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Abstract

The analogies between colloidal glasses and gels have stimulated an increased effort in recent years to unify the description of

the transitions to these disordered solid-like states within a single conceptual framework. Mode coupling theory, which successfully

describes the hard sphere colloidal glass transition, has been extended to describe the effect of weak attractions at large volume

fractions. By comparison, diffusion limited cluster aggregation models successfully describe the behavior for the other limit,

irreversibly aggregated, fractal gels formed at low volume fractions and very large interaction potentials. A theoretical picture,

which unifies these two limits, is still the subject of research. In this review, we summarize some of the results obtained to date,

aiming to give an overview of our current understanding.
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1. Introduction

Colloidal particles can form disordered solids in

several seemingly disparate ways. At very high volume

fractions, crowding of non-interacting, or hard-sphere

particles results in a colloidal glass, whose solid-like

properties originate from the permanent trapping of

particles within cages formed by nearest neighbors w1–

3x. By contrast, at very low volume fractions, inducing

strong attraction between the particles results in the

formation of fractal clusters, which ultimately form

space-filling networks, whose connectivity determines

the solid-like properties of the system w4–6x. At volume

fractions intermediate between these two extremes, col-

loidal particles can still form disordered solids, with a

transition from liquid-like to solid-like behavior that

depends on both the strength of the interparticle attrac-

tion, U, and the volume fraction of particles, . A

continuous boundary describing the onset of disordered

solid states connects the high-density repulsive glasses

to the low-density space-spanning systems with highly

attractive potentials. Fig. 1 shows a schematic of such a

state diagram, based on results obtained for systems
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with short-range potentials w7–9 ,10 x. The two●● ●

extremes of the state diagram are the hard sphere
colloidal glasses at high and low U, and the strongly
attractive colloidal gels at low and high U. All
disordered solid states described within this state dia-
gram are defined by their arrested dynamics and elastic-
ity. A central question of recent research in colloidal
science has been whether colloidal glasses and gels can
be described within a single framework. Two quite
different frameworks have been invoked. One approach
is mode coupling theory (MCT), which focuses on
density fluctuations and the formation of cages leading
to structural arrest w11x. A second approach, which to
date is still only conceptual, is jamming, which infers
stress-bearing networks underlying the solid-like prop-
erties in a variety of disordered solids w12x.

The aim of this paper is to summarize some of the
recent results concerning both the existence of a contin-
uous boundary and the investigation of the nature of the
fluid to solid transition. Our focus is on the dynamic
arrest and the onset of elasticity at the transition, rather
than on specific forms of the correlation functions
describing the dynamics.

2. Transitions at high densities and low interaction

potentials

The colloidal hard sphere glass transition has been

extensively studied in the past and MCT has been used



Fig. 1. Schematic state diagram of colloidal particles with short-range potentials, based on results given in ref w7–9 ,10 x. The solid line represents●● ●

the boundary of disordered solids, the dashed line the boundary between equilibrium and non-equilibrium behavior. The grey area at low volume

fractions and large interaction potentials denotes the region, where gels are typically formed. The elasticity is determined by connectivity and can

be best understood as the ratio of a characteristic spring constant, k(j), to the characteristic elastic correlation length of the system, j. The grey

area at large volume fractions and low interaction potentials denotes the region where glasses are typically formed. The elasticity is determined

by the constraint of the particle, which is unable to move out of a cage formed by its nearest neighbors; this is due to crowding and bonding.

