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Abstract 
 

In the present paper, a numerical method is proposed for the numerical solution of a coupled system of KdV (CKdV) equation with ap-

propriate initial and boundary conditions by using collocation method with quintic B-spline on the uniform mesh points. The method is 

shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms, are computed. Three invariants of 

motion are predestined to determine the preservation properties of the problem, and the numerical scheme leads to careful and active 

results. Furthermore, interaction of two and three solitary waves is shown. These results show that the technique introduced here is easy 

to apply. We make linearization for the nonlinear term. 
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1. Introduction 

The coupled Korteweg-de Vries equation (CKdV) has introduced 

in 1981, by Hirota and Satsuma [1] as follows: 

 

 u a u 6uu 2b v v 0,t xxx x x                                                    (1) 

 

v v 3u v 0.t xxx x  
                                                                    (2) 

 

Where and b  are arbitrary constants and subscripts x and t denote 

differentiation x distance and t  time, is considered. 

Boundary conditions 

 

u(a, t) f (a, t), u(b, t) f (b, t),1 2

v(a, t) g (a, t), v(b, t) g (b, t), 0 t T.1 2

u (a, t) f (a, t), u (b, t) f (b, t),x 3 x 4

v (a, t) g (a, t), v (b, t) g (b, t), 0 t T.x 3 x 4

 

   

 

   
                       (3) 

 

And initial conditions. 

 
u(x,0) f (x),

v(x,0) g(x), a x b.



  
                                                             (4) 

 

The CKdV has been also discussed numerically by many re-

searchers; Halim et al. [2], [3] have studied a numerical scheme 

for CKdV systems. Ismail [4] discussed this system by using col-

location method and quintic splines but he hasn’t make lineariza-

tion of the nonlinear term, in this paper we solving the CKdV 

equation by the same method but we take linearization of the non-

linear term we will see this linearization in section 3. Kaya and 

Inan [5] studied this system by using Adomian decomposition 

method. M. S. Ismail and H. A. Ashi, used a numerical solution 

for Hirota-Satsuma CKdV Equation [6]. Assas [7] used variational 

iteration method for solving this system. Abbasbandy [8] dis-

cussed the CKdV equation by using homotopy analysis method. 

Wazwaz [9] produced a finite difference scheme for solving the 

CKdV system. Kutluay and Ucar [10] solved the CKdV equation 

by using a quadratic B-spline Galerkin approach. The numerical 

solutions of coupled nonlinear systems are very important in ap-

plied science, for example, the coupled nonlinear Schrodinger 

equation which admits soliton solution and it has many applica-

tions in communication and optical fibers; this system has been 

discussed numerically by Ismail using finite difference and finite 

element methods [11–13]. A finite element algorithm based on the 

collocation method with trial functions taken as quintic B-spline 

functions over the elements will be constructed. The quintic B-

spline basis together with finite element methods are shown to 

provide very accurate solutions in solving some partial differential 

equations and have been used before by several authors. In this 

article we are going to derive a numerical solution of the CKdV 

equations and to study the behavior of this solution for different 

values of a and b . The brief outline of this paper is as follows. In 

Section 2, quintic B-spline collocation scheme is explained. In 

Sections 3 and 4, the method is described and applied to the 

CKdV equation. In Section 5, stability of the method is discussed. 

In Section 6, numerical examples are included to establish the 

applicability and accuracy of the proposed method computational-

ly. Conclusion is given in Section 7 that briefly summarizes the 

numerical outcomes. 

