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When a neutral atom moves in a properly designed laser field, its center-of-mass motion may mimic

the dynamics of a charged particle in a magnetic field, with the emergence of a Lorentz-like force.

In this Colloquium the physical principles at the basis of this artificial (synthetic) magnetism are

presented. The corresponding Aharonov-Bohm phase is related to the Berry’s phase that emerges

when the atom adiabatically follows one of the dressed states of the atom-laser interaction. Some

manifestations of artificial magnetism for a cold quantum gas, in particular, in terms of vortex

nucleation are discussed. The analysis is then generalized to the simulation of non-Abelian gauge

potentials and some striking consequences are presented, such as the emergence of an effective spin-

orbit coupling. Both the cases of bulk gases and discrete systems, where atoms are trapped in an

optical lattice, are addressed.

DOI: 10.1103/RevModPhys.83.1523 PACS numbers: 03.75.!b, 37.10.Jk, 37.10.Vz, 03.65.Vf

CONTENTS

I. Introduction 1523

II. Toy Model: Two-level Atom in a Light Beam 1525

A. Adiabatic following of a dressed state 1525

B. Practical implementation with alkaline-earth atoms 1526

1. Grad-! configuration 1526

2. Grad-! configuration 1527

C. Validity of the adiabatic approximation 1527

D. Physical interpretation of the geometric potentials 1528

E. Achieving states with a nonzero circulation 1528

III. Gauge Potentials for Multilevel Systems 1529

A. Artificial magnetic field in a " scheme 1529

B. Using light beams with orbital angular momentum 1530

C. Using spatially shifted laser beams 1530

D. Gauge potentials involving a gradient of detuning 1531

IV. Non-Abelian Gauge Potentials 1532

A. Emergence of non-Abelian gauge potentials 1533

B. The multipod scheme 1533

C. Generating a magnetic monopole 1534

D. Generating a spin-orbit coupling 1535

E. Non-Abelian Aharonov-Bohm effect 1536

V. Gauge Potentials in Optical Lattices 1536

A. Reminder on band structure 1537

B. Harper equation and Hofstadter butterfly 1537

C. Simulating a magnetic flux through each

lattice cell 1538

D. Rectification of the magnetic field in the lattice 1539

E. Connection with dressed state approach 1539

F. Non-Abelian gauge fields in a lattice 1540

VI. Outlook 1540

I. INTRODUCTION

In 1982 Feynman introduced the concept of a quantum

emulator as a possibility to circumvent the difficulty of

simulating quantum physics with classical computers

(Feynman, 1982). His idea, based on the universality of

quantum mechanics, was to use one controllable device to

simulate other systems of interest. Nowadays Feynman’s

intuition is being implemented in various setups and among

them cold gases of neutral atoms play a central role (Bloch,

Dalibard, and Zwerger, 2008; Buluta and Nori, 2009). These

gases constitute remarkably flexible playgrounds. They can

be formed of bosons, fermions, or mixtures of both. Their

environment can be controlled using the potential created by

laser light, with harmonic, periodic, quasiperiodic, or disor-

dered energy landscapes. Interactions between particles can

be adjusted using scattering resonances. At first sight the only

missing ingredient for implementing Feynman’s idea with

dilute atomic gases is the equivalent of orbital magnetism,

which would allow one to simulate phenomena such as the

quantum Hall effect. Here we discuss a general path that has

recently emerged to fill this missing item, by using atom-light
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interaction to generate artificial gauge potentials acting on

neutral matter. The major part of this Colloquium addresses

the case of a gauge field which has the U(1) Abelian sym-

metry, such as electromagnetism, but we also discuss more

elaborate configurations leading to non-Abelian gauge

potentials.

From the quantum mechanics point of view, the orbital

magnetism of a particle with charge e can be viewed as a

consequence of the Aharonov-Bohm phase " acquired by the

particle when it travels along a closed contour C (Aharonov

and Bohm, 1959). This phase has a geometric origin and does

not depend on the duration needed for completing the trajec-

tory. It reads " ¼ 2##=#0, where # is the flux of the

magnetic field through the contour C and #0 ¼ h=e is the

flux quantum. Therefore, the quest for artificial magnetism is

to realize situations where a neutral particle acquires a geo-

metrical phase when it follows the contour C. Similarly the

generation of a non-Abelian field can be achieved for parti-

cles with an internal degree of freedom. After completion of

the trajectory along C, the initial internal state of the particle

jc ii is changed into Ujc ii, where U is a unitary operator

acting in the internal Hilbert space of the particle and depend-

ing only on the geometry of the contour. Note that throughout

this Colloquium the artificial gauge potentials that appear are

not dynamical variables, i.e., they are not influenced by the

motion of the atoms.

One of the simplest examples of geometric phases, the so-

called Berry’s phase, plays a central role in this paper. It

emerges, for example, when a neutral particle with magnetic

moment ! moves in a (real) nonhomogenous magnetic field

B0ðrÞ (Berry, 1984). If the particle is prepared at a point

r0 in one of the local eigenstates jmðr0Þi of the Hamiltonian

!! % B0ðrÞ and moves slowly enough, it follows adiabati-

cally the local eigenstate jmðrtÞi. Once the trajectory along C

is completed, the particle returns to the internal state jmðr0Þi,
up to a phase factor containing a geometric component.

Berry’s phase is also present in atom-light interactions

(Dum and Olshanii, 1996). The role of the magnetic states

jmðrÞi is now played by the dressed states, i.e., the eigenstates

of the atom-light coupling. The dressed states can vary on a

short spatial scale (typically the wavelength of light) and the

artificial gauge fields can be quite intense, in the sense that the

geometric phase is large compared to 2# for a contour

encircling a gas of realistic size. If the gas is superfluid, it

will thus contain many vortices at equilibrium. The situation

considered here should not be confused with phase-

imprinting methods, which correspond to imposing a dynami-

cal rather than a geometrical phase to the atomic wave

function [see Andersen et al. (2006) and references therein].

In the latter case one acts on the atoms with a time-dependent

atom-light coupling, and the spatial phase profile of the light

beam is dynamically transferred to the atom cloud. Here by

contrast we look for a time-independent Hamiltonian and

require that its ground state has a nonzero vorticity.

The use of geometrical phases is not the only way to

reach a Hamiltonian with an artificial gauge potential for

neutral particles. Rotating the system at angular frequency

$ around a given axis (say z) also leads to artificial

magnetism in the rotating frame, with Bz / $. This has

been widely used in the context of quantum gases

[see Cooper (2008) and Fetter (2009) for reviews], and it

is well suited when the confining potential is rotationally

invariant around the z axis. The Hamiltonian is then time

independent in the rotating frame, and the standard formal-

ism of equilibrium statistical physics is applicable.

However, if the confining potential has a nonzero anisotropy

in the laboratory frame, the Hamiltonian is time dependent

in any frame and the situation is difficult to handle from a

theoretical point of view. By contrast, methods based on

geometrical phases do not impose any constraint on the

symmetry properties of the initial Hamiltonian and the

artificial gauge fields are produced in the laboratory frame.

Together with the possibility to extend the scheme to non-

Abelian gauge potentials, this represents a significant ad-

vantage. Of course, the use of laser beams also comes with

some drawbacks that we address in this Colloquium, such as

heating of the atoms because of residual spontaneous

emission.

This Colloquium is organized as follows. In Sec. II we

present a toy model, where the atomic transition that is

coupled to the laser light is represented by a simple two-level

system. It allows us to identify the important elements for the

emergence of artificial gauge potentials: gradients of the

phase of the light beam and of its intensity or detuning with

respect to atomic resonance. This model is relevant for some

atomic species such as ytterbium atoms that possess an

electronic excited state with an extremely long lifetime, but

it cannot be used as such for the alkali-metal atoms, which are

the most commonly used species in experiments. Indeed the

large rate of spontaneous emission processes and the ensuing

random recoils of the atoms cause in this case a prohibitive

heating of the gas. In Sec. III we thus turn to schemes where

the ground state manifold is degenerate, first introduced by

Dum and Olshanii (1996), and we show that a gauge potential

with a nonvanishing curl can then be generated even if the

population of the excited states is negligible (Juzeliūnas and

Öhberg, 2004). We also discuss the recent implementation of

an artificial magnetic field in a Bose-Einstein condensate of

rubidium atoms by Lin, Compton, Jiménez-Garcı́a et al.

(2009), which led to the observation of quantized vortices.

Section IV is devoted to the preparation of non-Abelian gauge

fields and to the discussion of some of their physical con-

sequences: negative refraction and reflection, implementation

of the Klein paradox, and the non-Abelian Aharonov-Bohm

effect. In Sec. V we study the production of artificial gauge

potentials in optical lattices. Starting from the proposal by

Jaksch and Zoller (2003), we show that one can reach the

strong magnetic field regime, where the phase " per lattice

cell can take any value between 0 and 2#. We also briefly

discuss the implementation of non-Abelian schemes in a

lattice.

Throughout this Colloquium, we mostly address single

atom physics, with some incursions to many-body physics

at the mean-field level when dealing with the generation of

quantized vortices in a superfluid. The application of a gauge

field on a quantum gas can also lead to the emergence of

strongly correlated many-body states. Their detailed discus-

sion is outside the scope of this Colloquium, and we simply

mention a few lines of research in this direction in the final

Outlook section.
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II. TOY MODEL: TWO-LEVEL ATOM IN A LIGHT BEAM

In order to present the essential ingredients of the physics

of geometrical gauge fields, we start this Colloqium by

discussing the simplest scheme for which artificial magne-

tism can occur. We consider a single quantum particle with a

two-level internal structure, and we show how the adiabatic

following of one particular internal state can provide the

desired gauge fields. This will allow us to present with a

minimum algebra the important physical concepts, which will

subsequently be generalized to more complex schemes.

We denote fjgi; jeig a basis of the two-dimensional Hilbert

space associated with the internal degree of freedom of the

particle. Later on these states will represent electronically

ground and excited states of an atom, respectively. We

assume that the particle evolves in space-dependent external

fields that couple jgi and jei. At the present stage we do not

specify the physical origin of these fields. In practice these

can be the fields of optical lasers, microwave fields, and/or

static electric or magnetic fields acting on the electric or

magnetic dipole moment of the particle. The general form

for the Hamiltonian of the particle of mass M is

H ¼

!

P2

2M
þ V

"

1̂þ U; (1)

where P ¼ !iℏr is the momentum operator and 1̂ is the

identity operator in the internal Hilbert space. The coupling

operator U can be written in the matrix form

U ¼
ℏ$

2

cos$ e!i% sin$

ei% sin$ ! cos$

 !

: (2)

The particle dynamics is determined by four real quantities

that may all depend on the position vector r: The potential V
acts on the particle in a way that is independent of its internal

state, whereas the generalized Rabi frequency $ character-

izes the strength of the coupling that lifts the degeneracy

between jgi and jei. The two remaining quantities are the

mixing angle $ and the phase angle %. For a two-level atom

in a monochromatic laser field [see Eq. (10)], $ cos$ stands

for the laser detuning from the atomic resonance, $ sin$ is

the magnitude of the atom-laser coupling, and % is the laser

phase.

In this section we first describe the atomic dynamics when

the internal state of the particle follows adiabatically one of

the eigenstates of U, and we give the expression of the

geometrical gauge potentials that appear in this case. Then

we present a possible implementation of the Hamiltonian (1)

and (2) with an alkaline-earth atom irradiated by a quasire-

sonant laser beam, and we discuss the physical origin of the

gauge potentials. We also study under which condition the

strength and the spatial extent of the geometric magnetic field

are sufficient to induce a large circulation of the atomic phase.

This can then allow for the nucleation of a lattice of quantized

vortices if one applies this scheme to a collection of identical

atoms forming a superfluid.

A. Adiabatic following of a dressed state

At a point r the eigenstates of the matrix U are

j&1i ¼
cosð$=2Þ

ei% sinð$=2Þ

 !

;

j&2i ¼
!e!i% sinð$=2Þ

cosð$=2Þ

 !