The elasticity here is of entropic origin and is best understood as the ratio of energy to a characteristic volume, which is the volume of the

characteristic structural length of the system, R ; at large volume fractions, this is the particle size.U

successfully to describe the main features of this tran-

sition w3,13,14x. As the transition is approached, the

increase in the volume fraction of particles leads to

caging, which gives rise to an intermediate plateau in

both the frequency dependence of the storage modulus

G9(v) w15x and the time dependence of the correlation

function measured by dynamic light scattering f(q,t)
w3,16,17x. At the glass transition ( s0.58), the a-g

relaxation time, which describes the long-time structural

relaxation process, diverges, and the system exhibits

non-ergodicity in addition to a plateau modulus at low

frequencies. Both, the ergodic–non-ergodic transition

and the rheological fluid–solid transition coincide, clear-

ly indicating that the structural arrest is the cause of the

elasticity. The low frequency plateau modulus G9 isp

finite at the transition and is predicted to increase as

G9 ;AqB( y ) with ns0.5 w11x.n
p g

More recently, the effect of introducing short-range

attractions in glasses has been studied theoretically w18–

20 x and experimentally w9 ,21 ,22 ,23 x. At volume●● ●● ● ●● ●

fractions slightly above , weak attractive interactionsg

lead to a melting of the glass, which is due to an

increase in the free volume available for particle motion

resulting from the attraction-induced decrease in the

local particle–particle separation. Increasing the attrac-

tion still further increases the lifetime of the particle

bonds w20 x resulting in a transition to a solid, which●●

is termed an attractive glass. This reentrant behavior is

indicated schematically in the diagram of Fig. 1; the

precise experimental diagram can be found in Ref. w9 x.●●

Because of the higher constraint in the particle motion

due to bonding, the elasticity is predicted to be much

larger in the attractive glass than in the repulsive glass
w20 ,24 x. A direct transition from repulsive to attrac-●● ●●

tive glasses, which should occur when an attraction is

introduced at even larger volume fractions, is predicted

to display a sharp or even discontinuous increase in the

elasticity of the system, depending on the range of the

potential w20 ,24 x.●● ●●

3. Transitions at low densities and large interaction

potentials

Attractive interactions between colloidal particles can

be controlled in many different ways. A widely used

way is given by depletion interactions w25,26x, which

are present when a small entity, such as a polymer,

micelle or particle, is added to an otherwise stable

suspension of large colloids. Because the center of mass

of the smaller species S cannot exist within a shell

around the colloid C, there is a net gain in the free

volume available to the smaller species when the col-

loids approach each other such that their excluded

volumes overlap; this results in a net osmotic force

exerted on the large particles by the small ones, and

leads to an effective attraction between the large parti-

cles. The advantage of such depletion-induced attrac-

tions is that both the range and the depth of the potential

can be easily adjusted by, respectively, the size ratio Sy
C and the free volume concentration of S. Because of

this excellent means of control, many of the studies on

equilibrium and non-equilibrium behavior of attractive
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colloids have used depletion attraction as a model

system w7–9 ,10 ,22 ,27–29 ,30 ,31 ,32 ,33 ,34 x,●● ● ●● ● ● ● ● ● ●

with a notable example being sterically stabilized poly-

methylmethacrylate (PMMA) particles, suspended in

organic media using polystyrene (PS) as depleting agent.

In their pioneering work on the non-equilibrium

behavior of PMMAyPS-systems, P.N. Pusey, W.C.K.

Poon and collaborators w7,27x reported the existence of

a systematic –U boundary between fluid-like and

space-spanning solid-like systems. However, because of

the density mismatch between the particles and the

medium, the continuous space-spanning solids persisted

only for a limited time before they collapsed and settled

due to gravity; this behavior lead the authors to term

these solids as transient gels. Below the boundary

describing the onset of transient gelation, they found

non-equilibrium states for a wide range of and U,

which do not exhibit solid-like properties. The approxi-

mate position of the boundary delimiting the equilibrium

phases from the non-equilibrium states is shown by the

dashed line in Fig. 1.

Remarkably, a recent extension of MCT describing

the behavior of depletion systems at low volume frac-

tions, captures this onset to non-equilibrium, rather than

the fluid–solid-transitions occurring at larger U w24 x.●●

Considering that MCT treats the dynamic arrest at the

particle level and does not incorporate the contributions

of any space-spanning structures, which typically result

from classical aggregation-gelation theories w35–41 x,●

this result appears to be rather significant. For the non-

equilibrium fluid states, the formation of either compact

or fractal clusters have been reported, depending on the

strength of the interaction potential w7,29 ,30 ,31 x. The● ● ●

cluster itself is likely to be an elastic solid; the particles

within the clusters are trapped in local cages, and their

motion within the frame of the cluster is constrained so

that their local dynamics are arrested. Thus, we can

consider the particles within the cluster to be in a glassy

state, which is correctly captured by MCT. However,

this leads neither to a measurable bulk elasticity nor to

a measurable non-ergodicity since the clusters them-

selves continue to freely diffuse.