2. Quintic b-spline functions 

To construct numerical solution, consider nodal points  x , tj n  

defined in the region    a,b 0,T  where 
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a x x ... x b,0 1 N

b a
h x x , j 0,1,..., N.j 1 j

N

    


   

 

 

0 t t ... t ... T,0 1 n

t n t, n 0,1,.... .n

     

  
 

 

The quintic B-spline basis functions at knots are given by: 

 

5(x x ) , x x xj 3 j 3 j 2

5 5(x x ) 6(x x ) , x x xj 3 j 2 j 2 j 1

5(x x )j 3

56(x x )j 2

515( x x ) , x x xj 1 j 1 j

5( x x )1 j 3B (x)j 5h 56(x x )j 2

515( x x ) , x x xj 1 j j 1

5( x x )j 3

56(x x ) , x x xj 2 j 1 j 2

5( x x ) , x x xj 3 j 2 j

    

       

 

 

   

  

 

   

  

    

     3

0 otherwise

























 



     (5) 

 

Using quintic B-spline basis function (5) the values of B (x)j and 

its derivatives at the knots points can be calculated, which are 

tabulated in Table 1. 

3. Solution of CKdV equation 

To apply the proposed method, we rewrite (1) and (2) as 

 

u(x, t) u(x, t) u(x, t)
a 6u(x, t)

3t xx

v(x, t)
2b v(x, t) 0,

x

v(x, t) v(x, t) v(x, t)
3u (x, t) 0,

3t xx

   
      

 
  

  
  

 

 

 

We take the approximations nu(x, t) U
j

 and nv(x, t) V
j

 , then from 

famous Cranck–Nicolson scheme and forward finite difference 

approximation for the derivative t ,[14]. We get 

 

n 1 nU Uxxx xxxj jn 1 nU U
j j 2

a
n 1 nk (UU ) (UU )x xj j

6
2

n 1 n(VV ) (VV )x xj j
2b ,

2

 
    

  
 

 
  

 
 
 
  

                                     (6) 

n 1 n n 1 nV V V Vxxx xxxj j j j

k 2

n 1 n(UV ) (UV )x xj j
3 ,

2

   
 

   
  

 
 
 
  

                                            (7) 

Where k t   is the time step? 

 
Table 1: The Values of Quintic B-Spline and Its First and Second Deriva-

tives at the Knots Points 

x  x j 3  x j 2  x j 1  x j  x j 1  x j 2  x j 3  

Bj  0 1 26 66 26 1 0 

Bj  0 
5

h


 

50

h


 0 

50

h
 

5

h
 0 

Bj  0 
20

2h
 

40

2h
 

120

2h


 

40

2h
 

20

2h
 0 

Bj  0 
60

3h


 

120

3h
 0 

120

3h
  

60

3h
 0 

 

In the Crank–Nicolson scheme, the time stepping process is half 

explicit and half implicit. So the method is better than simple fi-

nite difference method. 

The nonlinear terms in Eqs. (6) and (7) is linearized using the 

form given by Rubin and Graves [15] as: we take linearization of 

the nonlinear term as follows 

 

n 1 n n 1 n 1 n n n(UV ) U V U V U V ,x x x xj j j j j j j

n 1 n n 1 n 1 n n n(VV ) V V V V V V ,x x x xj j j j j j j

n 1 n n 1 n 1 n n n(UU ) U U U U U Ux x x xj j j j j j j

    

    

    

                                (8) 

 

Expressing U(x, t) and V(x, t) by using quintic B-spline functions

B (x)j and the time dependent parameters c (t)j and (t),j for U(x, t)

and V(x, t) respectively, the approximate solution can be written 

as: 

 

N 2
U (x, t) c (t) B (x),N j j

j 2


 



 
N 2

V (x, t) (t) B (x),N j j
j 2


 



               (9) 

 

Using approximate function (9) and quintic B-spline functions (5), 

the approximate values U(x), V(x) and their derivatives up to sec-

ond order are determined in terms of the time parameters c (t)j and

(t),j respectively, as 

 

U(x ) c 26c 66c 26c c ,j j j 2 j 1 j j 1 j 2

5
U U (x ) (c 10c 10c c ),j j j 2 j 1 j 1 j 2

h

20
U U (x ) (c 2c 6c 2c c ),j j j 2 j 1 j j 1 j 22h

60
U U (x ) ( c 2c 2c c ),j j j 2 j 1 j 1 j 23h

V(x ) 26 66 26j j j 2 j 1 j j 1

U

V

        

