Purdue University

Purdue e-Pubs

1975

Collocation Methods for Linear Elliptic Problems

Elias N. Houstis

Purdue University, enh@cs.purdue.edu

Report Number:

77-255

Houstis, Elias N., "Collocation Methods for Linear Elliptic Problems" (1975). Department of Computer Science Technical Reports. Paper 188.
https://docs.lib.purdue.edu/cstech/188

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

COLLOCATION METHONS FOR ITNEAR ELLIPTIC PROBLENS
E. N. Houstis

Computer Science Purdue Iniversity

CSD-TR 255

COLLOCATION METHODS FOR LINEAR ELLJPTIC PROBLEMS

E. N. Houstis

Abstract. Collocation methods based on plecewise Hermite cublc polynomials are applled to llnear elliptlc problems subject to Dirichlet and Neumann boundary conditlons on rectangular domalns. A priori estlmates are obtained for the error of approximation.

Introductlon. We consider the problem of approximating linear elliptic boundary value problems subject to Dirichlet and Neúnann boundary conditions on rectangular domains. The methods used and analyzed in this paper are collocation on Ilnes and two-dimensional collocation based on plecewise cubic Hermite polynomials.

The method of collocation on IInes has been applled by Yartsev [9], [10], [ll] for solving elliptic and biharmonic type problems using trigonometric polynomials. More recently, blcublc splines have been used in [1], [7] to obtain a second order collocation method for solving a inear self adjoint elliptic problem with Dirichlet boundary conditions. The twodimensional collocation scheme studled in this paper has been experimentally applied in [5], [6] for the solution of llnear elliptlc problems on curved domains and found more efficient than standard finite differences and other finite element methods.
In the case of llnear self adjolnt Elliptic equatlons with Olrlchlet boundary condltions and the same two-dimenslonal collocation method, Prenter and Russell [8] derived optlmal estimates by assuming the existence of the collocation approximation and unjform bounds on
partial derivatives of the approximating error. Our analysis is applied to more general elliptic boundary value problems and it is free of such assumptions.

1. Collocatlon on lines. Wa consider the linear elliptic problem
(1.1) $L u \equiv a D_{x}^{2} u+2 b D_{x} D_{y} u+C D_{y}^{2} u+d D_{x} u+\theta D_{y} u+f u-g i n \Omega \equiv(0,1) \times(0,1)$ subject to boundary conditions
(1.2) $B u \equiv \alpha \frac{\partial u}{\partial n}+\beta u=0 \quad$ on $\partial \Omega=$ boundary of Ω with elther $\alpha \equiv 0$ or $\beta \equiv 0$ but not both and $f \leq 0$.

Throughout we assume that (1.1), (1.2) has a solution. We denote this solution by u. Let $\Delta_{x} \equiv\left\{0=x_{0}<x_{1}<\ldots .<x_{N}=1\right\}$ be a partition of $[0,1]$, \mathbb{T}_{3} the set of cubic polynomials and $\mathbb{T}_{3, \Delta_{x}}$ the set of piecewise cubic polynomials with respect to Δ_{x}.

We seek an approximate solution of (1.1), (1.2) In the form
(1.3) $\quad U_{\Delta_{x}}(x, y)=\sum_{j=1}^{2 N+2} \phi_{i}(y) B_{i}(x)$
where $\left\{B_{i}(x)\right\}_{i=1}^{2 N+2}$ is a set of basis functions for the space of plecewlse Hernite cuble polynomiais $H_{\Delta_{x}}^{3} \equiv \mathbb{P}_{3, \Delta_{x}} \cap \mathrm{c}^{\prime}$ and $B u_{\Delta_{x}} \equiv 0$ at $x=0$ and 1 .

We choose a set of "collocation" polnts
(1.4) $\quad \xi_{1, \ell} \equiv \frac{x_{i}+x_{1+1}}{2}+\rho_{\ell} \frac{x_{1+1}-x_{1}}{2}, i=0, \ldots, N-1 \ell=1,2$
where $\left\{\rho_{2}\right\}_{1}^{2}$ are the roots of second degree Legendre polynomlals with respect to the interval $[-1,1]$.