;

(3)

with eigenvalues ℏ$=2 and !ℏ$=2, respectively. We call

them dressed states, anticipating the following discussions

where they will correspond to the local eigenstates of the

Hamiltonian describing the coupling between an atom

and a light field. Since the states fj&jig form a normalized,

orthogonal basis, the quantity ih&jjr&ji is a real number

and the relation hr&2j&1i ¼ !h&2jr&1i holds, where we

set jr&ji ' rðj&jiÞ.
Using the fj&jig basis for the internal Hilbert space, we can

write the full state vector of the particle as

j%ðr; tÞi ¼
X

j¼1;2

c jðr; tÞj&jðrÞi: (4)

Suppose now that at an initial time the particle is prepared in

one particular internal dressed state, say j&1i. If the velocity
distribution of the particle involves only sufficiently small

components, the internal state of the particle will remain

proportional to j&1i for all times. This is equivalent to the

Born-Oppenheimer approximation in molecular physics: The

position r of the particle and its internal degree of freedom

play the role of the nuclear coordinates and of the electron

dynamics, respectively.

We now derive the equation of motion for c 1 in the case

where c 2 remains negligible at all times. We first consider

the action of the momentum operator P on the full state vector

j%i. Employing r½c jj&ji) ¼ ½rc j)j&jiþ c jjr&ji and the

completeness relationship, one has

Pj%i ¼
X2

j;l¼1

½ð'j;lP !AjlÞc l)j&ji; (5)

withAjlðrÞ ¼ iℏh&jjr&li. Assuming that c 2 ¼ 0, we project

the Schrödinger equation iℏj _%i ¼ Hj%i onto the internal

dressed state j&1i, where H is the full Hamiltonian (1).

This leads to a closed equation for the probability amplitude

c 1 to find the atom in the first dressed state (Mead and

Truhlar, 1979; Jackiw, 1988; Berry, 1989; Moody, Shapere,

and Wilczek, 1989; Mead, 1992):

iℏ
@c 1

@t
¼

#

ðP !AÞ2

2M
þ V þ

ℏ$

2
þW

$

c 1: (6)

In addition to the terms V and ℏ$=2 that were already

explicit in the initial Hamiltonian (1), two geometric poten-

tialsA andW emerge in the adiabatic elimination of the state

j&2i, due to the position dependence of the internal dressed

states. The first one is the vector potential

AðrÞ ¼ iℏh&1jr&1i ¼
ℏ

2
ðcos$! 1Þr%: (7)

The effective magnetic field associated with A is

BðrÞ ¼ r*A ¼
ℏ

2
rðcos$Þ * r%: (8)
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When this artificial magnetic field is nonzero, the vector

potential A cannot be eliminated from Eq. (6) by a gauge

transformation. The particle acquires an effective charge (that

we set equal to 1 by convention) and its motion exhibits the

usual features associated with orbital magnetism. A nonzero

value of B occurs only if both the mixing angle $ and the

phase angle % vary in space with noncollinear gradients.

The second geometrical potential appearing in Eq. (6) is the

positive scalar term

WðrÞ ¼
ℏ
2

2M
jh&2jr&1ij2 ¼

ℏ
2

8M
½ðr$Þ2 þ sin2$ðr%Þ2):

(9)
The first experimental evidence for the scalar potential in

quantum optics was given by Dutta, Teo, and Raithel (1999).

As such, the geometric scalar potential is not a very useful

tool in the sense that there exist many other ways to create

a scalar potential on atoms, using, for example, the ac

Stark shift created by a far-detuned laser beam (Grimm,

Weidemüller, and Ovchinnikov, 2000). However, in the fol-

lowing we estimate the value of the scalar potential for some

relevant configurations, because it must be taken into account

to determine the equilibrium shape of the cloud.

The contributions of the vector and scalar potentials in

Eq. (6) can be recovered in a systematic expansion in terms

of the dimensionless adiabatic parameter, defined as the ratio

between the short and long time scales (Littlejohn and

Weigert, 1993; Weigert and Littlejohn, 1993). The term

!P %A=M appears at first order of the expansion, whereas

A2=2M and the scalar potential W appear at second order.

An extra term that is quadratic with respect to P also shows

up at second order, with a contribution that can reach that of

the scalar potential when P2=M+ ℏ$. We will not address

this extra term in this Colloquium, because (i) we are mostly

interested in the physics arising from the leading term of the

expansion !P %A=M and (ii) we are restricted to situations

where the atomic kinetic energy is much smaller than ℏ$.

The reason for which A, B and W are called ‘‘geometri-

cal’’ is clear from Eqs. (7)–(9), which depend only on the

spatial variation of the angles $ and %, i.e., on the geometry

of the coupling between jgi and jei, but not on the strength

$ of this coupling. Note that if we consider the adiabatic

following of j&2i instead of j&1i, the equation of motion for

c 2 contains the same scalar potential W and the opposite

vector potential !A.

B. Practical implementation with alkaline-earth atoms

We now discuss how the above model can be implemented

in quantum optics, in order to create artificial orbital magne-

tism on a gas of cold neutral atoms (Dum and Olshanii, 1996;

Visser and Nienhuis, 1998). The simplest scheme consists of

shining a single laser beam on an atom. We restrict the

internal atomic dynamics to a two-level transition of fre-

quency !A, between the ground state jgi and an electroni-

cally excited state jei. The laser light of frequency !L is

supposed to be close to resonance with this transition. We

suppose that the rate of spontaneous emission of photons

from the excited state jei is negligible on the relevant time

scale, which is a realistic assumption if the experiment is

performed using the intercombination line of alkaline-earth

atoms (calcium or strontium) or ytterbium atoms. Indeed for

these atomic species, the radiative lifetime of the excited state

jei involved in the intercombination line [also used in optical

atomic clocks (Ye, Kimble, and Katori, 2008)] is several

seconds or even tens of seconds, much larger than the typical

duration of cold atom experiments.

We suppose that the atomic center-of-mass motion is

restricted to the x-y plane using a suitable trapping potential

that freezes the z degree of freedom. The mode of the laser

beam is a Gaussian traveling wave of wave number k and

wavelength ( ¼ 2#=k propagating along the x axis, with a

waist w in the y direction [Fig. 1(a)]. The states jgi and jei
stand for eigenstates of the internal atomic Hamiltonian in the

absence of coupling with the radiation field. Using the rotat-

ing wave approximation, the coupling matrix U can be

written in the present case (Cohen-Tannoudji, Dupont-Roc,

and Grynberg, 1992)

U ¼
ℏ

2

! !,

! !!

 !

; (10)

where the detuning ! ¼ !L !!A, and where the Rabi fre-

quency ! characterizes the strength of the atom-laser cou-

pling. The spatially varying phase of the laser is incorporated

into ! which is therefore complex.

In the following we neglect the diffraction of the laser

beam and set !ðrÞ ¼ ~!ðyÞeikx, where ~! is real and positive.

The angle % featured in Eq. (2) is then simply the running

phase kx of the propagating laser beam and r% ¼ kex, where
ex is the unit vector in the x direction. The mixing angle $ is

given by tan$ ¼ ~!=! and two options are available to pro-

vide a nonzero r$. One can use either a gradient of the Rabi

frequency ~! produced by a spatial variation in the laser

intensity or a gradient of the detuning !. In this section we

discuss these two configurations, which we refer to as grad-!

and grad-! configurations, respectively.

1. Grad-! configuration

A possible scheme leading to this configuration is shown in

Fig. 1, where we take advantage of the transverse Gaussian

profile of the laser beam. The Rabi frequency is ~!ðyÞ ¼

!ð0Þe!y2=w2

, which leads to an effective magnetic field B

that is parallel to the z axis, with the amplitude obtained

using Eq. (8):

FIG. 1 (color online). (a) A running wave propagating along the x

axis, with a Gaussian profile along the y axis (waist w), is used to

create a geometrical gauge field on a two-level atom whose

resonance frequency is close to the laser frequency. (b) Variation

of the amplitude of the artificial magnetic field B (in units of

B0 ¼ ℏk=w) as a function of y=w; !ð0Þ=! ¼ 1 (dashed), 5 (solid),

and 20 (dotted).
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B ¼ B0

!~!2

$3

y

w
; (11)

with $2 ¼ !2 þ ~!2. Here we set B0 ¼ ℏk=w, which gives

the typical scale for the effective magnetic field appearing in

this case. The characteristic length scale associated with

orbital magnetism is the so-called magnetic length ‘B ¼
ðh=BÞ1=2, which gives the size of the elementary quantum

cyclotron orbit. We obtain in this context ‘B + ðw(Þ1=2

(hence ‘B > () for B+ B0.

Thevariation ofBwith y=w is plotted in Fig. 1(b) for various

values of the ratio !ð0Þ=!. When !ð0Þ=! - 1 the maximal

value of B is obtained approximately at the point where

~!¼!, i.e., ymax.w½logð!ð0Þ=!Þ)1=2-w and Bmax.B0ymax=

ð2
ffiffiffi

2
p

wÞ. At first sight the limiting regime !ð0Þ=! ! 1 is

interesting since it leads to Bmax ! 1. However, the interval

!y over which B takes significant values tends to zero as

1=Bmax, and eventually becomes smaller than the magnetic

length ‘B / 1=B1=2
max, making this regime !ð0Þ - ! not useful

in practice. More generally we find that

Z þ1

0

Bdy ¼
ℏk

2

2

41!
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!ð0Þ=!Þ2
q

3

5<
ℏk

2
: (12)

Consider, for example, the case !ð0Þ=! ¼ 5. The maximum

value Bmax . 0:45B0 is obtained for jyj=w . 1:2, and

B > B0=4 over an interval of width+w=2.
The calculation of the scalar potential leads to

WðyÞ ¼
ER

4

~!2ðyÞ

!2 þ ~!2ðyÞ

#

1þ
4y2

w4k2
!2

!2 þ ~!2ðyÞ

$

; (13)

where we define the recoil energy ER ¼ ℏ
2k2=2M as the

kinetic energy of an atom initially at rest when it absorbs or

emits a single photon. Realistic values of the waist w are such

that kw - 1. When !ð0Þ & a few !, the main contribution to

the scalar potential (9) is the ðr%Þ2 term, which corresponds

to the first term in the bracket of Eq. (13). The scalar potential

then creates a potential bump that is maximal in y ¼ 0, with a

height scaling such as ER. When !ð0Þ=! - 1, the contribu-

tion proportional to ðr$Þ2 to the scalar potential becomes

dominant [second term in the bracket of Eq. (13)]. The

corresponding force is now large around the point ymax and

may create strong distortions of the trapped atom cloud.

2. Grad-! configuration

We suppose now that the laser waist w is large, so that the

spatial mode of the laser is well approximated by a plane

wave and the Rabi frequency ~! can be taken uniform. We also

assume that a gradient of detuning is present along the y axis,
so that ! ¼ !0ðy! y0Þ. For alkaline-earth or ytterbium

atoms, it can be created using an additional off-resonant laser,

which produces a differential light shift for the g and e states.
The effective magnetic field B is parallel to the z axis, with an
amplitude given by

B ¼ B0L
3=2ðyÞ;

LðyÞ ¼
1

1þ ðy! y0Þ
2=‘2!

;
(14)

where we introduced the characteristic length ‘! ¼ ~!=j!0j
and set B0 ¼ ℏk=ð2‘!Þ. The scalar potential is

WðyÞ ¼
ER

4

!

LðyÞ þ
1

k2‘2!
L2ðyÞ

"

: (15)

The magnetic field can be made arbitrarily large by taking

!0 ! 1, but as for the grad-! case this is not relevant in

practice. Indeed the field then takes a large value only over a

domain whose size ‘! / 1=!0 becomes smaller than the

magnetic length ‘B ¼ ð‘!(=2Þ
1=2.

C. Validity of the adiabatic approximation

We now discuss the validity of the adiabatic approximation

(Messiah, 1961b) underlying the projection mechanism gen-

erating the gauge potentials. For simplicity, we adopt a

semiclassical point of view in which we classically treat

the atomic center-of-mass motion, but still use quantum

mechanics to describe its internal dynamics. The atom is

supposed to be initially at rest in the internal state j&1i, and
then accelerated in order to reach the velocity v. The

population &2 of the state j&2i at the end of the acceleration

process is not strictly zero. For small jvj it is given by

&2 . jv % h&2jr&1i=$j2, where the motional coupling is

h&2jr&1i ¼ ½r$! i sin$r%)e!i%=2 (Cheneau et al., 2008).

