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Abstract: 

The naturally occurring polyphenol resveratrol (RES) has attracted increasing 

attention in recent years due to its antioxidant, anti-inflammatory, and 

anticancer activity. However, resveratrol’s promising potential as a 

nutraceutical is hindered by its poor aqueous solubility, which limits its 

biological activity. Here we show that encapsulating resveratrol in colloidal 

mesoporous silica nanoparticles (MCM-48-RES) enhances its saturated 

solubility by ~95% and increases its in vitro release kinetics compared to pure 

resveratrol. MCM-48-RES showed high loading capacity (20% w/w) and 

excellent encapsulation efficiency (100%). When tested against HT-29 and 

LS147T colon cancer cell lines, MCM-48-RES-mediated in vitro cell death 

was higher than that of pure resveratrol, mediated via the PARP and cIAP1 

pathways. Finally, MCM-48-RES treatment also inhibited lipopolysaccharide-

induced NF-κB activation in RAW264.7 cells, demonstrating improved anti-

inflammatory activity. More broadly, our observations demonstrate the 

potential of colloidal mesoporous silica nanoparticles as next generation 

delivery carriers for hydrophobic nutraceuticals. 

 

Key Words: resveratrol, mesoporous silica, anticancer, nanoparticles, colorectal cancer, 

anti-inflammatory 
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Introduction 

 Whilst research and development into cancer therapies has intensified in 

recent decades and significant advancements in cancer treatments have been 

made, cancer remains the leading cause of disease burden in Australia[1, 2]. 

Key challenges in treatment include poor solubility of drugs and lack of site 

specific delivery to cancer cells, development of drug resistance in cancer cells, 

and adverse effects due to poor drug targeting[3, 4]. Consequently, the search 

continues for novel drug delivery technologies with better targeting and 

reduced toxicity. Colorectal cancer is the second most common cause of cancer 

in males and third most common in females, accounting for 8% of all cancer 

deaths[5]. Diet is associated with risk of development of colon cancer, hence 

there is great interest in dietary factors that may exert chemopreventive and 

chemotherapeutic actions[6]. Dietary components contain many bioactive 

ingredients that are able to regulate multiple molecular pathways involved in 

cancer development and progression. 

 Resveratrol (3,5,4’-trihydroxystilbene) (RES) is a naturally occurring 

polyphenol and phytoalexin, which is produced by plants in response to 

environmental stress such as fungal infections, injury and UV irradiation[7-10]. 

RES can also be found in many foods commonly consumed in the human diet 

such as red wine, grapes and peanuts[11, 12]. In recent years RES has attained 

significant attention due to its various therapeutic effects including antioxidant, 

cardioprotective, anti-inflammatory and anticancer activity, however, RES 

suffers from many pharmacokinetic limitations[13-15].  

 RES is a Biopharmaceutics Classification System (BCS) class II drug with 

poor aqueous solubility (0.03g/L) and a partition coefficient (log Po/w) of 

3.1[16-18]. RES exists in two geometric isomers, cis- and trans-, with the latter 

being more abundant and biologically active[19-21]. However, when exposed 

to light trans-resveratrol undergoes photoisomerization to cis-resveratrol[22, 

23]. Whilst the oral absorption of RES in humans is high (≈75%), the drugs 

bioavailability is less than 1% as a result of erratic absorption in the gut and 

extensive first pass metabolism in the intestine and liver[24, 25]. Walle et. 

al.[25] observed RES had a half life of 9.2 hours in humans with two peak 

plasma concentrations, after one and six hours. Together these poor 



 4 

pharmacokinetic properties severely hinder resveratrol’s potential as a 

therapeutic agent. [26] 

 Nanocarriers are advantageous in cancer therapy due to the enhanced 

permeation and retention effect (EPR) whereby nano-size particles accumulate 

preferentially in cancer tissue due to wider than usual capillary 

fenestrations[27, 28]. This phenomenon enables lower drug concentrations to 

be used, hence reducing the potential for adverse effects. Healthy cells are less 

affected due to drug targeting, which ensures localized drug action in tumors. 

Additionally, nanocarriers increase bioavailability of poorly soluble drugs by 

increasing solubility and peak plasma concentration of the drug in the blood 

following uptake via M-cells.[29] Several studies have attempted to improve 

RES’s physicochemical properties by incorporating it into various nanocarriers 

including liposomes[30, 31], cyclodextrins[32, 33], solid lipid 

nanoparticles[34], polymeric micelles[35] and polymeric nanoparticles[36]. 

