 × 102 5.4 × 101 0.72 0.33† 0.33†

1.00 0.35 45 0.02 0.01 3.7 2.6 × 102 0.11† 0.11†

1.00 0.70 12 0.50 0.49 . . . 1.8 × 101 0.50† 0.50†

1.00∗ 0.70 80 0.28 0.27 4.1 8.0 × 102 4.7 × 102 0.22 0.36† 0.36†

1.00 0.70 150 0.04 0.01 3.2 2.8 × 103 super-cat

1.00 0.90 20 0.50 0.50 . . . 5.0 × 101 0.50† 0.50†

1.00 0.90 400 0.35 0.34 4.6 2.0 × 104 1.5 × 104 0.03 0.39† 0.39†

1.00 0.90 600 0.25 0.25 3.2 4.5 × 104 0.25† 0.25†

0.25 0.00 30 0.69 0.01 3.7 7.2 × 101 0.72 0.01

0.25†∗ 0.00 40 0.40 0.02 4.4 1.3 × 102 1.3 × 102 1 0.51 0.01

0.25 0.00 50 0.09 0.02 3.4 2.0 × 102 0.23 0.02

0.25 0.35 30 0.67 0.01 4.5 7.2 × 101 0.81 0.005

0.25∗ 0.35 40 0.53 0.01 4.1 1.3 × 102 1.9 × 102 0.93 0.66 0.01

0.25 0.35 60 0.25 0.01 3.8 2.9 × 102 0.24 0.02

0.25 0.70 50 0.69 0.01 2.8 2.0 × 102 0.90 0.003

0.25 0.70 100 0.52 0.004 3.3 8.0 × 102 9.9 × 102 0.33 0.60 0.01

0.25 0.70 150 0.32 0.01 2.5 1.8 × 103 0.09 0.02

0.25 0.90 120 0.77 0.14 3.17 1.2 × 103 0.94∗∗ 0.002∗∗

0.25 0.90 350 0.47 0.003 4.40 9.9 × 103 9.3 × 103 0.05 0.47 0.01

0.25 0.90 450 0.31 0.01 3.28 1.6 × 104 0.13 0.02

0.10 0.00 40 0.79 0.001 4.9 6.7 × 101 0.79 0.005

0.10 0.00 65 0.41 0.01 3.7 1.8 × 102 1.6 × 102 1 0.45 0.01

0.10 0.00 80 0.14 0.03 3.4 2.7 × 102 0.17 0.02

0.10 0.35 40 0.79 0.002 3.7 6.7 × 101 0.88 0.003

0.10 0.35 80 0.47 0.01 4.5 2.7 × 102 2.7 × 102 1†† 0.51 0.01

0.10†∗ 0.35 100 0.33 0.01 3.6 4.2 × 102 0.23 0.02

0.10∗ 0.70 100 0.77 0.002 3.6 4.2 × 102 0.90 0.003

0.10 0.70 200 0.52 0.004 3.8 1.7 × 103 2.0 × 103 0.46 0.59 0.01

0.10 0.70 300 0.21 0.01 3.3 3.7 × 103 0.07 0.02

0.10 0.90 400 0.70 0.001 5.2 6.7 × 103 0.89 0.003

0.10 0.90 700 0.53 0.002 4.8 2.0 × 104 2.9 × 104 0.07 0.65 0.01

0.10 0.90 900 0.57 0.01 4.3 3.4 × 104 0.42 0.02

0.025 0.00 100 0.77 0.001 . . . 1.2 × 102 0.91 0.002

0.025 0.00 140 0.55 0.01 4.45 2.3 × 102 6.4 × 102 1 0.82 0.01

0.025 0.00 160 0.51 0.01 4.10 3.1 × 102 0.76 0.01

0.025 0.35 160 0.60 0.01 3.97 3.1 × 102 0.79 0.01

0.025 0.35 200 0.45 0.01 4.78 4.8 × 102 7.2 × 102 1†† 0.67 0.01

0.025 0.35 300 0.07 0.05 3.25 1.1 × 103 0.25 0.02

0.025†∗ 0.70 300 0.65 0.002 5.08 1.1 × 103 0.73 0.01

0.025 0.70 400 0.47 0.01 3.59 1.9 × 103 2.0 × 103 0.74 0.52 0.01

0.025 0.70 500 0.26 0.01 3.23 3.0 × 103 0.26 0.02

0.025∗ 0.90 800 0.74 0.001 . . . 7.7 × 103 0.65 0.01

0.025†∗ 0.90 900 0.66 0.002 4.06 9.7 × 103 1.1 × 104 0.12 0.56 0.01

0.025 0.90 1000 0.36 0.003 3.77 1.2 × 104 0.46 0.01

Notes. Mp/Mtarg: mass of projectile normalized by mass of target; b: impact parameter; Vi: projectile impact velocity; Mlr/Mtot: mass of largest remnant

normalized by total mass; Mslr: mass of the second largest remnant; β: slope of cummulative size distribution; QR: center of mass specific energy;

Q′∗
RD : empirical critical center of mass specific energy for catastrophic disruption and gravitational dispersal derived from the simulations. In all cases,

the target contained ∼1 × 104 particles, Mtarg = 4.2 × 1015 kg, Rtarg = 104 m;
∗ indicates models shown in blue in Figure 5;
∗∗ erosive hit-and-run regime, the disruption regime model does not apply;
† indicates Nlr = 2 and Nslr = 4;
†† indicates an α for which b > 0 but l < R thus α = 1; . . . , not enough material to fit a power law;
†∗ indicates models shown in Figure 7.
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kinetic energy is deposited in the target, and the impact velocity
must increase to reach the catastrophic disruption threshold.

Using a simple geometric model, we derive the fraction of the
projectile mass that is estimated to be involved in the collision.
First, we define l as the projected length of the projectile
overlapping the target. As shown in Figure 2,

l + B = R + r, (7)

where B = (R + r) sin θ . Placing the origin at the bottom of
the projectile on the center line and the positive z-axis pointing
to the top of the page, the estimated projectile mass involved in
the collision, minteract, is determined by integrating cylinders of
height dz and radius a from 0 to l along the z-axis,

minteract = ρ

∫ l

0

πa2dz, (8)

where ρ is the bulk density of the projectile. The radius of each
cylinder can be defined in terms of the radius of the projectile
and the height from the origin,

a2 = r2 − (r − z)2. (9)

Then,

minteract = ρ(πrl2 − (π/3)l3). (10)

Dividing by the total mass of the projectile, Mp,

minteract

Mp

=
3rl2 − l3

4r3
≡ α. (11)

Thus, α is the mass fraction of the projectile estimated to be
involved in the collision (see Table 1 for the values of α in our
simulations). The entire projectile interacts with the target when
R > b(r + R) + r; then l < R and α = 1.

In order to account for the effect of impact angle on Q′∗
RD,

we include the kinetic energy of only the interacting mass. The
appropriate reduced mass is then

µα =
αMpMtarg

αMp + Mtarg

. (12)

Now consider the difference between a head-on impact by a
projectile of mass Mp at V ∗ and a head-on impact by a projectile
of mass αMp. At the same impact velocity, the impact energies
between the two cases differ by the ratio of the reduced masses,

Q′
R =

µ

µα

QR. (13)

Next, in order to conserve the effective specific impact energy,
the impact velocity must increase with increasing impact angle
such that

V̄
′∗ =

√

µ

µα

V ∗2. (14)

However, the disruption criterion itself depends on the magni-
tude of the impact velocity (Equation (3)). In other words, when
the effective projectile mass changes, the change in the impact
velocity required for disruption varies by more than the factor
presented in Equation (14). Combining these two effects leads

to the relationship between the oblique and head-on disruption
energy for a fixed mass ratio collision,

Q
′∗
RD =

(

µ

µα

Q∗
RD

)

(

V̄
′∗

V ∗

)2−3µ̄

,

=

(

µ

µα

)2−3µ̄/2

Q∗
RD. (15)

By definition, the critical impact velocity for an oblique impact
must satisfy Equation (2):

V
′∗ =

√

2Q
′∗
RDMtot

µ
. (16)

The correction for changing the mass ratio is derived in the next
section.

Our model for the effect of impact angle is used to derive
equivalent head-on Q∗

RD values from our new and previously

published catastrophic disruption data. Using the values for Q
′∗
RD

and V
′∗ fitted to the oblique simulation results, the equivalent

head-on impact disruption criteria are

Q∗
RD = Q

′∗
RD

(

µ

µα

)(3µ̄/2−2)

, (17)

V ∗ =

√

2Q∗
RDMtot

µ
. (18)

We considered the catastrophic disruption of a wide variety of
planetary bodies from the studies summarized in Table 3. First,
we fit the general expression for Q∗

RD (Equation (3)4) to the
(equivalent) head-on disruption data to derive the values of qg

and µ̄ that best describe the entire data set, from planetesimals
to planets. The same value for the material parameter µ̄ is used
in the angle correction and the fit to Equation (3). A small
number of data points were excluded from the global fit, which
are discussed in Section 6.2.1. The best-fit values for qg and µ̄
were found by minimizing the absolute value of the log of the
fractional error, δ = |log(Q∗

RD,sim/Q∗
RD,model)|.

In some cases, the impact angle correction is significant (e.g.,
the impact scenarios with small values of α given in Table 1).
With the exception of the constant-velocity results from Benz &
Asphaug (1999) and Jutzi et al. (2010) and the mixed velocity
data from Benz (2000), the disruption data were derived from
simulations conducted with a constant mass ratio and the critical
impact velocity for catastrophic disruption, V

′∗, was found by
fitting to the universal law. For the simulations described in
Table 1, the model correction for impact angle usually yields an
impact energy within a factor of two of the simulation results for
head-on collisions (e.g., within the linear regime for the mass
of the largest remnant). We restricted our fits to cases where
α > 0.5 to reduce any error contribution from a poor model
correction for highly oblique impacts.

The compiled data and best-fit model Q∗
RD are presented

in Figures 4(A) and (B). The combined data are well fit by
qg = 1.0 and µ̄ = 0.35 (δ = 0.14). Note the good match in
the values for V ∗ (colors) from the simulations with the lines of

4 In the fitting procedure, the strength term is neglected in Equation (3). For
the lines plotted in Figure 4, the strength regime parameters are fixed at φ = 7,

S = 2.4 Pa s0.3, and qs = 1 based on the work in Stewart & Leinhardt (2009).
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Figure 4. Compilation of gravity-regime catastrophic disruption simulation results. Symbols denote different target materials (Table 3), and color denotes the critical
impact velocity, V ∗. Filled and line symbols are head-on impacts; open symbols are oblique impacts. (A and B) Data corrected for impact angle to equivalent head-on
impact using the interacting mass (Equations (17) and (18)). Constant-velocity Q∗

RD curves (Equation (3)) are best fit to all the data with µ̄ = 0.35 and qg = 1.
The fit between the data and model curves is very good over almost five orders of magnitude in size and nine orders of magnitude in impact energy. Contours for
V ∗ = .005, .02, .1, .3, 1.5, and 5 km s−1 (A and C) and V ∗ = 15, 20, 30, 40, 60, and 80 km s−1 (B and D). (C and D) Data converted to an equivalent equal-mass (1:1)
disruption criterion using Equations (23) and (22). The equal-mass data fall on lines proportional to R2

C1. Fits to the equal-mass data are called “principal disruption
curves” that are defined by c∗ (black lines, Equation (28)); c∗ represents the value for the equal-mass Q∗

RD in units of the specific gravitational binding energy. Best-fit
values are c∗ = 5 and µ̄ = 0.37 for small bodies and c∗ = 1.9 and µ̄ = 0.36 for hydrodynamic planets. Inset: full Q∗

RD curves (0.1, 1, 10, 100 km s−1) showing
transition from strength to gravity regimes.

(A color version of this figure is available in the online journal.)

constant V ∗. Similarly good fits are found for 0.33 " µ̄ " 0.36
and 0.8 " qg " 1.2 with 0.14 < δ < 0.15. Amazingly,
the compilation of catastrophic disruption data is well fit by
Equation (3) for single values of qg and µ̄ for a wide variety of
target compositions and over almost five orders of magnitude in
size and nine orders of magnitude in impact energy. The critical
impact velocities span 1 m s−1 to several 10’s km s−1. The best-
fit value for µ̄ falls near pure momentum scaling (µ̄ = 1/3).

Upon closer examination, we found that the global fit with
Equation (3) systematically predicts a low disruption energy
for small bodies (RC1 < 1000 km) and a high disruption
energy for planet-sized bodies. Next, we consider separately
the data for small and large bodies. A better fit is found for
the small body data in Figure 4(A) with 0.35 " µ̄ " 0.37
and 1.4 " qg " 1.65 with 0.11 < δ < 0.12. The small
body data includes hydrodynamic to strong bodies and different
compositions. The planet data in Figure 4(B) are best fit with
0.35 " µ̄ " 0.375 and 0.85 " qg " 1.0 with the very small
error of 0.038 < δ < 0.041. The planet size data includes three
different target compositions. The data for collisions between
small strong bodies have the largest dispersion; these data will
be discussed in Section 6.2.1.