We first address the grad-! implementation discussed

above, for which r$ ¼ !r~!=ð!2 þ ~!2Þ, and we restrict to

the practical case where !ð0Þ & a few !. Since the gradient

of the laser intensity always occurs with the spatial scale

w - k!1, we find that jr$j / k. The motional coupling is

dominated by the contribution of r% and reaches the maxi-

mum value jh&2jr&1i . kj sinð$Þj ¼ kj!ð0Þ=$j. Using the

fact that the atomic velocity changes by an amount equal

to the recoil velocity vR ¼ ℏk=M during each photon ab-

sorption or emission process, a necessary condition for the

adiabatic approximation to hold (&2 / 1) is thus

ℏ$ -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ!ð0ÞER

q

: (16)

In most situations of practical interest, !ð0Þ + ! and Eq. (16)

reduces to the intuitive condition

ℏ!ð0Þ - ER; (17)

stating that the coupling strength should be much larger than

the recoil energy. Of course, the validity condition for the

adiabatic approximation is more stringent if the atomic

velocity is notably larger than vR.

We now address the case of the grad-! scheme. Far away

from any resonance point where ! vanishes, the adiabaticity

condition (16) still holds. Near a resonance point, the validity

condition for the adiabatic approximation may be more strin-

gent, since the gradient of the mixing angle jr$j+ 1=‘! can

be large. More precisely, suppose that on each side of the

resonance point, j!j is large compared to the coupling ~!. The

dressed states then nearly coincide with the bare states, with

either fj&1i ¼ jei; j&2i ¼ jgig or fj&1i ¼ jgi; j&2i ¼ jeig.
The switch between these two configurations occurs within

a region of size+l! around the resonance point. Taking again
the atomic velocity on the order of the recoil velocity vR, the

adiabatic condition reads

ℏ~!
k‘!

½1þ ðk‘!Þ
2)1=2

- ER: (18)
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When k‘! - 1, this reduces to Eq. (16) in y ¼ y0, i.e.,

ℏ~! - ER. In the opposite limit k‘! / 1, the peak value

of B is very large, but it is reached only in a small region of

width ‘! / k!1 and the adiabaticity condition ~!‘! - vR is

more demanding. This is thus not a convenient configuration

for a continuum implementation, but it becomes relevant for

the lattice case (Sec. V).

D. Physical interpretation of the geometric potentials

We now turn to the physical interpretation of the geomet-

rical gauge fields. We focus our discussion on the two-level

system of Secs. II.A and II.B, but the following physical

images can be generalized to the schemes that are analyzed

in the next sections.

The scalar potential W can be interpreted as the kinetic

energy associated with the fast micromotion of the particle.

This was first explained for a classical continuous internal

degree of freedom by Aharonov and Stern (1992). Here we

outline the reasoning of Cheneau et al. (2008) that addresses

the case of a quantized internal degree of freedom. Consider a

particle prepared in the internal state j&1i, with a center-of--

mass state that consists of a wave packet localized around a

given point r with a small extension compared to the scale

of variation of $ and %. We introduce the force operator

F ¼ !rU and note that the eigenstates j&ji of the cou-

pling U are not eigenstates of F. The force acting on the

particle thus exhibits quantum fluctuations, hF2i ! hFi2,
which are characterized in the Heisenberg picture by the

symmetrized correlation function

Cð)Þ ¼ 1
2
h!Fð0Þ % !Fð)Þ þ !Fð)Þ % !Fð0Þi

¼ ℏ
2$2jh&2jr&1ij2 cosð$)Þ; (19)

with !Fð)Þ ¼ Fð)Þ ! hFi. We now recall that in classical

mechanics, a particle submitted to a rapidly oscillating

force !F undergoes a micromotion with the average kinetic

energy

EK ¼
Z ~Cð!Þ

2M!2
d!; (20)

where ~Cð!Þ is the Fourier transform of Cð)Þ. Inserting the

value (19) of Cð)Þ into Eq. (20), we find that EK coincides

with the scalar geometric potential given in Eq. (9).

The vector potential A given in Eq. (7) is related to the

Berry’s phase " that appears when a quantum system, here

the two-state system associated with the internal degree of

freedom of the particle, is slowly transported round a contour

C, while remaining in an eigenstate j&ðrÞi of its Hamiltonian

(Berry, 1984):

"ðCÞ ¼ i
I

h&jr&i % dr ¼ 1

ℏ

I

A % dr; (21)

where the second equality holds for the two-level system

considered above when it is prepared in the state j&i.
When B ¼ r*A ! 0, the Lorentz force F ¼ v* B acts

on the atom when it moves with velocity v. For the scheme

discussed in Sec. II.B, the momentum change imparted by the

Lorentz force has a simple physical interpretation. Suppose

that the atom moves along the y axis, with a trajectory starting
from y1 - w at time t1, and ending in y2 ¼ 0 at time t2. Since

B is directed along the z direction and v along the y direction,
the average momentum change h!Pi is directed along x:

h!Pxi ¼ !
Z t2

t1

vyðtÞBdt ¼
Z y1

0

Bdy: (22)

Using Eq. (12) and y1 - w, we find that !Px . ℏk=2 in the

case where !ð0Þ - !. This result has a simple physical inter-

pretation. When the atom is located in y1 - w, the occupied
dressed state is. jgi. When the atom arrives at y2 ¼ 0 where

the atom-laser coupling is maximal, the dressed state is .

ðjgiþ jeieikxÞ=
ffiffiffi

2
p

in the limit !ð0Þ - !. Hence a measure-

ment of the atomic momentum !Px can give the results 0 or

ℏk, both with probability 1
2
, hence h!Pxi ¼ ℏk=2. A more

detailed discussion of the physical origin of the Lorentz force

for other atomic trajectories is given by Cheneau et al. (2008).

E. Achieving states with a nonzero circulation

After the discussion of some simple schemes that generate

artificial gauge potentials, we turn to the effect of this poten-

tial on the external (center-of-mass) degree of freedom of the

atom. One of the main motivations for the generation of

artificial magnetic fields is indeed to create some extended

regions where the orbital magnetism is sufficient to favor

states with a nonzero circulation. For instance, if a superfluid

is placed in such a region, its ground state will exhibit a vortex

lattice. We now explore under which condition this can occur

for the simple schemes outlined above.

When a charged superfluid (with e ¼ 1 here by conven-

tion) is placed in a magnetic field, the vortex density is *v ¼
B=ð2#ℏÞ or in other words *v ¼ ‘!2

B , where ‘B is the mag-

netic length (Tinkham, 1996). If the magnetic field obtained

from the geometric potentialA keeps a value+B on a disk of

radius r, one therefore expects that Nv . #r2*v ¼ r2B=ð2ℏÞ
vortices will be present in steady state in a superfluid filling

this disk. We now determine whether one can reach a situ-

ation with Nv - 1, which is equivalent to requiring that the

phase "ðCÞ defined in Eq. (21) is large compared to 2#.

Consider again the grad-! scheme represented in Fig. 1,

where we choose, for example, !ð0Þ ¼ 5!. In this way, one

gets a fictitious magnetic field that is approximately uniform

with a value+B0=4 in the band parallel to the x axis, centered
on y ¼ 1:2w, with a width ‘y . w=2. The length of this band

along x is limited only by the diffraction of the laser beam,

which occurs on a distance - w, if the waist w is chosen

much larger than the laser wavelength ( ¼ 2#=k. In order to

study the physics of vortex lattices in this geometry, the

requirement is thus simply to fit several vortex rows in the

width ‘y. Since the distance between two vortex rows is .

*
!1=2
v , this requirement can be written

Nvortex rows .
1
4

ffiffiffiffiffiffiffiffiffiffi

w=(
p

- 1: (23)

Clearly this method is well adapted to the study of vortex

lattices only if w - (. The choice of a small waist (of the

order of a few ( only) is not appropriate, because the scaling

B0 / 1=w, which would tend to favor small waists, is com-

pensated by the other scaling ‘y + w over which the field

keeps a significant value. A similar argument can be made for

the grad-! scheme with ‘y ¼ ‘!.

1528 Dalibard et al.: Colloquium: Artificial gauge potentials for . . .

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011



So far we have restricted our discussion to the case of a

single laser traveling wave and the spatial scale of variation for

the mixing angle $ is thus the beam waistw. It is interesting to
also consider the case where several traveling waves irradiate

the atom at different angles, so that interference phenomena

can introduce a much shorter length scale for $, typically

(=ð2#Þ. For simplicity we restrict ourselves to the case of

two waves and we choose the corresponding wave vectors

equal to k0 ¼ kðex 0 eyÞ=
ffiffiffi

2
p

. The resulting light field still

has a spatially varying phase % ¼ kx=
ffiffiffi

2
p

, and it presents an

interference pattern along the y direction with a spatial period

(=
ffiffiffi

2
p

. Hence jr%j+ jr$j+ k=
ffiffiffi

2
p

, and we find using Eq. (8)

that the maximal modulus of the artificial magnetic field is

jBj+ 0:1ℏk2!ð0Þ=!. This field is directed along the z axis and

is a periodic function of ywith changes of sign every (=ð2
ffiffiffi

2
p

Þ.
The same reasoning as above shows that one can marginally

localize one quantum of circulation in each disk of area k!2

over which the field is approximately uniform. In order to

obtain a circulation - 2#, one needs to rectify this spatially

alternating field. Practical solutions will be detailed in Sec. V

devoted to artificial gauge fields in optical lattices.

III. GAUGE POTENTIALS FOR MULTILEVEL SYSTEMS

In the model discussed in Sec. II, the internal state of the

atom is at any place a linear combination of ground and

excited states, and each of these two states must have a

relatively large weight in order to obtain a non-negligible

artificial gauge potential. Therefore, this configuration can be

used only if the excited electronic state has a very long

radiative lifetime, as is the case for alkaline-earth species.

In order to address a larger class of atoms (including the more

widely used alkali atoms), we now turn to schemes that take

advantage of the (quasi)degeneracy of the electronic ground

level. Denoting fjgji; j ¼ 1; . . . ; Ng a basis set of the ground

state manifold, we look for configurations where some

dressed states are linear combinations of the jgji states,

with a negligible contribution of the excited state manifolds,

j&i . P

j+jjgji. As we will see, this can be obtained by

taking benefit of a so-called dark state (Arimondo, 1996),

or by choosing a laser frequency that is strongly detuned with

respect to the atomic resonance lines. If the atom is prepared

in such a dressed state and moves sufficiently slowly to follow

it adiabatically, geometrical gauge potentials show up as in

Sec. II.B (Dum and Olshanii, 1996). Since we use laser beams

to provide the relevant stimulated Raman couplings between

the states jgji, the +j coefficients can vary significantly on a

short length scale, typically an optical wavelength. One can

thus produce geometrical fields with comparable amplitudes

to those found in Sec. II, while avoiding the strong heating

that would be caused by spontaneous emission processes.

In this section we first consider the dark state case, which

occurs for a "-level scheme, where two sublevels of the

electronic ground states jg1i and jg2i are coupled to a single

excited state jei by two laser beams. The dark state is an

eigenstate of the atom-laser coupling that is a linear combi-

nation of jg1i and jg2i with a strictly zero contribution of the

excited state. We then discuss two possible practical imple-

mentations of this dark state scheme, first using laser beams

carrying orbital angular momentum, and then using counter-

propagating Gaussian beams with a spatial shift of their axis.

Finally we describe an alternative scheme involving a

position-dependent detuning. This scheme that is not relying

on dark states but on a large detuning has led to the first

experimental observation by Lin, Compton, Jiménez-Garcı́a

et al. (2009) of a geometric magnetic field in the context of

cold atom physics.