However, these formulations suffer from drawbacks such as poor stability (e.g. 

liposomes[37]), low drug loading (e.g. polymers and liposomes 2-10%[36, 37]) 

and high production costs (e.g. cyclodextrins and polymers[38, 39]). Hence, 

there is a pressing need for superior cost effective delivery carriers for 

nutraceuticals such as RES.[26] 

 Mesoporous silica nanoparticles (MSNs) are biocompatible, have large 

surface areas and pore volumes and are able to be functionalized making them 

an ideal shuttle for poorly water-soluble drugs[40-44]. MSNs are regarded as 

next generation pharmaceutical carriers due to their ability to enhance the 

efficacy of drugs by improving their aqueous solubility, altering release 

kinetics, and by targeting via functionalisation. Many recent studies have 

shown that MSN’s improve the aqueous solubility, bioavailability and cell 

cytotoxicity of hydrophobic drugs such as curcumin, griseofulvin and 

cyclosporine A [40, 41, 45-48]. However, to the best of our knowledge there is 

no report on successful encapsulation of RES in MSNs. 

    In this study, we report the first example of RES encapsulation within MSNs 

and study its saturated solubility, drug release, anti-inflammatory and 

anticancer efficacy against colon cancer cells. MCM-48 type MSNs were 

chosen for this study since they displayed a number of desirable features, 

including: mono dispersed particle size (150-200 nm), high surface area (~1200 
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m
2
/g), large pore volume (0.9 cm

3
/g) highly ordered three dimensional cubic 

structure of bidirectional mesoporous channels and their ability to encapsulate 

large amounts of drug[49, 50]. Additionally, our group and others have used 

MSNs effectively as nanosuspensions and orally delivered tablets, showing 

their applicability to multiple dosage forms[51]. In this report we describe RES 

encapsulation in mesoporous silica nanospheres (MCM-48) achieving 20% 

w/w drug loading, and test their efficacy in a variety of biological assays. We 

hypothesise that these particles can be used both intravenously as 

nanosuspensions and/or orally by forming tablets to enhance the overall 

nutraceutical efficacy and applicability of RES.  

 

Experimental 

Materials 

Cetyltrimethylammonium bromide (CTAB), tetraethylorthosilicate (TEOS), 

phosphate buffered saline  (PBS), Pluronic F127 (PF127), hydrochloric acid 

32% (HCl), ammonium hydroxide 28% (NH4OH), ethanol 100% and methanol 

were purchased from Sigma-Aldrich Australia. Resveratrol was provided as a 

gift sample by MegaResveratrol, USA. CellTiter 96® AQueous One Solution 

Cell Proliferation Assay (MTS) was purchased from Promega. DMEM: F12 

media was purchased from Sigma and fetal calf serum was purchased from Life 

Technologies. 

Physicochemical Characterisation 

Particle size, polydispersity index and zeta potential were measured using a 

Malvern Zetasizer Nano-ZS. Transmission Electron Microscopy (TEM) images 

were obtained using a JEOL 1010 microscope operated at 100 kV. 

Thermogravimetric analysis (TGA) was performed using a Mettler Teledo 

instrument with a heating rate of 5°C/min in airflow. RES concentration was 

determined using a UV-VIS spectrophotometer (Varian Cary 50 Bio) at 305nm. 

X-ray diffractograms were recorded using a Rigaku Miniflex X-ray 

diffractometer with Fe-filtered Co radiation (λ = 1.79 Å). Nitrogen 

physisorption measurements were performed at -196 °C using a Micromeritics 

Tristar II 3020 system. 
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Synthesis of MCM-48 

MCM-48 synthesis was performed with slight modifications to the method 

reported by Kim et. al.[52]. In a typical synthesis, 425 mL of NH4OH (2.8%) 

and 170 mL of ethanol were transferred into a 1 L glass bottle to which, 2.0 g 

of CTAB and 8.0 g of PF127 was added and stirred at 500 rpm until dissolved. 

The speed of stirring was increased to 850 rpm and 7.203 g of TEOS was 

quickly added to the solution whilst stirring at this speed for 1 min. The 

solution was then left in static condition for a further 24 h at room temperature. 

The resulting white product was isolated using high-speed centrifugation 

(15,000 rpm for 15 min), redispersed once in Milli-Q water and then twice in 

ethanol and dried at 60 °C overnight. The MCM-48 was then calcined (air, 550 

°C, 1 °C/min) for 5.5 h. 