        

         

         

             ,j 2

5
V V (x ) ( 10 10 ),j j j 2 j 1 j 1 j 2

h

20
V V (x ) ( 2 6 2 ).j j j 2 j 1 j j 1 j 22h

60
V V (x ) ( 2 2 ).j j j 2 j 1 j 1 j 23h



            

              

            

                  (10) 

On substituting the approximate solution for U, V and its deriva-

tives from Eq. (10) at the knots in Eqs. (6) and (7) yields the fol-

lowing difference equation with the variables c (t)j and (t)j . 
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n 1 n 1 n 1 n 1A c A c A c A c1 2 3 4j 2 j 1 j j 1

n 1 n 1 n 1 n 1A c A A A5 6 7 8j 2 j 2 j 1 j

n 1 n 1 nA A A c9 10 11j 1 j 2 j 2

n n n nA c A c A c A c ,12 13 14 15j 1 j j 1 j 2

      
  

        
  

      
  

  
  

                                       (11) 

 
n 1 n 1 n 1 n 1B B B B1 2 3 4j 2 j 1 j j 1

n 1 n 1 n 1 n 1B B c B c B c5 6 7 8j 2 j 2 j 1 j

n 1 n 1 nB c B c A9 10 11j 1 j 2 j 2

n n n nA A A A ,12 13 14 15j 1 j j 1 j 2

          
  

      
  

     
  

      
  

                                       (12) 

 

Where 

 

30a t 15a t 15a t
A 1 z z ,1 2 13 h hh

30a t 15a t 15a t
A 26 2 26 z 10 z ,2 2 13 h hh

15a t
A 66 66 z ,3 2

h

30a t 15a t 15a t
A 26 2 z 10 z ,4 2 13 h hh

30a t 15a t 15a t
A 1 z z ,5 2 13 h hh

5b t 5b t
A z z ,6 4 3

h h

5b t 5b t
A 26 z 10 z ,7 4 3

h h

A 68

  
   

  
   


 

  
   

  
   

 
  

 
  

 
5b t

6 z ,4
h

5b t 5b t
A 26 z 10 z ,9 4 3

h h



 
  

 
 

5b t 5b t
A z z ,10 4 3

h h

30a t
A 1 ,11 3h

30a t
A 26 2 ,12 3h

A 66,13

30a t
A 26 2 ,14 3h

30a t
A 1 ,15 3h

 
  


 


 




 


 

 

 

30 t 15 t
B 1 z ,1 13 2hh

30 t 15 t
B 26 2 10 z ,2 13 2hh

30 t 15 t
B 66, B 26 2 10 z ,3 4 13 2hh

30 t 15 t
B 1 z ,5 13 2hh

15 t
B z ,6 4

2h

15 t
B 26 z ,7 4

2h

15 t
B 66 z ,8 4

2h

15 t
B 26 z ,9 4

2h

15 t
B z ,10 4

2h

B 1, B 26,11 12

B 66, B 26, B 1,13 14 15

z1

 
  

 
  

 
   

 
  
















 

  

c 26c 66c 26c c ,j 2 j 1 j j 1 j 2

z c 10c 10c c ,2 j 2 j 1 j 1 j 2

z 26 66 26 ,3 j 2 j 1 j j 1 j 2

z 10 10 ,4 j 2 j 1 j 1 j 2

       

      

            

          

 

 

The system thus obtained on simplifying Eqs. (11) and (12) con-

sists of (2N 2) linear equations in the (2N 10) unknowns 

 

,),,.......,,,( 21,012
T

NNN cccccc   

 

T( , , ......., , , ) .2 1 0, N N 1 N 2        
 

 

To obtain a unique solution to the resulting system four additional 

constraints are required. These are obtained by imposing boundary 

conditions. Eliminating c ,c ,c ,c2 1 N 1 N 2    and

, , ,2 1 N 1 N 2       the system get reduced to a matrix system of 

dimension (2N 2)  (2N 2)  which is the penta-diagonal system 

that can be solved by any algorithm. 