A. Artificial magnetic field in a ! scheme

We consider the "-type atomic level structure represented

in Fig. 2, where two laser beams couple the atomic states jg1i
and jg2i to the third one jei. The lasers are tuned symmetric

with respect to the average of the frequencies of the g1 ! e
and g2 ! e transitions. The full atomic Hamiltonian is given

in Eq. (1), and the coupling operator between the light and the

atom written in the fjg1i; jei; jg2ig basis reads using the

rotating wave approximation

U ¼
ℏ

2

!2' !,
1 0

!1 0 !2

0 !,
2 2'

0

B
B
@

1

C
C
A: (24)

Here !1;2 are the complex, space-dependent Rabi frequencies,

which include the spatially varying phases of the laser beams

as in Sec. II.B. The frequency 2' is the detuning of the two-

photon excitation with respect to the Raman resonance

between g1 and g2.
Suppose that the two-photon (Raman) excitation is reso-

nant (' ¼ 0). In this case the coupling matrix U possesses an

eigenstate with zero energy called dark (or uncoupled). This

state contains no contribution from the excited state jei and
reads

jDi ¼ ð!2jg1i! !1jg2iÞ=!; (25)

where ! ¼ ðj!1j2 þ j!2j2Þ1=2. The two other eigenstates

of U have the eigenenergies 0ℏ!=2, and read j0i ¼ ðjBi0
jeiÞ=

ffiffiffi

2
p

, where jBi is the bright (coupled) state

jBi ¼ ð!,
1jg1iþ !,

2jg2iÞ=!: (26)

Dark states are frequently encountered in quantum optics

applications such as subrecoil cooling (Aspect et al., 1988),

electromagnetically induced transparency (Arimondo, 1996;

Harris, 1997; Lukin, 2003; Fleischhauer, Imamoglu, and

FIG. 2. Atomic "-level structure providing a dark state that

depends parametrically on the Rabi frequencies !1 and !2.
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Marangos, 2005) and stimulated Raman adiabatic passage

(STIRAP) (Bergmann, Theuer, and Shore, 1998; Vitanov

et al., 2001; Král, Thanopulos, and Shapiro, 2007). These

applications rely on the robustness of the state jDiwith respect
to the decoherence caused by spontaneous emission.

As in Sec. II, the full atomic state vector can be cast into

the eigenstates of the operator U as

j%ðrÞi ¼
X

X¼D;0

c XðrÞjXðrÞi; (27)

where thewave functions c DðrÞ and c0ðrÞ describe the trans-
lational motion of an atom in the internal states jDðrÞi and
j0 ðrÞi, respectively. The adiabatic approximation assumes

that the atom stays in the dark state, so that one can write

j%ðrÞi . c DðrÞjDðrÞi. Projecting the Schrödinger equation

onto the dark state and neglecting the couplings to the two

other internal states j0i, we arrive at an equation of motion

for the dark state wave function c DðrÞ similar to Eq. (6):

iℏ
@c D

@t
¼

#

ðP !AÞ2

2M
þ V þW

$

c D; (28)

where A ¼ iℏhDjrDi and W ¼ ℏ
2jhBjrDij2=ð2MÞ are the

effective vector and scalar potentials emerging due to the

spatial dependence of the dark state.

We, therefore, recover a situation similar to that of

Sec. II.A, provided we replace j&1i by jDi and j&2i by jBi.
Comparing Eqs. (3) and (25), we set

ffiffiffi

,
p

'
j!1j
j!2j

¼ ! tan
$

2
; %1 !%2 ¼ %; (29)

where the %j are the phases of the Rabi frequencies !j ¼

~!je
i%j (j ¼ 1, 2). The artificial magnetic field B ¼ r*A

given in Eq. (8) can be expressed in terms of , and %:

B ¼ ℏ
r%* r,

ð1þ ,Þ2
: (30)

This effective magnetic field B is nonzero only if the gra-

dients of the intensity ratio , and the relative phase% are both

nonzero and not parallel to each other. We discuss in the next

sections some practical implementations of this " scheme,

using either light beams with orbital angular momentum or

counterpropagating Gaussian beams with an axis offset.

B. Using light beams with orbital angular momentum

We consider here the situation where the atoms located in

the plane z ¼ 0 are irradiated by two laser beams propagating

along the z axis (see Fig. 3). The beams are prepared in

Laguerre-Gauss modes, and they carry the orbital angular

momenta ℏ‘1 and ℏ‘2 per photon. This scheme was first

proposed by Juzeliūnas and Öhberg (2004) [see also Juzeliū

nas et al. (2005), Juzeliūnas, Ruseckas, and Öhberg (2005),

and Zhang, Li, and Sun (2005)]. The complex Rabi frequen-

cies can be written !jðrÞ ¼ ~!jð*Þe
i‘j’ (j ¼ 1, 2), where ’ is

the azimuthal angle around the z axis and * is the radial

coordinate in the x-y plane. The effective magnetic field (30)

is directed along the z direction and its amplitude reads

Bð*Þ ¼
ℏ‘

*

@*,

ð1þ ,Þ2
; (31)

where ‘ ¼ ‘1 ! ‘2 is the relative winding number of the two

beams.

For concreteness we consider beams with equal waists w
and we choose ‘1 ¼ ‘, ‘2 ¼ 0 so that

~!1ð*Þ ¼ !ð0Þ*‘e!*2=w2

;

~!2ð*Þ ¼ !ð0Þ*‘
ce

!*2=w2

;
(32)

where *c is the radius at which the two beams have equal

intensities. The winding number ‘ determines the shape of the

gauge potentials. (i) For ‘ > 1, the effective magnetic field is

zero at the center of the beams and is maximum at * ¼
*c½ð‘! 1Þ=ð‘þ 1Þ)1=2‘. (ii) For ‘ ¼ 1, the effective mag-

netic field is maximum at the origin with the value Bð0Þ ¼
2ℏ=*2

c. Its amplitude is inversely proportional to *c, and can

thus be controlled by changing the intensity ratio of the laser

beams. Typically *c has the same order of magnitude as the

waist w. Since w - k!1, the magnetic field generated in this

way is notably smaller than the value B0 . ℏk=w found in

Sec. II.B, where we took advantage of the rapid spatial

variation of the phase kx of a plane running wave.

The effectivemagnetic flux (in units of the Planck constanth)
through a circle C of radius r0 reads [see Eq. (21)]

"ðCÞ

2#
¼

1

h

I

A % dl ¼ ‘
,0

1þ ,0
; (33)

where ,0 is the intensity ratio at radius * ¼ r0. As explained in
Sec. II.E, this fluxgives themaximal number of vortices that can

be observed if a superfluid gas is placed in this laser configura-

tion. Its maximal value is ‘ and it is approximately reached for

,0 - 1, i.e., for radii *0 such that the intensity of beam 1 (with

orbital angularmomentum) largely exceeds that of beam2 (with

no angular momentum). In practice the winding number ‘ can

reach a few tens (Hadzibabic, 2011); this configuration is there-

fore better suited to generate small vortex patterns rather than

large vortex arrays.

C. Using spatially shifted laser beams

We now turn to the scheme represented in Fig. 4, which

constitutes a direct generalization of the configuration studied

in Sec. II.B for a two-level atom. It uses two Gaussian beams

that are counterpropagating along the x axis, so that the phase

FIG. 3 (color online). Two copropagating Gaussian beams, one of

them being prepared in a Laguerre-Gauss mode with a nonzero

orbital angular momentum, drive the two transitions of an atom

with a "-level scheme. For an atom prepared in the dark state jDi
[Eq. (25)], the nontrivial phase and intensity ratios between the Rabi

frequencies !1 and !2 produce an artificial magnetic field parallel to

the beam propagation axis.
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difference between the two beams provides the necessary

gradient of the phase angle % entering in Eq. (30). The

gradient of the intensity ratio , is obtained by a spatial shift

0a of each beam axis along the y direction. This configura-

tion was first proposed by Juzeliūnas et al. (2006), and a

modified version that is more flexible in terms of choice of

laser polarizations was later suggested by Günter et al.

(2009). It offers the possibility to reach large magnetic field

values over an extended region of space, while taking advan-

tage of the dark state configuration to minimize the sponta-

neous emission rate. This configuration with spatially shifted

laser beams can also be used to generate the spin-Hall effect

(Zhu et al., 2006) and the Stern-Gerlach effect for chiral

molecules (Li, Bruder, and Sun, 2007).

To simplify themathematical treatmentwe assume that both

beams have equal waists w and equal central Rabi frequency

!ð0Þ, and we neglect their diffraction along the x axis.

Furthermore, we use the fact that the frequencies of the

transitions g1 ! e and g2 ! e are very close in practice and

we set k1 ¼ k2 ¼ k. The complex Rabi frequencies are then

given by

!jðrÞ ¼ !ð0Þe0ikxe!ðy0aÞ2=w2

; (34)

where the þ (! ) sign stands for j ¼ 1 (j ¼ 2). The relative

phase between the two beams is % ¼ 2kx, and the intensity

ratio reads , ¼ expð8ya=w2Þ. The effective magnetic field is

oriented along the z direction and its amplitude is obtained

from Eq. (30):

BðyÞ ¼
4ℏka

w2

1

cosh2ð4ya=w2Þ
: (35)

The offset a of the beams along the y axis is a priori arbitrary.
In practice, one should not take a - w, in order to keep a

significant laser intensity along the line y ¼ 0 where B is

maximum, and ensure that the atoms adiabatically follow

the dark state jDi at this location. Taking as a typical value

a ¼ w=2 we find Bð0Þ ¼ 2ℏk=w, which is comparable to

the result of Sec. II.B. Therefore, the conclusions of

Sec. II.E concerning the possibility of generating large

vortex arrays remain valid for this configuration. Similar

to the geometric magnetic field BðyÞ, the scalar potential

WðyÞ is maximum along the line y ¼ 0. An extra trapping

potential V is therefore needed to prevent the atoms from

flying away from this area.

D. Gauge potentials involving a gradient of detuning

We explained in Sec. II.B that the necessary gradient of the

mixing angle $ can be provided by a gradient of the detuning

of the laser frequency, as well as by a gradient of the laser

intensity. The same distinction applies to the " scheme and

more generally to schemes involving multiple atomic levels.

The first observation of a geometrical magnetic field by Lin,

Compton, Jiménez-Garcı́a et al. (2009) was actually based

on a gradient of detuning for optical Raman transitions

occurring between various ground sublevels. In this section

we present the main features of this experiment and connect it

with the already discussed configurations.

The experiment by Lin, Compton, Jiménez-Garcı́a et al.

(2009) was performed with 87Rb atoms in their F ¼ 1 hy-

perfine level. In the process all three Zeeman sublevels jmFi
with mF ¼ 0,01 acquire a significant population. The atoms

are irradiated by two laser beams with wave vectors k1 and k2
that create a quasiresonant Raman coupling between Zeeman

sublevels with !mF ¼ 01 (see Fig. 5 for details). The cou-

pling occurs via the absorption of a photon in one beam and

the stimulated emission of a photon in the other beam,

accompanied by a change of the atom momentum of 0ℏkd,

where the difference of wave vectors kd ¼ k1 ! k2 ¼ kdex is
chosen along x. An important ingredient is the application of

a real magnetic field in addition to the laser beams. The

Zeeman shift created by the magnetic field lifts the initial

degeneracy of the sublevels mF ¼ 0, 01. It gives a control

knob on the two-photon detuning '. In the initial experiment

by Lin, Compton, Perry et al. (2009) a spatially uniform real

magnetic field was applied, and it led to a spatially uniform

vector potential, corresponding to a zero geometric magnetic

field. Subsequently Lin, Compton, Jiménez-Garcı́a et al.

(2009) used a nonhomogeneous real magnetic field, making

the two-photon detuning ' position dependent. In the follow-

ing we assume the linear form ' ¼ '0ðy! y0Þ, where '
0 > 0

is the uniform gradient of detuning.

FIG. 4 (color online). Two counterpropagating beams with an

offset 2a between their propagation axes drive the two transitions

of an atom with a "-level scheme. With the atom prepared in the

dark state jDi, the laser beams induce an artificial magnetic field

perpendicular to the figure plane.