Resveratrol loading 

Resveratrol loading was performed using a rotary evaporation technique with 

slight modifications to the procedure reported by Jambhrunkar et al.[41]. 40 mg 

of RES was placed in rotary evaporation flask with 10 mL of ethanol and 

sonicated for 2 min. 160 mg of MCM-48 was then added and sonicated for a 

further 5 min. The solvent was slowly evaporated using rotary evaporator at 50 

°C to obtain RES loaded MCM-48 (MCM-48-RES) with 20% w/w theoretical 

drug loading. The evaporation process was continued until all ethanol was 

removed and a dry powder was observed in the flask. This sample was 

collected, stored covered in aluminum foil to protect it from photo degradation 

and used for further studies. 

Solubility and in vitro release 

We performed saturated solubility studies by adding an excessive quantity (0.5 

mg equivalent) of RES, MCM-48 and RES physical mixture (PM) and MCM-

48-RES to 0.5 mL of Milli-Q water. This mixture was kept shaking for 48 h at 

37 °C whilst protected from light. The suspension was then centrifuged, diluted 
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with deionized water and the supernatant was analysed for RES content using 

UV-VIS spectroscopy (r2 = 0.999) at 305 nm. 

 

The in vitro release of RES from MCM-48-RES was conducted by suspending 

MCM-48-RES equivalent to 1 mg of RES in 1 mL of PBS (pH 7.4) This 

suspension was placed in a snakeskin dialysis bag with a 10 kDa molecular 

weight cut-off and immersed into 9 mL of PBS at 37 °C whilst continually 

stirring. At predetermined time intervals 1 mL of the sample was withdrawn 

and immediately replaced with an equal volume of PBS to maintain sink 

conditions. The removed samples were analyzed for RES content using UV-

VIS spectroscopy (r2 = 0.997) at 305 nm. 

In vitro cytotoxicity assay 

HT-29 and LS174T cell lines were propagated in monolayers to sub-confluency 

at 37 °C in 75 cm2 flasks containing 10 ml of DMEM: F12 media, 

supplemented with heat inactivated 10% foetal calf serum (FCS), 1% penicillin, 

1% glutamine and 1% streptomycin in a fully-humidified incubator containing 

5% CO2 and 95% air. The sensitivity of these cells to the RES in MCM-48 was 

determined using a MTS colorimetric assay. Cells (0.5 × 104 per well) were 

seeded in a flat-bottomed 96-well plate and incubated at 37 °C in 5% CO2. 

Cells were exposed to RES in DMSO and MCM-48 nanoparticles alone or 

loaded with RES at concentrations of 100, 200 and 400 μM in a dose dependent 

manner for 48 h. Cells were then treated with MTS reagent (20 μL/well) for 3 h 

at 37 °C. The optical density (OD) was recorded at 490 nm in a microplate 

reader and percentage of residual cell viability was determined. Control cells, 

DMSO carrier and MCM-48 not loaded with drugs were used as negative 

controls and Triton-X100 was used as a positive control for death of all cells.  

 

Immunoblot analysis  

HT-29 and LS174T cells were seeded in 6-well culture plate at 80% 

confluence. After overnight attachment, HT29 and LS174T cells were treated 

with 200 μM RES, RES in DMSO or MCM48-RES. Then cells were collected, 

washed twice with cold PBS, pH 7.4 and then lysed on ice for 15 min with 

RIPA cell lysate buffer (RIPA buffer: 50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 
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1.0 % Nonidet P-40, 0.1% sodium deoxycholate, and 1.0% protease inhibitor 

cocktail) while stirring every 5 min.  The resulting lysates were centrifuged at 

16,000 g for 20 min at 4°C to remove cell debris.  Aliquots of the cell lysates 

from each treatment condition were resuspended in SDS-PAGE Laemmli 

buffer (0.05M Tris-HCI, pH 6.8, 2.55M 2-mercaptoethanol, 1.0% SDS, 5% 

glycerol, and 0.15M bromophenol blue), boiled for 5 min at 100 °C, and 

resolved on 4-12% acrylamide gels.  Resolved proteins were transferred to 

polyvinylidene difluoride (PVDF) membranes, probed with anti-β-actin (Novus 

Biologicals, Littleton, CO 80160, USA), anti-PARP (cat no 9542, Cell 

Signaling Technology), anti-cleaved caspase-3 (Asp175, cat no 9915 Cell 

Signaling Technology), anti-cIAP1 (cat no 7065, Cell Signaling Technology) 

antibodies. Immunoreactive proteins were detected by dual-label infra-red 

analysis using an Odyssey scanner. 