Using the collocation method on lines we shall determine the ϕ_{l} functlons by the system of second order differentlal equations
(1.5) $\left.\left\{L_{\Delta_{x}}(x, y)-f(x, y)\right\}\right|_{x}=\xi_{1, \ell}=0$,
for $\ell=1,2 ; 1=0,1, \ldots, N-1$ with boundery conditions
(1.6) $\quad\left\{\alpha \frac{\partial u_{x}}{\partial n}+\beta u_{A}\right\}^{2}\left\{x=\xi_{1, \ell}, 0\right)=0$,
(1.7) $\quad\left\{\alpha^{\partial{ }^{u} \frac{\partial x}{\partial}}+\beta u_{i}\right\}\left(x=\xi_{1, \ell}, 1\right)=0$.

We denote by $L u_{H} \equiv\left\{L L_{H}\right.$ with $\left.U_{H} \in H_{\Delta_{X}}^{3}\right\}$ and define the interpolation operator

$$
Q_{\Delta_{x}}: L^{2}(\Omega)+L u_{H}
$$

such that for $f \in L^{2}(\Omega)$

$$
\begin{array}{r}
\left\{Q_{\Delta_{x}} f-f\right\}_{x}=\xi_{i, \ell}=0 \\
\text { for } \ell=1,2 ; i=0,1, \ldots, N-1 .
\end{array}
$$

The boundary value problem (1.5) - (1.7) can be written equivalently as

$$
\text { (1.8) } \quad L U_{A}=Q_{\Delta_{x}} f \text { in } \Omega
$$

with $u_{\Delta_{x}}$ satisfying the boundary conditions (1.6), (1.7).
2. Error analysis. In this section, we derive a prlori bounds for the collocation on lines procedure; first for the boundary value problem (I.I), (1.2) in the L^{∞}-norm and second for a self-adjoint elliptic problem in the L^{2}-norm. Let $\mathrm{W}^{\mathrm{k}, \mathrm{P}}(\Omega)$ be the Sobolev space of functions having L^{P}-derivatives of order k on Ω. If X is a normed space and $\psi:[0,1] \rightarrow x$, define

$$
\|\psi\|_{L^{2}(x ; 0,1)}=\int_{0}^{1}\|\psi(y)\|_{X}^{2} d y,\|\psi\|_{L^{\infty}(x ; 0,1)}=\sup \|\psi(y)\|_{0 \leqslant y \leq 1}
$$

THEOREM 2.1. Assume the solution u of (1.1), (1.2) is in $L^{\infty}\left(w^{6, \infty} ; 0,1\right)$.
If (i) the Green's function $G(x, y ; \xi, \eta)$ for (1.1), (1.2) exists,
(ii) $\|\left. D_{\xi}{ }^{i} G\right|_{L(\Omega 0 \Omega)} ^{\infty} \leq K, i=0, \ldots, n$, considering $G(x, y ; \cdot, \eta)$ as an elemant of $c^{(n)}[0, x] \times c^{(n)}[x, 1]$,
and
(111) the confficients of L are in $L^{\infty}\left(C^{(2+n)} ; 0,1\right)$,
then
(a) the collocation on ilnes approximation $u_{\Delta_{x}}$ exists, and
(b) for the error of approximation we have
(2.1) $\quad\left\|u-u_{\Delta_{x}}\right\|_{L^{\infty}(\Omega)} \leq c(\Delta x)^{2+m \ln (n, 2)}$
where $\Delta x=\max \left|x_{1+1}-x_{1}\right|$ and c is a ganeric constant independent of $\Delta x_{\text {. }}$
Proof. The existence and unlqueness of $u_{\Delta_{X}}$ for each $y \in[0,1]$ is a direct consequence of Theorem (3.1) in [2]. Furthermore, from the same theorem we obtain an estlmate for the error and its derlvatives:

$$
\text { (2.2) } \max _{\{x, y) \varepsilon \Omega}\left|D_{x}^{i}\left(u(x, y)-u_{\Lambda_{x}}(x, y)\right\rangle\right| \leq c\left(\langle x)^{2}, i=0,1,2\right.
$$

where C is a constant Independent of Δx.
Also, provided the coefficients of the operator are in $c^{(2+n)}([0,1])$ as functions of x, Lemma 4.1 in [2] Implies that there exists constant c Independent of Δx such that

$$
\begin{aligned}
& \text { (2.3) } \max _{(x, y) \in\{ }\left|D_{x}^{2+1}\left(L u-L u_{\Delta_{x}}\right)(x, y)\right| \leq c \text { for } i=0, \ldots, n . \\
& \text { Let's denote by } r \equiv L u-L u_{\Delta_{x}} \text {. Since } r \text { vanishes at } \xi_{1, \ell} i=0, \ldots, N-1 ;
\end{aligned}
$$

$$
\ell=1,2 \text { then }
$$

(2.4) $r=r\left[\xi_{11}, \xi_{12}, x ; y\right]\left(x-\xi_{i 1}\right)\left(x-\xi_{12}\right)$

In the subinterval $\left[x_{1}, x_{1+1}\right]$, where $f\left[x_{0}, \ldots x_{n} ; y\right]$ is the nth divided difference of f on the polnts x_{0}, \ldots, x_{n}.