3.1.3. Dependence of Disruption on Mass Ratio

By fitting such a large collection of data, it is clear that
Equation (3) describes a self-consistent family of possible Q∗

RD

values. For a specific impact scenario, the correct value for

V ∗ at each RC1 is ambiguous because V ∗ depends on both
a material property and the mass ratio. In studies that hold Vi

constant and vary the mass ratio, the derived value for the critical
impact energy only applies for the corresponding critical mass
ratio. As noted in previous work, the critical impact velocity
falls dramatically as the mass ratio approaches 1:1 (Benz 2000;
Stewart & Leinhardt 2009). As a result, collisions between
equal-mass bodies require the smallest impact velocity to reach
the catastrophic disruption threshold.

Because a mass ratio of 1:1 defines the lowest disruption en-
ergy for a fixed total mass, we derive the disruption criterion
for different mass ratios with respect to the equal-mass disrup-
tion criterion, Q∗

RD,γ=1. We begin with the equality between

the impact energy and gravity term in the disruption energy
(Equation (3)),

QR = Q∗
RD,

µV ∗2

2Mtot

= qg (ρ1G)3µ̄/2 R
3µ̄

C1V
∗(2−3µ̄). (19)

Note that

µ = MpMtarg/(Mp + Mtarg),

=
γ

γ + 1
Mtarg, (20)

and
Mtot = (γ + 1)Mtarg. (21)
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Then, substituting for µ and Mtot,

(γ /(γ + 1))MtargV
∗2

2(γ + 1)Mtarg

= qg (ρ1G)3µ̄/2 R
3µ̄

C1V
∗(2−3µ̄),

V ∗ =

[

2(γ + 1)2

γ
qg (ρ1G)3µ̄/2 R

3µ̄

C1

]1/(3µ̄)

,

=

[

1

4

(γ + 1)2

γ

]1/(3µ̄)

V ∗
γ=1. (22)

Then, for the same total mass, the relationship between the
equal-mass disruption energy and any other mass ratio is
determined by the difference in the critical impact velocities,

Q∗
RD = Q∗

RD,γ=1

(

V ∗

V ∗
γ=1

)(2−3µ̄)

,

= Q∗
RD,γ=1

(

1

4

(γ + 1)2

γ

)2/(3µ̄)−1

. (23)

The equations for Q∗
RD,γ=1 and V ∗

γ=1 are given in the next
section.

In the compilation of catastrophic disruption data shown in
Figures 4(C) and (D), all the γ < 1 data have been converted
to an equivalent equal-mass impact disruption energy and the
colors denote V ∗

γ=1. For example, the critical disruption energy

from head-on PKDGRAV simulations with γ = 0.03 are a
factor of three above the disruption energy for γ = 1 in
Figure 4(A) (parallel sets of + from Stewart & Leinhardt
2009). The data lie on the same line after the correction in
Figure 4(C). The correction also brings together data from
studies using different numerical methods and vastly different
material properties. For example, the high-velocity Q∗

RD for
strong and weak basalt targets (#,$,⊗,%) fall on the same
line as the PKDGRAV rubble piles after the conversion to
an equivalent equal-mass impact. Similarly, studies of the
disruption of Mercury (Benz et al. 2007) follow the same curve
as disruption of Earth-mass water/rock planets (Marcus et al.
2010b). The general form for the equal-mass disruption criteria
is derived in the next section.

3.1.4. The Principal Disruption Curve

In the previous two sections, we calculated the disruption
criterion for head-on equal-mass collisions by adjusting the
critical disruption energy to account for different impact angles
and mass ratios. The head-on equal-mass data points, derived
from the compilation of numerical simulations, fall along a
single curve that we name the “principal disruption curve”
(black lines in Figures 4(C) and (D)).

On the principal disruption curve, the critical impact ve-
locity for equal-mass head-on impacts, V ∗

γ=1, satisfies both

Equation (1) and the gravity regime term in Equation (3):

QR,γ=1 = Q∗
RD,γ=1

µγ=1V
∗2
γ=1

2Mtot

= qg (ρ1G)3µ̄/2 R
3µ̄

C1V
∗(2−3µ̄)
γ=1 . (24)

Then, substituting µγ=1 = Mtarg/2 = Mtot/4,

V ∗
γ=1 =

[

8qg (ρ1G)3µ̄/2 R
3µ̄

C1

]1/(3µ̄)
,

= (8qg)1/(3µ̄) (ρ1G)1/2 RC1. (25)

Thus, along a curve with a fixed projectile-to-target mass ratio,
the critical impact velocity has a linear dependence on RC1.
The linear dependence of V ∗ on RC1 for a fixed mass ratio was
confirmed by the numerical simulations in Stewart & Leinhardt
(2009) ( + in Figure 4).

Then, consider the dependence of the catastrophic disruption
criteria on size (Equation (3)) and replace the velocity term with
size,

Q∗
RD,γ=1 ∝ R

3µ̄

C1V
∗(2−3µ̄),

∝ R
3µ̄

C1R
(2−3µ̄)
C1 ,

∝ R2
C1. (26)

Thus, the catastrophic disruption criterion scales as radius
squared along any curve with a fixed projectile-to-target mass
ratio.

Next, note the proximity of the gravity-regime equal-mass
disruption energy to the specific gravitational binding energy,

U =
3GMtot

5RC1

, (27)

shown as the gray line in Figure 4. We define a dimensionless
material parameter, c∗, that represents the offset between the
gravitational binding energy and the equal-mass disruption
criterion. Then, the principal disruption curve is given by

Q∗
RD,γ=1 = c∗ 4

5
πρ1GR2

C1. (28)

The parameter c∗ is a measure of the dissipation of energy within
the target.

The coefficient qg is found by substituting Equation (2) for
Q∗

RD,γ=1 into Equation (28) and then Equation (25) for V ∗
γ=1:

µγ=1V
∗2
γ=1

2Mtot

= c∗ 4

5
πρ1GR2

C1,

(1/8)(8qg)2/(3µ̄) = c∗ 4

5
π,

qg =
1

8

(

32πc∗

5

)3µ̄/2

. (29)

Finally, substituting qg into Equation (25) gives

V ∗
γ=1 =

(

32πc∗

5

)1/2

(ρ1G)1/2RC1. (30)

Hence, the critical velocity along the disruption curve for equal-
mass impacts is solely a function of RC1 and c∗.

The principal disruption curve (Equation (28)) is a simple,
yet powerful way to compare the impact energies required to
disrupt targets composed of different materials. Each material
is defined by a single parameter c∗. In Figures 4(C) and (D),
the best-fit values are c∗ = 5 ± 2 and µ̄ = 0.37 ± 0.01 for
small bodies with a wide variety of material characteristics and
c∗ = 1.9 ± 0.3 and µ̄ = 0.36 ± 0.01 for the hydrodynamic
planet-size bodies. These simulations span pure hydrodynamic
targets (no strength), rubble piles, ice, and strong rock targets.
Hence, for all the types of bodies encountered during planet
formation, c∗ is limited to a small range of values. Note that
the difference in c∗ between the small and large bodies is not
simply because of the differentiated structure of the large bodies;
two pure rock cases (&, Marcus et al. 2009) fall on the same
Q∗

RD,γ=1 curve. Rather, the large bodies were all studied using

9
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Figure 5. Cumulative size distribution vs. fragment diameter. For each mass ratio γ and impact parameter b, size distributions are shown for three different impact
energies. Table 1 provides the details for these simulations. The colors are an aid for the eye: magenta is the lowest energy impact in each block of three in Table 1,
black is the highest energy, and cyan is in between. In five panels, the fragment size distribution scaling law (blue line and triangles) is compared to the data. The
impact parameters used for the model comparison are indicated in Table 1 by an asterisk “*” in the first column.

(A color version of this figure is available in the online journal.)

a pure hydrodynamic model, whereas the small bodies were
studied using techniques that incorporated material strength in
various ways. A transition from a higher value for c∗ for small
bodies to a lower value for planet-sized bodies is appropriate
for planet formation studies, as discussed in Section 6.

Now it is clear that most of the differences in the catastrophic
disruption threshold found in previous work are the result of
differences in impact velocity and mass ratio (few studies varied
impact parameter).

Here, we have derived a general formulation for the catas-
trophic disruption criteria that accounts for material properties,
impact velocity, mass ratio, and impact angle. The forward cal-
culation of Q′∗

RD for a specific impact scenario between bodies
with material parameters c∗ and µ̄ is described in the Appendix
and in the companion paper (Stewart & Leinhardt 2011).

3.2. Fragment Size Distribution

In the disruption regime, our new simulations resolve the size
distribution of fragments over a decade in size (Figure 5). In

general, the post-collision fragments smaller than the largest
remnant form a smooth tail that can be fit well by a single
power law. The second-largest remnant forms the base of this
tail. For most collisions there is a significant separation in size
between the largest and second largest remnants. However,
if the collision is very energetic, the largest remnant joins
the power-law distribution (e.g., in γ = 1, b = 0.35). In
addition, for the hit-and-run impacts with γ = 1, the two
largest remnants are comparable in size. Only the most energetic
scenarios with γ = 1 fall in the disruption regime (e.g.,
black lines in b = 0.35 and 0.7). In all disruption regime
collisions, the slope of the cumulative power-law tail, −β (see
Table 1), is effectively independent of the impact conditions
(b, Vi, γ ).

Using the method from Wyatt & Dent (2002) and S. J.
Paardekooper et al. (2011, in preparation), the mass of the
second largest remnant, Mslr, is fully constrained by knowledge
of the mass/size of the largest remnant and the power-law slope
for the size distribution of the smaller fragments. Let us consider
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a differential size distribution

n(D)dD = CD−(β+1)dD, (31)

where n(D) is the number of objects with a radius between
D and D + dD, −(β + 1) is the slope of the differential size
distribution, and C is the proportionality constant. Integrating
Equation (31), the number of bodies between Dlr and Dslr is

N (Dlr,Dslr) = −
C

β

(

D
−β

slr − D
−β

lr

)

. (32)

Therefore, the number of objects larger than the second largest
remnant (Dslr) is Nslr = N (Dslr,∞). Assuming that β > 0,

Dslr =

[

Nslr

C
β

]
−1
β

. (33)

For spherical bodies with bulk density ρ, the mass of material
between Dlr and Dslr is

M(Dlr,Dslr) =
4

3
πρC

D
3−β

slr − D
3−β

lr

3 − β
. (34)

In order to enforce a negative slope of the remnants, β must be
less than 3. Mass is conserved in the impact; thus, the mass in
the remnant tail must equal the total mass minus the mass in
the largest remnant(s), M(0,Dslr) = Mtot − NlrMlr, where Nlr

is the number of objects with mass equal to the largest remnant
(here, we allow for multiple largest remnants). Substituting for
Dslr from Equation (33), C is given by

C

Nslrβ
=

[

(3 − β)(Mtot − NlrMlr)

(4/3)πρNslrβ

]
β

3

. (35)

Substituting this expression for C into Equation (33) and
assuming that all of the objects are spherical, the size and mass
of the second largest remnant are expressed in terms of the total
mass by

Dslr

Dtot

=

[

(3 − β)
(

1 − Nlr
Mlr

M

)

Nslrβ

]
1
3

, (36)

where Dtot = 2((3Mtot)/(4πρ))1/3. In the simulations presented
here, the calculated diameter of the fragments is not informative
because most PKDGRAV particles merge with other particles
in gravitationally bound clumps; in these cases, the bulk density
is assumed for the size of the merged particle. The mass of the
remnants is accurate, however. Rewriting Equation (36) in terms
of mass,

Mslr

Mtot

=
(3 − β)

(

1 − Nlr
Mlr

Mtot

)

Nslrβ
, (37)

where Mlr is given by the universal law and the catastrophic
disruption criteria Q′∗

RD (Equation (5)).
In the last column of Table 1, the predicted mass of the second

largest remnant (Equation (37)) is compared to the numerical
simulations using the empirically fit Q′∗

RD, β = 2.85, Nlr = 1,
and Nslr = 2. Since the analytic method presented here assumes
an infinite size distribution in the fragment tail, we selected
the value of β to optimize the fit to the value of Mslr in the
simulations. This simple method of predicting Mslr works well

for all impact conditions.5 To illustrate the model, the predicted
size distribution (blue line and triangles) is compared to selected
numerical simulation results in Figure 5. In order to predict the
size distribution of fragments in the hit-and-run regime impacts
between comparable mass bodies (γ = 1 and b > 0), the model
needs to be modified slightly. In this special case, we suggest
adopting Nlr = 2 and Nslr = 4 because the target and projectile
each have a nearly identical size distribution of fragments. In this
example, the model is calculated for the same impact conditions
as the cyan data set with γ = 1, b = 0.7, and Vi = 80 m s−1

(see Section 4.2 for more detailed discussion of the hit-and-run
regime).

The fragment size distributions calculated using our subsonic
N-body simulations are consistent with shock code calculations
investigating asteroid family formation via catastrophic impact
events (Nesvorný et al. 2006; Jutzi et al. 2010). All of the as-
teroid family-forming simulations used a hybridized numerical
technique, combining an SPH code with PKDGRAV in order
to model the propagation of the initial shock wave and the sub-
sequent gravitational reaccumulation of the collision remnants.
The asteroid family-forming collisions have significantly dif-
ferent impact parameters compared to our simulations: Vi was
orders of magnitude larger, γ was an order of magnitude smaller
than our smallest γ , and targets were larger (tens of km in di-
ameter). These differences notwithstanding, we find that the
range in the values of β for the tail of the size distribution is
very similar to our N-body results (note that some published
values for β include the largest remnant in the fit, whereas we
do not). Qualitatively, we also find a general trend in curvature
of the size distribution consistent with Durda et al. (2007), with
slightly convex size distributions for super-catastrophic impact
events (Section 4.1).