4. Initial values 

To find the initial parameters 0c
j

and 0
j

 , the initial conditions and 

the derivatives at the boundaries are used in the following way 

 

 

 

 

 

 

 

,0)26

2(
20

)0,(

,0)1010(
5

)0,(

,0)2

62(
20

)0,(

,0)10

10(
5

)0,(

,026

6626)0,(

,0)262(
20

)0,(

,0)1010(
5

)0,(

210

1220

21120

21

122

21

12

21

12

2101220

21120

















































h
xV

h
xV

cc

ccc
h

xU

cc

cc
h

xU

cc

cccxU

ccccc
h

xU

cccc
h

xU

NN

NNNN

NN

NNN

jj

jjjj

jj

 



126 International Journal of Applied Mathematical Research 

 
 

 

 

,0)2

62(
20

)0,(

,0)10

10(
5

)0,(

,02666

26)0,(

21

122

21

12

21

12

























NN

NNNN

NN

NNN

jjj

jjj

h
xV

h
xV

xV













 

 

Which forms a linear block pintadiagonal system for unknown 

initial conditions 0c
j

and 0
j

 , of order (2N 2) after eliminating the 

functions values of c and  . This system can be solved by any 

algorithm. Once the initial vectors of parameters have been calcu-

lated, the numerical solution of the CKdV equation U and V  can 

be determined from the time evaluation of the vectors nc
j

and n
j

 , 

by using the recurrence relations 

 

n n n n nU(x , t ) c 26c 66c 26c c ,j n j 2 j 1 j j 1 j 2

n n n n nV(x , t ) 26 66 26 .j n j 2 j 1 j j 1 j 2

    
   

         
   

 

5. Stability analysis of the method 

The stability analysis of nonlinear partial differential equations is 

not easy task to undertake. Most researchers copy with the prob-

lem by linearizing the partial differential equation. Our stability 

analysis will be based on the Von-Neumann concept in which the 

growth factor of a typical Fourier mode defined as 

 

n nc A exp(ij ),
j

n nB exp(ij ),
j

  

   

                                                                       (13) 

 

n 1
g ,

n





 

 

Where A and B are the harmonics amplitude, k h   , k is the 

mode number, i 1  and 

g is the amplification factor of the schemes. We will be applied 

the stability of the quintic schemes by assuming the nonlinear term 

as a constants ,1 2  . This is equivalent to assuming that all the nc
j

and n
j

  as a local constants ,1 2  respectively. At x x j  systems 

(11) and (12) can be written as 

 

n 1 n 1 n 1 n 1a c a c a c a c1 2 3 4j 2 j 1 j j 1

n 1 n 1 n 1a c a a5 6 7j 2 j 2 j 1

n 1 n 1 na a a c8 9 10j 1 j 2 j 2

n n n na c a c a c a c11 12 13 14j 1 j j 1 j 2

n 1 n 1 n 1 n 1a a a a ,6 7 8 9j 2 j 1 j 1 j 2

      
  

     
  

      
  

  
  

          
   

                                       (14) 

 

Where 

 

30a t 15a t
a 1 ,1 13 hh

60a t 150a t
a 26 ,2 13 hh

a 66,3

60a t 150a t
a 26 ,4 13 hh

 
   

 
   



 
     

 

30a t 15a t
a 1 ,5 13 hh

5b t
a ,6 2

h

150b t
a ,7 2

h

150b t
a ,8 2

h

5b t
a ,9 2

h

30a t 15a t
a 1 ,10 13 hh

60a t 150a t
a 26 , a 66,11 1 123 hh

60a t 150a t
a 26 ,13 13 hh

30a t 15a t
a 1 ,14 13 hh

 
   


  


  


 


 

 
   

 
    

 
   

 
   

 

