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COLLOCATION METHODS FOR LINEAR ELLIPTIC PROBLEMS 

E. N. Houstls 

Abstract. Collocation methods based on plecewlse Hermlte cubic poly** 

nomlals are applied to linear elliptic problems subject to DfrTchlet 

and Neumann boundary conditions on rectangular domains. A priori 

estimates are obtained for the error of approximation. 

Introduction. We consider the problem of approximating linear elliptic 

boundary value problems subject to DIrlchlet and Neumann boundary con-

ditions on rectangular domains. The methods used and analyzed In this 

paper are collocation on lines and two-dimensional collocation based on 

piecewise cubic Hermlte polynomials. 

The method of col location on lines has been applied by Yartsev [9], 

[10], [11] for solving elliptic and blharmonlc type problems using trigo-

nometric polynomials. More recently, bicubic splines have been used in 

[1], [7] to obtain a second order collocation method for solving a linear 

self adjoint elliptic problem with Dirichlet boundary conditions. The two-

dimensional collocation scheme studied In this paper has been experimentally 

applied in [ 5 ] , [6] for the solution of linear elliptic problems on curved 

domains and found more efficient than standard finite differences and other 

finite element methods. • ' ' > 

In the case of linear self adjoint elliptic equations with DIrlchlet 

boundary conditions and the same two-dimensional collocation method, 

Prenter and Russell [8] derived optimal estimates by assuming the 

existence of the collocation approximation and uniform bounds on 



partial derivatives of the approximating error. Our analysis Is applied 

to more general elliptic boundary value problems and It is free of 

such assumptions. 

1. Col location on 1Inea. We consider the linear elliptic problem 

(1 ]) Lu Z «D Zu + 2bD D u + cD Zu + dD u + eD u + fu - 9 In fi = (0,l)x(0,l) x x y y x y 

subject to boundary conditions 

(1.2) Bu = a. + Bu =- 0 on 9n =- boundary of fi 3u 
3n 

with either a.= 0 or B = 0 but not both and f 5 0. 

Throughout we assume that (1.1), (1.2) has a solution. We denote this 

solution by u. Let E {0 = x Q < Xj < . . .< x^ = 1 } be a partitIon of [0,1]f 

"JP the set of cubic polynomials and 'jP . the set of piecewise cubic polynomials 
i J , \ 

with respect to A^. 

We seek an approximate solution of (1.1), (1.2) In the form 

2N+2 

(1.3) u. (x,y) = S M y ) B . ( x ) 
x 1=1 ' ' 

where {B. (x) tea set of basis functions for the space of piecewise Hermlte cubic 

polynomials H^ =*|R ^ ^ c a n d E 0 at x •= 0 and 1. 
X ' X X 

We choose a set of "collocation" points 

( ,' i* ) - X i V 1 + 1 + p f c
X t + 1

2 * ! • 1 = 0 ^ ] * 2 

2 

where { are the roots of second degree Legendre polynomials with respect 

to the interval [-1,1]. 

Using the collocation method on lines we shall determine the func-

tions by the system of second order differential equations 



(1.5) (Lu A(x,y) - f(x,y)}| _ p - 0, 
- x 

x 

for 1 - 1,2 ; I -0,1 N-l with boundary conditions 

<'- 6' i 0 ) - 0 , 

(1.7) / „ 3 u k j.- , 
ia * + 3 u . } / t , 1 = 0 . 

r i r ^ , i) 

3 
We denote by LuH = {L*H with u^ e H^ > and define the Interpolation operator 

: L2(fi) - Lu h 

7 
such that for feL (ft) 

foA f - f} F - 0 

for H = 1,2; i = 0,1,...-,N-l . 

The boundary value problem (t„5) - (1.7) can be written equlvalently as 

(1.8) Lu^ = Q^ f in S2 
x x 

with u ^ satisfying the boundary conditions (1.6), (1.7). 
x 

2. Error analysis. In this section, we derive a priori bounds for the 

collocation on lines procedure; first for the boundary value problem (I.I), 

(<K2) in the L^-norm and second for a se!f-adjo?nt elliptic problem In the 

Ives 

of order k on fl. If X Is a normed space and t̂ : [0,1] -*• X, define 

L^-norm. Let W^'^fi) be the Sobolev space of functions having Lp-derlvatli 

1 2 
2 - / ||ip(v)|| dy, I M I - sup||*(y)|| 
L (X10,1) 0 X L (X;0,1) , X 



THEOREM 2.1. Assume the solution u of (1.1), (1.2) Is In L^CW6'"; 0,1). 

