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Abstract. In this study, we investigate numerical solutions of
the fractional telegraph equation with the aid of cubic B-spline
collocation method. The fractional derivatives have been consid-
ered in the Caputo forms. The L1 and L2 formulae are used to
discretize the Caputo fractional derivative with respect to time.
Some examples have been given for determining the accuracy of
the regarded method. Obtained numerical results are compared
with exact solutions arising in the literature and the error norms
L2 and L∞ have been computed. In addition, graphical represen-
tations of numerical results are given. The obtained results show
that the considered method is effective and applicable for obtain-
ing the numerical results of nonlinear fractional partial differential
equations (FPDEs).
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1 Introduction

Fractional calculus that means arbitrary order differentiation and integration
is one of the most important subject in mathematics. The interest to these
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subject grows day by day due to its long history and huge amount of ap-
plication area [9]. However, scientists expressed that the most suitable way
for describing the complex and nonlinear events in nature is using fractional
order derivative and integral. They are generally considered to model the
problems in biology, fluid mechanics, diffusion and etc [13]. There are huge
amount of studies that contain numerical and analytical solution procedures
for FPDEs [1–3,5, 6, 8, 12,14,15].

The finite element method (FEM) is a well known method generally used
for acquiring the solution of integer order PDEs. However, in this study,
the considered method is employed to acquire the approximate solution of
fractional telegraph equations. FEM depends on dividing the domain region
of the regarded problem into an equivalent system of finite elements with
relevant nodes and to choose the most suitable element type to model most
closely the physical behavior. So the huge problem turns into solvable small
problems with the help of FEM. These considered small nodes must be small-
est to get useful results and large enough to increase computational difficulty
[7].The cubic B-spline FEM is employed for getting the numerical solutions
of the fractional telegraph equation where L1 and L2 formulae are used to
discretize the fractional derivative as utilized in [2]. The various forms of
time fractional telegraph equations have been solved by many authors. For
instance, Wei et. al. [16] have utilized fully discrete local discontinuous
Galerkin method for solving the fractional telegraph equation and Hosseini
et. al. [4] have employed radial basis functions for obtaining the numerical
results of fractional telegraph equation.

In this study, we will take the following the fractional telegraph equations
into consideration as models

∂µ

∂tµ
U(x, t) + s1

∂µ−1

∂tµ−1
U(x, t) + s2U(x, t)− s3

∂2

∂x2
U(x, t) = f1(x, t) (1.1)

and

∂µ

∂tµ
U(x, t) +

∂µ−1

∂tµ−1
U(x, t) + λ

∂

∂x
U(x, t)− ∂2

∂x2
U(x, t) = f2(x, t) (1.2)

where

∂µU(x, t)

∂tµ
=

1

Γ(2− µ)

∫ t

0

(t− τ)1−µ
∂2U(x, τ)

∂τ 2
dτ , 1 < µ < 2

and

∂µ−1U(x, t)

∂tµ−1
=

1

Γ(2− µ)

∫ t

0

(t− τ)1−µ
∂U(x, τ)

∂τ
dτ , 0 < µ− 1 < 1
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where fractional derivatives are by means of in the Caputo type [6,10] and s1,
s2, s3, λ are constants. For the fractional telegraph equation, the boundary
conditions of the (1.1) and (1.2) are considered as

U(a, t) = h1(t) , U(b, t) = h2(t), t ∈ [0,∞], x ∈ [a, b] (1.3)

and the initial conditions as

U(x, 0) = g1(x) , Ut(x, 0) = g2(x), x ∈ [a, b]. (1.4)

In order to acquire finite element schemes for solving the telegraph equa-
tions, we will also discretize the fractional derivatives using the L1 and L2
formulae respectively

∂µ−1f(t)

∂tµ−1
|tm =

(∆t)1−µ

Γ(3− µ)

m−1∑
k=0

bµk [f(tm−k)− f(tm−1−k)]

and

∂µf(t)

∂tµ
|tm =

(∆t)−µ

Γ(3− µ)

m−1∑
k=0

bµk [f(tm−k)− 2f(tm−1−k) + f(tm−2−k)]

where
bµk = (k + 1)2−µ − k2−µ.

The rest of paper is regarded as follows. In Section 2 the cubic B-spline
collocation method for Eqs. (1.1) and (1.2) is expressed. Also to present the
accuracy and capability of the considered method are devoted in Section 3
as numerical experiments. In Section 4 the conclusion is denoted.