Assumption (i) implies that (1.1), (1.2) is uniquely solvable and
(2.5) $\quad\left(u-u_{\Delta_{x}}\right)(x, y)=\iint G(x, y ; \xi, \eta)\left(f-Q_{\Delta} f\right)(\xi, \eta) d \xi d \eta$ $=\int_{\Omega} G\left(x, y ; \xi_{n} \eta\right)\left(L u-u_{A_{x}}\right)(\xi, \eta) d \xi d \eta$.

By expanding In Taylor series the function

$$
F(x, y ; \xi, \eta) \equiv G(x, y ; \xi, \eta) r\left[\xi_{11}, \xi_{12}, \xi ; \eta\right]
$$

inside the interval $\left[x_{1}, x_{1+1}\right.$] we obtaln

$$
F(x, y ; \xi, \eta)=t(x, y ; \xi, \eta)+\frac{1}{n!} D_{\xi}^{n} F(x, y \tilde{y}(\xi), \eta)(\xi-\sigma)^{n}
$$

where t is a polynomial of degree at most $n-1$ with respect to ξ and $\tilde{\sigma}(\xi) \quad \varepsilon\left(x_{1}, x_{1+1}\right)$.

From the orthogonallty of the Legendre polynomlals we derive the relation
(2.6) $\quad\left(u-u_{\Delta_{x}}\right)(x, y)=\frac{1}{n!} \int_{0}^{1} \sum_{i=0}^{N-1} \int_{x_{1}}^{x_{i+1}} D_{\xi}^{n} F(x, y ; \tilde{\sigma}(\xi), \eta)(\xi-\sigma)^{n} \prod_{\ell=1}^{2}\left(\xi-\xi_{i} \ell^{\prime}\right) d \xi d \eta$ for $\boldsymbol{n} \leq 2$.

From the definition of $F(x, y ; \xi, n)$ we obtaln that
(2.7) $\quad D_{\xi}^{n} F\left(x, y ; \xi_{2} \eta\right) \frac{1}{(n+2\rangle I} \sum_{s=0}^{n}\left({ }_{2+s}^{n+2}\right\rangle\left(D_{\xi}^{n-s} G(x, y ; \cdot, N)(\xi)\left(D_{\xi}^{2+s} r\right)\left(\theta_{\xi, s^{2}} n\right)\right.$
with $\theta_{E_{\sigma}} \in\left(x_{1}, x_{1+1}\right)$.
If $x\left(x_{1}, x_{1+1}\right)$ then frem the asoumption (11), ralations (2.6), (2.7)
and the Inequallty (2,3)

$$
\left\|0_{\xi}^{2+s_{r}}\right\|_{L(\Omega)}^{\infty} \leq c \quad \text { for } s=0, \ldots, n
$$

so we obtain

$$
\leq C(\Delta x)^{2+\min (n, 2)}
$$

On the other hand if $x \in\left(x_{i}, x_{j+1}\right)$ then $G(x, y ; \cdot, n)$ ell ${ }^{l}{ }^{\infty}$ so that.
(2.9) $\left|\int_{0}^{3} \int_{x_{j}}^{x_{i+1}} D_{\xi} F(x, y ; \sigma(\xi), \eta)(\xi-\sigma) \prod_{\ell=1}^{2}\left(\xi-\xi_{i \ell}\right) d \xi_{j} d \eta\right| \leq c(\Delta x)^{4}$.

Conclusion b) follows from (2.8) - (2.9). This concludes the proof of Theorem 2.1:

Next, we conslder the self-adjolnt linear elliptic problem
(2.10) $\quad L \equiv-D_{x}\left(p D_{x} u\right)-D_{y}\left(q D_{y} u\right)+c u=f$ in $\Omega=(0,1) \times(0,1)$
subject to boundary condltions

$$
(2.11) \quad B(u)=0 \quad \text { on } 2 \Omega .
$$

Notice that the assumptions (i) and (11) of Theorem 2.1 are satlsfled for equation (2.10) with boundary conditions (2.11), see referérice $[3$, p.123].