If ( 1) the Green's function G(x,y; £,h) for (1.1)r (1.2) exists, 

( 11) M d ^ ' g H „ < K, i » 0 considering G(x,y;-,T|) 

l ( f t < f l ) (n) (ii) 
as an element of C v [0,x] x C [x,l]. 

and 

(III) tha coefficients of L ire In L ^ U 1 2 * " ' ; 0,1), 

then 

(a) the collocation on lines approximation u^ exists, 

x 
and 

(b) for the error of approximation we have 

(2.1) | | u - u A | ] i C ( 4 x ) Z ^ I n ( n ' 2 ) 

x L°(fi) 

where Ax - maxjx ! +j-xj| and C li a generic constant Independent of Ax. 

Proof. The existence and uniqueness of u^ for each ye[0,l] is a direct 
x 

consequence of Theorem (3.1) In [2]. Furthermore, from the same theorem we 

obtain an estimate for the error and its derivatives: 

(2.2) max | D '(u(x,y) - u. (x,y))| < C(At) 2, I = 0, 1, 2 
<x fy)ea

 x \ 

where C Is a constant Independent of Ax. 

Also, provided the coefficients of the operator are in ([0,1]) 

as functions of x, Lenma 4.1 In [2] Implies that there exists constant C 

Independent of Ax such that 

(2.3) max | D 2 + l(Lu - Lu. )(x,y)| < C for i - 0 n. 
(x.y)en x \ 

Let's denote by r = Lu - Lu^ . Since r vanishes at £ ^ I » 0 N-l 
x 1 ' 

I = 1,2 then 
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(2.4) r - r [ Z u , Z ] 2 , x;yj(x - (x - C, 2) 

In the sublnterval [x t, x J , where f[xft,,..x ;y] Is the nth divided 
I i+i U n 

difference of f on the points x ^ , . . . ^ . 

Assumption (i) implies that (1.1), (1.2) Is uniquely solvable and 

(2.5) (u - u A )(x,y) - //G(x,y;€,7))(f - (Lf) (C.TlJdWn 
x ft 

- /yii(xFy; £n)(Lu-Lu. ){f,n)d&in. 
n L X 

By expanding In Taylor series the function 

F(x,y; S,T]) = G(x,y; S,T])r[e j r Cj 2 > Snl 

inside the interval [xj, *j +j] we obtain 

F ( x , y ; e , ^ - t(x fy;* i T 1) + D^F(x,yp (?) ,T]) ( £ - c)" 

where t is a polynomial of degree at most n - 1 with respect to £ 

and 5 ( 0 e ( x r , x I + 1 ) . 

From the orthogonality of the Legendre polynomials we derive the 

relat ion 

1 1 X
tJ.l » - r, 2 

(2.6) (u-u. )(x,y) - 4--/ S / 1 + 1 D;F(xfy;a(€),Ti)UtT)n H ( C ^ . Jd?dn 
\ n ! 0 1-0 X1 5 fc-1 ' 

for n i 2. 

From the definition of F(x,y; £,r|) we obtain that 

(2.7) D n
e F ( x , y ; ? , n ) = T ^ j o ( ^ ) ( D p ( x , y ; s ^ ? ) ( D |

+ S r ) ( 9 e > s . n ) 

If * t> ( V * | + | ) E h e n f r e m E h e a 8 S U I f l p t , o n '•a'at'0™ <2«7) 

with c (x| .x 1 + 1). 

If * t> ( V * | + | ) 

and the Inequality (2.3) 



I |D 2 + S r | | „ < C for s = 0 n 
5 L"(«) 

so we obtain 

x. 

( 2- 8> ^ r 

i N-I Aj+r n 2 

f l ! DF(x,y;a(0,ii)(^) n n (S-S. JdSdn| 
0 joO X . * 

jVi J 

< C ( A x)2+min(n,2) 

On the other hand if x e ( xj» x| +|)
 t h e n G ( x , y ; • , n ) e W 1 s o that _ 

I V l ~ 2 . 

(2.9) \f f D,F(x,y;0(e),nm-<j) n JdEdnl * c(Ax)\ 
o X J ^ A . 1 r* . 

Conclusion b) follows from (2.8) "(2.9). This concludes the proof of 

Theorem 2.1. 

Next, we consider the self-adjoint linear elliptic problem 

(2.10) Lu = - D (pD u) - D (qD u) + cu = f in £2 - (0,1) x (0,1) 
x x y i y 

subject to boundary conditions 

(2.11) B(u) = 0 on 3fi . 