3.3. Fragment Velocity Distribution

Next, we consider the velocity of the collision remnants. The
results are easier to interpret by separating the velocities of the
largest remnant from the rest of the collision remnants.

We first consider the speed of the largest remnant with
respect to the center of mass of the collision (Figure 6). For
erosive events (Mlr < Mtarg), there is almost no change in the
amplitude of the target velocity for impacts with b = 0.9. Even
at b = 0.7, the velocity reduction is minimal for all fractions
of mass lost. Because b = 0.7 is the center of the probability
distribution of impact angles, fully half of all erosive impacts
have <10% change in the target velocity amplitude. After head-
on collisions (b = 0), the largest remnant moves with the center
of mass velocity. Note there is significant scatter in the data
from γ = 0.025, which is due to the fact that there was a small
number of particles delivering the impact energy to a localized
region of the target; thus, the organization of the surface features
on both objects becomes important. For disruptive impacts at
b = 0.35, there is partial velocity reduction of the largest
remnant. From these data, we cannot define a unique function for
the dependence of Vlr on b, and we suggest that a quasi-linear

5 Because the analytic model for the fragment size distribution assumes an
infinite range of sizes in the tail, β is constrained to be less than 3, which is
slightly smaller than the slope of power laws that are best fit to the data
(Table 1). The fragment size distribution may be modeled under different
assumptions, e.g., choosing a minimum diameter in the integral of
Equation (31), which would represent the smallest constituent particles or
grain size. We have chosen not to impose any assumptions about material
properties in the model presented here, but there may be situations where more
is known about the colliding bodies and the model for determining Mslr and β
may be modified.
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Figure 6. Velocity of largest remnant with respect to the initial center of mass
target velocity vs. the mass of largest remnant normalized by the mass of the
target. Impact angle is indicated by color; mass ratio is indicated by symbol.

(A color version of this figure is available in the online journal.)

relationship for 0 < b < 0.7 is a reasonable approximation.
We stress that the specific dependence of Vlr on b in the
disruptive regime is likely to be sensitive to internal structure
and composition, so extrapolation of these results beyond weak,
constant density objects should be done with caution.

In complete merging events, of course, the post-impact
velocity is zero with respect to the center of mass. The b = 0.35
data with Mlr > Mtarg steadily approach the center of mass
velocity with more mass accreted. The b = 0.7 and 0.9 data
points plotted near Mlr/Mtarg = 1 are primarily hit-and-run
events, which will be discussed in Section 4.2.

The smaller remnants of disruptive collisions have a more
complex behavior. Figure 7 presents mass histograms of frag-
ments versus velocity with respect to the largest remnant from
the simulations summarized in Table 1. The slowest simulations
are not plotted for the γ = 0.25 and 1.0 grazing impacts be-
cause there are only a small number of fragments. A significant
number of the fragments consist of 10 PKDGRAV particles or
less; in Figure 7, mass associated 10 or less particles is shown as
dotted histograms. The dotted histograms overlay the total mass
histograms for all but the lowest velocity bins; thus, within most
of the velocity bins, the simulations do not have the resolution
to robustly constrain the size–frequency distribution of the mass
in the bin. The smallest (poorly resolved) fragments are found
in all velocity bins, while the largest fragments tend to move
slowly with respect to the largest remnant. For example, the

Figure 7. Fragment mass–velocity histograms for simulations in Figure 5 and Table 1. The fragment velocities are relative to the largest remnant in units of the escape
velocity from the combined mass of the target and projectile, Vesc = (2GMtot/RC1)1/2. The color coding is the same as in Figure 5. The scaling law predictions are
shown in blue.

(A color version of this figure is available in the online journal.)
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second largest remnant falls in one of the lowest velocity bins,
but that bin is also occupied by smaller fragments.

Hence, to describe the velocity field after a collision, we fit
the velocity-binned mass of the collision remnants. The binned
mass versus velocity is a fairly well-defined exponential function
for most of the simulations. In general, the lowest velocity bin
in Figure 7 is of order 0.1Mtot. Using a least-squares fit of the
subset of simulations in Table 1, we find the mass fraction in the
lowest velocity bin is proportional to the largest remnant mass:

A = −0.3Mlr/Mtot + 0.3. (38)

To determine the slope, S, of the binned mass versus velocity
exponential function, we integrate the differential mass function,

log

(

∆v
dm

dv

)

= (A − Sv), (39)

∆v
dm

dv
= 10A−Sv, (40)

dm

dv
=

10A−Sv

∆v
(41)

Mrem

Mtot

=

∫ ∞

0

10A−Sv

∆v
dv, (42)

S =
10A

ln(10) ∆v (Mrem/Mtot)
, (43)

where m = M/Mtot, v = V/Vesc, ∆v is the bin width, and the
total mass in the histogram is the total mass in the remaining
remnants, Mrem = Mtot − Mlr.

The fragment velocity scaling law (Equation (39)) is shown in
blue in Figure 7 for selected cases indicated by †∗ in Table 1. The
velocity distributions of the remnants agree qualitatively with
those found in hypervelocity simulations of asteroid family-
forming events, although previous workers have not fit any
function to the velocity distribution of the fragments (e.g.,
Michel et al. 2002; Nesvorný et al. 2006).

4. OTHER COLLISION REGIMES

4.1. Super-catastrophic Regime

In both laboratory experiments in the strength regime (e.g.,
Kato et al. 1995; Matsui et al. 1982) and the few high-resolution
disruption simulations in the gravity regime (e.g., Korycansky
& Asphaug 2009), the relationship between the mass of the
largest remnant and the specific impact energy QR shows a
marked change in slope at around Mlr/Mtot ∼ 0.1. We define
the super-catastrophic regime when Mlr/Mtot < 0.1 (e.g., when
QR/Q′∗

RD > 1.8 by the universal law, Equation (5)). In the super-
catastrophic regime, the mass of the largest remnant follows a
power law with QR rather than the linear universal law.

The slope of the power law for the largest remnant mass versus
impact energy shows some scatter in laboratory data, primarily
in the range of −1.2 to −1.5. In Figure 8, our few simulations
of super-catastrophic collisions (symbols) are compared to the
range of outcomes from laboratory experiments (dotted and
dashed lines). Based on the simulations in the gravity regime and

Figure 8. Mass of the largest remnant in the catastrophic and super-
catastrophic disruption regimes. The solid line shows the combined universal law
(Equation (5)) and recommended power-law relation for Mlr/Mtot < 0.1
(Equation (44)). The symbols are new gravity regime simulations and the dot-
ted and dashed lines represent the range of super-catastrophic disruption data
in laboratory experiments in the strength regime. The shape and color of the
symbols are the same as in Figure 3.

(A color version of this figure is available in the online journal.)

laboratory experiments in the strength regime, we recommend
a power law in the super-catastrophic regime,

Mlr/Mtot =
0.1

1.8η
(QR/Q

′∗
RD)η, (44)

where η ∼ −1.5 and the coefficient is chosen for continuity with
the universal law (Equation (5)). The slope of the power law,
about −1.5, is consistent with our gravity regime simulations
and a wide range of laboratory experiments summarized in
Figure 1 in Holsapple et al. (2002).

In Figure 8, the solid line is the combined universal law and
the recommended super-catastrophic power law (Equations (5)
and (44)). The dotted line is our fit to disruption data on solid ice
from Kato et al. (1992), Mlr/Mtot = 0.125(QR/Q′∗

RD)−1.45. The
dashed line is our fit to disruption data on basalt from Fujiwara
et al. (1977), Mlr/Mtot = 0.457(QR/Q′∗

RD)−1.24. Note that lab
data are available up to very high values of QR/Q′∗

RD ∼ 100. The
lab data spanning very weak to very strong geologic materials
can be considered lower and upper bounds for the parameters in
Equation (44).

The general agreement between the gravity and strength
regimes suggests that gravitational reaccumulation of fragments
has a negligible effect in the super-catastrophic regime. In other
words, the mass of the largest fragment is primarily controlled
by the shattering process.

Based on the similarity of the size distribution of fragments
in laboratory experiments to the gravity regime data presented
here (Figure 5), we suggest that the dynamical properties
of the smaller fragments in super-catastrophic collisions are
similar to the disruption regime. Therefore, the size and velocity
distributions described in Sections 3.2 and 3.3 can be applied.
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Figure 9. Accretion efficiency (Equation (45)) vs. velocity at infinity normalized by mutual escape velocity for different projectile-to-target mass ratios and impact

parameters. Note that the impact velocity Vi =
√

V 2
inf + V 2

esc. Results from this work are connected by solid lines; previous results for supersonic impacts between
protoplanets are connected by dashed lines (Agnor & Asphaug 2004a, 2004b) and symbols are an aid to differentiate simulation groups. Magenta lines are for b = 0.5.

(A color version of this figure is available in the online journal.)

4.2. Hit-and-run Regime

Non-grazing impacts in the gravity regime transition from
perfect merging to the disruption regime with increasing im-
pact velocity. However, for impact angles greater than a critical
value, an intermediate outcome may occur: hit-and-run (Agnor
& Asphaug 2004a; Asphaug et al. 2006; Marcus et al. 2009,
2010b; Asphaug 2010; Leinhardt et al. 2010). In a hit-and-run
collision, the projectile hits the target at an oblique angle but
separates again, leaving the target almost intact. Some mate-
rial from the topmost layers of the two bodies may be trans-
ferred or dispersed. Depending on the exact impact conditions,
the projectile may escape largely intact or may sustain sig-
nificant damage and deformation (e.g., Figure 7 in Asphaug
2010).

The hit-and-run regime is clearly identified by considering the
accretion efficiency of a collision, defined by Asphaug (2009)
as

ξ =
Mlr − Mtarg

Mp

. (45)

In a perfect hit-and-run event (Mlr = Mtarg), ξ = 0. For a
perfect accretion event (Mlr = Mtarg + Mp), ξ = 1. An erosive
event in which Mlr < Mtarg leads to ξ < 0. Note that the
negative value of ξ that corresponds to catastrophic disruption

(Mlr = 0.5Mtot) depends on the specific mass ratio of the two
bodies (ξ ∗ = 0.5–0.5/γ ).

There is remarkably good agreement in the accretion effi-
ciency and transitions from merging to hit-and-run and from hit-
and-run to disruption between this work and previous simula-
tions of higher velocity impacts between large planetary bodies
(Agnor & Asphaug 2004a, 2004b; Marcus et al. 2009, 2010b).
Figure 9 shows the accretion efficiency from our simulations
in solid colored lines for four different projectile-to-target mass
ratios and impact parameters. Data for collisions between proto-
planets at supersonic velocities from Agnor & Asphaug (2004a,
2004b) (and plotted in Asphaug 2009) are shown in dashed lines
for the common mass ratios (1:1 and 1:10). Hit-and-run colli-
sions are indicated by a sudden drop from merging outcomes
(ξ = 1) to a nearly constant value of ξ ∼ 0 for a range of
impact velocities. Note that the drop in ξ is sharpest for equal-
mass bodies. For smaller mass ratios, the transition is not as
sharp, and partial accretion of the projectile occurs at energies
just above perfect merging (ξ just above 0).

Outcomes that are defined by the disruption regime have steep
negative sloped accretion efficiencies. The disruption regime
equations apply for partial accretion (0 < ξ < 1) and for erosion
of the target (ξ < 0). Note that for high impact parameters
(e.g., b = 0.7), there exists an intermediate regime where the
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accretion efficiency has a very shallow negative slope and values
of ξ just below 0. These impact events, termed erosive hit-
and-run, lead to some erosion of the target and more severe
deformation of the projectile. The erosive hit-and-run regime
is eventually followed by a disruptive style erosive regime
at sufficiently high impact velocities. The post-hit-and-run
disruptive regime may be identified by finding the impact energy
that leads to a linear relationship that satisfies the universal
law. The required impact velocity increases substantially with
increasing impact parameter; see Section 5 and Marcus et al.
(2010b) for an example disruption regime after a hit-and run
regime (γ = 0.5 and b = 0.5).

In an ideal hit-and-run event, the target is almost unaffected by
the collision, and the velocity of the largest remnant (the target)
is about equal to the initial speed of the target with respect to the
center of mass. More commonly, there is a small velocity change
in both bodies which increases the probability of merging
in subsequent encounters (Kokubo & Genda 2010). Agnor &
Asphaug (2004a) referred to this collision outcome as inelastic
bouncing. In our hit-and-run simulations with b = 0.9 (green
cluster of points in Figure 6 at Mlr = Mtarg), the targets typically
lose about 10% of their pre-impact velocity. For b = 0.7 (red
points), there is more significant slowing of the target. Our
data does not provide a robust description of the dependence
of the post-impact velocity on the impact parameter and impact
velocity.