 

n 1 n 1 n 1 n 1 n 1d d d d d1 2 3 4 5j 2 j 1 j j 1 j 2

n n n n nd d d d d ,5 4 3 2 1j 2 j 1 j j 1 j 2

             
   

        
   

                           (15) 

 

Where 

 

30 t 15 t
d 1 ,1 13 2hh

60 t 150a t
d 26 ,2 13 2hh

d 66,3

60 t 150 t
d 26 ,4 13 2hh

30 t 15 t
d 1 .5 13 2hh

 
   

 
   



 
   

 
   

 

 

Substituting (13) into the difference (14), we get 

 

 A 2cos 2 52cos 66

30a t 15a t
2A 13 hhsin 2

5b t
2Bn 1 2

h
i

60a t 15a t
2A 13 hhsin

150b t
2B 2

h
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 A 2cos 2 52cos 66

30a t 15a t
2A 13 hhsin 2

5b t
2Bn 2

h
i

60a t 15a t
2A 13 hhsin

150b t
2B 2

h

   
 
     

       
        

           
  

      
        
     
         

      

,








 

 

We get 

 

X i Y
g ,

X i Y





                                                                                 (16) 

 

Where 

 

 X A 2cos2 52cos 66    

 

And 

 

30a t 15a t 5b t
sin 2 2A 2B1 23 h hh

Y
60a t 15a t 150b t

sin 2A 2B1 23 h hh

      
               

 
       

                 

 

 

Similar substituting (13) into the difference (15), we get 

 

 

 

2cos 2 52cos 66

30 t 15 t
sin 2 1n 1 3 2hh

2i
60 t 15 t

sin 13 2hh

A 2cos 2 52cos 66

30 t 15 t
sin 2 1n 3 2hh

2i
60 t 1

sin
3h

    
 

     
               

  
      

         
    

   

   
         




  

,

5 t
1

2h

 
 

  
  
  
  

     
      

    

 

 

We get 

 

X i Y
g ,

X i Y





                                                                                 (17) 

 

Where 

 

 X 2cos2 52cos 66    

 

And 

 

30 t 15 t
sin 2 13 2hh

Y 2
60 t 15 t

sin 13 2hh

    
          

  
     

        
   

 

 

From (16) and (17) we get g 1,  hence the schemes are uncondi-

tionally stable. It means that there is no restriction on the grid size, 

i.e. on h and t , but we should choose them in such a way that the 

accuracy of the scheme is not degraded. 

6. Numerical Tests and Results of CKdV 

equation 

In this section, we present some numerical examples to test validi-

ty of our scheme for solving CKdV equation.  

The norms L2 -norm and L -norm are used to compare the nu-

merical solution with the analytical solution [16]. 

 

N
E N E N 2L u u h (u u ) ,2 j j

i 0

E NL max u u , j 0,1, , N.
j j

j

   


  

                                           (18) 

 

Where Eu  is the exact solution u  and Nu  is the approximation 

solution UN .  

And the quantities I , I1 2  and I3 are shown to measure conserva-

tion for the schemes. 

 

 

 

N n
I u(x, t) dx h U ,1 j

j 0

n
2 2u(x, t) UN

I dx h ,2 2 22 2bv(x, t) bVj 0
3 3 j

3u(x, t)
(1 a) 1 2u (x, t)x

2I dx3
2u(x, t)v(x, t)

b
2v (x, t)x

n
3U

j
(1 a)

1
U

2
h

  


    
         

   
   

  
  

   
       

    
  
   





 

 

 

.

n
2

x
N j

,
nj 0 2UV
j

b
n

2Vx
j





















  
  
  

   
  
  

         
  
  
  
  
    

                                

(19) 

 

Now we can studying our scheme from these problems.  

6.1. Single soliton 

Consider the CKdV equation (1) and (2) with the following initial 

and boundary conditions: 

 
u(x,0) v(x,0) 0, a x b.     