Notice that the assumptions (I) and (II)" of Theorem 2.1 are satisfied for 

equation (2.10) with boundary conditions (2.11),'see reference [3, p.123]. 

2 5 2 

THEOREM 2.2. Assume the solution u of (2.10), (2.11) Is In L (IT' ; 0,1) and 

the coefficients of L are In 0,1). Then 

(a) for each y £ (0,1) the collocation on lines approximation u exists 

3
 x 

in the space H. 
x 

and 

(3) for the error of approximation we have 



(2.12) l | u - u A l l i , * C(Ax)
3 

\ W ' ( 0 

where C is independent of Ax. 

Proof. The existence and uniqueness of the collocation on lines approximation 

u^ follows from arguments similar to those in the proof of Theorem 2.1. 
x 

In order to derive the error estimate (2.12) we define 

F
(x»y) = (

U
"

U
A W S j ] *

 a n d e x
P

a n d I n
 Taylor series Inside the 

Interval to obtain 

(2.13) F(x,y) - t(x,y) + D v F(a(x),y)(x-a) , 

where t(x,y) Is constant polynomial with respect to x and 5(x) e ( x|» xj +j)' 

The relation (2.13) can be rewritten as 

F(x,y) » t ( * y ) + D (u-uA ) D^R(9(x) ,y) (X-CT) + (u-ufi ) D^r(0(x),y)(x-a). 
X X 

From the elllptlclty of L we get 

I N-l xi+l 
|u-uA ||2 * |/ (u-u 6 ) (Lu-Lu^ )dxdy|* / S / (u-u^ )(Lu-Lufi )dxdy 

Jx Q. "x "x 0 1=0 x 

Also from (2.3) and the choice of the collocation points we obtain 

- 1 N-l x, . 2 
l|u-u II, , < / 1 D F(a(x),y)(x-cr) rr (x-£,c>rf*ay 

x v/'in) 0 1-0 x, X 

< C(||u-u || + ||D (u-u )|| • } (4c)3 
x * \ L 2 ( $ 

Therefore 

I |u-u 

This concludes the proof of Theorem 2.2. 
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THEOREM 2.3. Assume the solution u of (2.10), (2.11) Is In L 2 ( W 5 , Z ; 0 , 1 ) . If 

(i) the coefficients of L are in L' and (ii) L is strongly coerslve, 

then, for the error of approximation we have 

(2.1*1) ||u-uA || , < C(Ax)Z< 

Ax L 2(fi) 

Proof. We let 

V * , y ) = (l|u-u || ) _ 1(u(x,y)-u (x,y)) 
x L (ft) x 

and consider the problem of finding the unique solution of Lff>̂  -

B(<f> ) - 0. From assumption (II) we get 

(2.15) ||D* 0 y
j* H|| 2 < K||0 h|| 2 ( 0 S k + j 5 2 ) . 

From the definition of and since L is self adjoint we obtain 

x L (fi) x 

- // <j> (lii-LuA )dx . . 
ft x 

Let r s Lu-Lu^ . On the Interval t x]» x| +|l»
 r(*»y) vanishes at Ej a , H " 1,2. 

x ' 
Hence, r = r t f ^ , x;y] (x - S ^ M * - Cj 2). 

Consi der 

F(x,y) ° ̂ (x,y)r[£j ̂ , x;y] 

and expanding In Taylor's series Inside ( x|» xj +])
 w c obtain 

F(x,y) = t(x,y) + U - ^ F ( < J X | I , y ) . 

By orthogonality we get 

(2.16) ||u-uA || , - V f / ! + 1 { n (x-?,J / D2F(s,y) (x-s)ds } dxdy 
\ LZ(fi) 1=0 0 Xj J M Xj x 



where 

D*F(s,y) = ^ H ( D
2 r ) ( e s > . ) + D x y i £ r ) ( e s > i ) + V ^ M ^ , ) 

From (2.3), (2.15), (2.16) we obtain the Inequality 

" " " V l ' M * ( & t ) " E V " D x 4 " ' * r " < - 2 ( l 1 i
 + IIVH°K rliL 2(.,) * 

h ^ ' U L V , ) ' s c ( a x ) " 

This concludes the proof of Theorem 2.3. 

3. Two-dimensional collocation. In this section we consider the problem of 

approximating the solution of (1.1), (1.2) by a piecewise bicubic Hermlte 

polynomial. Let Ay = ( y j ^ be a partition of [0,1] In the y-directlon and 

Ay - maxly^j-yj |. 