The projectile may be significantly deformed and disrupted
during a hit-and-run event. The level of disruption of the
projectile may be approximated by considering the reverse
impact scenario: a fraction of the larger body impacts the
smaller body. In this case, we estimate the interacting mass
from the larger body with a simple geometric approximation.
For the example geometry given in Figure 2, the cross-sectional
area of the circular projectile interacting with the target is
calculated. The apothem is given by l − r, and the central angle
is φ = 2 cos−1((l − r)/r). Then, the projectile collision cross
section is

Ainteract = r2(π − (φ − sin φ)/2). (46)

The interacting length through the target is approximated by the
chord at l/2,

Linteract = 2
√

R2 − (R − l/2)2. (47)

And the interacting mass from the target is of order

Minteract = AinteractLinteract. (48)

Note that the interacting mass depends on the impact angle
(through l).

To estimate the disruption of the projectile, we consider
an idealized hit-and-run scenario between gravity-dominated
bodies: the fraction of the target that does not intersect the
projectile is sheared off with negligible change in momentum
and gravitationally escapes the interacting mass. Hence, we
ignore the escaping target mass and consider only the impact
between Minteract and the projectile mass, Mp.

The reverse impact is thus defined by M
†
p = Minteract and

M
†
targ = Mp, and the † denotes the reverse impact variables.

For each impact angle, calculate R
†

C1 for M
†
tot = M

†
p + M

†
targ,

Q
†∗
RD,γ=1 from the principal disruption curve (Equation (28)),

and V
†∗
γ=1 from Equation (30). The reverse variables are

µ† = M†
pM

†
targ

/(

M†
p + M

†
targ

)

, (49)

γ † = M†
p

/

M
†
targ. (50)

The mass ratio correction from the principal disruption curve is

V †∗ =

[

1

4

(γ † + 1)2

γ †

]1/(3µ̄)

V
†∗
γ=1, (51)

Q
†∗
RD = Q

†∗
RD,γ=1

(

1

4

(γ † + 1)2

γ †

)2/(3µ̄)−1

. (52)

Once the reverse impact disruption criteria is calculated, we use
the universal law for the mass of the largest remnant to determine
the collision regime for the projectile. If the projectile disrupts,
then the size distribution of the projectile fragments may be
estimated to first order from the disruption regime scaling laws.

5. TRANSITIONS BETWEEN COLLISION REGIMES

5.1. Empirical Transitions between Accretion,
Erosion, and Hit-and-run

We have classified the collision outcome regime for all of our
new simulations. The outcome is sensitive to the mass ratio of
the two bodies, the impact parameter, and the impact velocity.
Four regimes are mapped in Figure 10.

1. Accretion of some or all of the projectile onto the target
(Mlr > Mtarg and ξ > 1, light blue squares).

2. Partial erosion of the target (Mlr < Mtarg and ξ < 1, dark
blue squares).

3. Pure hit-and-run (Mlr = Mtarg and ξ = 0, green triangles).
4. Erosive hit-and-run (Mlr slightly less than Mtarg and ξ

slightly less than 0, red triangles).

Note that the 1:40 mass ratio simulations reach impact velocities
that exceed the physics included in PKDGRAV; impact veloc-
ities greater than about 1 km s−1 should use a shock physics
code. Hence, the transition to the erosive regime at high impact
parameters could not be derived directly.

For impacts at small impact parameters (more head-on),
the collision outcomes transition from accretion to erosion
with increasing impact velocity. For more oblique impacts,
the collision outcomes transition from merging to hit-and-run
to erosion with increasing impact velocity. As suggested by
Asphaug (2010), bcrit (red vertical line in Figure 10) is indeed
a good indicator of the minimum impact parameter necessary
to enter the hit-and-run regime. However, for γ = 1, we find a
small region of erosive hit-and-run events when b < bcrit. The
use of bcrit to define grazing and non-grazing impacts makes
the very simplifying assumption that the velocity vector of the
center of mass of the projectile remains constant during the
event. In reality, the projectile center of mass will be deflected
to some extent during the encounter, and the true interactive
mass will be larger than assumed here. The deflection is greatest
for more equal-mass bodies, and a narrow region of erosive hit-
and-run events is observed for b = 0.35 and γ = 1. Note
that the transition between erosion and hit-and-run occurs near
bcrit for all size bodies studied to date, from 1 km rubble-pile
planetesimals (Leinhardt et al. 2000) to super-Earths (Marcus
et al. 2009).

For grazing collisions, the hit-and-run regime is bounded
by perfect merging at low impact velocities and the onset of
disruption at high velocities. The projectile merges with the
target when the impact velocity is less than the mutual escape
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Figure 10. Map of the major collision regimes as a function of mass ratio, impact parameter, and impact velocity normalized by the escape velocity from the combined
mass with radius RC1. Cyan squares—a full or partial accretion event, Mlr > Mtarg; blue squares—target is eroded, Mlr < Mtarg; green triangles—ideal hit-and-run
event, Mlr = Mtarg; red triangles—erosive hit-and-run event, Mlr slightly less than Mtarg. Red vertical line corresponds to bcrit for the given mass ratio (Equation (6)).
Black curve is onset of erosion predicted from the catastrophic disruption model (Section 3.1) with c∗ = 4.3 and µ̄ = 0.35; dashed black curve is predicted transition
from perfect merging to hit-and-run (Equation (53)).

(A color version of this figure is available in the online journal.)

velocity (in other words, the velocity at infinity Vinf is zero).
Since only a fraction of the projectile may interact in oblique
impacts, the appropriate mutual escape velocity for perfect
merging is slightly less than the mutual escape velocity from
the total mass. Then the appropriate measure for merging is

V ′
esc =

√

(2GM ′/R′), (53)

where M ′ = Mtarg + minteract and R′ = ((3M ′)/(4πρ))1/3,
assuming that the projectile and target have the same bulk
density ρ. The boundary between merging and hit-and-run is
well matched by Equation (53) in Figure 10 (dashed black line).

Of course, the concept of an interacting mass is a simplistic
limit because it assumes that the part of the projectile that
impacts the target can separate from the rest of the projectile
without loss of momentum. In Figure 10, the only set of
simulations that did not show a sharp transition from merging
to hit-and-run is γ = 0.1 and b = 0.7. In this case, the impact
parameter is very close to bcrit = 0.66, and the outcomes include
partial accretion of the projectile, erosive hit-and-run, and fully
erosive collisions with increasing impact velocity.

Loss of momentum by the projectile in grazing collisions
does lead to merging when Vinf > 0; in Figure 9, note the nearly

complete merging in the γ = 1 simulations for small values of
Vinf with b = 0.5 and 0.9 (data from Agnor & Asphaug 2004a).
For Vinf slightly above zero, merging occurs in graze-and-merge
events (e.g., Leinhardt et al. 2010). In such cases, the two bodies
hit, separate as nearly intact bodies with decreased velocity,
and then merge upon a second collision. The impact velocity
range for graze-and-merge outcomes is quite narrow; previous
studies have demonstrated the small velocity increase needed
to transition from perfect merging to graze-and-merge to hit-
and-run (e.g., Canup 2004; Leinhardt et al. 2010). Concurrent
with this work, the graze-and-merge regime has been explored
in more detail using hydrodynamic SPH simulations by Genda
et al. (2011b).

Grazing collisions transition out of hit-and-run to erosion
of the target when the impact velocities reach the disruption
regime. The transition to the disruption regime is a strong func-
tion of the impact parameter because of the rapidly shrinking
projectile interaction mass and the dependence of the disruption
criteria on the mass ratio and impact velocity.

Our general model for the catastrophic disruption criterion
combined with the universal law for the mass of the largest
remnant is used to derive the impact velocity needed to begin
eroding the target mass (Mlr = Mtarg, black line in Figure 10).
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Figure 11. Predicted collision outcome maps using the analytic model for strengthless planets (c∗ = 1.9 and µ̄ = 0.36) for selected projectile-to-target mass ratios.
Impact velocity is normalized by the mutual surface escape velocity assuming a bulk density of 3000 kg m−3; impact parameter is spaced according to equal probability.
Colored regions denote perfect merging (dark blue), partial accretion (light blue), net erosion to the target (white), and hit-and-run (green). The vertical red line denotes
the onset of hit-and-run events at bcrit. Thick black curve—critical disruption velocity for half the total mass remaining; gray dashed curves—10% and 90% of target
mass in largest remnant; dotted curve—50% of projectile accreted; dot-dashed blue curve—catastrophic disruption of the projectile; dashed blue curve—erosion of
the projectile. Example proposed giant impact events: (•) Haumea system (Leinhardt et al. 2010); (!) Pluto-Charon (Canup 2005); (") Mercury (Benz et al. 2007);
(#) Earth–Moon (Canup 2004).

(A color version of this figure is available in the online journal.)

Our new simulation data are best fit with a value of c∗ = 4.3
and µ̄ = 0.35. Our model for the disruption regime provides
an excellent estimate for the transition to erosion of the target
for the wide range of impact parameters considered here. In
particular, the analytic model captures the sharp increase in the
upper bound to the hit-and-run regime between b = 0.7 (45◦)
and 0.9 (64◦).

5.2. Predicted Transitions between Accretion,
Erosion, and Hit-and-run

Using our analytic model, we derive example collision
outcome maps for collisions between protoplanets. We fit values
of µ̄ = 0.36 and c∗ = 1.9 to the data from collisions between
planet-sized bodies using SPH codes (Figure 4(B)). Collision
maps, which are color-coded for outcome regime, are shown in
Figure 11 for four mass ratios.

The details of the forward calculation of the collision regimes
are given in the Appendix.6 In Figure 11, the impact parameter
axis is scaled by the probability of an impact at that angle. The
probability of an impact within an interval (θ, θ +dθ ) is propor-
tional to sin(θ ) cos(θ )dθ Shoemaker (1962). The corresponding

6 A code to generate collision outcome maps and to calculate specific impact
scenarios is available from the authors.

impact angle is shown on the top axis with 5◦ tick intervals. The
model assumes an abrupt transition between grazing and non-
grazing impacts, which is certainly artificial. Near the critical
impact parameter, collision outcomes will have elements from
both the disruption and hit-and-run regimes.

Contours of impact velocities that correspond to a constant
mass of the largest remnant are calculated using the general
model for catastrophic disruption and the universal law or power
law for the mass of the largest remnant (Equations (5) or (44)).
In Figure 11, the thick black curve corresponds to the critical
velocity for catastrophic disruption, where the largest remnant
contains half the total mass. Note that this curve corresponds to
the target erosion boundary for 1:1 scenarios (the transition
from partial accretion (light blue) or hit-and-run (green) to
erosion (white) regions). The gray dashed curves correspond
to the impact velocity needed to disperse 10% and 90% of the
target mass.

Between perfect merging and erosion of the target, there is
a region of partial accretion of the projectile. For non-grazing
impacts, the dotted curve corresponds to accretion of 50% of
the projectile mass. Grazing impacts transition rapidly between
perfect merging and hit-and-run with increasing impact velocity.

Most hit-and-run collisions with Mp " 0.1Mtarg result in
significant disruption of the projectile. In the collision outcome
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maps, the onset of projectile erosion in a hit-and-run event is
given by

V
†

i,lr=M
†
targ

=

√

2Q
R,lr=M

†
targ

M
†
tot

/

µ†. (54)

Note that for impact parameters near bcrit, M
†
p ∼ M

†
targ for

projectile-to-target mass ratios less than about 0.1. Thus the
velocity contours of constant remnant mass intersect for catas-

trophic disruption (M
†

lr = 0.5M
†
tot) and onset of projectile ero-

sion (M
†

lr = M
†
targ). Furthermore, there is a minima in the projec-

tile erosion curve at an optimal fraction of total interacting mass
from the target (in other words, the reverse projectile-to-target
mass ratio is varying with impact parameter). The two velocity

contours diverge at higher impact parameter as M
†
p becomes

much less than M
†
targ.

Collision maps for planetesimals are presented in
Section 6.2.1, and the implications of the diversity of collision
outcomes for planet formation are discussed in Section 6.3.

6. DISCUSSION

6.1. Scaling of Collision Outcomes in the Gravity Regime

For all gravity-regime bodies studied to date, collision out-
comes are strikingly similar for a tremendous range of target
composition and size. Furthermore, the transitions between the
major collision regimes (merging, hit-and-run, disruption, and
super-catastrophic disruption) occur under similarly scaled con-
ditions. The types of bodies studied, ranging from km to several
1000’s km in size, included rubble-pile and porous planetesi-
mals (this work, Stewart & Leinhardt 2009; Benz 2000; Jutzi
et al. 2010; Korycansky & Asphaug 2009), pure rock or pure ice
planetesimals with strength (Benz & Asphaug 1999; Leinhardt
& Stewart 2009; Jutzi et al. 2010), strengthless differentiated
rock and iron planets (Benz et al. 1988, 2007; Agnor & Asphaug
2004a; Marcus et al. 2009; Genda et al. 2011b), strengthless dif-
ferentiated water and rock planets (Marcus et al. 2010b), and
strengthless pure rock planets (Marcus et al. 2009). The stud-
ies focused on a variety of stages during planet formation, from
accretion of planetesimals to destruction of planets; thus, the im-
pact velocities ranged from ∼1 m s−1 to over 100 km s−1. The
computational methods included three different shock physics
codes and two N-body codes. Our analysis of the results from
these studies suggests that the same scaling laws may be applied
over an incredibly broad range of impact scenarios during planet
formation.

