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Abstract
The combination of short-range attractions and long-range repulsions can lead
to interesting clustering phenomena. In particular there are strong indications
that the colloidal cluster phase is in fact a manifestation of such a competition.
Here we compute the stability boundary of the cluster phase by invoking
counter-ion condensation. It is found that a condensation catastrophe leading
to an infinite cluster sets in if the level of charge on the colloid is too low.

The same ingredients leading to the cluster phase are found in nuclear
physics: strong short-range attractions due to nuclear force and weak long-
range Coulomb repulsions. We will show explicitly here the equivalence of a
semi-empirical mass formula for the binding energy of the nucleus and the free
energy of a cluster in a colloidal cluster phase. This identification enables an
exploitation of theoretical results from nuclear physics to the colloidal domain
and, perhaps, the construction of a colloidal system mimicking various aspects
of nuclear matter.

1. Introduction

Recently we investigated theoretically the possibility of equilibrium cluster phases for weakly
charged colloids in apolar solvents [1]. Next to the weak Coulomb repulsions the requirements
cluster-phase formation are: (1) negligible screening by added electrolyte—as is the case
for apolar solvents—and (2) short-range attractions to induce clustering. Simultaneously
but independently a colloidal cluster phase was experimentally observed under similar
conditions [2] as considered in our analysis. This experimental system consisted of colloids
with polymer induced depletion attractions. The density matching solvent used in [2] is now
known to provoke the PMMA colloids to have a positive charge [3], although the charging
mechanism is somewhat enigmatic. A more detailed study and explicit verification of the
theoretical clustering laws in the same colloidal system are being published elsewhere in
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this issue [4]. Also very recently a small angle neutron scattering study by Stradner and
Schurtenberger [5] shows that lysozyme proteins obey similar clustering laws. In this context
let us note that the model proposed in [1] is not restricted to apolar solvents. The restriction to
apolar solvents was made to direct attention to the type of system where the cluster phase was
most likely to occur in our view. It is encouraging to see that the cluster phase also manifests
itself in aqueous media which can be expected, provided screening is sufficiently absent.

The behaviour of colloidal systems in many ways resembles that of (simple) atomic
and molecular systems [6]. However, contrary to the situation in molecular systems, the
interaction potential between colloidal particles (being essentially a potential of mean force)
can in principle be adjusted by choosing proper solvent(s) [6] or adding polymers [7]. It has
been shown, for example [8], that under appropriate conditions colloidal systems behave as
hard spheres. It is also well known that the addition of inert polymer induces (short) range
attractions [7]. The ramifications of those two features of the colloidal interaction already
generate much complexity, and there has been limited interest to investigate the effect of charge
on this particular system. In general the role of charge in colloidal systems has been extensively
studied in the past [9] and present. Of interest here are unscreened Coulomb interactions which,
without short-range attraction, can lead to Wigner crystallization [3, 10]. Also there is fairly
recent but largely controversial work, suggesting the existence of attractions between like
charged colloids [11]. For monovalent counter-ions such attractions are highly unlikely as
has been demonstrated in [12]. In that work it was demonstrated that the apparent attractive
instabilities are a spurious result of the linearization of the Poisson–Boltzmann equation. To
avoid this controversy we assume that the short-range attractions between the colloids are due
to dispersion (van der Waals) attractions, or induced by addition of polymer.

In [1] we implicitly assumed a low degree of ionic dissociation, a property that is present
in weakly polar solvents. However, at the same time, weakly polar solvents do not favour ionic
dissociation and the levels of charging are expected to be low. Let us however recall that some
of the free energy differences under investigation in the colloidal hard sphere phase diagram
are of the order of 10−4 kBT per particle [13]. It is clear that even a tiny amount of charge can
significantly disturb statistics based on such energy scales. Moreover, in a cluster phase we
find that a small amount of charge in combination with short-range attractions can dominate
as the variable limiting the cluster size.