FIG. 5. Atomic scheme used by Lin, Compton, Jiménez-Garcı́a

et al. (2009). 87Rb atoms with a spin F ¼ 1 ground state are placed

in an external magnetic field that displaces the sublevels jmF ¼ 01i
(dotted lines) with respect to jmF ¼ 0i. The atoms are irradiated by

two laser beams of wave vectors k1 and k2 that induce a resonant

coupling between Zeeman sublevels satisfying !mF ¼ 01. An

additional spatial gradient of the external magnetic field induces

an additional displacement of the jmF ¼ 01i sublevels (full lines).
It thus creates a spatially varying two-photon detuning ' which

allows one to generate an artificial gauge potential. Note that the

frequency scale is not respected in the drawing (in practice ! - ').
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This experiment can first be analyzed using the adiabatic

framework used thus far. We assume that the coupling lasers

can be considered as plane waves on the scale of the atomic

cloud, so that the problem is translationally invariant along x.
Therefore, the two-photon coupling ! induced by the laser

pair can be written as ! ¼ !ð0Þei%, with % ¼ kd % r ¼ kdx
being the phase of the Raman coupling. The single-photon

detuning!with respect to the excited state manifold involved

in the transition is supposed to be very large compared to the

Rabi frequencies. One can then perform an adiabatic elimi-

nation of the excited states to obtain an effective Hamiltonian

acting on the ground state manifold. Keeping only the terms

relevant for the subsequent discussion, this coupling written

in the basis fjmF ¼ !1i; jmF ¼ 0i; jmF ¼ þ1ig has the form
of Eq. (24) with !2 ¼ !,

1 ¼ !.

We focus on the eigenstate of U associated with the lowest

eigenvalue !ℏ½'2 þ ð!ð0ÞÞ2=2)1=2,

j&i ¼ ei%cos2
$

2
j! 1i! sin$

ffiffiffi

2
p j0iþ e!i%sin2

$

2
jþ 1i;

(36)

where we set tan$ ¼ !ð0Þ=
ffiffiffi

2
p

'. The vector potential is now

given by A ¼ iℏh&jr&i ¼ !ℏkd cos$. The artificial mag-

netic field can be written in a form that is reminiscent of the

result for the grad-! case of Sec. II.B [see Eq. (14)] (subject

to the replacement of ! by '):

B ¼ ezB0L
3=2ðy! y0Þ; (37)

where the characteristic length entering in the Lorentzian

function L is ‘! ¼ !ð0Þ=
ffiffiffi

2
p

'0, and where the peak value of

the artificial magnetic field is B0 ¼ ℏkd=‘!. The prediction

(37) is in good agreement with the experimental results of

Lin, Compton, Jiménez-Garcı́a et al. (2009) (‘! . 40( in the

experiment). The scalar potential also takes a form that is

similar to the one found for a two-level atom in the grad-!

case: WðyÞ . ðℏ2k2d=4MÞLðy! y0Þ, where we assumed

kd‘! - 1. For an external trapping potential centered

in y0, WðyÞ weakens the confinement along the y direction

by creating in the vicinity of y0 the antitrapping potential

!M!2
Wðy! y0Þ

2=2, with !W ¼ ℏkd=
ffiffiffi

2
p

M‘! [!W=2# ’
30 Hz for the parameters of Lin, Compton, Jiménez-Garcı́a

et al. (2009)].

Alternatively, the scheme described above can be analyzed

using an original framework introduced by Spielman (2009).

This framework is usable in the particular case where the only

x dependence of the atom-laser coupling is the phase term

e0ikdx, and it has then a larger range of validity than the

standard adiabatic approximation. In a first step one

‘‘freezes’’ the y motion and diagonalizes exactly the

x-dependent Hamiltonian Hx ¼ P2
x=ð2MÞ þ U, where U is

the 3* 3 matrix given in Eq. (24) with !2 ¼ !,
1 ¼ !ð0Þeikdx.

The eigenstates are three-component spinors that can be

labeled by their momentum ℏKx. For each Kx, this diagonal-

ization yields three dispersion relations EnðKxÞ (n ¼ 1, 2, 3),

each with a minimum at a momentum Kn;min depending on

the two-photon detuning ' and Rabi frequency !ð0Þ. At low

energy and large coupling strength one obtains En .

ℏ
2ðKx ! Kn;minÞ

2=2M,, where M, is an effective mass. In a

second step, one considers the motion along y and takes into

account the spatial variation of the detuning ' ¼ '0ðy! y0Þ.
For the lowest energy state n ¼ 1, this motion is described in

an approximate manner by the projected Hamiltonian H ¼

P2
y=ð2MÞ þ E1, which leads to the identification of an effec-

tive vector potential A ¼ ℏK1;minex. The spatial dependence

of ', hence of K1;min, along the y axis corresponds to an

effective magnetic field B ¼ ℏð@K1;min=@yÞez, described

here in the Landau gauge. The exact diagonalization and

adiabatic approaches agree when the latter is valid (see

Sec. II.C), with M, . M, in particular. For Rabi frequencies

smaller than those required for the adiabatic approximation

[see Eq. (17)], novel features appear in the exact diagonal-

ization approach such as the possibility to simulate a spin-

orbit coupling between two Bose-Einstein condensates in

different dressed atomic states, experimentally observed by

Lin, Jiménez-Garcı́a, and Spielman (2011).

The discussion of Sec. II.E about the observable vortex

pattern applies directly to the present scheme. The number of

vortex rows that can fit along the y axis is again given by

+‘!
ffiffiffiffiffiffi

*v

p
+

ffiffiffiffiffiffiffiffiffiffiffi

‘!=(
p

. The limit of large vortex arrays can thus

in principle be reached with this configuration, provided one

uses a relatively small gradient of detuning. Lin, Compton,

Jiménez-Garcı́a et al. (2009) generated about ten vortices in a

rubidium Bose-Einstein condensate. These vortices did not

order into a regular lattice, presumably because of the heating

of the cloud and atom losses (1=e lifetime of 1.4 s) caused by

the residual photon scattering.

One could think that increasing the detuning of the laser

coupling would solve the photon scattering problem.

Unfortunately the situation is not so favorable, at least for

alkali-metal species. Indeed, in contrast to the scalar light

shift that scales as Uscal / I=!, where I is the light intensity,
the two-photon Raman coupling ! is proportional to the

vector part of the light shift Uvec / I!FS=!
2. Here !FS

denotes the fine structure splitting, which is only a few

percent of !A for alkali atoms (2% for rubidium atoms, 5%

for cesium atoms), and the above scaling for ! is valid for

!FS & !. Therefore, in the limit of large detunings the

Raman coupling ! decreases with ! as fast as the photon

scattering rate / I'=!2. In other words, the usual trick that

consists of increasing both ! and I to enhance the role of the

scalar light shift with respect to spontaneous emission pro-

cesses is not applicable in this context.

IV. NON-ABELIAN GAUGE POTENTIALS

The idea of non-Abelian geometric gauge potentials goes

back to the work by Wilczek and Zee (1984), who considered

the generalization of the adiabatic theorem to the case where

the Hamiltonian of the system of interest possesses a group of

eigenstates that remain degenerate (or quasidegenerate) and

well isolated from other levels in the course of the time

evolution. This analysis was followed by applications to

many areas including inter alia molecular and condensed

matter physics (Bohm et al., 2003; Xiao, Chang, and Niu,

2010). In particular, the possibility of generating non-Abelian

magnetic monopoles was demonstrated in the rotational dy-

namics of diatomic molecules (Moody, Shapere, and

Wilczek, 1986; Zygelman, 1987, 1990; Bohm et al., 1992)

and in nuclear quadrupole resonance (Zee, 1988).
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In this section we are interested in the non-Abelian dy-

namics of cold atoms in light fields, which can emerge when a

(N þ 1)-state atomic system with N 1 3 (see Fig. 6) is

excited by a suitable configuration of laser beams. The first

study in this direction was performed in the context of

STIRAP by Unanyan et al. (1998) and Unanyan, Shore,

and Bergmann (1999), who considered the behavior of a

four-state atomic system (tripod configuration) when it is

driven by three successive laser pulses. Subsequently,

Osterloh et al. (2005) and Ruseckas et al. (2005) transposed

the concept of gauge potentials to the case of a continuous

atom-laser excitation relevant for the present review and

identified situations where the non-Abelian gauge potentials

emerge.

We start this section by providing a general formulation of

the adiabatic motion of atoms when some internal atomic

states remain degenerate in the presence of the atom-light

coupling. We show how non-Abelian gauge potentials appear

and discuss the structure of these potentials for some typical

laser configurations. We also present some physical phe-

nomena that are associated with non-Abelian gauge poten-

tials, such as the generation of magnetic monopoles, Rashba

spin-orbit coupling, and the non-Abelian Aharonov-Bohm

effect.

A. Emergence of non-Abelian gauge potentials

In this section we consider atoms with N þ 1 internal

levels, which are coupled to a light field. We assume that

we can cast the atom-laser interaction at any given point r as a

time-independent ðN þ 1Þ * ðN þ 1Þ matrix UðrÞ using the

rotating wave approximation. Our starting point is then still

the full atomic Hamiltonian of Eq. (1). For a fixed position r,

UðrÞ can be diagonalized to give a set of N þ 1 dressed states

j&nðrÞi, with eigenvalues "nðrÞ (n ¼ 1; . . . ; N þ 1). The key

feature that leads to non-Abelian gauge potentials is that

some dressed states form a degenerate (or nearly degenerate)

manifold, at any point r in space. More specifically we

assume that the first q atomic dressed states form a degenerate

subspace Eq, and these levels are well separated from the

remaining ones.

The full quantum state of the atom describing both internal

and motional degrees of freedom can be written as j%i ¼
P

Nþ1
n¼1 c nðrÞj&nðrÞi, where each c n is the wave function for

the center-of-mass motion of the atom in the internal state

j&ni. We are interested here in the dynamics of the atom when

it is initially prepared in the subspace Eq. Neglecting tran-

sitions to states outside Eq, we can project the full

Schrödinger equation onto Eq, and we arrive at a closed

Schrödinger equation for the reduced column vector ~% ¼

ðc 1; . . . ; c qÞ
>:

iℏ
@ ~%

@t
¼

#

ðP !AÞ2

2M
þ V1̂q þ "þW

$

~%; (38)

where 1̂q is the identity matrix in Eq and "ðrÞ is a diagonal

matrix of eigenenergies "nðrÞ (n ¼ 1; . . . ; q). This equation is
reminiscent of Eq. (6); however, A and W are now q* q
matrices with the elements

An;m ¼ iℏh&nðrÞjr&mðrÞi; (39)

Wn;m ¼
1

2M

XNþ1

l¼qþ1

An;l %Al;m; (40)

with n, m 2 ð1; . . . ; qÞ. The effective vector potential A is

called the Mead-Berry connection.

The effective magnetic field (or curvature) B associated

with A is

Bi ¼
1

2
-iklFkl;

Fkl ¼ @kAl ! @lAk !
i

ℏ
½Ak; Al):

(41)

Note that the term 1
2
"ikl½Ak; Al) ¼ ðA*AÞi does not vanish

in general, because the vector components of A do not

necessarily commute. Therefore, the magnetic field B can

be nonzero even if the vector potential A is uniform in space.

This property is specific of non-Abelian dynamics and occurs

only if q 1 2, whereas for q ¼ 1 we recover simply the

Abelian dynamics discussed in the two preceding sections.

B. The multipod scheme

A generic way to obtain a degenerate subspace in atom-

laser interaction is to realize the situation depicted in Fig. 6,

where one single level labeled jei is coupled to N levels

labeled jgji (j ¼ 1; . . . ; N), with complex Rabi frequencies

!j (Juzeliūnas, Ruseckas, and Dalibard, 2010). We discuss at

the end of this section how this scheme can be implemented

in practice for N ¼ 3 (tripod) and N ¼ 4 (quadrupod). The

atom-light coupling operator is

U ¼
XN

j¼1

ℏ!jðrÞ

2
jeihgjjþ H:c:; (42)

which can be conveniently rewritten as

U ¼
ℏ!ðrÞ

2
ðjeihBðrÞjþ jBðrÞihejÞ; (43)

where jBi ¼ P
N
j¼1 !

,
j jgji=! is the bright (coupled) state

generalizing Eq. (26) and ! is the total Rabi frequency,

!2 ¼
P

N
j¼1 j!jj2.

The diagonalization of U is straightforward. First the

coupling between jBi and jei gives rise to the two eigenstates
j0i ¼ ðjei0 jBiÞ=

ffiffiffi

2
p

with energies 0ℏ!=2. Then the

FIG. 6. Multipod configuration. An atomic state jei is coupled to

N different atomic states jgji (j ¼ 1; . . . ; N) by N resonant laser

fields.
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remaining orthogonal subspace of dimension N ! 1 corre-

sponds to degenerate dark states that are all eigenstates of U
with energy " ¼ 0. This provides the degenerate subspace Eq

with q ¼ N ! 1 introduced in Sec. IV.A, which is required

for the emergence of non-Abelian dynamics. In the following

we denote jDni (n ¼ 1; . . . ; N ! 1) a normalized orthogonal

basis of EN!1.