As stressed by Asphaug (2010), similarity of outcome is not
the same as true scale invariance. He notes that scale invari-
ance applies only for idealized incompressible, self-gravitating
inviscid fluid planets. In reality, many aspects of collision out-
comes will not scale simply with size, e.g., the mass of collision-
produced melt depends on the specifics of impact velocity, target
composition, and the internal temperature and pressure history.
Here, we investigated the similarity of the dynamics of colli-
sion outcomes for a variety of non-ideal gravity-regime bodies,
from icy planetesimals to differentiated super-Earths. Specifi-
cally, we developed scaling laws to define the mass and velocity
distributions of bodies after any gravity-regime collision.

Why do the dynamics of collision outcomes appear to
scale similarly with size in the gravity regime? At impact
velocities just above the escape velocity, momentum dominates
the outcome at all scales. Hence, the transition from merging to

hit-and-run depends primarily on the geometric cross section of
the collision for all size bodies. As impact velocities increase, the
energy required for disruption is dominated by the gravitational
dispersal of fragments rather than the energy required to shatter
an intact body into small pieces (Melosh & Ryan 1997). As
a result, erosive outcomes require that the velocity of the
fragments exceed a critical value that relies primarily upon the
gravitational potential of the total colliding mass.

For small bodies, the critical fragment velocity may be
reached with impact velocities that impart negligible irreversible
work on the materials (Figure 4). For larger bodies, the critical
velocity requires sufficiently high impact velocities that strong
shock waves are formed. The shock wave permanently deforms
the materials and, in the process, reduces the total energy
available for the final velocity distribution of fragments. The
energy of deformation is often referred to as “waste heat”;
for a fixed impact energy, a larger fraction of waste heat is
generated with increasing impact velocity (primarily due to
the onset of shock-induced melting and vaporization at high
shock pressures). As a result, the catastrophic disruption criteria
increases with increasing impact velocity (Equation (3)).

Based on currently available data we argue that in the
disruption regime the dynamics of the outcome is similar
over the entire gravity regime when scaled by the catastrophic
disruption criteria. The post-collision size distribution is similar,
as it is controlled by the largest remnant and the gravitationally
accreted clumps from the shattered parent bodies. The general
catastrophic disruption law accounts for both the increasing
gravitational potential with total mass of the colliding bodies and
the increase in waste heat at higher impact velocities (Housen
& Holsapple 1990).

The development of Equation (3) relied upon the concept of

a coupling parameter, Λ ∝ RpV
µ̄

i , a point source approximation
of the coupling of the projectile’s energy and momentum into the
target (see Holsapple & Schmidt 1987). The velocity exponent
µ̄ is bounded by pure momentum coupling (µ̄ = 1/3) and pure
energy coupling (µ̄ = 2/3). In the gravity regime, the coupling
parameter distills the physical response of the geologic material
into the variable µ̄. Some constraints on µ̄ are available from
laboratory cratering experiments: e.g., µ̄ = 0.4 for sand and
µ̄ = 0.55 for water (Holsapple & Schmidt 1987). Here, we
fit the coupling parameter to the numerical simulation results
for disruption of a wide variety of materials. The derived best-
fit range of 0.33 " µ̄ " 0.37 is close to pure momentum
scaling.

Why does the concept of a point source approximation apply
to collisions between comparably sized planetary bodies? The
point source approximation was developed for impact cratering
by a finite-size projectile onto a half-space target. Holsapple
& Schmidt (1987) show that the concept of a point source
is equivalent to a variety of models that describe a similar
material velocity field far from the impact point. In the case
of catastrophic disruption, the late-time far-field criteria is a
fragment size–velocity distributions where half the mass is
escaping the gravitational potential of the largest remnant.
The principal dynamical factors governing the collision are
incorporated into the Q′∗

RD formulation: relative velocity, mass
ratio, impact parameter, and bulk density. The similar outcomes
of collisions with similar QR/Q′∗

RD indicate that the remaining
details of how the energy and momentum are distributed into
the target and projectile during the initial stage of the collision
are negligible in determining the late time dynamics following
a catastrophic disruption event.
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In summary, the primary factors that bound the different
collision outcome regimes scale similarly with size in the gravity
regime: momentum, geometric cross section, and normalized
critical impact energy (Q′∗

RD). Other factors that lead to second-
order perturbations to the dynamics of the collision outcomes
are discussed in the next section.

6.2. Scaling Laws’ Limits of Applicability

Planet formation involves a vast range of bodies with distinct
physical characteristics, including dust aggregates, rubble-pile
planetesimals, differentiated molten and solid protoplanets,
solid planets with extended atmospheres, and gas-dominated
planets. The constituent materials (iron-alloys, silicates, ices,
and gases) span orders of magnitude in density and material
strength. The complex and time-varying physical properties of
planetary bodies significantly limit the application of any single
equation to all bodies over the course of planet formation. And
yet, judicious simplification is necessary for planet formation
simulations to be both physically robust and computationally
tractable.

We have focused on developing scaling laws that describe
the dynamical outcome of collisions between any two gravity-
dominated bodies. The dynamical outcome from collisions
seems to be rather insensitive to the internal composition, when
the results are scaled by the appropriate value for Q∗

RD. However,
the types of bodies studied to date do not contain any gas
mass fraction (see, for example, Kobayashi et al. 2011), and
so the scaling laws may need modification for a planet with a
significantly different internal structure than the differentiated
and homogeneous planets included in this study. One area that
warrants further investigation is the sensitivity of the velocity
of the largest remnant to the internal structure/composition
(Figure 6).

The role of tidal effects during collisions or in close en-
counters may be important factors during the fragmentation of
planetary bodies (Asphaug et al. 2006; Asphaug 2010). In this
work, all bodies are assumed to be approximately spherical at
the time of impact. Tidal affects will change the interacting mass
and contribute to the fragmentation process in ways that lead to
different size and velocity distributions than found here.

Similarly, the role of pre-impact spin during collisions has
received modest attention (Leinhardt et al. 2000; Canup 2008).
While the net spin of a growing body may essentially average
near zero during the rapid growth phase where collisions are
frequent, the effect of pre-impact spin and the collision angular
momentum may be very important in the final giant impact
phase of planet formation (Agnor et al. 1999). While we did not
consider any pre-impact spin in this study, a few simulations
with high collision angular momentum are notable. In 1:1
collisions with 0 < b < bcrit (Table 1 in this work and Table 1
in Leinhardt et al. 2000), the catastrophic disruption criterion
is less than the value at b = 0 (e.g., closed and open stars
in Figure 4). We interpret the lower disruption criterion with
pre-impact spin to arise from the significant collision angular
momentum. As a result, the gravitational potential is reduced
and dispersal requires slightly less energy. We suggest that
future work investigate the possibility of using the reduction
in the gravitational potential due to pre-impact and collision
angular momentum to account for the first-order affects of spin.
Specifically, the spin-modified catastrophic disruption criterion
may remain at a constant offset (c∗) from the spin-modified
gravitational potential.

Figure 12. Catastrophic disruption simulation results for strong rock targets
(porous and nonporous). Same notation as in Figure 4 and Table 3. (A)
Simulation data corrected to an equivalent head-on impact. (B) Simulation
data converted to an equivalent equal-mass disruption criteria. The results for
critical velocities from m s−1 to 5 km s−1 demonstrate that energy scaling is
incorrect. Best-fit Q∗

RD curves with µ̄ = 0.35 and c∗ = 6.4 for V ∗ = 0.005,
0.02, 0.1, 0.3, 1.5, and 5 km s−1.

(A color version of this figure is available in the online journal.)

6.2.1. Strength and Porosity in the Gravity Regime

The study of catastrophic disruption of strong rock targets has
been motivated by collisional evolution studies of the asteroid
and Kuiper belts. The strength models were tested by fitting lab-
oratory quasi-static strength measurements and fragment size
distributions from head-on disruption experiments. Particular
attention was paid to the development of the model for tensile
fracture (Benz & Asphaug 1994), as the tensile strength domi-
nates the catastrophic disruption criterion for head-on impacts
in the strength regime.

Results from several numerical simulations of catastrophic
disruption of strong rock targets in the gravity regime are
shown in Figure 12. The head-on basalt disruption data at
impact velocities of 3 and 5 km s−1 (∗) are shown from the
canonical study by Benz & Asphaug (1999) using the SPH code
with the detailed tensile strength model. Using the same code,
Benz (2000) studied the disruption of strong nonporous basalt
(hourglass) and a macroporous target, composed of overlapping
clusters of SPH particles representing strong interconnected
boulders (-.), at very low impact velocities (5–40 m s−1) and
b = 0.7. In Figure 12, the 10 km target data, which fall below
the specific gravitational binding energy, are derived from the
equal-mass collisions presented in Benz’s Figure 5 and will be
discussed below. The Benz (2000) 1 km data are less certain
using our catastrophic disruption variables because both impact
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velocity and mass ratio were varied and the specific values were
not reported. Nevertheless, the significant offset in the disruption
criteria is irrefutable evidence that pure energy scaling does not
apply. In fact, the total dispersion in the specific impact energy
is slightly larger than can be accommodated by the momentum
scaling limit of µ̄ = 1/3, which is likely a result of differences
in the details of the strength models.

More recent simulations (⊗,%) by Jutzi et al. (2010) with
critical velocities of 3 and 5 km s−1 fall in-between the data
from Benz & Asphaug (1999). Their work uses the same
SPH code with an updated strength model that includes the
extra dissipation of microporosity. Simulations using the shock
physics code, CTH, with different shear and tensile strength
models yield similar results as found for nonporous basalt targets
using the SPH code (#; Leinhardt & Stewart 2009).

In Figure 12, the strong target data, with mass ratios from
1:1 to almost 1:45,000 and impact velocities from 0.001 to
5 km s−1, are best fit by µ̄ = 0.35 and c∗ = 6.4. The equivalent
equal-mass disruption data have c∗ values from 1 to 20. For
comparison, the best fit to only the PKDGRAV rubble-pile data
is c∗ = 5.5 and µ̄ = 0.365. We note that the data from Jutzi
et al. (2010) and the 1 km targets from Benz (2000) nicely cluster
around the best-fit principal disruption curve. Jutzi et al. (2010)
fit their 3 and 5 km s−1 data with µ̄ = 0.43; however, such
a high value for µ̄ cannot simultaneously fit the data at lower
velocities. The two-dimensional simulations from Leinhardt &
Stewart (2009) fall systematically below the best-fit curve. The
3 and 5 km s−1 head-on data from Benz & Asphaug (1999) have
a dispersion greater than can be explained with our model; the
low- and high-velocity data fall below and above the best-fit
curve, respectively. The data from Benz & Asphaug (1999) and
the 10 km data from Benz (2000) were excluded from the global
fits presented in Section 3.1.3.

The 10 km equal-mass data from Benz (2000) (-. and hour-
glass) require closer examination. At an impact angle of 45
deg, all 1:1 data on weaker bodies pass through the hit-and-run
regime. However, both the nonporous and porous data show dis-
ruption results similar to the non-grazing regime. We interpret
the non-grazing outcome to be due to the high shear strength
of the target preventing a hit-and-run outcome. We hypothe-
size that the disruptive outcome and disruption energy below
the gravitational binding energy are related to the strength and
angular momentum of the event. A collision between two equal-
size strong bodies has a larger interacting mass than assumed
in our model, so the adjustment from the oblique to equivalent
head-on collision disruption energy is overestimated. In addi-
tion, the collision generates significant spin angular momentum.
The angular momentum reduces the effective gravitational bind-
ing energy and, similarly, the required disruption energy. These
data illustrate the need to better understand the physical proper-
ties of strong targets in oblique impacts and the role of angular
momentum.

In the strong rock target simulations, the typical limiting shear
strength is 3.5 GPa, comparable to the quasi-static shear strength
in laboratory rock under high confining pressure. In the SPH
simulations, the shear strength was fixed throughout the simu-
lation. In the CTH simulations, the shear strength was depen-
dent on the confining pressure and the accumulation of dam-
age (e.g., fractures). Leinhardt & Stewart (2009) demonstrated
that shear strength is important for the size bodies considered
here, which are usually considered to be purely in the gravity
regime. Higher shear strength leads to greater dissipation of the
shock energy into material deformation; hence, higher specific

energies are required to disrupt stronger targets. None of the pub-
lished work has investigated the role of strain rate on zones of
shear localization in catastrophic disruption simulations, which
leads to significant reduction of shear strength during impact
cratering events (e.g., Senft & Stewart 2009). More work is
needed to develop more sophisticated shear strength models for
strong rock targets and to validate model calculations for oblique
impacts.

There has been some recent work on the catastrophic dis-
ruption of porous planetesimals. Porosity has been modeled in
three different ways: as hard sphere rubble piles with various
bulk densities in studies using PKDGRAV (see references in
Figure 4), macroporous overlapping clusters of SPH particles
representing intact boulders (Benz 2000), and microporous bod-
ies using a constitutive model for porosity in an SPH code (Jutzi
et al. 2010). The SPH simulations found significant effects of
porosity in the strength regime; however, porosity was a second-
order effect in the gravity regime, and the catastrophic disruption
criterion agreed with the nonporous simulations when the data
were normalized by the difference in bulk density (Jutzi et al.
2010). The low-velocity macroporous SPH simulation results
in the gravity regime overlap with the PKDGRAV rubble-pile
results. Finally, Jutzi et al. (2010) found similar fragment size
and velocity distributions between their porous and nonporous
gravity regime results.