The main ingredient in the model for colloidal cluster phases is a competition between
short-range attraction and long-range repulsion. The attractive force can be classical
van der Waals attraction [14] or depletion attraction [15]. The long-range repulsion is
caused by (screened) Coulomb interactions. At first sight, it may come as a surprise that
these are similar forces to the ones that play key roles in the classical theory of colloid
stability [9] (DLVO theory). This theory predicts either stable dispersions of colloid monomers
or macroscopic aggregates, and no finite-size equilibrium clusters. However, in our treatment
colloidal particles are dispersed in solvents of low dielectric constant and carry a small (self-
consistent) charge. The combination of (small) charge and low screening by the medium
leads to long-ranged electrostatic repulsion (relative to the scale of a colloid). In contrast,
DLVO theory considers colloids in media with relatively large ionic strengths. The ions
screen the Coulomb force, with the consequence that either monomers or infinite aggregates
minimize the potential energy of the system. In our analysis of the cluster phase we invoked
a capillarity approximation, in which the cluster is treated as a drop of uniform matter. This
approximation holds for large clusters. In this picture the incentive for cluster growth is
the excess energy of the particles on the surface, and it is controlled by the surface tension
parameter. The stabilizing factor stopping the cluster growth comes from the long-ranged
Coulomb repulsions [1].
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Given the ingredients leading to a colloidal cluster phase (see above) one can observe a
similarity with classical models for the atomic nucleus. There one finds a competition between
the attractive strong forces and the repulsive Coulomb forces. This similarity is remarkable
as the energy scales are separated by many orders of magnitude (∼100 meV for the colloid
binding energy versus ∼20 MeV for the nucleonic binding energy); at the same time there is
a large difference in length scale (10−15 m for the nucleon radius versus 10−6–10−8 m for the
colloidal dimension). So in addition to the similarity with atomic or molecular systems there
is a possibility for colloids to serve as a model system for nuclear matter. To illustrate this
we shall show that the minimization of the mass formula leading to the most stable isotope is
equivalent to our treatment in [1] leading to the optimal cluster size—but this size is now a
function of variables such as the dielectric constant of the solvent, ionic strength, temperature,
etc.

Before proceeding we wish to emphasize that although similarities are expected, we are
aware that nuclear matter and colloidal clusters are not profoundly equivalent. The most
important difference lies in the quantum mechanical character of nuclear matter. For example,
the fermionic nature of the nucleon leads to a transition to a neutron liquid at very high densities.
Such a transition (upon increasing the density) from an inhomogeneous system, i.e. nuclear
matter in coexistence with a neutron gas, to more homogeneous distribution of matter, i.e. the
neutron liquid, is most definitely not expected in the classical colloidal system.

We wish to emphasize the similarity between the colloidal cluster phase and nuclear matter.
This will be done by identifying the semi-empirical mass formula for the binding energies in
the nucleus with the cluster free energy for a spherical cluster in a cluster phase. Next to this
stimulating equivalence we will discuss counter-ion induced gelation of the colloidal cluster
phase. This gelation scheme is markedly different from vitrification in short-ranged attractive
and hard-sphere repulsive systems.

2. Classical nucleus

The crudest approach imaginable to describe the atomic nucleus involves a surface tension
and Coulombic repulsions. Let us recall the semi-empirical mass formula for a nucleus of
atomic number Z and mass number A, which can be found in any introductory text on nuclear
physics, e.g. [16]:

Ebind

A
= −avol + asurf A−1/3 + asym

(
1 − Z

2A

)2

+ acoul
Z 2

A4/3
. (1)

On the left-hand side one finds the total binding energy per nucleon, where Ebind is the total
binding energy. On the right-hand side we neglected the pairing energy terms, which are
relevant for the smaller nuclei. The first term is the so-called volume term that sets the energy
scale and is a constant contribution to the binding energy per nucleon. Being constant, this
term does not play a role for the size and charge of the nucleus. The second—surface—term
gauges the portion of strong interaction that is missing at the surface of the nucleus. The
symmetry term stems from the fermionic nature of the nucleon and is related to the possibility
of electron capture:

p + e− → ν + n. (2)

In this reaction a proton, p, and an electron e− recombine into a neutron n while emitting
a neutrino. This reaction allows for a change of the relative number of protons in nuclei.
Accordingly, at higher temperature, when the energy barriers are lower, the nucleus can adapt
itself to a size dictated by equation (1). Let us go back to the origin of the symmetry term.
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Figure 1. Colloidal cluster (a) and the nucleus (b). In the colloidal cluster the charge per colloid
is fluctuating. The charge per nucleon is one elementary charge (proton) or none (neutron).