THEOREM 2.2. Assume the solution u of (2.10). (2.11) is in $L^{2}\left(W^{5,2} ; 0,1\right)$ and the coefficients of L are $\ln L^{\infty}\left(C^{(2+n)} ; 0,1\right)$. Then
(α) for each $y \in(0,1)$ the collocation on lines approximation $u_{\Delta_{x}}$ exists in the space $H_{\Delta_{x}}^{3}$ and
(B) for the error of approximation we have
(2.12) $\quad\left\|u-u_{\Delta_{x}}\right\|_{W^{1,2}(\Omega)} \leq c(\Delta x)^{3}$
where C is independent of Δx.

Proof. The existence and uniqueness of the collocation on lines approximation
${ }^{u_{\Delta_{x}}}$ follows from arguments similar to those in the proof. of Theorem 2.1.
In order to derive the error estimate (2.12) we define
$F(x, y) \equiv\left(u-u_{\Delta_{x}}\right) r\left[\xi_{i]}, \xi_{12}, x ; y\right]$ and expand it in Taylor serles Inside the Interval $\left[x_{1}, x_{1+1}\right]$ to obtaln
(2.13) $\quad F(x, y)=t(x, y)+D_{x} F(\sigma(x), y)(x-\sigma)$,
where $t(x, y)$ is constant polynomial with respect to x and $\tilde{\sigma}(x) \in\left(x_{1}, x_{1+1}\right)$.
The relation (2.13) can be rewritten as

$$
F(x, y)=t(x, y)+D_{x}\left(u-u_{\Delta_{x}}\right) D_{x}^{2} r(\theta(x), y)(x-\sigma)+\left(u-u_{\Delta_{x}}\right) D_{x}^{3} r(\theta(x), y)(x-\sigma) .
$$

From the ellipticity of L we get

$$
\left\|u-u_{\Delta_{x}}\right\|_{\left.W, Q_{Q}^{2}\right)}^{2} \leq \int_{\Omega}\left(u-u_{\Delta_{x}}\right)\left(L u-L u_{\Delta_{x}}\right) d x d y \mid \leq \int_{0}^{1} \sum_{i=0}^{N-1} \int_{x_{1}}^{x_{i+1}}\left(u-u_{\Delta_{x}}\right)\left(L u-L u_{\Delta_{x}}\right) d x d y .
$$

Also from (2.3) and the choice of the collocation points we obtain

$$
\begin{aligned}
\left\|u-u_{\Delta_{x}}\right\|_{W^{\prime}(\Omega)}^{2} & \leq \int_{0}^{1} \sum_{i=0}^{N-1} \int_{x_{1}}^{x} D_{x} F(\tilde{\sigma}(x), y)(x-\sigma){ }_{\ell=1}^{2}\left(x-\xi_{1 \ell}\right) d x d y \\
& \leq c\left\{\left\|_{u-u_{\Delta_{x}}}\right\|_{L^{2}(\Omega)}+\left\|D_{x}\left(u-u_{\Delta_{x}}\right)\right\| \|_{L^{2}(\Omega)}\right\}(\Delta x)^{3} \\
& \leq c\left\|u-u_{\Delta_{x}}\right\|_{W^{2}(\Omega)}(\Delta x)^{3}
\end{aligned}
$$

Therefore

$$
\left\|u-u_{\Delta_{x}}\right\|_{W^{2}(\Omega)} \leq c(\Delta x)^{3}
$$

This concludes the proof of Theorem 2.2.

THEOREM 2.3. Assume the solution u of (2.10), (2.11) is In $i^{2}\left(W^{5}, 2 ; 0,1\right)$. If (i) the coefficients of L are in $L^{2}\left(C^{(2+n)} ; 0,1\right)$ and (il) L is strongly coersive, then, for the error of approximation we have
(2.14) $\left\|u-u_{\Delta_{x}}\right\|_{L^{2}(\Omega)} \leq c(\Delta x)^{4}$

Proof. We let

$$
\psi_{H}(x, y) \equiv\left(\left\|u-u_{\Delta_{x}}\right\|_{L^{2}(\Omega)}\right)^{-1}\left(u(x, y)-u_{\Delta_{x}}(x, y)\right)
$$

and consider the problem of finding the unique solution of $L \phi_{H}=\psi_{H}$, $B\left(\phi_{H}\right)=0$. From assumption (11) we get
(2.15) $\left\|D_{x}^{k} D_{Y} j_{\phi_{H}}\right\|_{L^{2}} \leq K\left\|\psi_{H}\right\|_{L^{2}} \quad(0 \leq k+j \leq 2)$.