We note that the transition between the gravity and the
strength regime should be handled carefully and appropriate
coefficients should be chosen for different material composition
and strength. There appears to be significantly more variation in
the disruption criterion in the strength regime compared to the
gravity regime; however, future work should consider whether
or not a scaling analysis similar to the one presented here may
capture most of the variance.

6.2.2. Other Collision Outcomes

In cases where the impact velocity is above the escape velocity
but the mass of the projectile is too small to lead to disruption,
some material will escape the target in the form of crater ejecta.
In recent work, Housen & Holsapple (2011) has conducted a
detailed study of the scaling of ejecta from impact craters. Based
on many laboratory experiments, Housen & Holsapple (2011)
find that approximately 0.01Mp of material achieves escape
velocity in cratering events at Vi ∼ Vesc (see their Figure 16).
Empirical fits to the material eroded during cratering events
onto self-gravitating bodies have also been studied numerically
by Svetov (2011).

The bulk composition of a body may change during planet
formation by either preferentially accreting material of a certain
composition (e.g., ice fragments chipped off smaller bodies)
or by stripping of mantle material. The loss of a mantle
during catastrophic disruption has been studied for rock/iron
and water/rock differentiated planets by Marcus et al. (2009,
2010b). They developed two models to calculate the resulting
change in the mantle mass fraction that bound the simulation
results. Their method for calculating the change in composition
is described in the Appendix and may be incorporated into
planet formation studies that track the composition of growing
and eroding planets (Stewart & Leinhardt 2011).

Previous work has addressed collision outcomes in the
strength regime to various levels of generality. We refer the
reader to Beauge & Aarseth (1990) and Kenyon & Bromley
(2008), and references therein.
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6.3. Implications for Planet Formation

6.3.1. Giant Impact Events

Even with limited understanding of the full dynamics of
collision outcomes, the significant role of giant impact events
in determining the final physical properties of rocky/icy planets
has been recognized (e.g., Agnor et al. 1999; Ida & Lin 2010).
Any event between similar-sized bodies (γ ' 0.1) may be
considered a giant impact event, although the outcomes are
more dramatic for larger mass bodies (Asphaug et al. 2006;
Asphaug 2010).

Agnor et al. (1999) found that the most common collision
events at the end stage of terrestrial planet formation (under
our solar system conditions) have γ ∼ 0.01–0.2 and Vi from
about 1 to 4Vesc. Over this range of mass ratios and impact
velocities, collision outcomes span all the regimes: accretion,
erosion, and hit-and-run. In Figure 11(C), note that bcrit = 0.66
for γ = 0.1; hence, about half of all impacts fall in the regime
that transitions from accretion to erosion and half transition
through a hit-and-run regime. Hence, the implementation of
self-consistent scaling laws to describe collision outcomes is
crucial to the accurate treatment of the giant impact phase
of planet formation. Although Agnor et al. (1999) typically
found that impact velocities fell in the range of 1 to 2Vesc,
temporary dynamical excitation by migrating giant planets may
further increase the impact velocities in our solar system and
in exoplanetary systems (Nagasawa et al. 2005; Morbidelli
2010; Walsh et al. 2011). Therefore, robust characterization
of all collision outcomes is necessary for any planet formation
calculation.

With the strong dependence of collision outcome on the mass
ratio, the final stage of planet formation is likely to produce more
diverse outcomes than previously anticipated. As argued by As-
phaug (2010), the increased frequency of hit-and-run events dur-
ing the giant impact stage may routinely lead to compositional
modification of the second-largest body. As shown in Figure 11,
the escaping projectile is nearly always eroded in hit-and-run
events. Consequently, the atmosphere, hydrosphere, and even
the mantle of these bodies may be stripped away. Such inter-
esting details may now be explored directly in planet formation
simulations. Asphaug (2010) suggested that the growth of large
rocky planets occurs often by a series of hit-and-run events fol-
lowed by an eventual merger. Under these circumstances, each
accreting protoplanet could have been partly devolatilized be-
fore merging. In this manner, the final composition of planets
may be altered significantly compared to the initial protoplanets
during accretion into the final planets.

Note that our analytic calculation of collision outcomes agrees
very well with the proposed giant impact scenarios for the
formation of the Haumea system (Leinhardt et al. 2010), the
formation of Pluto and Charon (Canup 2005), the formation
of Earth’s moon (Canup 2004), and the increased density of
Mercury (Benz et al. 2007) (Figure 11). The formation models
plotted for Haumea and Pluto-Charon are the result of graze-
and-merge events, where two equal-mass bodies collide and
separate nearly intact. The loss of velocity by the first collision
leads to a merging upon a second collision, creating a final body
with enough angular momentum to spin off a disk of material.
In contrast, the canonical formation of the Moon involves a
collision where the projectile is disrupted upon the first impact.
The analytic calculation for disruption of the projectile agrees
very well with these moon-forming studies. Because the giant
impact phase of planet formation is dominated by collisions

slightly above the mutual escape velocity, the probability scaled
axis in Figure 11 emphasizes the high likelihood that the giant
impacts will be on the boundary of the merging and hit-and-run
regimes (see also Stewart & Leinhardt 2011).

Given the range of impact velocities found by Agnor et al.
(1999) in the giant impact stage (up to about 6Vesc), stripping
the mantle from Mercury by a catastrophic disruption event is
reasonably probable. Recently, collision outcomes alone have
been used to define a limit to the possible density of super-Earth
mass exoplanets (1–10 M⊗). Based on the criterion to strip off
mantle material during catastrophic disruption, Marcus et al.
(2010a) used the extremely high impact velocities required to
disrupt 1–10 Earth-mass planets to place an empirical limit to the
iron fraction of a planet that has suffered a single catastrophic
impact event. The prediction is in very good agreement with
observations of rocky exoplanets (e.g., Kepler 10b and 55 Cnc
e; Winn et al. 2011; Batalha et al. 2011). Consideration should
be given to the potential for stripping mantles off the planets
by erosive hit-and-run events, e.g., the smaller projectile has its
mantle stripped but it is never incorporated into a larger body.

6.3.2. Collisional Evolution of Small Body Populations

The asteroid and Kuiper belts contain a valuable record of
the dynamics of the solar system. The collisional evolution and
dynamical clearing of these reservoirs of small bodies has been
modeled extensively (e.g. Nesvorný et al. 2002; Bottke et al.
2002; Morbidelli et al. 2008; Kenyon et al. 2008). Observations
of asteroid families, in particular, have been important in the
study of planetary dynamics and impact processes. Asteroid
families and their associated dust bands are believed to have
formed in recent catastrophic impact events (Nesvorný et al.
2003). Simulations of asteroid disruption have been compared
to observations of the size and velocity distributions of asteroid
families to derive possible impact scenarios. For example,
Nesvorný et al. (2006) simulated the formation and dynamical
evolution of the Karin family. Using the same SPH code and
strength model used by Benz & Asphaug (1999), their best-fit
scenarios for the Karin family involve a 5–7 km s−1 impact onto
a 15 km target with a mass ratio of 1:200 and Mlr ∼ 0.1–0.2Mtarg

(Figure 13). In order to match this combination of impact energy
and largest remnant mass with our analytic model, a value of c∗

of approximately 20 is required, which is significantly higher
than the best-fit value of 6.4 derived here for strong targets.
Figure 13 presents collision outcome maps for the best fit for
all small bodies (c∗ = 5) and the very strong bodies inferred
from the asteroid-family formation simulations (c∗ = 20).
Catastrophic disruption begins at impact velocities of 107Vesc

for the generic small body, whereas values about twice as high
are required for the strong targets simulated by Nesvorný et al.
(2006).

In addition to studying individual collisions, the collisional
evolution of the asteroid belt size distribution has been studied
in detail (e.g., Davis et al. 1979; Bottke et al. 2005; Morbidelli
et al. 2009). Such studies seek to understand the relative weight
of collisional versus dynamical clearing of the belt and the initial
size distribution of planetesimals. From our discussion of the
role of strength during the evolution of planetesimals from weak
aggregates to protoplanets, it is clear that a single catastrophic
disruption criterion cannot apply at all times.

Also, the influence of mass ratio on the disruption crite-
rion will be important if the first planetesimals were born big.
Morbidelli et al. (2009) argue that the observed size–frequency
distribution of asteroids is best fit by an initial population of
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Figure 13. Predicted collision outcome maps for small projectiles (Mp : Mtarg =

1 : 200) using the analytic model for (A) a nominal planetesimal with c∗ = 5 and
(B) best fit to asteroid family formation simulations with c∗ = 20. Axes, colors,
and line notations are the same as defined in Figure 11. Proposed asteroid
family-forming events with Mlr ∼ 0.1–0.2Mtarg: ($) Karin (Nesvorný et al.
2006).

(A color version of this figure is available in the online journal.)

planetesimals that were hundreds of km in size. (Note this sug-
gestion has not been fully accepted as a requirement for the ob-
served size distribution of asteroids; see Weidenschilling 2011.)
Two processes have been proposed to form km to 100 km scale
initial planetesimals: turbulent concentration (Cuzzi et al. 2008)
and streaming instabilities (Johansen et al. 2007). A mechanism
to form km scale planetesimals is attractive because it could help
bypass the so-called meter size barrier, the size particle that radi-
ally drifts in toward the Sun faster than it can grow. In the colli-
sion evolution model by Morbidelli et al. (2009), the catastrophic
disruption threshold is the angle-averaged 5 km s−1 constant
velocity curve for strong basalt from Benz & Asphaug (1999).
Note, however, that the proposed mechanisms to form km scale
planetesimals would generate weak aggregates of small (e.g.,
cm to m size) particles. These aggregates will be comparable to
simulations of weaker materials. Morbidelli et al. (2009) con-
sidered a collisional evolution simulation using a catastrophic
disruption criteria that was a factor of eight lower than the basalt
criteria. They note that the size–frequency distribution was not
significantly affected by the larger amount of collisional grind-
ing in the one test case; however, they could not form the lunar
to Mars-size embryos expected in the early asteroid belt. They
reject the lower disruption criteria as being inconsistent with ob-

servations (and their initial assumed population of 1 km radius
bodies).

Here, we stress that a population of comparably sized bod-
ies will be subject to the lowest possible disruption criteria,
Q∗

RD,γ=1. For example, two colliding bodies with individual

radii of 1 km and density of rock have RC1 ∼ 2 km. Using
Equation (30) with c∗ = 5 and µ̄ = 0.37 for small bodies,
Q∗

RD,γ=1 = 5.3 J kg−1 and the corresponding V ∗
γ=1 is 6.5 m s−1.

For a 45 deg impact, the value for Q′∗
RD rises by almost a factor

of five (Equation (23)) and V ∗ = 14 m s−1. Note that this value
of Q′∗

RD is more than a factor of 100 lower than the 5 km s−1

strong basalt disruption curve (Figure 12). This example illus-
trates the need to incorporate self-consistent disruption criteria
that account for impact velocity and mass ratio in order to infer
the magnitude of collisional evolution in a given population of
bodies.

6.3.3. Application of Collision Scaling Laws in Planet Formation

To date, all numerical implementations of fragmentation dur-
ing collisional growth of planets assume pure energy scal-
ing. That is, µ̄ is assumed to be 2/3 and, thus, there is no
velocity dependence in the catastrophic disruption criterion
(Equation (3)). In contrast, the vast collection of data in the
gravity regime indicates that catastrophic disruption is best fit
by nearly pure momentum scaling. With nearly linear depen-
dence on the critical velocity, the criterion for fragmentation
may vary by orders of magnitude during planet formation (Stew-
art & Leinhardt 2009). Several studies have investigated shifting
a single reference size-dependent disruption curve by a constant
value that is fixed over the course of the simulation to represent
stronger or weaker bodies, but none have considered a fragmen-
tation criterion that may be variable in time and space.

Furthermore, planet formation models have not included the
dependence on the mass ratio of the bodies on the disruption
criterion. A recent simple treatment of the collision parameters
required for hit-and-run versus merging indicated that planet for-
mation was only slightly delayed compared to simulations with
only merging outcomes (Kokubo & Genda 2010). However,
this work did not include any treatment of fragmentation. Based
on our calculation of the region of partial accretion for non-
grazing impacts and projectile disruption in hit-and-run events
(Figure 11), fragmentation is a critical component of the end
stage of planet formation. Numerical simulations cannot assume
pure merging or pure hit-and-run. The diversity of collision out-
comes during the end stage of planet formation is described in
detail in the companion paper, which uses the impact parameters
from recent N-body simulations that assumed perfect merging
to calculate the range of collision outcomes predicted by our
model (Stewart & Leinhardt 2011).

In this work, the general catastrophic disruption law relies
upon only two independent material constants (µ̄ and c∗; qg

is related through Equation (29)) and the impact conditions
(mass, mass ratio, impact angle, and velocity). The material
parameters are well constrained. The coupling parameter µ̄ is
tightly constrained by a large data set (Figure 4) to fall close to
pure momentum scaling (0.33–0.37).