In order for the nucleons to be at their lowest possible Fermi level, an equal partition between
protons and neutrons is required. This is reflected by the third term on the right-hand side of
equation (1) which is minimal for Z = A/2. (In fact this term is the result of an expansion
of the nuclear matter equation of state in the limit of weak deviations of proton density:
Z − A/2 � A.) Finally in equation (1) there is the repulsive Coulomb term which disfavours
the proportionality of protons in large nuclei. Minimization of equation (1) with respect to Z at
fixed A gives the optimum charge of a nucleus of mass A. The resulting curve of this exercise
follows the actual average isotope values rather well especially for the heavier elements.

Minimization of the binding energy per nucleon with respect to A and Z gives the optimum
nucleus. Experiment shows that 56Fe is the most stable isotope, but due to the approximate
nature of equation (1) minimization yields an isotope close to this. At the high densities of
nuclear matter (>106 g cm−3) to be found in neutron stars [22], the electron energy of the
electrons becomes comparable to the binding energy of the nucleons. At this point electron
capture as in equation (2) sets in, reflected by a decrease in asym being the coefficient of
the symmetry term in equation (1). As a consequence the size of the most stable isotope
is predicted to increase. Later, we shall see that this situation is qualitatively similar to the
decreased dissociation of counter-ions upon increasing the number density of colloidal particles
and thus forming larger equilibrium clusters.

3. Colloidal cluster

In the previous section we discussed aspects of the nucleus to be compared with a charged
colloidal cluster. To pursue this comparison, let us replace a nucleon (proton or neutron) with
a charged colloid. Similarly to the electron capture as in equation (2) one may consider a
counter-ion condensation event in the case of weakly charged colloids:

Cn+1 + ci− → Cn . (3)

Cn here stands for a colloid of charge +n and ci− for a negatively charged counter-ion. (Of
course the charge signs of the colloid and counter-ion can be reversed.) Note that the difference
with equation (2) is that for the colloids one can easily have many charges per colloid whereas
the maximum for a nucleon clearly is one elementary charge; see figure 1. It turns out that
this difference does not spoil the analogy as long as a coarse-grained description can be used,
i.e. the case for large nuclei.

In [1] we also considered cluster shapes other than spherical. It was concluded in [1]
that the most favourable shape was disc-like. This calculation contained an error and the
conclusion is subject to doubt. A more accurate analysis will probably give spherical shapes
as the most favourable one, consistent with results from nuclear physics. A precise analysis
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of the preferred cluster shape is, however, postponed. For now we assume the clusters to be
spherical, which is probably accurate and does not alter the results qualitatively anyway. Let
us now write the free energy per unit volume of a spherical cluster with radius R as derived
in [1] in a slightly more general way:

fcluster(R, ρ) = f0 +
3γ

R
+

4π

5
Qρ2 R2 + 2ρ[ln(ρ/ρ0) − 1]. (4)

Alongside the dependence on R there is the coarse-grained charge density ρ which is the total
cluster charge divided by the total volume of the (spherical) cluster. The first term on the
right-hand side is a constant contribution per particle, and it can be related to an aggregation
energy ε of a pair wise interaction between two particles in contact: f0 = −qε/2v, where
q is an effective aggregation number and v the volume per particle in a cluster. The second
term on the right-hand side is the same surface term which can be found in equation (1), and
it is related to the missing inter-colloidal attractions for particles located at the cluster surface.
The surface tension γ is related to the strength of the attractive interaction ε by γ = f ε/s,
where s is the area occupied by the particle at the cluster surface, and f the effective number
of interaction contacts that are missed at the cluster surface. The second term is the capacitive
energy for a homogeneously charged sphere, in other words the repulsive Coulomb term. In
this term one finds the Bjerrum length Q defined as the distance for which the interaction
between two elementary charges equals kT . (At room temperature one has Q = 56 nm/ε,
with ε the relative dielectric constant of the medium. Generally the dielectric constant of
the solvent and the cluster are unequal, and there is an issue concerning the interpolation,
i.e. what is the effective value of ε. Here we assume the dielectric constants to be equal, and
we postpone discussion about the more general case.) The last term in equation (4) can also be
viewed as a general, charge-generating term. This term is governed by the bare charge density
ρ0 which will be the charge density in the absence of Coulombic repulsions: when Q = 0 the
minimum of fcluster(R, ρ) with respect to ρ is located at ρ0. In terms of the site binding model
discussed in [1], where it is the sum of the combinatorial entropy of the dissociating ions and
the translational entropy of the released counter-ions in the absence of impurity electrolyte,