We briefly discuss how such a multipod scheme can be

implemented in quantum optics for the two cases N ¼ 3 and

4. The scheme of Fig. 6 for N ¼ 3 is realized in a straightfor-

ward way by considering an atomic transition between a

ground electronic state with angular momentum Jg ¼ 1,

and an excited electronic state with angular momentum

Je ¼ 0. Such a transition occurs for alkali-metal species

such as 23Na or 87Rb, as well as for helium atoms prepared

in metastable electronic spin triplet states (3S1 !
3P0 tran-

sition). The scheme N ¼ 4 is a bit more subtle to achieve and

we briefly outline the proposal detailed by Juzeliūnas,

Ruseckas, and Dalibard (2010). The idea is to use the two

hyperfine ground levels of an alkali-metal atom such as 87Rb,

with angular momenta equal to F ¼ 1 and 2 (see Fig. 7). For

the state jei we choose one particular ground state jei '
jF ¼ 1; m ¼ 0i. The four other states playing the role of the

states jgji are the Zeeman sublevels jF ¼ 1; mF ¼ 01i and
jF ¼ 2; mF ¼ 01i. The couplings between jei and the levels

jgji are induced by resonant two-photon Raman transitions

such as in Sec. III.D. The decoherence and heating due to

photon scattering can be minimized in this scheme by choos-

ing a large single-photon detuning (that is, of the order of the

fine structure splitting !FS), as explained in Sec. III.D.

C. Generating a magnetic monopole

One of the interesting properties of non-Abelian gauge

potentials is the possibility to generate magnetic monopoles,

as first pointed out by Moody, Shapere, and Wilczek (1986).

In this section we present a possible way to implement such a

monopole using atom-light interaction. We concentrate on the

physical aspects of the problem and we refer the interested

reader to the original publication by Ruseckas et al. (2005)

for technical details.

We consider here the tripod configuration obtained using

N ¼ 3 ground levels in the formalism of Sec. IV.B. It is

convenient to parametrize the Rabi frequencies !j with angle

and phase variables according to

!1 ¼ ! sin+ cos.ei%1 ;

!2 ¼ ! sin+ sin.ei%2 ;

!3 ¼ ! cos+ei%3 ;

(44)

in which case we can choose the following expression for the

dark states in the basis fjg1i; jg2i; jg3ig:

jD1i ¼
sin.ei%31

! cos.ei%32

0

0

B
B
@

1

C
C
A;

jD2i ¼
cos+ cos.ei%31

cos+ sin.ei%32

! sin+

0

B
B
@

1

C
C
A;

(45)

with %ij ¼ %i !%j. The vector potential then reads

A11 ¼ ℏðcos2.r%23 þ sin2.r%13Þ;

A12 ¼ ℏ cos+½1
2
sinð2.Þr%12 ! ir.);

A22 ¼ ℏcos2+ðcos2.r%13 þ sin2.r%23Þ:

(46)

To generate a magnetic monopole, we consider the laser

setup formed with two of the laser beams propagating along

the z axis, and the third one along the x axis. More precisely

the first two beams are prepared in the Laguerre-Gauss modes

with orbital angular momentum ‘ ¼ 01, and the third beam

is prepared in the first order Hermite-Gauss mode so that

!1;2 ¼ !0

*

R
eiðkz2’Þ;

!3 ¼ !0

z

R
eikx:

(47)

Here * is the distance from the z axis and ’ the azimuthal

angle around this axis. We suppose that the beam waists are

large compared to the other physical scales of the problem

and we therefore omit the Gaussian profiles in Eq. (47). The

calculation of the vector potential using the formalism of

Sec. IV.B gives

A ¼ !
ℏ

r tan#
e’/̂x þ

ℏk

2
ðez ! exÞ½ð1þ cos2#Þ1̂

þ ð1! cos2#Þ/̂z);

where r, #, and ’ are the spherical coordinates, /̂j are the

Pauli matrices, and 1̂ is the 2* 2 unity matrix. The first term

in the vector potential proportional to /̂x represents the field

of a magnetic monopole of unit strength at the origin (r ¼ 0):

B ¼
ℏ

r2
er/̂x þ % % % : (48)

FIG. 7. Implementation of the multipod scheme for N ¼ 4 for

alkali-metal atoms with two hyperfine levels of angular momentum

F ¼ 1 and 2. The couplings involved in this scheme correspond to

stimulated Raman transitions between hyperfine states of the ground

levels. We choose jei ' jF ¼ 1; mF ¼ 0i. A small magnetic field

lifts the degeneracy within the levels F ¼ 1 and 2 and allows one to

selectively address the various Raman transitions, using pairs of

laser beams with properly chosen polarization and frequencies.

(a) Two pairs of laser beams induce the transitions jei ! jg1i '
jF ¼ 2; mF ¼ 1i and jei ! jg3i ' jF ¼ 2; mF ¼ !1i. (b) One ad-

ditional pair of laser beams induce the transitions jei ! jg2i '
jF ¼ 1; mF ¼ 1i and jei ! jg4i ' jF ¼ 1; mF ¼ !1i.
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The dots indicate nonmonopole field contributions1 propor-

tional to the Pauli matrices and to the unity matrix. Note also

that the total intensity of the laser fields (47) vanishes at the

origin representing a singular point. Thus, one should apply

an additional potential that will expel the atoms from this

region, in order to avoid nonadiabatic transitions in the

vicinity of r ¼ 0.

This configuration was further analyzed by Pietilä and

Möttönen (2009), who studied the behavior of an interacting

Bose-Einstein condensate in this monopole configuration.

They showed numerically that the existence of the monopole

gives rise to a pseudospin texture with a topological charge

that cancels the monopole charge.

D. Generating a spin-orbit coupling

Non-Abelian light-induced gauge potentials can be used

for generating a spin-orbit coupling for cold atoms, simulat-

ing the one appearing for electrons in condensed matter. The

electron’s spin degree of freedom plays a key role in the

emerging area of semiconductor spintronics (Zutic, Fabian,

and Das Sarma, 2004; Fert, 2008; Grünberg, 2008). The first

scheme for a semiconductor device is the spin field-effect

Datta-Das transistor (DDT). It was proposed 20 years ago

(Datta and Das, 1990) and implemented recently (Koo et al.,

2009). Atomic and polaritonic analogs of the electron spin

transistor have also been suggested (Vaishnav et al., 2008;

Johne et al., 2010). An important ingredient of the DDT is

the spin-orbit coupling of the Rashba (Rashba, 1960;

Winkler, 2003) or Dresselhaus (Dresselhaus, 1955;

Schliemann, Egues, and Loss, 2003) types. This Rashba-

Dresselhaus (RD) coupling scheme is described by a vector

potential which can be made proportional to the spin- 1
2

operator of a particle within a plane (Cserti and David, 2006).

We explain in this section how an effective spin-orbit

coupling can be generated for atoms for the cases of an

effective spin s ¼ 1=2 and s ¼ 1. We start with the general

formalism of a N-pod level scheme in the case where

the coupling lasers are plane waves of equal amplitude

propagating in the x-y plane. More precisely we assume

that the wave vectors kj form a regular polygon

kj ¼ kð!ex cos+j þ ey sin+jÞ;

+j ¼ 2#j=N:
(49)

We set !j ¼ !ð0Þeikj%r=
ffiffiffiffi

N
p

and use the set of orthogonal

normalized dark states

jDni ¼
1
ffiffiffiffi

N
p

XN

j¼1

jgjiei+jn!ikj%r;

n ¼ 1; . . . ; N ! 1:
(50)

Substituting jDni into Eqs. (39) and (40), one arrives at

constant (yet non-Abelian) scalar and vector potentials

Wn;m ¼
ℏ
2k2

4M
ð'm;1'n;1 þ 'm;N!1'n;N!1Þ; (51)

An;m ¼ !
ℏk
ffiffiffi

2
p

X

0

e0'n;m01; (52)

with e0 ¼ ðex 0 ieyÞ=
ffiffiffi

2
p

. For a constant external potential V,

a basis of stationary solutions of the Schrödinger equation

(38) are the plane waves ~%Kðr; tÞ ¼ #Ke
iðK%r!$KtÞ with the

amplitude #K obeying the eigenvalue equation HK#K ¼
ℏ!K#K, where HK is the K-dependent ðN ! 1Þ * ðN ! 1Þ
matrix:

HK ¼
ðℏK1̂!AÞ2

2M
þW þ V1̂: (53)

In the tripod setup (N ¼ 3) the wave vectors kj form an

equilateral triangle and W, A, and HK are 2* 2 matrices.

The scalar potential is proportional to the unit matrix W ¼

ðℏ2k2=4MÞ1̂, whereas the vector potential A ¼ !kŜ? is

proportional to the spin- 1
2
operator Ŝ? ¼ Ŝxex þ Ŝyey in the

x-y plane (Ŝ ¼ ℏ/̂=2, where the "̂ are the Pauli matrices).

This provides a spin-orbit coupling of the RD type, charac-

terized by two dispersion branches $0
K ¼ ℏðK 0 k=2Þ2=2M

for V ¼ !ℏ
2k2=ð4MÞ. A number of other arrangements of

laser beams have been considered to produce the same RD

spin-orbit coupling (Jacob et al., 2007; Stanescu, Zhang, and

Galitski, 2007; Juzeliūnas, Ruseckas, Lindberg et al., 2008;

Vaishnav and Clark, 2008; Larson and Sjöqvist, 2009; Zhang,

Gong, and Oh, 2010).

In the tetrapod setup (N ¼ 4) the choice of Eq. (49)

corresponds to two orthogonal pairs of counterpropagating

laser fields. The vector potential A ¼ !kĴ?=
ffiffiffi

2
p

is propor-

tional to the projection of a spin 1 operator in the x-y plane

Ĵ? ¼ Ĵxex þ Ĵyey, whereas the scalar potential is propor-

tional to the squared z component of the spin operator,

W ¼ Ĵ2zk
2=ð4MÞ. The eigenfrequencies are now

ℏ$
.
K ¼

ℏ
2

2M
ðK2 þ

ffiffiffi

2
p

Kk.þ k2Þ þ V;

. ¼ 0;01;
(54)

with K ¼ jKj. For . ¼ 01 the dispersion curves are analo-

gous to those of the spin- 1
2
RD model. The additional

dispersion curve with . ¼ 0 corresponds to a parabola

centered at K ¼ 0.

A spectacular consequence of spin-orbit RD coupling is

the Zitterbewegung, a phenonenon which was analyzed for

cold atoms (Merkl et al., 2008; Vaishnav and Clark, 2008;

Song and Foreman, 2009; Larson, Martikainen, and Collin,

2010), electrons in solids (Cserti and David, 2006;

Schliemann, Loss, and Westervelt, 2006; Rusin and

Zawadzki, 2009), and trapped ions (Lamata et al., 2007;

Rusin and Zawadzki, 2010). It was recently observed for the

latter systems (Gerritsma et al., 2010). Another manifesta-

tion of the RD coupling is the negative refraction and reflec-

tion that occurs when a matter wave is incident on a potential

step. This problem was investigated for spin- 1
2
atoms (Juzeliū

nas, Ruseckas, Jacob et al., 2008) and electrons (Teodorescu

and Winkler, 2009; Dargys, 2010). For small incident wave

numbers K / k, the transmission probability is close to unity

1A pure monopole would emerge if the Rabi frequencies !j could

be taken proportional to the corresponding three Cartesian coordi-

nates !1 ¼ Ax, !2 ¼ Ay, and !3 ¼ Az. This is, however, not

possible in practice, as this spatial dependence is not consistent

with the Maxwell equations for the driving laser field.
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for normal incidence. This nearly complete transmission is a

manifestation of the Klein paradox appearing also for elec-

tron tunneling in graphene (Katsnelson, Novoselov, and

Geim, 2006; Castro Neto et al., 2009). The transmission

probability decreases when the angle of incidence increases,

and the transmitted matter wave experiences negative refrac-

tion, again similar to electrons in graphene (Cheianov, Fal’ko,

and Altshuler, 2007). Particles with a spin larger than 1
2
have

additional internal degrees of freedom, which modifies the

continuity conditions at the potential step. For the negative

refraction phenomenon at non-normal incidence, Juzeliūnas,

Ruseckas, and Dalibard (2010) showed that the amplitude of

the refracted beam is significantly increased in comparison

with the spin- 1
2
case.