2 Finite Element Collocation Method

First of all B-spline base functions are described. For this goal, we debate
that the interval [a, b] of the equations is partitioned into N finite elements
of at an equal rate equal length by the nodal points xm, m = 0, 1, 2, ..., N
such that a = x0 < x1 < · · · < xN−1 < xN = b where h = xm+1 − xm. The
cubic B-splines ψm(x) , (m = −1(1)N + 1), at the knots xm are defined over
the interval [a, b] by [11]

ψm(x) =
1

h3



(x− xm−2)3, x ∈ Im−2,
h3 + 3h2(x− xm−1) + 3h(x− xm−1)2 − 3(x− xm−1)3, x ∈ Im−1,
h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ Im,
(xm+2 − x)3, x ∈ Im+1,

0, otherwise
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where Ik denotes the interval [xk, xk+1].
The set of splines {ψ−1(x), ψ0(x), . . . , ψN(x), ψN+1(x)} forms a basis for

the functions defined over [a, b]. Therefore, we have the right to write a
solution UN(x, t) of the cubic B-splines trial functions as follows

UN(x, t) =
N+1∑
m=−1

δm(t)ψm(x) (2.1)

where δm(t)’s are unknown element parameters which are time dependent
quantities to be determined from the initial, boundary and cubic B-spline
collocation conditions. Since each cubic B-spline covers four consecutive
elements, each element [xm, xm+1] is covered by four different cubic B-splines.
During the solution process of this problem, the finite elements are going to
be determined with the interval [xm, xm+1] and the element nodal points
xm, xm+1. Using the nodal values Um, U

′
m and U

′′
m given in terms of the

parameter δm(t)

Um = U(xm, t) = δm−1(t) + 4δm(t) + δm+1(t),
U ′m = U ′(xm, t) = 3

h
(−δm−1(t) + δm+1(t)),

U ′′m = U ′′(xm, t) = 6
h2

(δm−1(t)− 2δm(t) + δm+1(t)),
(2.2)

the variation of UN(x, t) over the typical element [xm, xm+1] is given by

UN(x, t) =
m+2∑
j=m−1

δj(t)ψj(x).

Firstly, if we substitute the global approximation (2.1) and its necessary
derivatives (2.2) into Eq. (1.1), we obtain the following set of the ordinary
differential equations:(

δ̈m−1(t) + 4δ̈m(t) + δ̈m+1(t)
)

+ s1

(
δ̇m−1(t) + 4δ̇m(t) + δ̇m+1(t)

)
+s2 (δm−1(t) + 4δm(t) + δm+1(t))− s3

6

h2
(δm−1(t)− 2δm(t) + δm+1(t))

= f1(x, t)

(2.3)

where ¨ denotes µth and ˙ denotes (µ − 1)th fractional derivative with
respect to time. If time parameters δm(t)’s, δ̇m(t)’s and δ̈m(t)’s in Eq. (2.3)
are discretized by the Crank-Nicolson formula, L1 formula and L2 formula,
respectively:

δ =
1

2
(δn + δn+1), (2.4)
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δ̇ =
dµ−1δ

dtµ−1
=

(∆t)1−µ

Γ(3− µ)

n−1∑
k=0

[
(k + 1)2−µ − k2−µ

] [
δn−k − δn−k−1

]
, (2.5)

and

δ̈ =
dµδ

dtµ
=

(∆t)−µ

Γ(3− µ)

n−1∑
k=0

[
(k + 1)2−µ − k2−µ

] [
δn−k − 2δn−k−1 + δn−k−2

]
,

(2.6)
we attain relating parameters δn+1

m (t)

(1 + s1∆t+ s2h
2α− 6s3α)δn+1

m−1 + (4 + 4s1∆t+ 4s2h
2α + 12s3α)δn+1

m

+ (1 + s1∆t+ s2h
2α− 6s3α)δn+1

m+1 = (2 + s1∆t− s2h2α + 6s3α)δnm−1
+ (8 + 4s1∆t− 4s2h

2α− 12s3α)δnm + (2 + s1∆t− s2h2α + 6s3α)δnm+1

−
n∑
k=1

[(k + 1)2−µ − k2−µ][(δn−k+1
m−1 − 2δn−km−1 + δn−k−1m−1 )

+ 4(δn−k+1
m − 2δn−km + δn−k−1m ) + (δn−k+1

m+1 − 2δn−km+1 + δn−k−1m+1 )]

− (δn−1m−1 + 4δn−1m + δn−1m+1) + 2h2αf1(xm, tn)

− s1∆t
n∑
k=1

[(k + 1)2−µ − k2−µ][(δn−k+1
m−1 − δn−km−1) + 4(δn−k+1

m − δn−km )

+ (δn−k+1
m+1 − δn−km+1)]

(2.7)

where

α =
(∆t)µΓ(3− µ)

2h2
.