The energy dissipation parameter c∗ is a measure of the
physical characteristics of the body. For small bodies with
varying composition and strength, we find c∗ = 5 ± 2. As
bodies grow into protoplanets (∼1000 km), they heat inter-
nally from the heat of accretion and radioactive decay. Then,
the energy dissipation parameter for hydrodynamic planets
and planetesimals, c∗ = 1.9 ± 0.3, is appropriate. After
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molten planetesimals recrystallize, they will be temporarily
stronger until they experience sub-catastrophic shattering im-
pact events. Based on the strong rock simulations, collisional
evolution models should test for sensitivity to values of c∗ up to
about 20.

Two additional parameters describe the distribution of frag-
ments during erosive collisions. β is the exponent to the size
distribution of small fragments and η is the slope of the power-
law size distribution for the largest fragment in the super-
catastrophic regime. The values for β and η are also tightly
constrained by simulations and laboratory experiments, respec-
tively, and may be considered, to first order, constant.

7. CONCLUSIONS

We present a completely self-consistent set of scaling laws
to describe the dynamical outcome of a collision between
any two bodies in the gravity regime. The scaling laws rely
upon the concept of the interacting mass, the fraction of the
projectile involved in the collision. Using the interacting mass,
we derive a general catastrophic disruption scaling law. The
general forms include two independent material parameters:
the coupling parameter µ̄ and the energy dissipation parameter
c∗. The catastrophic disruption criterion is used to bound the
transitions between collision outcome regimes. The subsequent
description for the size and velocity of collision fragments
is derived in closed-form analytic equations with two well-
constrained parameters.

With this powerful new tool to describe the dynamical out-
come of collisions, the physics of collisions in planet formation
models will have much greater fidelity. Planet formation models
now have a very small number of free parameters to describe
collision outcomes (primarily the energy dissipation parameter,
c∗). With a more robust physical model for collisions, more
detailed factors may be studied, such as the evolution of compo-
sition during planet formation. Alternatively, other fundamental
aspects of planet formation may be investigated more deeply
(e.g., migration) now that the collision model is tightly con-
strained.

Future work should now bring greater scrutiny to the scaling
laws used in the strength regime. Although this regime has his-
torically been better constrained by the abundance of laboratory
experiments, self-consistent scaling laws also require attention
to the dependence of fragmentation on the impact velocity, mass
ratio, and impact angle.

By fully constraining the dynamics of collisions in the
gravity regime, this work represents a major advancement in the
robustness of simulations of planet formation and the collisional
evolution of populations of planets.

The N-body calculations were run using the University of
Cambridge, Astrophysical Fluids Research Group computa-
tional facilities. Z.M.L. is supported by an Advanced STFC
fellowship; S.T.S. by NASA grant NNX09AP27G.

APPENDIX

DESCRIPTION OF VARIABLES AND SUMMARY OF
COLLISION MODEL

A description of variables and annotations is given in Table 2.
The compilation of simulation data on catastrophic disruption
presented in Figures 4 and 12 is summarized in Table 3. A
summary of all the PKDGRAV simulations conducted in this
study is presented in Table 4.

Table 2

Summary of Primary Variables and Annotations

Symbol Definition

Material parameters

c∗ Head-on equal-mass disruption energy in units of

specific gravitational binding energy

µ̄ Velocity exponent in coupling parameter

β Slope of fragment size distribution

η Exponent in power-law fragment distribution in

super-catastrophic regime

Principal variables

V, Vi Impact velocity

Vesc, Vinf Escape velocity, velocity at infinity

Q Specific impact energy

QR Specific impact energy for the collision in center of

mass frame

Q∗
RD Catastrophic disruption criteria—specific impact energy

to disperse half the total mass

M, m Mass

RC1 Radius of total mass in a body with density 1000 kg m−3

µ Reduced mass

γ Projectile-to-target mass ratio

α Mass fraction of the projectile that intersects the target

qg Coefficient of gravity term in general formula for Q∗
RD

ξ Accretion efficiency

v Velocity of fragments

ρ Density

Geometric variables

θ Impact angle (0 is head-on)

b Impact parameter sin(θ )

bcrit Critical impact parameter denoting transition from

non-grazing to grazing collision

R Target radius

r Projectile radius

D Diameter

l/(2r) Fraction of projectile diameter that overlaps with target

Superscripts
∗ Value at the catastrophic disruption threshold
′

Oblique impact
† Reverse impact onto the projectile in the hit-and-run

regime

Subscripts

targ Target

p Projectile

tot Target + projectile

interact Interacting fraction

α Interacting projectile fraction

γ=1 Equal-mass collision

lr Largest remnant

slr Second largest remnant

rem Fragments smaller than the largest remnant

core Core fraction of a differentiated body

Constants

ρ1 Density of 1000 kg m−3

G Gravitational constant

A.1. A General Formulation for Collision Outcomes

We summarize the sequence of logic that should be applied
to determine the dynamical outcome of any collision in the
gravity regime using our analytic model. First, we identify the
boundaries of the major collision regimes.

1. For a given collision scenario (Mp, Mtarg, b, Vi, and Rp and
Rtarg from the bulk densities of the bodies), calculate the
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Table 3

Sources and Description of Catastrophic Disruption Data Presented in Figures 4 and 12

Symbol Target Description Source

Weak targets

!, / 10 km PKDGRAV rubble piles This work

+ 1–50 km PKDGRAV rubble piles Stewart & Leinhardt (2009)

%, open star 1 km PKDGRAV rubble piles Leinhardt et al. (2000)

& weak 2–50 km basalt Leinhardt & Stewart (2009)

• hydrodynamic 2–50 km basalt Leinhardt & Stewart (2009)

Hexagon 50 km ice Leinhardt & Stewart (2009)

Strong targets

∗ 1–100 km radius basalt Benz & Asphaug (1999)

$ 2–50 km basalt Leinhardt & Stewart (2009)

⊗ 0.3–100 km microporous rock (pumice) Jutzi et al. (2010)

' 0.3–100 km basalt Jutzi et al. (2010)

-. 10 km macroporous basalt Benz (2000)

Hourglass 10 km basalt Benz (2000)

Hydrodynamic planets

", ♦ 2.2 Mercury-mass bodies, differentiated rock and iron Benz et al. (2007)

) 0.4 and 7 Earth-mass bodies, pure rock Marcus et al. (2009)

× 1–10 Earth-mass bodies, differentiated rock and iron Marcus et al. (2009)

#, * 0.5–5 Earth-mass bodies, differentiated water and rock Marcus et al. (2010b)

Notes. Filled and line symbols indicate head-on collisions (b = 0). Open symbols indicate oblique impacts: b = 0.15, 0.3 for open star,

0.35 < b < 0.9 for /, b = 0.5 for * and ♦, and b = 0.71 for -., hourglass, hexagon, ⊗, and '.

interacting mass fraction of the projectile, minteract = αMp

(Equation (11)).

2. If Vi < V ′
esc (Equation (53)), then the impact is in the perfect

merging regime.

3. Calculate the critical impact parameter bcrit for the collision
(Equation (6)). If b < bcrit, then it is a non-grazing impact,
else it is a grazing impact.

4. Calculate the catastrophic disruption criterion, Q′∗
RD, and

corresponding critical impact velocity, V
′∗, for the specific

impact scenario.

(a) Calculate RC1 from the total mass and density of
1000 kg m−3.

(b) Calculate the principal disruption value for an
equivalent equal-mass collision at RC1, Q∗

RD,γ=1

(Equation (28)), and its corresponding critical im-
pact velocity, V ∗

γ=1 (Equation (30)), using the material

parameter c∗.

(c) Calculate the reduced mass, µ, and the reduced mass
using the interacting mass, µα (Equation (12).)

(d) Calculate the disruption criterion, Q∗
RD, and critical

impact velocity, V ∗, for a head-on impact with the
desired mass ratio, γ , using Equations (23) and (22)
and the material parameter µ̄.

(e) The value for the disruption energy, Q′∗
RD, and critical

impact velocity, V ′∗
RD, for the desired impact angle are

found using Equations (15) and (16).

5. Calculate the value for QR required for onset of erosion,
Mlr = Mtarg, using the value of Q′∗

RD and the universal law
for the mass of the largest remnant (Equation (5)). From
this QR, derive the impact velocity for the onset of target
erosion, Verosion, from Equation (1).

6. For grazing impacts (b > bcrit), the hit-and-run regime is
bounded by V ′

esc < Vi < Verosion. Note that the graze-and-
merge regime is a subset of this range, but it is not explicitly
defined in this work (see Genda et al. 2011b).

7. Calculate the value for QR required for the onset of super-
catastrophic disruption, Mlr = 0.1Mtot, using the value
of Q′∗

RD and the universal law for the mass of the largest
remnant (Equation (5)). From this QR, derive the impact
velocity for the onset of super-catastrophic disruption,
Vsupercat, from Equation (1).

8. For all impact angles, the target is eroded when Vi > Verosion

and the impact is in the erosion regime.

9. For all impact angles, the impact is in the super-catastrophic
disruption regime when Vi > Vsupercat.

10. For non-grazing events and V ′
esc < Vi < Vsupercat, the impact

is in the disruption regime and the universal law for the mass
of the largest remnant applies. The partial accretion regime
is bounded by V ′

esc < Vi < Verosion.

11. For grazing events and Verosion < Vi < Vsupercat, the impact
is in the disruption regime and the universal law for the
mass of the largest remnant applies only for Mlr < Mtarg.

12. In the hit-and-run regime, calculate the critical disruption

energy for the reverse impact onto the projectile, Q
† ′∗
RD, as

described in Section 4.2, and its corresponding V †′∗. Use
Equations (5) or (44) to determine the largest remnant after
disruption of the total mass involved in the reverse impact,
Minteract + Mp.

In the merging regime, mass and momentum are conserved.
In the disruption regime:

1. Determine the mass of the largest remnant Mlr from the
universal law (Equation (5)) using QR and Q′∗

RD.

2. Determine the mass of the second largest remnant Mslr using
Equation (37) with β = 2.85, N1 = 1, and N2 = 2. The
size distribution of the tail of smaller fragments is described
by Equation (31).

3. For b = 0, assume that the largest remnant obtains the
velocity of the center of mass; for b > 0.7 assume that
the largest remnant maintains Vtarg. For 0 < b < 0.7, the
largest remnant velocity is some quasi-linear function of b.
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Table 4

Summary of All Simulation Parameters and Results

Mp b Vi Mlr Mslr QR

Mtarg (m s−1) Mtot Mtot (J kg−1)

0.025 0.00 9 1.00 9.64e-05 9.69e-01

0.025 0.00 14 1.00 9.64e-05 2.34e+00

0.025 0.00 18 1.00 9.64e-05 3.88e+00

0.025 0.00 22 0.99 1.93e-04 5.79e+00

0.025 0.00 50 0.94 3.86e-04 2.99e+01

0.025 0.00 60 0.90 5.78e-04 4.31e+01

0.025 0.00 70 0.88 7.71e-04 5.86e+01

0.025 0.00 100 0.77 1.45e-03 1.20e+02

0.025 0.00 120 0.67 2.41e-03 1.72e+02

0.025 0.00 140 0.55 1.19e-02 2.34e+02

0.025 0.00 160 0.51 6.17e-03 3.06e+02

0.025 0.00 180 0.35 1.84e-02 3.88e+02

0.025 0.00 200 0.27 1.65e-02 4.79e+02

0.025 0.00 400 0.00 2.99e-03 1.91e+03

0.025 0.35 9 1.00 9.64e-05 9.69e−01

0.025 0.35 14 0.99 1.93e-04 2.34e+00

0.025 0.35 18 0.99 1.93e-04 3.88e+00

0.025 0.35 22 0.99 1.93e-04 5.79e+00

0.025 0.35 100 0.81 7.71e-04 1.20e+02

0.025 0.35 160 0.60 6.07e-03 3.06e+02

0.025 0.35 200 0.45 5.88e-03 4.79e+02

0.025 0.35 300 0.07 4.76e-02 1.08e+03

0.025 0.35 400 0.02 1.13e-02 1.91e+03

0.025 0.70 9 0.99 1.45e-03 9.69e−01

0.025 0.70 14 0.98 9.64e-04 2.34e+00

0.025 0.70 18 0.98 1.93e-04 3.88e+00

0.025 0.70 22 0.98 1.93e-04 5.79e+00

0.025 0.70 160 0.84 6.75e-04 3.06e+02

0.025 0.70 200 0.80 8.68e-04 4.79e+02

0.025 0.70 300 0.65 2.41e-03 1.08e+03

0.025 0.70 400 0.47 6.07e-03 1.91e+03

0.025 0.70 500 0.26 1.33e-02 2.99e+03

0.025 0.70 600 0.05 2.80e-02 4.31e+03

0.025 0.90 9 0.98 1.88e-02 9.69e−01

0.025 0.90 15 0.98 1.58e-02 2.69e+00

0.025 0.90 20 0.98 1.27e-02 4.79e+00

0.025 0.90 25 0.98 9.26e-03 7.48e+00

0.025 0.90 30 0.97 6.27e-03 1.08e+01

0.025 0.90 40 0.97 1.93e-03 1.91e+01

0.025 0.90 50 0.97 6.75e-04 2.99e+01

0.025 0.90 60 0.97 2.12e-03 4.31e+01

0.025 0.90 400 0.88 2.89e-04 1.91e+03

0.025 0.90 500 0.84 4.82e-04 2.99e+03

0.025 0.90 600 0.78 7.71e-04 4.31e+03

0.025 0.90 700 0.70 2.70e-03 5.86e+03

0.025 0.90 800 0.74 1.45e-03 7.66e+03

0.025 0.90 900 0.66 2.02e-03 9.69e+03

0.025 0.90 1000 0.36 2.80e-03 1.20e+04

0.10 0.00 9 1.00 8.99e-05 3.37e+00

0.10 0.00 15 0.99 1.80e-05 9.35e+00

0.10 0.00 20 0.97 1.80e-04 1.66e+01

0.10 0.00 25 0.94 8.09e-04 2.60e+01

0.10 0.00 30 0.90 7.19e-04 3.74e+01

0.10 0.00 40 0.79 1.35e-03 6.65e+01

0.10 0.00 50 0.67 2.61e-03 1.04e+02

0.10 0.00 65 0.41 1.44e-02 1.76e+02

0.10 0.00 80 0.14 3.44e-02 2.66e+02

0.10 0.35 9 1.00 1.71e-03 3.37e+00

0.10 0.35 15 0.96 1.08e-03 9.35e+00

0.10 0.35 20 0.93 1.89e-03 1.66e+01

0.10 0.35 25 0.90 1.44e-03 2.60e+01

0.10 0.35 30 0.87 1.44e-03 3.74e+01

0.10 0.35 40 0.79 1.98e-03 6.65e+01

Table 4

(Continued)