Spin-orbit coupling with its multicomponent dispersion

curves also offers interesting scenarios in the presence of

collisional interactions (Stanescu, Zhang, and Galitski, 2007;

Stanescu, Anderson, and Galitski, 2008; Wang et al., 2010;

Yip, 2011; Zhou and Wu, 2011). In two dimensions with a

symmetric RD gauge potential of the form ℏkð/xex þ /yeyÞ,

the dispersion curve has a minimum at a constant nonzero

radius in momentum space. This corresponds to a massive

degeneracy of the single-particle ground level, since all plane

waves with momentum K such that jKj ¼ k are possible

ground states. For a Bose gas, this precludes in principle

the formation of a condensate, and atomic interactions will

lead to the formation of a strongly correlated ground state.

However, in the presence of an asymmetry in the RD cou-

pling, the massive degeneracy is lifted and the minimum of

the dispersion occurs for two opposite values of the atomic

momenta (Stanescu, Zhang, and Galitski, 2007; Stanescu,

Anderson, and Galitski, 2008). Weakly interacting bosons

with such RD coupling will then behave essentially as a

two-component system at low temperature.

We conclude by signaling a possible drawback of the

tripod scheme: The two dark state states forming the effective

spin- 1
2
system are not the lowest single-particle energy states,

hence collisional deexcitation can transfer the atoms out of

the dark state manifold down to the ground dressed state. To

overcome this difficulty, a scheme involving N ground or

metastable internal states cyclically coupled by laser fields

was recently proposed (Campbell, Juzeliūnas, and Spielman,

2011). By properly setting the direction and phases of the

laser fields, a pair of degenerate pseudospin states with lowest

energy emerge. The states are subjected to the RD coupling

and are immune to the collisional decay.

E. Non-Abelian Aharonov-Bohm effect

The spin-orbit coupling presented in the preceding section

can also be the source of quasirelativistic dynamics, where

the atomic center-of-mass motion is governed by an effective

Dirac equation in the limit of small momenta and strong

gauge potentials. The quasirelativistic dynamics of the atomic

center of mass is a remarkable effect which connects phe-

nomena from high energy physics, graphene, and photonic

crystals with atomic physics and quantum optics. It relies on

the two- or three-component nature of the effective atomic

internal structure, but it is not explicitly linked to the non-

Abelian nature of the coupling.

To observe a non-Abelian effect one should study spin

dynamics. In our case it will be a pseudospin, i.e., an effective

multicomponent system created by the interaction between

incident laser beams and the atoms. Previously we have

shown that the gauge potential affecting the pseudospin can

be, for instance, proportional to the Pauli spin matrices in the

x and y directions such that the matrices corresponding to

the two directions do not commute. This is indeed also the

requirement for having a non-Abelian system. A simple

illustration of a non-Abelian situation is the so-called non-

Abelian Aharonov-Bohm experiment (Jacob et al., 2007).

Here we envisage a particle with an internal structure, the

pseudospin, which is allowed to move along two different

paths from A to B along straight lines in the x and

y directions. Suppose the path consists of two equidistant

trips of length L along the x and y directions. The question is,
if we start at A, with a given orientation of the pseudospin,

what is the spin at the final point B? If the spin is subject to a

non-Abelian field, the result will depend on which path the

particle took. This is easily seen by neglecting any external

dynamics and considering only the effects from the gauge

potential, which is of the form A ¼ Axex þ Ayey. The final

state based on the path going first along the x direction and

then the y direction will be given by exp½iAyL) exp½iAxL) ~%in,

where ~%in is the initial pseudospin. If we take the path along

the y direction first and then in the x direction, we have the

final state exp½iAxL) exp½iAyL)%in. These two states are not

necessarily the same, because Ax and Ay do not commute if

the system is non-Abelian. For instance, when Ax / /̂y and

Ay / /̂x, these operations are equivalent to spin rotations

around x and y, which do not yield the same final state in

general. Interestingly this situation is similar to the scattering

of protons onto a non-Abelian flux line where the protons are

anticipated to be converted into neutrons (Horváthy, 1986).

V. GAUGE POTENTIALS IN OPTICAL LATTICES

Optical lattices have recently emerged as a major tool for

the field of quantum gases [see Lewenstein et al. (2007) and

Bloch, Dalibard, and Zwerger (2008) for recent reviews].

They correspond to a periodic array of trapping sites con-

nected to each other by quantum tunneling. Such a potential

landscape is created using the interference pattern of several

off-resonant lasers. In addition to the obvious analogy with

the effective periodic potential exerted by the ionic matrix on

electrons in a real solid, optical lattices allow one to bring

quantum gases into the strongly correlated regime, where

interactions dominate the behavior of the system. The en-

trance in the correlated regime is obtained by increasing the

lattice depth and it follows from two effects, the increase of

the on-site interaction energy due to the stronger confinement

of the atoms near the lattice sites, and the reduction of the

tunneling probability from site to site which decreases the

kinetic energy.

In this section we first review some basic elements on the

band structure in a periodic potential (Sec. V.A) and the effects

of a magnetic field on the single-particle spectrum (Sec. V.B).

We then discuss the concept of laser-assisted tunneling,

which allows one to control the phase of the tunneling

matrix elements and realize artificial gauge potentials
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(Secs, V.C and V.D). Recently another class of lattices with

orbital magnetism, the so-called flux lattices, has been pro-

posed by Cooper (2011).We briefly relate this proposal as well

as those based on laser-assisted tunneling to the dressed state

approach discussed in Sec. V.E. Finallywegive a short account

on the possibility to generate non-Abelian fields in lattices in

Sec. V.F.

We briefly mention some alternative methods that do not

use laser coupling to realize effective magnetic fields for cold

atoms in optical lattices. One is simply to rotate the lattice,

which was realized experimentally by Tung, Schweikhard,

and Cornell (2006) and Williams, Al-Assam, and Foot (2010)

for lattices with large lattice spacing, i.e., outside the Hubbard

regime. Another method relies on a temporal modulation of

the lattice potential with x! y (Sørensen, Demler, and Lukin,

2005) or x2 ! y2 (Lim, Smith, and Hemmerich, 2008) sym-

metries [see also Kolovsky (2011)]. One can also control the

sign of the tunneling matrix element by modulating the lattice

potential (Eckardt, Weiss, and Holthaus, 2005; Lignier et al.,

2007), which can provide artificial magnetism for some

specific lattice geometries. Finally one can obtain the desired

gauge potential through interactions with a bath of atoms

(Klein and Jaksch, 2009).

A. Reminder on band structure

Consider a particle moving in the two-dimensional square

lattice potential with period d and depth V0:

Vlatðx; yÞ ¼ V0½sin
2ð#x=dÞ þ sin2ð#y=dÞ): (55)

The energy eigenstates are the Bloch waves c 0;qðrÞ ¼

eiq%ru0;qðrÞ, where 0 ¼ 0; 1; . . . denotes the band index and

the quasimomentum q takes values in the first Brillouin zone

(BZ) ½!#=d;#=d½*½!#=d;#=d½ [see, for example,

Ashcroft and Mermin (1976)]. The function u0;q is a periodic

function of r, with period d along both directions of space.

The energies -0ðqÞ associated with the Bloch waves form

bands when q is varied inside the first Brillouin zone.

We assumed in the following that the lattice is in the tight-

binding (TB) regime, where the energy width of each band is

much smaller than the gaps between two consecutive bands.

More specifically, we consider particles confined to the

lowest Bloch band 0 ¼ 0 as it is usually the target regime

for experiments on correlated quantum gases, and we sub-

sequently drop the band index. In this limit, it is useful to

transform to the orthogonal basis of Wannier functions

wn;mðrÞ ¼ N
Z

BZ

e!iq%rn;mc qðrÞd
2q; (56)

where N is a normalization factor and rn;m¼dðnexþmeyÞ,

with n, m being integers. In the TB regime, the Wannier

function wn;m is localized near the lattice site at position rn;m
and the initial Hamiltonian P2=ð2MÞþVlat can be replaced by

HTB ¼ !J
X

n:n:

âyn;mân0 ;m0 ; (57)

where ân;m is an annihilation operator for a particle in the state

wn;m. The sum runs over nearest neighbors (n.n.) only, and J is
the tunneling energy characterizing the hopping between

neighboring sites. Hopping to more distant sites is neglected

in this approximation. The single-particle dispersion is in the

TB approximation -ðqÞ ¼ !2J½cosðqxdÞ þ cosðqydÞ), corre-

sponding to an energy width of 8J for the band.

B. Harper equation and Hofstadter butterfly

Suppose now that the square lattice considered above is

placed in a uniform magnetic field B ¼ Bez, associated with

the vector potential A ¼ ð!By; 0; 0Þ (Landau gauge). For a

particle carrying a charge e, the Hamiltonian (57) can be

written

H¼!J
X

n;m;0

e0i%n;m âyn01;mân;m!J
X

n;m;0

âyn;m01ân;m; (58)

with

%n;m ¼
e

ℏ

Z rnþ1;m

rn;m

A % ds; (59)

where the integral is taken along a straight line joining

neighboring sites. The appearance of the phase factors

e0i%n;m in Eq. (58) can be understood in terms of the

Aharonov-Bohm phase accumulated along a straight line

joining two adjacent sites of the lattice. With the choice of

the Landau gauge, these phase factors are

rn;m ! rnþ1;m:%n;m ¼ 2#+m; (60)

where + ¼ #=#0, # ¼ Bd2 is the magnetic flux through a

unit cell, and #0 ¼ h=e is the flux quantum. A different

gauge choice leads to different phase factors %n;m, but the

phase accumulated on a closed circuit around an elementary

cell

" ¼
X

h

%n;m ¼ eBd2=ℏ ¼ 2#+ (61)

is gauge invariant (the symbol h indicates that the sum runs

over an elementary cell of the lattice).

The reduction of the full Schrödinger equation to Eq. (58)

involves another approximation, the so-called Peierls’s

substitution [see Luttinger (1951) for a discussion of this

approximation in the TB limit]. It is valid if the Landau

energy ℏ!c, where !c ¼ B=M is the cyclotron frequency,

remains much smaller than the energy gap between the

bands n ¼ 0 and 1. Outside of the TB regime, its validity has

to be carefully examined (Nenciu, 1991). In the context of

our Colloquium, these considerations are not relevant as we

discuss methods to simulate the Hamiltonian (58) directly.

The single-particle eigenstates of the Hamiltonian (58) can

be searched in the form
P

m;nCme
iqxndâyn;mjvaci. The corre-

sponding eigenvalue equation for the coefficients Cm is

known as the Harper equation (Harper, 1955). Its solutions

have been extensively studied in connection with the quantum

Hall effect (Thouless et al., 1982; Kohmoto, 1989). The

energy spectrum, represented in Fig. 8, is known as the

Hofstadter butterfly (Hofstadter, 1976), and it exhibits a

remarkable self-similarity. This spectrum has a much more

complex structure than its counterpart for a continuous sys-

tem, the latter being composed of uniformly spaced, infinitely

degenerate Landau levels. This structure can be qualitatively
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understood on a relatively simple ground. For a rational value

of +, that is + ¼ p=q with p, q integers, the Hamiltonian is

still periodic but with a larger period qd along the y axis. One
can then divide the system into ‘‘macrocells’’ of size qd and

look for new eigenstates [the so-called magnetic Bloch func-

tions (Blount, 1962)] appropriate for the ‘‘macrolattice.’’

Because the macrocell contains q original lattice sites, the

fundamental band splits into q subbands generally separated

by small energy gaps (with some exceptions, such as the case

+ ¼ 1=2, where the two bands touch at the edges of the

reduced Brillouin zone). The Landau levels structure is re-

covered in the weak flux limit where + ¼ p=q / 1. We note

finally the special case of + ¼ 1=2, corresponding to a real

tunneling matrix element alternating in sign from one column

to the next. In this case, the excitation spectrum features two

‘‘Dirac points’’ for ðkx; kyÞ ¼ ð0#=dx;#=2dyÞ around which

the dispersion relation is linear (Hatsugai and Kohmoto,

1990; Lim, Smith, and Hemmerich, 2008; Hou, Yang, and

Liu, 2009). The behavior of an ultracold Fermi gas in such a

situation is expected to be similar to that observed in gra-

phene (Castro Neto et al., 2009).