From the definition of ϕ_{H} and since L is self adjoint we obtain

$$
\begin{aligned}
\left\|u-u_{\Delta_{x}}\right\|_{L^{2}(\Omega)} & =\left(\Psi_{H},{ }^{u-u_{\Delta_{x}}}\right) \\
& =\iint_{\Omega} \phi_{H}\left(L u-L_{\Delta_{x}}\right) d x .
\end{aligned}
$$

Let $r=L u-L u_{A_{x}}$. On the Interval $\left[x_{1}, x_{1+1}\right], r(\cdot, y)$ vanishes at $\xi_{\mathcal{H}, \ell}$ \& $=1,2$.
Hence, $r=r\left[\xi_{j 1}, \xi_{12}, x ; y\right]\left(x-\xi_{11}\right)\left(x-\xi_{12}\right)$.
Consider

$$
F(x, y)=\phi_{H}(x, y) r\left[\xi_{11}, \xi_{i 2}, x ; y\right]
$$

and expanding In Taylor's series Inside $\left(x_{1}, x_{1+1}\right)$ we obtain

$$
F(x, y)=t(x, y)+(x-x)^{2} D_{x}^{2} F\left(\sigma_{x, l}, y\right) .
$$

By orthogonality we get
(2.16) $\left\|u-u_{\Delta_{x}}\right\|_{L^{2}(\Omega)}=\sum_{i=0}^{N-1} \int_{0}^{1} f_{x_{1}}^{x_{i+1}}\left\{\prod_{\ell=1}^{2}(x-5 \mid \ell) f_{x_{1}}^{x} D_{x}^{2} F(s, y)(x-5) d s\right\} d x d y$
where

$$
D_{x}^{2} F(s, y)=D_{x}^{2} \phi_{H}\left(D_{x}^{2} r\right)\left(\theta_{s, i}\right)+D_{x} \phi_{H}\left(D_{x}^{3} r\right)\left(\theta_{s, i}\right)+\phi_{H}\left(D_{x}^{4} r\right)\left(\theta_{s, i}\right)
$$

From (2.3), (2.15), (2.16) we obtain the inequality

$$
\begin{aligned}
& \left\|u-u_{\Delta_{x}}\right\| \|_{L}{ }^{2}(\Omega) \leq(\Delta x)^{4} \sum_{i=0}^{N-1} \int_{0}^{1}\left(\left\|D_{x}^{2} \phi_{H} \nu_{x}^{2} r\right\|_{L}^{2}\left(I_{i}\right)^{+\left\|D_{x} \phi_{H} D_{x}^{3} r\right\|_{L}^{2}\left(q_{i}\right)}+\right. \\
& \left\|D_{x}^{2} \phi_{H} D_{x}^{4} r\right\|_{L} 2\left(H_{i}\right) \leq C(\Delta x)^{4}
\end{aligned}
$$

This concludes the proof of Theorem 2.3.
3. Two-dimensional collocation. In this section we consider the problem of approximating the solution of (1.1), (1.2) by a plecewise blcublc Hermite polynomial. Let $\Delta y=\left(y_{j}\right)_{o}^{\mu+1}$ be a partition of $[0,1]$ In the $y-d i r e c t i o n$ and $\Delta y=\max _{j}\left|y_{j+1}-y_{j}\right|$.

Also, we denote by $\Delta \equiv \Delta_{x} x \Delta_{y}$ a partition of Ω and by H_{Δ}^{3} the vector space of all piecewise bicubic polynomials $p(x, y)$ with respect to Δ such that $D_{x}^{\ell_{D_{y}}^{n} p}(x, y)$ is continuous on Ω for all $0 \leq \ell, n \leq 1$. The Gaussian points In the interval $\left[y_{i}, y_{i+1}\right]$ are

$$
\begin{equation*}
\eta_{i, m} \equiv \frac{y_{i}+y_{i+1}}{2}+\rho_{m} \frac{y_{i+1}-y_{1}}{2}, 1=0,1, \ldots, M-1, m=1,2 \tag{3.1}
\end{equation*}
$$

Also, we define a two-dimensional analogue of the interpolation operator of Section 1 as the tensor product

$$
Q_{\Delta} \equiv Q_{\Delta_{x}} \times Q_{\Delta_{y}} \equiv Q_{\Delta_{x}} Q_{\Delta_{y}}
$$