Segre et al. w30 x investigated the dynamics of a●

nearly density-matched PMMAyPS-system, where

was varied while U was held fixed at a value large

enough to allow the rising branch of the state boundary

to be crossed. These systems typically exhibit a small-

angle peak in the scattered intensity, indicating that the

clusters formed are uniform in size w7,29 x. Using●

dynamic light scattering to probe the dynamics at q-

values near the peak reveals the development of a

second relaxation process, whose characteristic time

diverges at some critical volume fraction ; this isc

reminiscent of the colloidal glass transition. Moreover,

the q-dependence of the correlation functions which

probe the dynamics on the length-scale of the clusters

exhibits a scaling behavior similar to the one found for

systems near the hard sphere glass transition, where the

q-range over which scaling is exhibited corresponds to

length-scales where the motion of single particles is

explored w42x. This led the authors to postulate that the

gelation transition is caused by the trapping of clusters

in cages of neighboring clusters, implying the existence

of a glass of clusters. Within this picture, the ergodic–

non-ergodic transition observed in the low particle-

density limit is a result of an increased effective volume

fraction, caused by the growth of space-filling clusters.

The rheological behavior of depletion systems similar

to the one used by Segre et al. w30 x was investigated●

by Prasad et al. w10 x. They found an onset and increase●

of the elasticity, which was reasonably well described

by a critical-like function G9 sB( y ) , where n wasn
p c

found to depend on the range of the potential, varying

from n;2.1 to n;3.3 as the range of the depletion

attraction decreased. The critical-like onset of the plateau

modulus observed by a number of authors w10 ,43–45x●

is reminiscent of rigidity percolation, where sets the

probability of the formation of a bond which contributes

to the elasticity. The differences in the exponents reflect

differences in the stress-bearing properties of the net-

work. As the range of the potential decreases, the

network switches from one that resists only bond-

stretching w46x to one that also resists bond-bending
w47x. Within this percolation picture, we expect at ac

connected elastic network with a correlation length js
`. Clearly, the characteristic lengths determining the

ergodic-nonergodic transition and the rheological fluid–

solid transition differ significantly from each other. The

finite cluster size determines the non-ergodic transition,

while the infinite elastic correlation length determines

the rheological transition. The characteristic cluster size

is reflected by the peak in the static structure factor,

whereas by contrast, there is no manifestation of the

elasticity correlation length in any structural probe.

Rheologically, however, it is this tenuous, yet structur-

ally invisible, underlying network which determines the

elastic properties of the low-density systems; particles

which are not part of the stress-bearing network act here

as mere spectators to the elasticity w48 x. Interestingly,●●

the critical volume fraction for the non-ergodicity tran-

sition, determined from dynamic light scattering meas-

urements, is found to be lower than the critical volume

fraction for elasticity, determined from rheological meas-

urements w10 x. This suggests that the glassy arrest of●

the clusters is not sufficient to provide a measurable

elasticity; the formation of a true elastic network is

necessary for the system to bear stress. The reason for

the lack of elasticity at the non-ergodicity transition may

be a consequence of the open and floppy characteristics

of clusters, which allows for both interpenetration w49x

and internal energy dissipation w5x. An alternate expla-

nation is that the magnitude of the modulus at the



Fig. 2. Schematic diagram denoting the different boundaries that we may expect for systems with short range potential. Boundary I (solid line)

represents the onset of the arrest of individual particle motion, due to trapping in cages of nearest neighbors w24 x. At low volume fractions, this●●

condition is necessary, but not sufficient, for the system to arrest macroscopically. The dashed line represents boundary II, where the effective

volume fraction of the space-filling unit of size R becomes sufficiently high to prevent long range motion within the system. This boundaryU

naturally merges with the boundary of local arrest, as R approaches the particle size at large volume fractions. The dotted line represents boundaryU