ρ2
0 � e−Q/bσ

rb3φ
. (5)

Here φ is the overall volume fraction of colloid and b is the distance of closest approach between
a counter-ion and a charge on the colloid surface (typically a few ångströms). Further, there is
the colloid radius r and the areal density of chargeable groups on the colloidal surface σ . In
fact kT Q/b is a dissociation energy of an ion pair located at the colloidal surface.

In equation (4) there is a competition between the surface tension term (favouring large
clusters) and the Coulomb term (penalizing large clusters). Another determinant for the cluster
size is the charge density of the cluster which is governed by the last term in equation (4). The
dependence on volume fraction of the bare charge density is of interest as this implies a growth
of the cluster size upon adding particles.

4. Equivalence of colloidal cluster with nucleus

Having described the cluster free energy and the necessary energetics of the atomic nucleus
we can now try to establish the formal connection between the two models. Comparing the
structure of the cluster free energy equation (3) with the mass formula equation (1) we note
that only the charge-generating term differs in analytic structure from the symmetry term in
equation (1) which is the charge-generating term for the nucleus. Note that the latter is a
result from a Taylor expansion of the energy around symmetric nuclear matter. A form valid
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for a broader range of A and Z is found in a seminal paper of Baym et al [17]. Now one
can analogously expand the entropic charge-generating term in equation (3)—a much easier
task—to obtain exactly the same structure as in equation (1). We expand around the bare
charge density: 2ρ[ln(ρ/ρ0) − 1] � −2ρ0 + ρ−1

0 (ρ0 − ρ)2. Within this approximation the
semi-empirical mass formula equation (1) and the colloidal cluster free energy equation (4)
are identical if we make the following identifications:

A → 4π R3/3v

Z → 8π R3ρ/3vρ0

avol → − f0v + 2ρ0v

asurf → 4.84γ v2/3

asym → kTρ0v

acoul → 0.48kT Qρ2
0v5/3.

Here v is the occupied volume of a particle in the cluster. The prefactors in front of the
identifications of asurf and acoul are approximate values for the case of spherical clusters. In
these identifications the first is to relate the aggregation number with the mass number A, so
a nucleon is simply identified with a particle in the cluster. The identification of the atomic
number Z with the total cluster charge in units of bare charge per particle ρ0v reflects the fact
that the role of elementary charge is taken over by ρ0v. Further, the energy scale is set by avol

which has as a colloidal equivalent: − f0v modified by the counter-ion entropy 2ρ0v. (Actually
this modification is not present in the mass formula due to the definition of the reference state,
i.e. the state for which avol can be theoretically determined. This state is known as idealized
nuclear matter: very large (→∞) number of nucleons, equal number of neutrons and protons,
and the Coulomb interaction being switched off.) By necessity one has that the energy scales
by asurf and γ v2/3 should be comparable to their ‘volume’ counterparts. The charge-generating
term asym must be identified by the charge per particle, and the Coulomb term is given by a
simple rescaling of the nucleon radius into the colloid radius, and the elementary charge into
the elementary colloid charge, ρ0v.

Let us see how the numerical values of the coefficients can compare. Typical values for
the nuclear coefficients are [18] avol = 15.75, asurf = 17.8, asym = 23.7 and acoul = 0.71 MeV.
Then, given these energy scales, we can deduce what the colloidal parameters should be to find
a cluster with the same aggregation number as the most stable isotope 56Fe. Such a colloidal
cluster should be formed when one has v1/3/Q � 102γ v2/3/kT . Since by necessity one has
γ v2/3 > kT , a mimic of 56Fe can be achieved only if the particle diameter, which is close to
v1/3, exceeds the Bjerrum length by a few hundred times. This is the case, for instance, with
colloids of one micron diameter in a solvent with relative dielectric constant of 10. Note that
it is a necessary condition but not a sufficient one, because the charge density has to be tuned
by changing the volume fraction or temperature. From these estimations it seems possible to
mimic the values of the nuclear coefficients.