If we substitute (2.1) and its derivatives (2.2) into Eq. (1.2), we attain the
following set:

(
δ̈m−1(t) + 4δ̈m(t) + δ̈m+1(t)

)
+
(
δ̇m−1(t) + 4δ̇m(t) + δ̇m+1(t)

)
+3λ

h
(−δm−1(t) + δm+1(t))− 6

h2
(δm−1(t)− 2δm(t) + δm+1(t)) = f2(x, t)

.

(2.8)
If parameters δm(t)’s and δ̇m(t)’s are discretized by the (2.4)-(2.6) formulas,
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we attain relating parameters δn+1
m (t)

(1 + ∆t− 3λhα− 6α)δn+1
m−1 + (4 + 4∆t+ 12α)δn+1

m

+ (1 + ∆t+ 3λhα− 6α)δn+1
m+1 = (2 + ∆t+ 3λhα + 6α)δnm−1

+ (8 + 4∆t− 12α)δnm + (2 + ∆t− 3λhα + 6α)δnm+1

−
n∑
k=1

[(k + 1)2−µ − k2−µ][(δn−k+1
m−1 − 2δn−km−1 + δn−k−1m−1 )

+ 4(δn−k+1
m − 2δn−km + δn−k−1m ) + (δn−k+1

m+1 − 2δn−km+1 + δn−k−1m+1 )]

− (δn−1m−1 + 4δn−1m + δn−1m+1) + 2h2αf2(xm, tn)

−∆t
n∑
k=1

[(k + 1)2−µ − k2−µ][(δn−k+1
m−1 − δn−km−1) + 4(δn−k+1

m − δn−km )

+ (δn−k+1
m+1 − δn−km+1)]

(2.9)

where

α =
(∆t)µΓ(3− µ)

2h2
.

Note that the both of iterative system (2.7) and (2.9) consist of δ−1m will be
observed when n = 0 or k = n. So, we use the initial condition to approx-
imate δ−1m as δ−1m = δ0m − ∆tg2(x). The both of iterative system (2.7) and
(2.9) consist of N + 1 linear equations including N + 3 unknown parameters
(δ−1, . . . , δN+1)

T . To obtain a unique solution to these systems, we need two
additional constraints. These are obtained from the boundary conditions and
their second derivatives and then are used to eliminate δ−1 and δN+1 from
the system (2.7) and (2.9) as follows:

δ−1(t) = −4δ0(t)− δ1(t) + U(x0, t),
δN+1(t) = −4δN(t)− δN−1(t) + U(xN , t).

Then, these systems of equations become a matrix equation with the N + 1
unknowns c = (δ0, . . . , δN)T in the form

Acn+1 = Bcn.

The initial vector c0 = (δ0, . . . , δN)T is determined from the initial and
boundary conditions. So the approximation (2.1) can be rewritten for the
initial condition as

UN(x, 0) =
N+1∑
m=−1

δm(0)ψm(x)
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where the δm(0)’s are unknown parameters. We require the initial numerical
approximation UN(x, 0) satisfy the following conditions:

UN(x, 0) = U(xm, 0),m = 0, 1, ..., N
(UN)xx(a, 0) = g′′1(a), (UN)xx(b, 0) = g′′1(b).

Using the these conditions leads to the form

Wc0 = b

where

W =



6 0
1 4 1

1 4 1
. . .

1 4 1
0 6


and

b = (U(x0, 0)− h2

6
g′′1(a), U(x1, 0), . . . , U(xN−1, 0), U(xN , 0)− h2

6
g′′1(b))T .

3 Numerical Solutions

In this part the collocation method is employed the get the numerical solu-
tions of fractional telegraph equations.

Problem 1: Firstly, we regard the Eq. (1.1) for s1 = 1, s2 = 1, s3 = π
and

f1(x, t) =

(
6t3−µ

Γ(4− µ)
+

6t4−µ

Γ(5− µ)

)
sin2 x+ t3 sin2 x− 2πt3(cos2 x− sin2 x)

with conditions
U(0, t) = 0, U(1, t) = t3 sin2 1,

U(x, 0) = 0, Ut(x, 0) = 0.

The analytical solution of the equation is assigned by [4]

U(x, t) = t3 sin2 x.
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Table 1: Error norms of problem 1 for ∆t = 0.001 and tf = 1.