Mp b Vi Mlr Mslr QR

Mtarg (m s−1) Mtot Mtot (J kg−1)

0.10 0.35 50 0.72 1.89e-03 1.04e+02

0.10 0.35 65 0.62 5.13e-03 1.76e+02

0.10 0.35 80 0.47 5.85e-03 2.66e+02

0.10 0.35 100 0.33 1.16e-02 4.15e+02

0.10 0.70 9 0.95 4.76e-02 3.37e+00

0.10 0.70 15 0.92 3.72e-02 9.35e+00

0.10 0.70 20 0.90 3.43e-02 1.66e+01

0.10 0.70 25 0.90 1.42e-02 2.60e+01

0.10 0.70 30 0.89 8.63e-03 3.74e+01

0.10 0.70 40 0.87 2.07e-03 6.65e+01

0.10 0.70 50 0.86 1.53e-03 1.04e+02

0.10 0.70 100 0.77 2.16e-03 4.15e+02

0.10 0.70 150 0.63 1.53e-03 9.35e+02

0.10 0.70 200 0.52 3.51e-03 1.66e+03

0.10 0.70 300 0.21 1.15e-02 3.74e+03

0.10 0.90 9 0.92 8.21e-02 3.37e+00

0.10 0.90 15 0.91 8.44e-02 9.35e+00

0.10 0.90 20 0.91 8.21e-02 1.66e+01

0.10 0.90 25 0.91 8.21e-02 2.60e+01

0.10 0.90 30 0.91 7.85e-02 3.74e+01

0.10 0.90 40 0.91 7.68e-02 6.65e+01

0.10 0.90 50 0.91 6.83e-02 1.04e+02

0.10 0.90 60 0.90 6.43e-02 1.50e+02

0.10 0.90 70 0.90 6.09e-02 2.04e+02

0.10 0.90 80 0.90 5.96e-02 2.66e+02

0.10 0.90 100 0.90 1.71e-02 4.15e+02

0.10 0.90 120 0.89 2.88e-03 5.98e+02

0.10 0.90 140 0.88 2.07e-03 8.14e+02

0.10 0.90 300 0.84 4.50e-04 3.74e+03

0.10 0.90 400 0.70 6.29e-04 6.65e+03

0.10 0.90 500 0.61 1.80e-03 1.04e+04

0.10 0.90 600 0.57 4.77e-03 1.50e+04

0.10 0.90 700 0.53 2.07e-03 2.04e+04

0.10 0.90 800 0.55 2.16e-03 2.66e+04

0.10 0.90 900 0.57 7.19e-03 3.37e+04

0.25 0.00 9 1.00 7.89e-05 6.52e+00

0.25 0.00 14 0.98 1.58e-04 1.58e+01

0.25 0.00 18 0.94 3.95e-04 2.61e+01

0.25 0.00 22 0.88 1.66e-03 3.89e+01

0.25 0.00 30 0.69 6.55e-03 7.24e+01

0.25 0.00 40 0.40 1.95e-02 1.29e+02

0.25 0.00 50 0.09 1.66e-02 2.01e+02

0.25 0.00 60 0.01 1.07e-02 2.90e+02

0.25 0.35 14 0.93 1.40e-02 1.58e+01

0.25 0.35 18 0.84 1.89e-02 2.61e+01

0.25 0.35 22 0.78 9.00e-03 3.89e+01

0.25 0.35 30 0.67 5.29e-03 7.24e+01

0.25 0.35 40 0.53 6.31e-03 1.29e+02

0.25 0.35 45 0.46 5.52e-03 1.63e+02

0.25 0.35 50 0.37 4.97e-03 2.01e+02

0.25 0.35 55 0.33 1.71e-02 2.43e+02

0.25 0.35 60 0.25 7.42e-03 2.90e+02

0.25 0.35 65 0.17 2.36e-02 3.40e+02

0.25 0.35 80 0.07 1.12e-02 5.15e+02

0.25 0.35 9 1.00 1.89e-03 6.52e+00

0.25 0.70 9 0.84 1.55e-01 6.52e+00

0.25 0.70 14 0.81 1.54e-01 1.58e+01

0.25 0.70 18 0.79 1.36e-01 2.61e+01

0.25 0.70 22 0.78 1.18e-01 3.89e+01

0.25 0.70 27 0.77 1.02e-01 5.86e+01

0.25 0.70 36 0.74 5.44e-02 1.04e+02

0.25 0.70 50 0.69 5.84e-03 2.01e+02

0.25 0.70 60 0.66 6.16e-03 2.90e+02
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Table 4

(Continued)

Mp b Vi Mlr Mslr QR

Mtarg (m s−1) Mtot Mtot (J kg−1)

0.25 0.70 70 0.64 2.05e-03 3.94e+02

0.25 0.70 80 0.58 1.42e-03 5.15e+02

0.25 0.70 100 0.52 3.79e-03 8.04e+02

0.25 0.70 125 0.42 3.79e-03 1.26e+03

0.25 0.70 150 0.32 5.21e-03 1.81e+03

0.25 0.70 175 0.10 7.89e-05 2.46e+03

0.25 0.90 9 0.81 1.91e-01 6.52e+00

0.25 0.90 14 0.80 1.93e-01 1.58e+01

0.25 0.90 18 0.80 1.90e-01 2.61e+01

0.25 0.90 22 0.80 1.88e-01 3.89e+01

0.25 0.90 27 0.79 1.87e-01 5.86e+01

0.25 0.90 36 0.79 1.74e-01 1.04e+02

0.25 0.90 50 0.79 1.87e-01 2.01e+02

0.25 0.90 60 0.79 1.87e-01 2.90e+02

0.25 0.90 70 0.79 1.83e-01 3.94e+02

0.25 0.90 100 0.79 1.62e-01 8.04e+02

0.25 0.90 120 0.77 1.44e-01 1.16e+03

0.25 0.90 150 0.73 5.26e-02 1.81e+03

0.25 0.90 200 0.67 3.63e-03 3.22e+03

0.25 0.90 250 0.61 1.34e-03 5.03e+03

0.25 0.90 300 0.55 1.10e-03 7.24e+03

0.25 0.90 350 0.47 3.39e-03 9.85e+03

0.25 0.90 400 0.42 4.02e-03 1.29e+04

0.25 0.90 450 0.31 5.84e-03 1.63e+04

1.00 0.00 15 0.97 2.46e-04 2.83e+01

1.00 0.00 18 0.93 4.42e-04 4.07e+01

1.00 0.00 24 0.76 3.66e-03 7.24e+01

1.00 0.00 24 0.76 2.72e-03 7.24e+01

1.00 0.00 24 0.77 3.06e-03 7.24e+01

1.00 0.00 30 0.50 1.06e-02 1.13e+02

1.00 0.00 30 0.49 1.04e-02 1.13e+02

1.00 0.00 30 0.47 1.23e-02 1.13e+02

1.00 0.00 35 0.12 5.47e-02 1.54e+02

1.00 0.00 35 0.12 3.76e-02 1.54e+02

1.00 0.00 35 0.14 3.01e-02 1.54e+02

1.00 0.00 38 0.05 2.77e-02 1.81e+02

1.00 0.00 38 0.04 3.86e-02 1.81e+02

1.00 0.00 38 0.03 2.07e-02 1.81e+02

1.00 0.35 15 0.98 3.93e-04 2.83e+01

1.00 0.35 16 0.97 2.95e-04 3.22e+01

1.00 0.35 17 0.48 4.56e-01 3.63e+01

1.00 0.35 18 0.47 4.46e-01 4.07e+01

1.00 0.35 30 0.23 1.98e-01 1.13e+02

1.00 0.35 45 0.02 1.22e-02 2.55e+02

1.00 0.70 8 1.00 0.00e+00 8.04e+00

1.00 0.70 10 0.50 4.97e-01 1.26e+01

1.00 0.70 11 0.50 4.97e-01 1.52e+01

1.00 0.70 12 0.50 4.93e-01 1.81e+01

1.00 0.70 13 0.50 4.95e-01 2.12e+01

1.00 0.70 14 0.50 4.89e-01 2.46e+01

1.00 0.70 30 0.44 4.41e-01 1.13e+02

1.00 0.70 50 0.39 3.82e-01 3.14e+02

1.00 0.70 80 0.28 2.74e-01 8.04e+02

1.00 0.70 150 0.04 1.05e-02 2.83e+03

1.00 0.90 7 1.00 4.97e-01 6.16e+00

1.00 0.90 15 0.50 4.95e-01 2.83e+01

1.00 0.90 20 0.50 4.95e-01 5.03e+01

1.00 0.90 40 0.50 4.90e-01 2.01e+02

1.00 0.90 100 0.48 4.80e-01 1.26e+03

1.00 0.90 200 0.44 4.30e-01 5.03e+03

1.00 0.90 300 0.41 4.06e-01 1.13e+04

1.00 0.90 400 0.35 3.39e-01 2.01e+04

1.00 0.90 600 0.26 2.51e-01 4.52e+04

4. The mass-velocity distribution of the smaller frag-
ments with respect to the largest remnant is given by
Equation (39).

In the super-catastrophic disruption regime:

1. Determine the mass of the largest remnant Mlr from
the power law (Equation (44)) using QR and Q′∗

RD

(Equation (15)).
2. The size and velocity distributions of the fragments with

respect to the largest remnant are the same as in the
disruption regime.

In the hit-and-run regime:

1. The mass of the largest remnant Mlr is approximately equal
to the target mass Mtarg.

2. The mass of the second largest remnant Mslr is estimated
using the universal law and disruption criteria for the reverse

impact on the projectile, Q
† ′∗
RD.

3. When the projectile is disrupted, the size and velocity
distributions of the fragments are described as in the
disruption regime with respect to the largest remnant from
the projectile.

4. In the special case of γ ∼ 1, the onset of erosion occurs
simultaneously in both bodies and Mlr ∼ Mslr. Then, use
N1 = 2 and N2 = 4 to calculate the size distribution. One
can assume that the fragments from both the projectile and
target have identical size and velocity distributions with
respect to their body of origin.

In the disruption and super-catastrophic disruption regimes,
a differentiated target may change its bulk composition by
stripping off a portion of the mantle. Bulk compositional
changes may be tracked using the results from Marcus et al.
(2010b). They found that the core mass fraction after a disruptive
collision falls between two idealized models, and we suggest
using an average of these two results.

1. Model 1—cores always merge: given the original
Mcore,targ and Mcore,p, the post-impact core is Mcore =

min(Mlr,Mcore,targ + Mcore,p).
2. Model 2—cores only merge on accretion: when Mlr >

Mtarg, Mcore = Mcore,targ + min(Mcore,p,Mlr − Mtarg). When
Mlr < Mtarg, assume that none of the projectile ac-
cretes and the mantle is stripped first. Then, Mcore =

min(Mcore,targ,Mlr).

In hit-and-run events with projectile disruption, the same rela-
tions may be used to estimate the bulk changes in composition
for the projectile.

Finally, Housen & Holsapple (2011) provide scaling laws for
the gravitationally escaping ejecta from the target in the impact
cratering regime. The impact cratering regime occurs at the low-

velocity end of the disruption regime, when Vi > V
′

esc, Mp 0
Mtarg, and Mlr ∼ Mtarg. Based on many laboratory experiments,
Housen & Holsapple (2011) find that approximately 0.01Mp

achieves escape velocity in cratering events of Vi ∼ Vesc (see
their Figure 16). In addition, Svetov (2011) provides empirical
equations for ejected material in cratering collisions on self-
gravitating bodies.
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Bottke, W. F., Durda, D. D., Nesvorný, D., et al. 2005, Icarus, 175, 111
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