III, where a percolating stress-bearing path through the system is observed for the first time, the elastic relevant correlation length j is infinite at

the boundary. How this boundary extends to larger volume fractions is not yet clear.

ergodic–nonergodic transition is too small to be meas-

ured, because of the increased size of the unit that is

actually arrested, R . The elasticity obtained by glassyU

arrest is of entropic origin, where the configuration of

the particles or, respectively, the clusters resists defor-

mation out of its most probable configuration. By

analogy to the entropic elasticity of glasses, the plateau

modulus is proportional to energy over a characteristic

volume, k TyR , where R is the size of the cluster at3
B U U

low and the size of the particle at large . Thus, as

the cluster size increases with decreasing , the modulus

at the non-ergodic transition becomes too small to be

measured. Instead, the only measurable modulus is that

of a connected stress-bearing network, and the critical-

like onset for this occurs at a higher value of .

For very strong attractions, we recover the behavior

expected for irreversible aggregation, where the kinetics

leads to the formation of fractal colloidal gels. The

plateau modulus is found w50x to increase as G9 sp

B as expected for kinetic aggregation, where ;0.3.2
c

The dynamics of these systems as measured with dynam-

ic light scattering typically exhibit subdiffusive behavior

at short times and arrested dynamics at longer times
w5,6,51x. This behavior can be accurately described by

a hierarchy of internal elastic modes within the fractal

clusters, where the largest fluctuation is quantitatively

related to the elastic modulus of the system w5,6x.

Elasticity and non-ergodic dynamics of strongly attrac-

tive systems are clearly related to their underlying

network. Moreover, the cluster size of these systems

corresponds directly to the correlation length relevant

for elasticity, R sj.U

Thus we are left with a rather intriguing scenario.

Mode coupling theory seems to accurately capture the

onset of the local trapping of the particles over the

entire range of , thereby describing the onset to non-

equilibrium behavior w24 x. At large enough volume●●

fractions, the cages physically overlap, leading to the

scenario of measurable non-ergodicity and elasticity of

hard sphere glasses. As shown by recent simulations
w52 ,53 x, mode coupling theory correctly describes non-● ●

ergodicity transitions for volume fractions as low as

s0.4. However, as the volume fraction is decreased

further, local trapping is no longer sufficient to macro-

scopically arrest the system dynamics, as the number of

cages becomes too small to fill space. Instead, finite

clusters are formed, where within each cluster, the

particles themselves are arrested. Macroscopic non-

ergodicity arises only when the effective volume fraction

of the clusters is sufficiently high. As U increases, larger

clusters are formed and a smaller particle-volume frac-

tion is required to achieve an effective volume fraction

sufficiently high to cause macroscopic non-ergodicity.

Because of the increased size of the unit, which gets

arrested at low , the magnitude of G9 becomesp

immeasurably small. The clusters have to connect, and

a percolated elastic network has to form, for the system

to exhibit any measurable elasticity.

From these observations, we can infer the schematic

state diagram shown in Fig. 2. Boundary I (solid line)

is due to the local arrest of the particles. Boundary II

(dashed line) is due to crowding of the relevant unit of

the system and corresponds to the macroscopic non-

ergodic transition over the entire range of . This

boundary merges naturally with boundary I as RU

becomes equivalent to the particle size at large .
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Boundary III (dotted line) is due to the formation of a

percolated stress bearing network and corresponds to

the onset of a measurable elasticity at low and larger

U. How this boundary extends to large volume fractions

is not clear. At large enough interaction potentials the

bonds between particles will necessarily become resis-

tant to stretching or even bending and any percolating

path of bonds will, therefore contribute to the elasticity

through typical network elasticity, which is characterized

by the ratio of the characteristic spring constant k(j) to

the elastic correlation length j. Whether the onset of

this contribution can be detected for systems at higher

, which already exhibit entropic elasticity, must still

be resolved by experiments. For intermediate particle

volume fractions, transitions through boundary III

should in principle be noticeable, as the network elastic-

ity seems to increase with distinctly higher exponents

than any predicted for the increase of entropic elasticity
w11,54 x. Moreover, the short-time dynamics should●

reflect contributions from the elastic modes, similar to

those observed in both strongly and weakly attractive

systems at particle volume fractions below 10%
w5,6,51,55x.