 

And 

 
u(a, t) 0, u(b, t) 0,

v(a, t) 0, v(b, t) 0,

u (a, t) 0, u (b, t) 0,x x

v (a, t) 0, v (b, t) 0, 0 t T.x x

 

 

 

   

  

The exact solution is 
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2 2u(x, t) 2 sec h ,

1
v(x, t) sec h ,

2

12x t ,
2 log

b
, 0 t T, a x b.

48 4a 1

  

 


     



     

 

 

 

Now we can take three cases with different values of the parame-

ters a, b . 

Case one: we can take a 0.5, b 3, 0.5, h 0.1, k 0.01       and

25 x 25.    

Case two: we can take a 0.5, b 3, 0.5, h 0.1, k 0.01       and

25 x 25.     

Case three: we can take a 0.125, b 3, 0.5, h 0.1, k 0.01       

and 25 x 25.     

Then we can studying case by case. 

Case one: 

Now, for comparison, we consider a test problem where, 

a 0.5, b 3, 0.5,      h 0.1, k 0.01   and 25 x 25    . The sim-

ulations are done up to t 5 . The invariant I , I1 2  and I3  approach 

to zero. Errors, also, at time 5 are satisfactorily small L2 -error =

61.88599 10 and L -error = 61.05770 10 for approximation 

solution of u(x, t) and L2 -error = 52.95667 10 and L -error =

58.57852 10 for approximation solution of v(x, t)  . Our results 

are recorded in Table 2 and Table 3. The motion of solitary wave 

using our scheme is plotted at times t 0,5,10 in Fig.1. These re-

sults illustrate that the scheme has a highest accuracy. 

 
Table 2: Single Soliton (Conserved Quantities) for t 5.0 ,

a 0.5, b 3, 0.5, h 0.1, k 0.01        and 25 x 25.    

T I1  I2  I3  

0.0 
1.0 

2.0 

3.0 
4.0 

5.0 

2.00000 
2.00000 

2.00000 

2.00000 
2.00000 

2.00000 

-0.33333 
-0.33333 

-0.33333 

-0.33333 
-0.33333 

-0.33333 

-0.10000 
-0.10000 

-0.10000 

-0.10000 
-0.10000 

-0.10000 

 

Table 3: L2 - Norm and L - Norm for t 5.0 ,

a 0.5, b 3, 0.5, h 0.1, k 0.01        and 25 x 25.    

T  
u(x, t)  v(x, t)  

L2 - norm L - norm L2 - norm L - norm 

0.0 
1.0 

2.0 

3.0 
4.0 

5.0 

0.00000000 
6.06802E-7 

8.99862E-7 

1.18161E-6 
1.28135E-6 

1.88599E-6 

0.00000000 
3.97188E-7 

5.47651E-7 

6.89839E-7 
6.98286E-6 

1.05770E-6 

0.00000000 
4.43377E-6 

6.08938E-6 

7.21810E-6 
1.06873E-5 

2.95667E-5 

0.00000000 
3.02357E-6 

3.83209E-6 

4.73962E-6 
2.21990E-6 

8.57852E-5 

 

(A) 

 

(B) 

 
Fig. 1: Single Solitary Wave with 

a 0.5, b 3, 0.5, h 0.1, k 0.01        and 25 x 25.   t 0,5,10  

Respectively. 

 

Case two: 

Now, for comparison, we consider a test problem where, 

a 0.5, b 3, 0.5,     h 0.1, k 0.01  and 25 x 25   . The simula-

tions are done up to t 2 . The invariant I , I1 2  and I3  approach to 

zero. Errors, also, at time 5 are satisfactorily small L2 -error =

77.00355 10 and L -error = 74.09784 10 for approximation 

solution of u(x, t) and L2 -error = 61.77647 10 and L -error =

61.30660 10 for approximation solution of v(x, t)  . Our results 

are recorded in Table 4 and Table 5. The motion of solitary wave 

using our scheme is plotted at times t 0,5,10 in Fig.2. These re-

sults illustrate that the scheme has a highest accuracy. 