N
L2 × 103 norm

µ = 1.1 µ = 1.3 µ = 1.5 µ = 1.7 µ = 1.9
20 0.195038 0.184330 0.159778 0.123919 0.110397
40 0.081814 0.078898 0.075070 0.072421 0.083052
50 0.075933 0.072714 0.069677 0.068773 0.080012

N
L∞ × 103 norm

µ = 1.1 µ = 1.3 µ = 1.5 µ = 1.7 µ = 1.9
20 0.428937 0.402022 0.340983 0.238881 0.174542
40 0.116103 0.111652 0.109535 0.113099 0.133398
50 0.117608 0.112542 0.109224 0.110952 0.128583

L2 and L∞ obtained for equation for different value of N,µ, ∆t = 0.001 and
tf = 1 is indicated in Table 1. As it is obviously in sight from Table 1, the
numerical and exact results acquired by the method are in concordance with
each other because of the decreasing values of the L2 and L∞. The value of
N increases, the acquired numerical solutions become more true. In Table 2,
we evaluate error norms for N = 50, tf = 1, different values of ∆t, µ. Table 2
denotes when the value of ∆t decreases, the accuracy of numerical solutions
increases. We see these from the decreasing values of L2 and L∞. Figure

Table 2: Error norms of problem 1 for N = 50, tf = 1, different values of µ,
∆t.

∆t
L2 × 103 norm

µ = 1.1 µ = 1.3 µ = 1.5 µ = 1.7 µ = 1.9
0.01 0.751346 0.704953 0.670194 0.673262 0.781459
0.005 0.373164 0.350671 0.333347 0.333591 0.388860
0.0005 0.044837 0.043045 0.040440 0.037918 0.042398

∆t
L∞ × 103 norm

µ = 1.1 µ = 1.3 µ = 1.5 µ = 1.7 µ = 1.9
0.01 1.209530 1.148807 1.101893 1.105711 1.241761
0.005 0.602371 0.572466 0.548471 0.549184 0.620010
0.0005 0.083125 0.070534 0.058772 0.057179 0.068173

1 shows the graphs of the analytical (lines) and the numerical solutions for
N = 50, µ = 1.5 and ∆t = 0.001, different values of t. The figures represents
that the numerical and analytical results are compatible with each other.

Problem 2: Secondly, we assume for s1 = 1, s2 = 1 and s3 = 1 in the
equation (1.1)

f1(x, t) =

(
t1−µ

Γ(2− µ)
+

t2−µ

Γ(3− µ)
− 4tx2 − 4x3 + 3t+ 7x

)
e−x

2

.
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Figure 1: The curves of the analytical(lines) and numerical solutions of prob-
lem 1 for µ = 1.5, N = 50, ∆t = 0.001 and different values of t.

with conditions

U(0, t) = t , U(1, t) = (t+ 1)e−1,

U(x, 0) = xe−x
2

, Ut(x, 0) = e−x
2

.

The exact solution of the equation is acquired by [4]

U(x, t) = (t+ x)e−x
2

.

Error norms L2 and L∞ obtained for problem 1 for different values of N ,
µ, ∆t = 0.0005 and tf = 1 is given in Table 3. The table represents that
all the analytical and numerical are compatible with each other for the the
decreasing values of the error norms L2 and L∞. It is determined that when
the number of division increases, the accuracy of obtained numerical results
decreases as seen from the values of L2 and L∞ error norms. In Table 4, L2

Table 3: Error norms of the problem 2 for ∆t = 0.0005 and tf = 1.

N
µ = 1.1 µ = 1.3 µ = 1.5

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

10 0.917961 1.327237 0.922233 1.333627 0.614392 0.909724
15 0.439288 0.633841 0.430411 0.621802 0.109623 0.185629
20 0.271346 0.390449 0.257806 0.372020 0.106419 0.167584

and L∞ error norms are expressed for changing values of ∆t, µ, N = 20 and
tf = 1. When the Table 4 examined it is clearly seen that as the value of ∆t
decreases, accuracy of the obtained results increased. The values of L2 and
L∞ error norms proves this situation.
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Table 4: Error norms of the problem 2 with N = 20, tf = 1, different values
of ∆t, µ.

∆t
µ = 1.1 µ = 1.3 µ = 1.5

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.01 1.319930 1.854672 1.048109 1.484929 1.076646 1.581044
0.005 0.768010 1.084079 0.627719 0.893166 0.729204 1.063442
0.0005 0.271346 0.390449 0.257806 0.372020 0.167584 0.646934

Figures 2 shows the graphs of the exact (denoted by lines) solutions and
the numerical solutions for N = 40, µ = 1.5 and ∆t = 0.0005 at t = 0.5, t =
0.75 and t = 1.0. The graphical illustrations represents that the numerical
and analytical results are compatible with each other.
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Figure 2: The curves of the analytical(lines) and numerical solutions of prob-
lem 2 for µ = 1.5, N = 40, ∆t = 0.0005 and different values of t.