5. Gelation

In certain colloidal systems low density gels are observed [19]. (The packing fractions are well
below the typical repulsive glass limit, i.e. φ = 0.58.) Simulations on systems of exclusively
attractive hard spheres with a short-range attraction and implicit reversible bonds [20] do not
show such low density gels. By incorporating long-range Coulombic repulsions there is a clear
possibility of finding the phenomenon in simulation [21]. At the same time the incorporation of
Coulomb interactions gives the possibility of finding low-density gels with reversible bonding.
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Figure 2. Excess free energy of the free energy per particle in a cluster as a function of the charge
density ρ. The different curves correspond to different values of the parameter ρ0γ

−2 Q−1. The
curves show three regimes: stable, metastable and unstable clusters. The point ρ = 0 corresponds
to an ‘infinite’ cluster

(This figure is in colour only in the electronic version)

As such the gel is an equilibrium structure with voids stabilized by Coulomb repulsions. We
will come back to this in the discussion.

Here we will concentrate on an important instability of the cluster phase related to counter-
ion condensation. The instability is driven by the following mechanism: if the clusters are
very large their surface or ζ potential grows. If this potential exceeds several kT then counter-
ions are drawn to the cluster, and the effective charge density of the cluster will be lowered.
Then due to this lower charge density the cluster can grow larger, see equation (6), and more
counter-ions are drawn in. This process can continue indefinitely if the aggregation is strong
enough, thus forming an infinite cluster. Below we will show this instability to occur within
the assumptions of our model.

Equation (4) can be minimized with respect to the cluster radius, resulting in

R3 = 15π

8

γ

Qρ2
. (6)

This reflects the intuition that a low charge density cluster can grow larger. Inserting this
optimum radius in the free energy expression (3) one finds

f (ρ) = c γ 2/3 Q1/3ρ2/3 + 2ρ[ln(ρ/ρ0) − 1]. (7)

For spherical clusters the constant is given by c = 5.34. In the free energy equation (7) we
have two terms remaining. The first term on the right-hand side is the combined Coulomb and
surface term, the second the charge generating entropy. The Coulomb/surface term is unstable
with respect to the charge density and the entropic term has a stabilizing effect. The relative
importance of the terms determines the stability of the system. The free energy equation (7) is
graphically represented in figure 2. One finds for increasing values of the parameter ρ0γ

−2 Q−1

a regime of unstable, metastable and stable clusters, respectively. In the unstable regime there
are no local minima, and the free energy is minimized for zero charge density, ρ = 0, which
corresponds to an infinite cluster by equation (6). Passage to this infinite cluster should be
observable as some kind of clustering catastrophe. At first this catastrophe will manifest itself
as phase separation, of which the dense phase is expected to be gel-like.

In the metastable regime a local minimum emerges in the free energy, yet the absolute
minimum still corresponds to the infinite cluster. In the metastable state a cluster phase may
nucleate to form an infinite cluster. The unstable and metastable regimes are demarcated by a
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spinodal. For higher charge densities the local minimum turns into an absolute minimum. In
this stable regime the finite cluster is stable with respect to the infinite cluster, and gelation will
not occur based on this simple free energy in an average sense equation (7). The metastable
and stable regimes are demarcated by a binodal. In terms of our model parameters the binodal
and spinodal are given by

ρ0 =
{

4.21γ 2 Q spinodal
5.22γ 2 Q binodal.

