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Colloidal gold is orange to red, displays electron-opaque properties and

is capable of strong emission of secondary electrons. As gold particles

can be produced in different sizes and can be labelled with

macromolecules which keep their specific properties, gold markers have

found ases in light and fluorescent microscopy, and many applications

in scanning and transmission electron microscopy.

In biology, the most sophisticated analysis perform-

cd in vitro will never suppress the urge of an in-

vestigator to visualize the exact location of a cell

component.

From the time the Dutch naturalist Antonie van

Leeuwenhoek (1632-1723) made his first discoveries

with a simple instrument, microscopy has indeed

proved to be a powerful tooi for understanding the

microcosm. Thanks to patient efforts and to an amaz-

ing skill in using lenses, van Leeuwenhoek was able to

obtain results which, at the time, were thought to be

truly marvellous. His experiments became so popular

that it was fashionable in the upper class society of

Delft to Eind distraction, satisfaction and even joy in

observing nature through his primitive microscopes.

These inner feelings are still strongly feit by modern

researchers using much more powerful instruments.

Clearly, van Leeuwenhoek was a self-taught

microscopist, but his observations led to many

discoveries of great importante. He was the first to

observe protozoa, spermatozoids and red blood cells,

and the first representation of a bacterium is to be

found in one of his drawings of 1682.

The development of optical microscopes has con-

tinued since that time, but the limits imposed by the

wavelengths of visible light prompted the search for

high resolution techniques. The first transmission

electron microscopes having better resolution than

light microscopes were built in 1932. Thirty years

later, the scanning electron microscope was introduc-

cd. Scanning electron microscopy (SEM) gives a

three-dimensional quality to specimen images. Nor-

mally, the instrument is operated by scanning, or

sweeping, a very narrow beam of electrons back and

forth across a metal-coated specimen, revealing its

surface features rather than its internal structure.

The possibility of localizing specific tissue com-

ponents attracted the early microscopists, but it was

Raspail (1794-1878), a French botanist, pharmacist,

microscopist and politician, who first used the

microscope to study the chemical reactions of tissue

materials. He is considered to be the founder of

histochemistry and some of the reactions which he

discovered are still applied today. Over the years, a

large number of techniques has been developed to

identify, locate and quantify specific tissues and cell

components. Among the methods having a narrow

specificity, the use of fluorescent antibodies was in-

troduced in 1941 by Coons et al. (1). A great advance

was then achieved at the ultrastructural level with the

development of enzyme cytochemistry (2, 3, 4) and

the application of particulate markers, such as fer-

ritin, conjugated to antibodies (5, 6). Ferritin is a

large molecule, of weight 800 000, with a protein

shell of about 12 nm outer diameter surrounding a

core of ferric hydroxide phosphate containing more

than 2 000 atoms of iron. In the transmission electron

microscope, the core of ferritin can be seen as a dark

spot. Although the ferritin technique is widely used

and is a powerful tool in the hand of cytochemists, the

method is rather time-consuming and expensive.

A new metallic and particulate marker was in-

troduced more recently, namely colloidal gold. Its

first application as a specific marker for transmission

electron microscopy (TEM) was described in 1971

(7). The gold method was further developed by

Horisberger et al, in 1975 for SEM (8) and in 1979

for fluorescent microscopy (9). Gold particle mapping

by X-rays was reported in 1979 (10). The preparation

of gold markers has been described in detail by

Horisberger and Rosset (11) and by Geoghegan and

Ackerman (12), and the method has been discussed in

general articles (13, 14, 15). The interested reader

should refer to these articles.

Dispersions in which the particles are large com-

pared with the magnitude of ordinary molecules, but
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still small enough to possess reasonable stability, are

in general called colloidal dispersions, colloidal solu-

tions or sols. The name colloidal was coined in 1861

by the Scottish chemist Thomas Graham (1805-1869)

from the Greek word for glue. The Italian Enrico

Selmi was the first to give a precise description of col-

loids in the years 1845 to 1860 and he built a theory

of which some aspects are still valid today. However,

Selmi's work attracted less attention than Graham's

studies which were widely circulated, and to this day

Graham has held the title of 'father of colloids'.