 

In-vitro anti-inflammatory assay 

RAW 264.7 macrophage cells transfected with the NF-kB-responsive ELAM1 

promoter driving GFP[53] were seeded at 15,000 cells/well in 96 well plate in a 

fully-humidified incubator containing 5% CO2 and 95% air. After overnight 

incubation, to study the effect of RES on inhibition of NF-kB, cells were pre-

treated with 200 μM RES suspension, RES in DMSO, or MCM-48-RES for 6 h 

and then 5 ng/mL LPS was added to the cells to activate NF-kB. After 

overnight incubation cells were washed with phosphate buffer saline and the 

amount of GFP expressed was measured using fluorescence microscopy. To 

avoid any fluorescence interference due to nanoparticles, MCM-48 was 

included in this assay as negative control.  

 

Results and Discussion 

Physicochemical characterisation 

 The physical properties of MCM-48 and MCM-48-RES did not differ 

significantly. The TEM images displayed in Fig 1a and 1b are typical of MCM-

48 and allow the visualisation of its cubic pores in an ordered array. Dynamic 

light scattering (DLS) measurements shown in the Fig 1a insert reveal a mean 

hydrodynamic diameter of 191nm and 283nm for MCM-48 and MCM-48-RES, 
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respectively. The polydispersity index (PDI) of 0.06 reveals MCM-48 particles 

are monodisperse. After drug loading the PDI of MCM-48-RES increases to 

0.25, possibly due to drug release while measuring particle size and PDI in 

aqueous suspension. Although, the PDI of MCM-48-RES has increased to 0.25, 

the unimodal particle size distribution indicates homogeneity. Additionally, the 

zeta potentials of -28.2 mV and -22.2 mV for MCM-48 and MCM-48-RES, 

respectively, suggest that nanoparticles are colloidally stable (Electronic 

Supplementary Information-ESI Table S1).  

 The X-ray diffractometry (XRD) pattern of MCM-48 in Fig 1c shows two 

well-resolved diffraction peaks at 211 and 220, which confirms the symmetry 

to be Ia3d. The nitrogen adsorption/desorption isotherms of MCM-48 in Fig 1d 

show sharp capillary condensation at 0.4 (P/Po) and a type IV isotherm as 

previously reported for MCM-48. After drug loading the surface area was 

decreased from ~1100 m2/g to 729 m2/g indicating encapsulation of RES. 

Thermogravimetric analysis (TGA) analysis was used to determine the drug 

loading in the nanoparticles (Fig 2a). The results show ~21% of RES was 

encapsulated indicating the high efficiency of the rotary evaporation technique 

for drug loading, consistent with previous studies[41, 54, 55]. The Differential 

scanning calorimetry (DSC) curve of RES, MCM-48 and MCM-48-RES are 

presented in Fig 2b. This analysis was performed to examine the crystallinity of 

RES after encapsulation in pores of MCM-48. Pure RES displayed a sharp 

endothermic peak at 268 °C representing its crystalline structure with a sharp 

melting point. No such peak was observed in MCM-48-RES indicating RES 

was in a non-crystalline state, thus suggesting successful loading into the 

nanopores of MCM-48. Additionally, no solvent endothermic peak was 

observed in MCM-48-RES confirming successful removal of organic solvent 

during the drug loading process. The amorphous nature of RES within 

nanopores of MCM-48 was further studied using wide angle XRD. As shown in 

Fig. 3 RES shows sharp diffraction peaks between 15-30o indicative of its 

crystalline nature in its free powdered form. These peaks were also visible at a 

lower intensity in a physical mixture of MCM-48 and RES, suggesting 

incomplete encapsulation. However, such diffraction peaks were absent in both 

MCM-48 and MCM-48-RES demonstrating the amorphous nature of RES 
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within nanoparticles. These results are in good agreement with the DSC results, 

confirming the successful loading of drug into the silica particles.  