(8)

Note that the parameters driving the instability influence cluster growth qualitatively in the same
way: large surface tension, low charge density and large Bjerrum length favour the instability
expressed in equation (8) and lead to larger clusters as can be seen from equation (6). In terms
of short-ranged attractive potential well depth ε(γ ∼ ε) and the charge density in equation (5)
the spinodal scales as

εgel ∼ φ−1/4. (9)

Generally we will find that the clusters grow as one approaches the instability boundary. The
maximum size of a cluster Rmax is found at the spinodal:

Rmax � 2.4

γ Q
. (10)

Again the prefactor is an approximation valid for spherical clusters. In fact we do not expect
this prefactor to be right due to the approximations made (see discussion). In this expression
the bare charge density has been eliminated by combining equations (6) and (8). This is an
interesting elimination as the charge density generally is difficult to determine. The expression
predicts that the size of the cluster at the gel line is independent of the volume fraction. Also
there is no divergence of the size, but instead one finds a discontinuity of the value from
equation (10) to an ‘infinite’ cluster. We can rewrite equation (10) in terms of the cluster
aggregation number nmax: nmax � vQ−3ε−3, where we recall that the sticking energy is ε and
v is the volume per particle in the cluster. From this it is seen that large aggregation numbers
can be obtained only if the particle diameter is larger than the Bjerrum length. This reflects
the fact that large Bjerrum lengths stimulate counter-ion condensation and thus inhibit larger
clusters.

6. Discussion and conclusion

The colloidal cluster phase was observed experimentally by Segre [2]. Simultaneously and
independently we proposed the possibility of such phases as a result of short-range attractions
and long-range repulsions. Later experimental results [4] seem to support our theoretical ideas
on the cluster phase, and they have been a strong stimulus to continue our investigations. In
this paper we presented the computation of a stability boundary for a cluster phase as a new
contribution to the subject. It is clear that there are many points to be improved upon. For this
let us recall that the results in the section on gelation have been derived under the following
assumptions: (1) spherical clusters, (2) low volume fractions, (3) homogeneous distribution of
counter-ions and cluster charge, (4) neglect of inter-cluster interactions, and (5) equal dielectric
constant of cluster and solvent. It must be noted that we cannot neglect the third condition close
to the gel line. The condition of spherical clusters is also debatable but the assumptions (2)
and (4) are in principle feasible by limiting to low volume fractions. Also (5) is a restriction
that can be satisfied in principle, but it would be useful to find the general case. We do not
expect the results expressed in equations (8) and (10) to be qualitatively modified by a more
accurate treatment of the problem, in particular by taking the ionic distributions into account,



Colloidal cluster phases, gelation and nuclear matter S4885

both of the charge density on the clusters and that of the counter-ions in solution. We do expect,
however, a modification of the prefactors.

We hope to have shown that the similarity of the colloidal cluster phase with the classical
picture of the nucleus is more than superficial. In fact we have been able to show that—within
approximation—the semi-empirical mass formula for the nuclear binding energy is equivalent
to the free energy of a cluster in our model of the cluster phase. The relationship between the
two fields at such a simple level is appealing, and we can hope to find guidance and inspiration
from the advances made in nuclear physics. It is interesting to speculate about the equivalent of
gelation in the nuclear context. It has been pointed out in the context of neutron stars, [17], for
densities of the order of nuclear matter (1014 g cm−3), that inverse structures can be formed.
An elaboration of these ideas have been reviewed in [22], where one finds a discussion on
nuclear tubes, sheets and bubbles very similar to the ones found for other branches of soft
condensed matter, in particular in block copolymer systems [23]. A nuclear bubble phase
refers to a continuous background of weakly charged nuclear matter with equilibrium bubbles
containing electrons and a gas of free neutrons. We think that it is an interesting challenge both
theoretically and experimentally to see if such phases exist in the colloidal context. In particular
can the ‘infinite’ cluster contain ‘bubbles’ of solvent and counter-ions? Note that in the past
such structures have been observed in dilute de-ionized colloidal dispersions [24]. A theory
describing this phenomenon, e.g. [25], uses the linear Poisson–Boltzmann, without invoking
explicit attractions. Unfortunately, the linearization of the Poisson–Boltzmann equation is
known to generate spurious instabilities [12]. We have some hope that the colloidal equivalent
of the nuclear bubble phase is exemplified by the voids observed by Ise [24]. The most serious
reservation we have lies in identifying the origin of the short-ranged attraction in this dilute
colloidal system.
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