A1 so, we denote by A = A xA a partition of ft and by H^ the vector space of 

* y a 

all piecewise bicubic polynomials p(x,y) with respect to A such that 

a n 

D x D y p k ' v * i s c o n t ' n u° u s on a for al 1 0 < H, n < 1. The Gaussian points In 

the interval [y }, y ^ ] are 
y + y y u y 

( 3 - ° ni,m 5 1 2 ' + 1 + Pm ' + 1
 2 ' 1 • 1 " 1»' •' ' M _ I • m = 1 ' 2 

Also, we define a two-dimensional analogue of the Interpolation operator of 

Section 1 as the tensor product 

Q A 5 ^A X Q A = *A Q A * 
x y x y 
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We seek an approximate solution of (1.1), (1.2) u e H^ such that 

(3.2) b i A - Q A f , 

(3.3) B(u&) = 0 . 

Error analysis of two-dlmen_siona1 collocation, in this section we 

establish a priori bounds for the two-dimensional collocation scheme Introduced 

in Section 3- The analysis can be easily made, if we realize that the system 

of linear equations (3.2), (3-3) Is the one obtained by approximating <j>j's of 

(1.5)-(l.7) by elements In H 3 and collocating at the Gaussian points (3.1). 
y 

THEOREM fr.l. Assume the solution u of (1.1), (1.2) Is In W6'°°(fi) and 

hypotheses (i), (II) of Theorem 2.1. Further assume the coefficients of L 

are in C ( 2 + n )(fi). Then, 

(a) the system of linear equations (3.2), (3.3) has a unique solution, and 

. (b) for the error of approximation we have 

(3.*) | |u-u 11 < c { . U y > * + 
* L 

where C is a constant Independent of Ax, Ay * 

Proof. The existence and uniqueness of u^ Is a consequence of Theorem 3.1 

In [A]. Let {Bf(x)Bj (y)
 b e

 a set of basis functions of the space 

H^, then 
A 

2N+2 2M+2 
u = E I a., B (x)B.(y). 

A 1 = 1 J = 1 , J 1 J 



11 

By the triangle Inequality-we get 

(3.5) ||u-u A H „ * U " U A 

2N+2 2M+2 
+ max 

(x.y)efi 

Also, from Theorem in [ M we have that 

2M+2 

E (<J>, (y) - Z a.- B (y))B (x) 
1=1 1 j = l IJ J 1 

(3.6) - S a Bill < 
? J-l *J J L ([0,1 ]) 

< c Ay . 

Finally, Inequalities (3.5), (3.6) yield (3-4) - T h ' s concludes the proof 

of Theorem 3.1. 



12 

REFERENCES 

[1] Cavendish, J. C., Collocation Methods for Elliptic and Parabolic 
Boundary Value Problems, Ph.D. Thesis, University of Pittsburgh, 1972. 

[2] C. de Boor and B. Swartz, Collocation at Gaussian points, SIAM J. Numer. 
Anal., 10_(1973), PP. 582-606. 

[3l Dennemeyer, R., Introduction to Partial differential equations and 
boundary value problems, McGraw-Hill, 1968. 

[4] Houstls, E. N., A Collocation method for systems of nonlinear ordinary 
differential equations, to appear in Journal of Mathematical Analysis 
Applications. 

[5] Houstis, E. N., Lynch, R. E., Papatheodorou, T. S., and Rice, J. R., 
Development, Evaluation and Selection of Methods for Elliptic Partial 
Differential Equations, Ann. Assoc. Inter. Calcul. Analog., 11(1975). 
PP. 98-103. — 

[6] Houstis, E. N., Lynch, R. E., Papatheodorou, T. S., and Rice, J. R., 
Evaluation of numerical methods for elliptic partial differential 
equations, to appear. 

[7] Ito, F., A Collocation Method for Boundary Value Problems Using Spline 
Functions, Ph.D. Thesis, Brown University, 1972. 

[8] Prenter, P.M. and Russell, R.D., Orthogonal collocation for elliptic 
partial differential equations, SIAM J. Nuroe'r. Anal., (1976),pp. 923-939 

[9l Yartsep, Yu. P., Convergence of the Collocation method on lines, Different 
Uravnenlya, 30967), pp. I606-J6I3. 

[10] Yartsev, Yu. P., The method of line collocation, Different Uravnenlya, 
M1968), pp. 925-931 . 

[11] Yartsev, Yu. P., A variant of the 1Ine-collocation method, Different 
Uravnenlya._6.d970), pp. 1727-1731-


	Collocation Methods for Linear Elliptic Problems
	Report Number:
	

	tmp.1307986960.pdf.K0LoS