Solubility and in vitro drug release studies 

Poor solubility profile is one of the key formulation challenges facing drug 

development, with more than 60% of new chemical entities showing poor 

aqueous solubility. The solubility of RES was determined by preparing 

saturated solutions of RES and MCM-48-RES in water to reach the equilibrium 

concentration. Fig. 4a shows RES solubility was significantly enhanced 

approximately 2 fold (P<0.0001) in MCM-48-RES (106.1 μg/mL) compared to 

RES (54.2 μg/mL). Moreover, solubility was also significantly higher in MCM-

48-RES than its physical mixture MCM-48-RES-PM (74.2 μg/mL, P<0.0001). 

The enhanced solubility of RES is attributed to the confinement of RES in 

mesochannels (~2.1nm) in small size and amorphous form confirmed by DSC 

and XRD studies. As described by the Ostwald-Freundlich equation, as particle 

size decreases surface area increases and hence the saturated solubility also 

increases[56].  

 Apart from solubility, the drug release kinetic is also an important parameter 

in predicting in-vivo activity. The improved solubility of RES from MCM-48-

RES can also be observed through the in vitro drug release results using PBS as 

the dissolution medium (Fig. 4b). After 30 min, MCM-48-RES exhibited 

36.9% drug dissolution whereas RES released only 15.6% over the same 

period. The rate of drug release for RES alone was 31.3% after 24 h, which was 

much slower than MCM-48-RES, which gave a release profile of 64.7% after 

24 hours. The increased dissolution rate of RES from MCM-48-RES could be 

attributed to the amorphous state of RES within cubic pores of MCM-48 and 

the higher surface area provided by colloidal nanoparticles resulting faster 

diffusion and release.    

Cell studies 

To evaluate the relative anticancer efficacy of free and nanoparticle-

encapsulated RES, cell cytotoxicity studies using the MTS metabolic activity 

assay were conducted on HT-29 and LS174T colon cancer cell lines (Fig. 5). 

These cell lines were chosen as previous studies have examined free RES’s 
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ability to induce cell death in colon cancer cells, such as HT-29 cells[6, 58]. All 

studies were conducted over 48 hours. MCM-48 nanoparticles alone as control 

showed almost no cytotoxicity in both cell lines, indicating their lack of toxicity 

consistent previous studies[59]. Both cell lines were treated with three 

concentrations (100, 200 and 400 μM) of RES in dimethyl sulfoxide (DMSO) 

and MCM-48-RES. DMSO was chosen as it is a solvent which readily 

dissolves the drug however, cannot be used as a drug delivery agent due to its 

adverse effects in humans including organ damage. Both RES in DMSO and 

MCM-48-RES showed dose dependent decreases in cellular metabolism in both 

cell lines, consistent with alterations in mitochondrial metabolism, decreased 

cell proliferation or increased apoptosis. For example, the cell viability in 

LS174T cells after being treated with MCM-48-RES 100 μM was 84%, when 

the concentration was increased to 200 μM and 400 μM the cell proliferation 

reduced to 57% and 28%, respectively. A similar trend was observed in HT-29 

cells, but the difference between pure RES and MCM-48-RES was not as high, 

especially at lower concentrations. LS174T cells appear to be more sensitive to 

RES compared to HT-29 cells with 28% cell viability was after being treated 

with MCM-48-RES 400 μM, compared to ~36% in HT-29 cells. From the 

results it can be concluded that MCM-48-RES appears to be as effective as 

RES in DMSO at inducing cell death in both cell lines. 

 

The comparable cytotoxicity of MCM-48-RES could be attributed to the 

enhanced solubility and superior release kinetics of RES from the MCM-48-

RES as demonstrated in the Fig. 5. However, MTS assay alone cannot 

corroborate the apoptosis induced by RES and also nanoparticles may also have 

some interference with absorbance too. To examine the induction of apoptosis 

we used Western blotting to evaluate cleavage of PARP and clAP1 in cells 

treated with RES suspension, RES-DMSO and MCM-48-RES (Fig 6). 

Treatments with MCM-48-RES led to a substantial increase in PARP in HT29 

and LS174T cell lines (Fig 6) compared to other treatments. Consistent with 

this observation, we found that the treatment with MCM-48-RES substantially 

decreased intracellular apoptosis protein I (cIAP1) expression in both cell lines. 

Interestingly, RES suspension showed some decreased in cIAP1, however RES-

DMSO groups showed little impact on apoptosis. It is noteworthy that in case 
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of HT-29 cells, blank MCM-48 nanoparticles slightly increased PARP, which 

warrants further investigation.  