Colloidal Gold

Colloidal gold, prepared by reducing a dilute solu-

tion of gold chloride, is usually of a striking orange to

red colour which it retains for many years. Although

colloidal gold was known to the alchemists of the 17th

century, it was Michael Faraday (1791-1867) who

first made a scientific study of its preparation and pro-

perties. Some of Faraday's original gold dispersions

in water, prepared in 1857, are still preserved at the

Royal Institution in London. Faraday also discovered

that addition of small amounts of electrolytes turns

the colour of the sols from ruby to blue and coagulates

them. More important, he demonstrated that these

effects can be prevented by addition of gelatin and

other macromolecules (16).

The facility with which its colour may be changed

is one of the most curious properties of colloidal gold.

No other hydrosol has been shown to change colour

by coagulation, with the exception of that of silver

under certain conditions. This phenomenon has not

yet received an adequate explanation.

Many varieties of colloidal gold are known. They

have been produced by reducing gold salts with at

least 50 mineral and organic reagents such as

phosphorus, formaldehyde, ethanol, tannic acid,

ascorbic acid and sodium citrate. Depending upon the

method used, the particles vary in size. For

cytochemical uses, gold colloids are prepared essen-

tially by three procedures. The smallest particles, Au 5

— the subscript conveniently indicates the mean

diameter of the particles in nanometres — are obtain-

ed by the procedure of Faraday (16), boiling a dilute

solution of gold chloride in the presence of

phosphorus (7). Au, 2 particles are produced at room

temperature by reducing gold chloride with sodium

ascorbate (13, 15). Larger granules (Au 16 to Au 75) are

produced by boiling gold chloride in the presence of

decreasing amounts of sodium citrate (17). While the

formation of gold particles by the ascorbate method is

practically instantaneous at room temperature, with

phosphorus and citrate the boiling solution turns

faintly blue and then changes to red, orange or violet,

depending upon the size of the particles. The

development of the colour can be just as fascinating

today as it must have been to the alchemists whose

`potable gold' was also colloidal in character.

Preparation of Gold Markers

Colloidal gold particles are surrounded by clouds of

ions, the presence of which is thought to be respon-

sible for their stability. The particles carry a net

negative charge which causes mutual repulsion. The

addition of electrolytes results in a compression of the

ionic double layer and a reduction of the radius of

repulsive forces. As a result, gold sols coagulate. The

coagulation process can be prevented by simply mix-

ing a protein with a gold sol, thereby adding a protec-

tive coat to the particles. While Faraday stabilized

golds sols against coagulation by electrolytes with

gelatin, Faulk and Taylor used antisera and thus

obtained a specific immunocolloid (Au,) capable of

interacting specifically with cell surface antigens (7).

Following this initial work, many different re-

searchers have prepared gold markers by labelling

gold particles with a vide variety of macromolecules

such as toxins, hormones conjugated to protein,

polysaccharides, glycoproteins, protein A, enzymes,

antisera, immunoglobulins, lectins and fluorescent

probes — reviews are presented in (13) and (15). Most

macromolecules bound to gold particles show no ap-

parent change in their specific bio-activity. All

available evidente indicates that macromolecules re-

main firmly attached to gold particles, presumably

through a non-covalent binding process (13, 14, 15).

The stabilization of colloidal gold by protein

depends upon a number of factors such as pH, the

electric charge of the molecule and its molecular

weight (11 to 15). Once the optietal conditions for

stabilizing a sol have been established by a simple

coagulation test with sodium chloride (7, 11), gold

markers may be readily prepared on a large scale. The

colloid is added to a sufficient amount of

macromolecules dissolved in water or possibly in a

very dilute sodium chloride solution. The colloid is

further stabilized against the possible formation of ag-

gregates by adding polyethylene glycol — the most

effective being Carbowax 20-M of Union Carbide (8,

13) — and centrifuged. By this step, the colloid is con-

centrated and freed of unbound macromolecules.

Finally, the colloid is suspended in a suitable buffer

containing polyethylene glycol. The whole procedure

can easily be completed in 3 to 4 hours. The stability

of gold markers during storage at 4°C is generally

excellent (15).