We seek an approximate solution of (1.1), (1.2) u $\in H_{\Delta}^{3}$ such that
(3.2) $w_{\Delta}=Q_{\Delta} f$,
(3.3) $B\left(u_{\Delta}\right)=0$.
4. Error analysis of two-dlmensional collocation. In this section we establish a priorl bounds for the two-dimenslonal collocation scheme introduced in Section 3. The analysis can be easily made, if we realize that the system of linear equations (3.2), (3.3) is the one obtained by approximating ϕ_{i} 's of (1.5)-(1.7) by elements in $H_{\Delta_{y}}^{3}$ and collocating at the Gaussian points (3.1). THEOREM 4.1. Assume the solution u of (1.1), (1.2) is in $W^{6, \infty}(\Omega)$ and hypotheses (i). (II) of Theorem 2.1. Further assume the coefficients of L are in $\mathrm{c}^{(2+n)}(\Omega)$. Then,
(a) the system of linear equations (3.2), (3.3) has a unique solution, and
(b) for the error of approximation we have
(3.4) $\quad\left\|u-u_{\Delta}\right\|_{L^{\infty}} \leq c\left\{(\Delta y)^{4}+(\Delta x)^{2+\min (n, 2)}\right\}$
where C is a constant independent of $\Delta x, \Delta y$. \qquad

Proof. The existence and uniqueness of u_{Δ} is a consequence of Theorem 3.1 in $\{4]$. Let $\left\{B_{i}(x) B_{j}(y)\right\}_{i=1}^{2 N+2} \underset{j=1}{2 M+2}$ be a set of basis functions of the space H_{Δ}^{3}, then

$$
u_{\Delta}=\sum_{i=1}^{2 N+2} \sum_{j=1}^{2 M+2} \alpha_{1 j} B_{i}(x) B_{j}(y) .
$$

By the triangle inequallty we get

(3.5) $\quad\left\|u-u_{\Delta}\right\|_{L^{\infty}(\Omega)} \leq\left\|u-u_{\Delta_{x}}\right\|_{L^{\infty}(\Omega)}$

$$
+\underset{(x, y) \varepsilon \Omega}{ }\left|\sum_{i=1}^{2 N+2}\left(\phi_{j}(y)-\sum_{j=1}^{2 M+2} \alpha_{1 j} B_{j}(y)\right) B_{j}(x)\right| .
$$

Also, from Theorem 4.1 in [4] we have that

$$
\text { (3.6) } \quad\left|\left|\phi_{i}-\sum_{j=1}^{2 M+2} \alpha_{i j} B_{j} i\right|_{L^{\infty}([0,1])} \leq c \Delta y^{4}\right.
$$

Finally, Inequalities (3.5), (3.6) yleld (3.4). This concludes the proof of theorem 3.1.

REFERENCES

[1] Cavendish, J. C., Collocation Methods for Elliptlc and Parabolic Boundary Value Problems, Ph.D. Thesis, University of Plttsburgh, 1972.
[2] C. de Boor and B. Swartz, Collocation at Gaussian points, sIAM J. Numer. Anal., 10(1973), pp. 582-606.
[3] Dennemeyer, R., Introduction to Partlal differentlal equations and boundary value problems, McGraw-Hill, 1968.
[4] Houstis, E. N., A Collocation method for systems of nonlinear ordinary differential equatlons, to appear in Journal of Mathematical Analysis Applicatlons.
[5] Houstis, E. N., Lynch, R. E., Papatheodorou, T. S., and Rice, J. R., Development, Evaluation and Selection of Methods for Elliptic Partlal Differential Equatlons, Ann. Assoc. Inter. Calcul. Analog., 11 (1975), pp. 98-103.
[6] Houstis, E. N., Lynch, R. E., Papatheodorou, T. S., and RIce, J. R., Evaluation of numerical methods for elliptic partial differential equatlons, to appear.
[7] Ito, F., A Collocation Method for Boundary Value Problems Using Spline Functions, Ph.D. ThesIs, Brown Universlty, 1972.
[8] Prenter, P.M. and Russell, R.D., Orthogonal collocation for elliptle partial differentlal equations, S1AM J. Numer. Anal., 13 (1976), PP. 923-939.
[9] Yartsed, Yu. P., Convergence of the Collocatlon method on lines, Different Uravnenlya, 3(1967), pp. 1606-1613.
[10] Yartsev, Yu. P.. The method of line collocatlon, Different Uravnenlya, ? (1968), pp. 925-931.
[11] Yartsev, Yu. P., A variant of the line-collocation method, DIfferent Uravnenlya, 6(1970), pp. 1727-1731.