 

To assess the potential of RES as an anti-inflammatory agent we used a NF-kB 

activation assay using RAW 264.7 reporter cells. RES decreases inflammation 

by down regulating several pathways including NF-kB, a phenomenon that is 

very well documented.[60] However, due to poor solubility, very high doses 

need to be administered to achieve the desired anti-inflammatory benefits. 

Hence, we decided to test the effect of our MCM-48-RES, RES suspension and 

RES-DMSO on down regulation of NF-kB using LPS-activated RAW 264.7 

cells (Please refer to ESI-Fig S1). As shown in Fig S1b RAW cells activated by 

LPS show extremely high fluorescence due to expression of GFP. Cells pre-

treated with 100 μM RES (Fig S1c-e), on the other hand, showed overall 

decrease in fluorescence signal. As expected at 100μM RES concentration, 

MCM-48-RES showed significantly less green fluorescence than with RES 

suspension or RES-DMSO (Fig S1g), further affirming superiority of our 

formulation. It is worthy to note that MCM-48 alone (Fig S1f) showed minimal 

autofluorescence confirming the effect is due to high release and improved 

solubility of RES from our nanoformulation.     

Conclusions 

In summary, we have prepared RES loaded MCM-48 nanoparticles using a 

simple yet efficient technique to explore the effect on solubility and in vitro 

drug release, as well as anti-inflammatory and anticancer activity using in-vitro 

assays. It was found that when RES was encapsulated in MCM-48 the 

solubility increased almost two-fold. Additionally, MCM-48-RES showed 

enhanced dose-dependent cytotoxicity comparable with RES in DMSO in both 

cell lines. The higher rate of apoptosis caused by MCM-48-RES was further 

confirmed by immune blotting for proteins in the apoptosis pathway. 

Interestingly, MCM-48-RES showed significantly greater suppression of LPS-

stimulated NF-kB in macrophages compared to RES in aqueous suspension. 

Based on these results it can be concluded that MSN serves as a promising 

nanocarrier for RES. The findings from this study provide novel insights into 

MSNs as a drug delivery carrier for hydrophobic drugs, while also adding to 
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the established body of evidence regarding the usefulness of RES as an 

anticancer drug. Future studies will involve examining various types of MSNs 

and testing the effects of surface functionalization on solubility, in vitro release, 

cytotoxicity and endocytosis.  
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Fig. 1. Transmission electron microscopy images of MCM-48 (a) & (b). Insert 

figure depicts dynamic light scattering (DLS) measurements of MCM-48 and 

MCM-48-RES. Small angle X-ray diffraction (XRD) of MCM-48 (c). N2 

adsorption-desorption isotherm of MCM-48 (d). Scale bars: a) 1 μm, b) 150 

nm. 

 

Fig. 2. Thermogravimetric analysis (TGA) (a) and Differential Scanning Colorimetry 

(DSC) (b) profile of pure RES, MCM-48 and RES loaded MCM-48. 
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Fig. 3 Wide angle X-ray diffraction (XRD) pattern of RES, MCM-48, MCM-

48-RES-PM and MCM-48-RES-physical mixture (PM) 

 

 

 

 

 

Fig. 4. (a) Saturated aqueous solubility of pure RES, MCM-48-RES-PM and MCM-

48-RES (n=3 ±SD, P value was determined by one-way ANOVA, **** P<0.0001), 

(b) In vitro release of pure resveratrol and resveratrol loaded in MCM-48 in phosphate 

buffer saline (PBS) (n=3 ±SD) 
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Fig. 5. In vitro cytotoxicity of RES in DMSO and MCM-48-RES on HT-29 and 

LS174T cell lines after 48 hours using MTS assay (n=6 ±SD).  

 

 

 

 

 

Fig 6. Protein expression studies using total cell lysates with C/PARP, ClAP1, 

and with β-actin as a loading control by western blot analysis of control (C) 

MCM-48 particle control (MCM-C), Resveratrol in DMSO and suspension  

(RES-DMSO, RES-Sus) and Resveratrol encapsulated into MCM-48 (MCM-

RES) in a) HT-29 and b) LS147T cells.    
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Nanoencapsulation of Resveratrol 

 

 

Graphical Abstract



Highlights: 

 

 Resveratrol is encapsulated in mesoporous silica nanoparticles. 

 Encapsulation significantly enhanced solubility and drug release. 

 Encapsulated Resveratrol showed significantly improved NF-κB 

reduction. 

 Encapsulated Resveratrol caused higher apoptosis compared to pure 

drug. 

*Highlights (for review)