Applications of Gold Markers

Au, to Au„ particles have been used to mark

specimens either by the direct or the indirect

methods. In the former, specimens are directly in-

cubated with the gold marker in a single step. In the
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Fig. 1 Stereoscopie SEM micrographs of the yeast Schizosaccharornyces pombe. The
cells were marked for galactomannan by the indirect method. They were in-
cubated with the Ricinus communis lectin specific for galactose. The divalent lectin
bound to cell wall galactomannan was in turn marked with Au ss particles labelled
with a galactan (guaran) which reacted with the free lectin binding site. Cross-
walls established by fission were practically not marked (single arrows). However,
the growing ends reacted witti the marker (double arrow). The specimen was not
coated witli uwetal. The stereopairs are best viewed with an optical viewer. Alter-
natively, witti a little deterinination one can sce the cell in three-dimensions with
the naked eye by allowing the right eye to sec only the right-hand figure and the
left only the left-hand figure, and by encouraging the images to becorne fused in
the brain (stereopsis). However, most people achieve stereopsis more easily with
iuversion by crossing the eyes. The viewer holds a peneil hetween the figuren.
While looking with both eyes at the tip of the pencil, he raises it towards his eyes
until the two images fase. After (20)

latter, specimens are first incubated with a surface

specific ligand, most often a lectin or an antibody, and

then in one or more subsequent steps, the gold

marker is attached to the bound ligand through

specific interactions. Marking is achieved by agitating

gently unfixed or glutaraldehyde-fixed specimens

with an excess of gold marker. When marking is

dense enough, it can be seen by means of light

microscopy as an orange-red surface coating (12). The

method has also found application in fluorescent

microscopy when gold particles are labelled with a

fluorescein (17) or a rhodamine (9) conjugate.

In SEM, the gold method has been used to mark a

variety of cells such as yeast, red blood cells, platelets,

hepatocytes and milk-fat globules (13, 15). One ad-

vantage of SEM is that comparatively large areas can

be seen in detail. Contrary to other conventional

SEM markers, gold markers are good emitters of

secondary electrons. This property enables the

observer to locate gold particles on a cell surface

which is not coated with a metal. At present, with the

type of instruments used, the most convenient size of

gold marker is approximately 50 nm, although par-

ticles as small as Au 22 have found uses (15).

Stereomicrographs facilitate differentiation between

individual particles (Figure 1). Despite the simplikity

of the method, SEM observations should be cor-

roborated by TEM observations with smaller markers

since some cell surface binding sites may not be ac-

cessible to large size markers due to steric hindrance.

In TEM, gold markers are readily identified by

their opacity to electrons and their characteristic

shapes. The choice of the partiele size depends upon

the magnification used and consideration of the steric

inaccessibility of binding sites. Au, and Au„ particles

have most commonly been used to mark virus,

bacteria, yeast, plant cells and a great variety of

animal cells (13, 15).

The method has found two applications of special

interest in TEM, for which gold is unsurpassed by

other particulate markers at present.

First, as the size of particles in monodisperse sols

can be varied at will between 5 and 150 nm in mean

diameter, gold markers are convenient for multiple

marking (10, 18). This technique permits the precise

evaluation of changes occurring on cell surfaces and

the study of the spatial location of receptors relative to

each other. In multiple marking experiments with

gold particles, stereomicrographs must be taken to

avoid false interpretation since apparently closely

associated particles may be in different planes of the

specimen (Figure 2).

Secondly, the possibility of marking intracellular

components is another important application of col-

loidal gold preparations, since many difficulties in

achieving this goal are encountered using other par-

ticulate markers. In contrast to ferritin conjugates,

gold markers are easily recognized on thin sections to
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Fig. 2 Stereoscopie TEM micrographs of triple-marked mouse embryo

fibroblasts. Binding sites (glycoproteins) for concanavalin A (Con A), soya bean

(SBA) and wheat germ agglutiniu (WGA) were located by marking
glutaraldehyde-fixed eells successively with Con A-Au 5 , SBA-Au17 and WGA-
Au26. Soine SBA-Au17 particles are shown by the arrows. When the stereopair is
examined, inost of the markers are bound by spatially separated sites. Unpublish-

ed documnents by Horisberger and Vonlanthen

which they bind nonspecifically to only a small ex-

tent. Marking is achieved by floating ultrathin sec-

tions on a droplet of gold marker. Again, bath the

direct and the indirect methods have been used

(Figure 3). At present the most general method is the

indirect protein A-gold method (19) which is based on

the ability of this protein to interact specifically with

a wide variety of immunoglobulins from several

species.