It is evident that any meaningful attempt to describe

the fluid–solid transitions at low volume fractions must

include conditions, which lead to space-filling structures.

In models that describe irreversible aggregation, it is the

kinetics that determines the mechanism of formation of

space-filling structures w37,40,41 x. Here, we restrict the●

use of the word ‘kinetics’ to processes, which occur in

time, such as nucleation and growth and diffusion

limited cluster aggregation, and we use the word

‘dynamics’ exclusively for processes describing motion,

such as diffusion and thermal fluctuations. Starting from

a fully dispersed system, and assuming that there is no

repulsive barrier that add stability to the particles, any

aggregation process will be determined by two compet-

ing time scales, the life-time of the bonds and the time

for two particles to encounter one another. If the life-

time of the bond is much greater than the collision time,

it is the kinetics which governs the arrest. The system

gradually quenches deeper and deeper into a non-

equilibrium state as time proceeds, due to aggregation

being much faster than any process driving the system

to equilibrium. The particles are arrested within the

growing clusters; the clusters grow until they connect,

whereupon their growth is arrested; this leads to a

‘kinetic arrest’ of the structure, which generally is fractal

and thus space filling. The kinetics observed for such

irreversible aggregation w36x is strikingly similar to those

observed for aggregation when the attractive interaction

is much weaker w7,29 x. However, for the weakly aggre-●

gated systems at low , it seems that the growth can

become arrested before the clusters become connected

to each other, which lead to phases that consist of

disconnected, ‘fluid’ clusters. The transition to connect-

ed clusters occurs at finite values of ; the underlying

origin of this remains unclear. For fractal growth one

can, in principle, expect space-spanning networks at any

volume fractions. The critical-like onset and increase of

the elasticity with increasing observed at intermediate

U, indicates that the correlation length of the stress-

bearing network decreases as j;( y ) ; this isy1
c

similar to DLCA-systems where R ; withy1y 3yd( )f
U

d ;2 the fractal dimension, except there s0 and jsf c

R . The origin of this behavior seems to stem from theU

same limitation that causes the limited growth of the

clusters in the non-equilibrium fluid state. The most

likely explanation for the existence of is that therec

may be a bond-breaking and bond-forming rate, which

limits the growth of the clusters and subsequently

determines the growth of the stress-bearing network.

However, conclusive evidence for the validity of this

scenario has yet to be found.

4. Conclusion

Our understanding of the implications and conse-

quences of a continuous boundary that describes the

onset of formation of disordered solids as U or are

varied is certainly far from complete. Further parameters

controlling the position of the boundary, and thus the

dynamics and rheology of a given system, include the

range of the potential, the time elapsed after the quench

to the initial non-equilibrium state and the load applied

on the system; these are all topics of current, and surely

also future research. The importance of new aspects of

the transition, such as the spatial and temporal hetero-

geneities observed in the dynamics of systems near the

glass transition w56,57x, are becoming increasingly rec-

ognized and are being explored within the context of a

general understanding of transitions to disordered solids
w58 x.●

Besides the scientific interest in understanding the

nature and control of these transitions, unifying schemes

to describe them are likely to have considerable impact

for industry, where the applications of colloidal systems

rely to a large extent on their rheological properties.

These are precisely the properties affected by the fluid–

solid transitions; thus growth laws that predict the

increase of viscosity upon approach to the transition,

and the increase of the plateau modulus or yield stress

above the transition, would provide a powerful tool for

the design of material properties. In addition, a unified

description of the glass transition and gelation would

impact the more general description of such transition

in terms of jamming or other evolving concepts.
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