Problem 3: The equation (1.2) for λ = 0 is considered

f2(x, t) =
6t3−µ

Γ(4− µ)
sin(2πx) +

6t4−µ

Γ(5− µ)
sin(2πx) + 4π2t3 sin(2πx).

with conditions
U(0, t) = 0 , U(1, t) = 0,

U(x, 0) = 0 , Ut(x, 0) = 0.

The analytical solution of the equation is denoted by [16]

U(x, t) = t3 sin(2πx).

The comparison with error norms of [16] and error norms L2 and L∞ obtained
for problem 3 for values of µ, N , ∆t and tf = 1 is given in Table 5. L2
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and L∞ error norms which are given in Table 5 implies that analytical and
numerical solutions are compatible with each other. When the number of
division increases, the obtained numerical results become more accurate. In
addition, numerical solutions which are obtained by this method are better
than method by in [16].

Table 5: The comparison of [16] with numerical solutions of the problem 3
with tf = 1 at difference µ, N and ∆t.
N ∆t µ = 1.1 µ = 1.5 µ = 1.9

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

80 0.00025 0.067770 0.095841 0.054139 0.076565 0.028931 0.040914
100 0.00025 0.049615 0.070167 0.057464 0.081267 0.075559 0.106857
100 0.0002 0.002040 0.002885 0.006280 0.008881 0.023155 0.032746
[16] 0.107022 0.466428 0.106908 0.466393 0.107050 0.466334

Figures 3 shows the graphs of the exact (denoted by lines) solutions and
the numerical solutions for N = 100, µ = 1.5 and ∆t = 0.0002 at t =
0.5(triangles), t = 0.75(stars) and t = 1.0(squares). Figure shows that both
numerical and exact results are analogous.
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Figure 3: The curves of the analytical(lines) and numerical solutions of prob-
lem 3 for µ = 1.5, N = 100, ∆t = 0.0002 and different values of t.

Problem 4: We finally consider the equation (1.2) for λ = 0.1

f2(x, t) =
6t3−µ

Γ(4− µ)
cosx+

6t4−µ

Γ(5− µ)
cosx+ t3(cosx− 0.1 sinx).

with conditions
U(0, t) = t3 , U(2π, t) = t3,
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U(x, 0) = 0 , Ut(x, 0) = 0.

The analytical solution of the equation is evaluated by [16]

U(x, t) = t3 cos(x).

Error norms L2 and L∞ obtained for problem 4 for values of µ, N , ∆t =
0.0005 and tf = 1 is given in Table 6. L2 and L∞ error norms indicates
that, the analytical and numerical are compatible with each other. When
the number of nodes increases, accuracy of numerical results increases. This
situation can be seen from the L2 and L∞ error norms. In Table 7, we

Table 6: Error norms of the problem 4 with tf = 1 and ∆t = 0.0005 at
difference µ and N .

N
µ = 1.4 µ = 1.6 µ = 1.8

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

50 6.439927 8.618383 4.825867 6.618786 2.677085 3.709226
100 1.692563 2.405105 1.336086 1.841166 1.056597 1.007581
150 0.946625 1.099383 0.878070 0.838264 0.976906 0.689826

examined the L2 and L∞ for different values of µ, ∆t, N = 150 and tf = 1.
It is clearly seen that the accuracy of the numerical results increases when
the value of ∆t decreases. The L2 and L∞ error norms proves this event.

Table 7: Error norms of problem 4 with N = 150 and tf = 1 for different
values of µ and ∆t.

∆t
µ = 1.4 µ = 1.6 µ = 1.8

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.005 8.225758 5.867495 8.974139 6.258915 11.406016 7.730185
0.001 1.590317 1.143651 1.651409 1.188126 2.044400 1.427477
0.0005 0.946625 1.099383 0.878070 0.838264 0.976906 0.689826

The analytical (denoted by lines) solutions and the numerical solutions
for N = 150, µ = 1.8 and ∆t = 0.0005 at t = are represented in Figure
4. The graphical illustration expresses that all the numerical and analytical
results are compatible with each other.

4 Conclusion

In the present study, cubic B-spline finite element methods are employed to
acquire the numerical solutions of time fractional telegraph equation. All
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Figure 4: The curves of the analytical(lines) and numerical solutions of prob-
lem 4 for µ = 1.8, N = 300 and ∆t = 0.0005 at t.

the fractional derivatives are in Caputo type. The L1 and L2 formulae are
used to discretize the fractional derivative. The obtained results indicate
the accuracy and applicability of the presented method. Some graphical and
table representations are given to compare the numerical results.
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