 
Table 4: Single Soliton (Conserved Quantities) for t 5.0 ,

a 0.5, b 3, 0.5, h 0.1, k 0.01        and 25 x 25.    

T I1  I2  I3  

0.0 

1.0 
2.0 

3.0 

4.0 
5.0 

2.00000 

2.00000 
2.00000 

2.00000 

2.00000 
2.00000 

0.10000 

0.10000 
0.10000 

0.10000 

0.10000 
0.10000 

0.30000 

0.30000 
0.30000 

0.30000 

0.30000 
0.30000 

 

Table 5: L2 - Norm and L - Norm for t 2.0 ,

a 0.5, b 3, 0.5, h 0.1, k 0.01        and 25 x 25.    

T  
u(x, t)  v(x, t)  

L2 - norm L - norm L2 - norm L - norm 

0.0 

0.5 

1.0 
1.5 

2.0 

0.00000000 

4.15923E-7 

5.59712E-7 
6.41255E-7 

7.00355 E-7 

0.00000000 

2.96761E-7 

3.42588E-7 
3.75058E-7 

4.09784E-7 

0.00000000 

9.64209E-7 

1.34329E-6 
1.57957E-6 

1.77647E-6 

0.00000000 

7.91019E-7 

1.03821E-6 
1.10122E-6 

1.30660E-6  
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(B) 

 
Fig. 2: Single Solitary Wave with 

a 0.5, b 3, 0.5, h 0.1, k 0.01        and 25 x 25.   t 0,5,10  

Respectively. 

 

Case three: 

Now, for comparison, we consider a test problem where, 

a 0.125, b 3, 0.5,      h 0.1, k 0.01  and 25 x 25   . The 

simulations are done up to t 1.5 . The invariant I , I1 2  and I3  

approach to zero. Errors, also, at time 5 are satisfactorily small L2

-error = 62.97019 10 and L -error = 68.94033 10 for approxi-

mation solution of u(x, t) and L2 -error = 79.91664 10 and L -

error = 77.21469 10 for approximation solution of v(x, t)  . Our 

results are recorded in Table 6 and Table 7. The motion of solitary 

wave using our scheme is plotted at times t 0,5,10 in Fig.3. These 

results illustrate that the scheme has a highest accuracy. 

 
Table 6: Single Soliton (Conserved Quantities) for t 5.0 ,

a 0.125, b 3, 0.5, h 0.1, k 0.01         and 25 x 25.    

T I1  I2  I3  

0.0 
1.0 

2.0 

3.0 
4.0 

5.0 

2.00000 
2.00000 

2.00000 

2.00000 
2.00000 

2.00000 

0.50000 
0.50000 

0.50000 

0.50000 
0.50000 

0.50000 

0.15000 
0.15000 

0.15000 

0.15000 
0.15000 

0.15000 

 

Table 7: L2 - Norm and L - Norm for t 1.5 ,

a 0.125, b 3, 0.5, h 0.1, k 0.01         and 25 x 25.    

T  
u(x, t)  v(x, t)  

L2 - norm L - norm L2 - norm L - norm 

0.0 

0.5 

1.0 

1.5 

0.00000000 

1.65004E-7 

2.92610E-7 

 2.97019E-6  

0.00000000 

1.42865E-7 

1.88360E-7 

8.94033E-6 

0.00000000 

6.06562E-7 

8.43919E-7 

9.91664E-7 

0.00000000 

5.17435E-7 

6.79108E-7 

7.21469E-7 

 

(A) 

 
 

 

 

 

 

(B) 

 
Fig. 3: Single Solitary Wave with 

a 0.125, b 3, 0.5, h 0.1, k 0.01         and 25 x 25.   t 0,5,10  

Respectively. 

 
Table 8: Comparison of Numerical Results of the Problem (1) with the 

Results Obtained from [16] and [6] for the Variable u and v  with, 

a 0.5, b 3, 0.5,     25 x 25   at t 1 . 