As gold particles strongly absorb visible light at a

single peak of absorption (hmax 520 to 550 nm), a sim-

ple spectrophotometric method has been developed to

determine the number of particles bound per cell (11,

13, 15). The latter depends upon a number of factors

such as the Tonic strength of the buffer, the size of the

gold particles and the method utilized to mark the

specimen (direct or indirect). As a rule, when the size

of the marker increases, the number of bound par-

ticles decreases, sometimes abruptly (13, 15). This

indicates that binding sites close to the lipid bilayer

are less accessible to large probes than receptors

extending from the eelt surface, or even that they are

Fig. 3 In an example of the direct method of using gold markers, thin sections of Candida uzilis were marked for mannon
with Con A-Aus (a) and anti-mannan antibodies-Au s (b). The indirect method is illustrated by sections which were in-
cubated with anti-mannon antiserum and then with goat anti-rabbit IgG-Au$ (c) and protein A-Aus (d). Mannan was found
in the eelt walls and in some vacuoles. Although the results were. similar in all cases, the highest density of marking was

achieved by the protein A-gold mnethod. Unpublished observations by Horisberger and Vonlanthen
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inaccessible to them. Therefore, the use of probes of

increasing size appears to be a tooi for studying not

only the lateral, but also the longitudinal distribution

of cell surface binding sites. However, since the

number of labelled particles bound to a surface is less

than that of the free molecules, the gold method does

not allow an absolute quantification of specific

surface receptors. This restriction also applies

to other particulate markers.

Conclusion

While the gold method has found some uses in

histochemistry, its main application is in

cytochemistry using both SEM and TEM. The

method is general and its versatility resides in the

wide variety of macromolecules which can be adsorb-

ed onto gold particles. Gold markers can be prepared

rapidly and inexpensively, they show little non-

specific adsorption and can be quantified by various

methods. They are also useful for multiple marking

experiments. Finally, using the technique, in-

tracellular antigens can be located on thin sections on

which the gold particles can be clearly identified.
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The Development of Gold Drugs
Three reviews have appeared in recent years, which in-

dicate that the development of gold drugs for use in
medicine may be entering a new and less empirical phase.
They are the following: `The Biological Chemistry of Gold:
a Metallodrug and Heavy-Atom Label with Variable
Valency' by P. J. Sadier of Birbeck College, University of
London, (Strttct. Bonding, 1976, 29, 171-214); `The Mam-
malian Biochemistry of Gold: an Inorganic Perspective of
Chrysotherapy', by C. F. Shaw III of the University of
Wisconsin-Milwaukee, (Inorg. Perspect. Biol. Med., 1979, 2,

287-355) and `The Chemistry of the Gold Drugs Used in
the Treatment of Rheumatoid Arthritis', by D. H. Brown
and W. E. Smith of the University of Strathclyde, (Chem.
Soc. Rev., 1980, 9, (2), 217-240).

Although gold is absorbed by some plants, it cannot nor-
mally be detected in animal tissues and is not regarded as an
essential element in living systems. Its administration is
therefore akin to that of toxic elements such as mercury and
basically different from that of biologically used elements
such as copper and iron.

Gold distributes widely in the body in which it undergoes
a variety of reactions. The most important of these appear
to be with thiols, and it undoubtedly exercises some of its

biological effects through such reactions and the disturb-
ance which they cause to normal metabolism. New
knowledge and new techniques are making studies of these
reactions more effective. As is emphasized by Brown and
Smith, however, gold is not applied in the form of ene drug
only and the in vivo reactions of compounds such as
triethylphosphinegold chloride, Auranofin and sodium
aurothiomalate are likely to be quite different. They do not
appear to produce a common metabolite on administration
and their clearance rates from particular tissues vary, as
well as their effects on enzymes. This makes the study of the
fundament als of gold therapy particularly difficult.

Nevertheless, the fact that gold complexes are effective
against such a widespread disease as rheumatoid arthritis,
for which there is no acknowledged cure, makes their fur-
ther study important. Although applications of these com-
plexes have been increasing in recent years, their use is still
restricted by the toxic effects which are often associated
with their administration. There is no reason to believe,
however, that their toxic and therapeutic effects are
necessarily linked and that research will not lead to more ef-
fective complexes and/or to improved conditions of ad-
ministration.	 W.S.R.
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