Schemes at t 1  

u(x, t)  v(x, t)  

L2 - 

norm 

L - 

norm 

L2 - 

norm 

L - 

norm 

 our scheme 

Petrov-Galerkin [6] 

Product approxima-
tion [6] 

Collocation (Ismail 

[4]) 

 0.000000 

- 
- 

- 

 0.000000 

0.000051 
0.000014 

0.000000 

 0.000004 

- 
- 

- 

 0.000003 

0.000027 
0.000019 

0.000003 

 

In table 8 we show that our results are related with the results in 

[4] and better than the results in [6]. 

6.2. Interaction of two solitary waves 

The interaction of two solitary waves having different amplitudes 

and traveling in the same direction is illustrated. We consider 

CKdV equation with initial conditions given by the linear sum of 

two well separated solitary waves of various amplitudes 
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1
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2 log j
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                                         (20) 

 

Where j 1,2,    j  and y j are arbitrary constants. In our computa-

tional work. Now, we choose 0.9, 0.5,y 5, y 5,1 2 1 2     

a 0.5,b 3, h 0.1,    k 0.01 with interval [-25, 25]. In Figs. 3 

and 4, the interactions of these solitary waves are plotted at differ-

ent time levels.  
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(A) 

 
(B) 

 
Fig. 3: Interaction Two Solitary Waves with 

0.9, 0.5,y 5, y 5,1 2 1 2       h 0.1,  k 0.01, 25 x 25    at 

Time t 0 for Values u and v  Respectively. 

 

(A) 

 
 

(B) 

 
Fig. 4: Interaction Two Solitary Waves with 

0.9, 0.5,y 5, y 5,1 2 1 2       h 0.1,  k 0.01, 25 x 25    at 

Time t 30 for Values u and v  Respectively. 

6.3. Interaction of three solitary waves 

The interaction of two solitary waves having different amplitudes 

and traveling in the same direction is illustrated. We consider 

CKdV equation with initial conditions given by the linear sum of 

three well separated solitary waves of various amplitudes 
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Where j 1,2,3,    j  and y j are arbitrary constants. In our computa-

tional work. Now, we choose  

1, 0.9, 0.8,y 20, y 16,y 12,1 2 3 1 2 2        

a 0.5,b 3, h 0.1,    k 0.01 With interval [-25, 25]. In Figs. 5 

and 6, the interactions of these solitary waves are plotted at differ-

ent time levels. 

 

(A) 

 
 

(B) 

 
Fig. 5: Interaction Three Solitary Waves with

1, 0.9, 0.8,y 20, y 16,1 2 3 1 2         

y 12,h 0.1, k 0.01, 25 x 252        at Time t 0 for Values u and 

v  Respectively. 
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(B) 

 
Fig. 6: Interaction Three Solitary Waves with

1, 0.9, 0.8,y 20, y 16,1 2 3 1 2           

y 12,h 0.1, k 0.01, 25 x 252       at Time t 40 for Values u and 

v  Respectively. 

7. Conclusions 

In this paper a numerical treatment for the nonlinear CKdV equa-

tion is proposed using a collection method with the quintic B-

splines. The stability analysis of the method is shown to be un-

conditionally stable. We make linearization for the nonlinear term. 

We tested our schemes through a single solitary wave in which the 

analytic solution is known, then extend it to study the interaction 

of solitons where no analytic solution is known during the interac-

tion. The accuracy of our scheme was shown by calculating error 

norms L2 and L this document can be used as a template for 

Microsoft Word versions 6.0 or later. Do not submit papers writ-

ten with other editors than MS Word, it will not be accepted for 

review. Save the files to be compatible with many versions of 

MSWord (avoid other document extension than *.doc, *.docx or 

*.rtf). Do not submit papers without performing a carefully spell-

check and English language grammar check. The style from these 

instructions will adjust your fonts and line spacing. Please do not 

change the font sizes or line spacing to squeeze more text into a 

limited number of pages. 
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