C. Simulating a magnetic flux through each lattice cell

We now discuss how the Hamiltonian (58) can be realized

for cold atoms in an optical lattice. We proceed in two steps.

First we introduce the notion of laser-assisted tunneling and

show how it can be used to obtain a nonzero flux through each

lattice cell. However, laser-assisted tunneling in its simplest

version provides a flux that alternates in sign between neigh-

boring cells and thus does not simulate a uniform magnetic

field. In the second step (Sec. V.D), we show how one can

rectify this magnetic flux and reach the Hamiltonian (58).

The notion of laser-assisted tunneling was introduced in

this context by Ruostekoski, Dunne, and Javanainen (2002)

and Jaksch and Zoller (2003). The first ingredient is to design

a state-dependent lattice. Consider atoms with two internal

states g and e, trapped in spatially separated sublattices (see

Fig. 9). We focus on the situation where each sublattice has

rectangular symmetry with lattice spacings dx and dy. The e

sublattice is deduced from the g sublattice by a translation

dx=2 along the x axis. We label

r
ðgÞ
2n;m ¼ ndxex þmdyey; (62)

r
ðeÞ
2nþ1;m ¼ ðnþ 1=2Þdxex þmdyey; (63)

the positions of the trapping sites on each sublattice, with

the corresponding Wannier functions wðgÞ
2n;m and wðeÞ

2nþ1;m.

Tunneling energies along x and y within a given sublattice

(g or e) are denoted by Jx and Jy, respectively.

In practice, there are two options to generate such a state-

dependent lattice. The first one, suitable for alkali atoms,

selects g and e as two Zeeman or hyperfine states in the

electronic ground state manifold (electronically excited states

are too short lived for this application). In this case, the leading

term in the optical lattice potential is the sum of scalar and

vector terms, the latter behaving as an effective magnetic field

(Cohen-Tannoudji and Dupont-Roc, 1972). The states g and e
are chosen such that they have opposite magnetic moments,

and the detuning from resonance of the light beams forming

the x lattice is adjusted so that the polarizabilities of g and e are
opposite (Mandel et al., 2003). This provides the desired state-

dependent lattice potential along the x axis. Note, however,

that the required detuning lies relatively close to the resonance

lines, so that heating due to photon scattering can cause serious

practical problems.

The second option is to use atomic species already con-

sidered in Sec. II.B with a long-lived excited state (Yi et al.,

2008; Gerbier and Dalibard, 2010). Practical examples are

alkaline-earth or ytterbium atoms, where the 3P0 internal

state has a typical lifetime over 10 s. One then chooses the

electronic (spin singlet) ground state for g and the 3P0 excited

state for e. For such atoms, both states couple to different

electronic states, and it is possible to find a magic wavelength

(used for the y lattice) such that the polarizabilites are

identical for both states, and an antimagic wavelength (used

for the x lattice) such that they are opposite. Both are far

detuned from any resonance, so that heating by spontaneous

emission is not an issue in this case.

In a state-dependent lattice, tunneling from a given site on

the g sublattice to a neighboring one on the e sublattice can be
driven by a resonant light field that couples g and e. We

assume this coupling laser is a plane running wave with wave

FIG. 8. Hofstadter butterfly: single-particle spectrum of the

Hamiltonian of Eq. (58) in units of the tunneling amplitude J, for

+ ¼ %=%0 varying between 0 and 1.

FIG. 9 (color online). Sketch of the state-dependent 2D lattice

potential. Gray (black) dots mark lattice sites for atoms in the

ground g (excited e) state. We highlight a trajectory around an

elementary cell of the coupled lattice in which the particle acquires

the Aharonov-Bohm phase 2#+. The g ! g and e ! e transitions

occur due to standard tunneling. The g ! e and e ! g transitions

correspond to resonant laser-assisted tunneling. In a g ! e transi-

tion the atom absorbs a photon and jumps from a state localized

around x ¼ ndx to a state localized around x ¼ ðn0 1=2Þdx (and

vice versa for a e ! g transition).
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vector k. The corresponding complex tunneling matrix ele-

ment is

g; r
ðgÞ
2n;m ! e; rðeÞ2n01;m:Jeff ¼ ℏ!ð0ÞOeik%r

ðgÞ
2n;m ; (64)

where !ð0Þ characterizes the strength of the atom-laser cou-

pling and the dimensionless number,

O ¼
Z

½wðeÞ
2nþ1;mðrÞ)

,w
ðgÞ
2n;mðrÞe

ik%rd2r; (65)

is the overlap integral between neighboring Wannier func-

tions (Jaksch and Zoller, 2003) (note that w
ðgÞ
2n;m and wðeÞ

2nþ1;m

are not orthogonal since they belong to different sublattices).

Equation (64) displays the essential phase factor that allows

one to reproduce the Aharonov-Bohm phase (59). By choos-

ing a laser propagating in the y-z plane, and under the

assumption that state-independent tunneling along x is neg-

ligible (Jx / jJeffj), one obtains

H ¼ !jJeffj
X

n;m;0

ei%m b̂y2n01;mâ2n;m þ H:c:

! Jy
X

n;m;0

ây2n;m01â2n;m þ b̂y2nþ1;m01b̂2nþ1;m; (66)

where ây2n;m (b̂y2nþ1;m) creates an atom in the internal state g

(e) in the state w
ðgÞ
2n;m (wðeÞ

2nþ1;m). Here ei%m is the complex

phase of Jeff , characterizing the phase acquired by an atom

when it tunnels from a site of the sublattice g to a site of the

sublattice e:

g; r
ðgÞ
2n;m ! e; rðeÞ2n01;m:%2n;m ¼ 2#+m; (67)

where + ¼ kydy=ð2#Þ can be adjusted between 0 and 1 by

changing the angle of the wave vector k of the coupling laser

with the y axis.

Although the Hamiltonian (66) contains complex hopping

amplitudes, it does not yet coincide with the Hamiltonian (58)

that we want to simulate. In the initial Hamiltonian, the phase

picked up across each x link has the same sign for a given link

direction in real space: 2#+m in the þx direction (and thus

!2#+m in the !x direction since the Hamiltonian is

Hermitian). Here the phase is tied to the direction in internal

space: 2#+m for transitions to g to e, irrespective of the fact
that they occur in the þx or !x directions.

In total, we achieve with Eq. (66) a situation where the flux

through a cell changes sign from one cell to the next one

along the x axis. We anticipated this difficulty in Sec. II.E,

where we noted that realizing artificial gauge potentials with

variations on the scale of the optical wavelength (L would

naturally result in an oscillating (or staggered) effective

magnetic field. Although this configuration can lead to inter-

esting situations (Wang and Gong, 2006; Hou, Yang, and Liu,

2009; Möller and Cooper, 2010), it does not realize our goal

of producing a uniform magnetic field, except for the specific

case + ¼ 1=2, since phase changes of 0# are equivalent.

D. Rectification of the magnetic field in the lattice

The need for rectification of the magnetic field that we

found in the preceding section can be formulated on more

general grounds. We are looking for an effective Hamiltonian

that must break time-reversal symmetry. For our two-level

system, the time-reversal operator is T ¼ KsKc (Messiah,

1961a), whereKs ¼ ei#/̂y=2 ¼ i/̂y is such thatKsjgi ¼ jei,
Ksjei ¼ !jgi, andKc is the conjugation operator. Now, the

action of T on the configuration studied in the previous

section results in the same configuration, except for a mere

translation by an amount dx=2 along the x axis. Hence, in

order to produce a uniform magnetic field, one must add

another ingredient that is not symmetric under the ‘‘sublattice

translation’’ operation.

Jaksch and Zoller (2003) proposed to realize this by adding

a linear potential gradient along x, VgradðnÞ ¼ ,n, so that the

laser frequency for the ðg; 2n;mÞ ! ðe; 2nþ 1; mÞ transition
becomes shifted by þ, while that for the ðg; 2nþ 2; mÞ !
ðe; 2nþ 1; mÞ transition is shifted by !, . By choosing , -
jJeffj, the two transition frequencies become nondegenerate

and must be addressed by two different lasers. One then

chooses the laser resonant with ðg; 2n;mÞ ! ðe; 2nþ 1; mÞ
to propagate along þey, and the laser resonant with ðe; 2nþ

1; mÞ ! ðg; 2nþ 2; mÞ to propagate along!ey. According to

Eq. (64), the sign of the phase factor changes on every second

column, which results in a rectification of the staggered field

to a uniform one (provided off-resonant terms are negligible

compared to resonant ones). Practically, such a potential

gradient can be implemented by a real electric field affecting

g and e equally, or by the ac Stark shift exerted by an off-

resonant laser. The large electric fields or optical powers

involved, combined with the fact that the tilting potential

must be linear over the whole cloud to ensure a uniform

transition frequency, make this option challenging from an

experimental point of view.

A possibly more practical configuration is based on a

superlattice potential with period 2dx along x on the top of

the main lattice, which can perform the same role as the

potential gradient mentioned previously (Gerbier and

Dalibard, 2010). One needs three (instead of two) different

coupling laser frequencies in this case, but this is not a

significant increase in difficulty since the frequency differ-

ences are in the tens of kHz range, and can thus be easily

generated using frequency modulators. Another proposal by

Mueller (2004) realized the same goal by using three internal

states in three different sublattices. In that case, the distinc-

tion between neighboring transitions is automatic, and there

is no need for an additional external potential. Unfortunately

this trapping configuration seems difficult to implement in

practice for the commonly used atomic species.

E. Connection with dressed state approach

It is interesting to establish a link between the optical

lattice case and the schemes discussed in Secs. II and III,

where we assumed that the atoms were following adiabati-

cally one internal dressed state, defined as one of the local

eigenstates of the atom-laser coupling matrix. We first discuss

the case of lattices with laser-assisted tunneling that we

considered in the first part of this section. We then briefly

present the concept of flux lattices recently introduced by

Cooper (2011).

Lattices with laser-assisted tunneling.—The dressed states

can of course also be defined in the lattice case. For

Dalibard et al.: Colloquium: Artificial gauge potentials for . . . 1539

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011



simplicity we take a uniform Rabi frequency !ð0Þ for the

coupling laser and a spatially varying detuning !ðrÞ ¼ !0 þ

½VeðrÞ ! VgðrÞ)=ℏ, where Vg and Ve denote the potential

energies for the g and e sublattices, respectively. We denote

V0 as the characteristic amplitude of oscillation of Ve and Vg,

and we assume that ℏ!ð0Þ / V0 to ensure that the coupling

laser does not lead to a strong deformation of the state-

dependent lattice potential. As explained in Sec. II.C, this

corresponds to a situation such that the mixing angle $ varies

rapidly around the points where the resonance condition

!ðrÞ ¼ 0 occurs. We use as a typical value jr!j . kV0=ℏ,
where k is a typical optical wave number. From the discus-

sion of Sec. II.C, we obtain the validity condition for the

adiabatic approximation !ð0Þ -
ffiffiffiffiffiffiffiffiffiffiffiffi

V0ER

p
=ℏ. In the TB limit

the right-hand side is approximately the frequency gap !gap

between the ground (0 ¼ 0) and the first excited (0 ¼ 1)

band. With the adiabaticity condition now written as !ð0Þ -

!gap, we immediately conclude that the adiabatic following

of a given dressed state is intrinsically incompatible with the

single-band model used in this section. In other words the

laser-assisted tunneling scheme considered in this section is a

‘‘diabatic process’’ (Smith, 1969) with respect to the dressed

state basis, and it is therefore qualitatively different from the

adiabatic scheme considered in Secs. II and III to generate

artificial gauge fields in a bulk system.

Flux lattices.—(Cooper, 2011) A flux lattice is based on a

purely periodic 2D pattern of interfering laser fields. Atoms

are modeled as two-level systems as in Sec. II, with a

coupling matrix U in Eq. (2) whose coefficients $, $, and

% are periodic functions of x and y. In the adiabatic limit

studied in Sec. II, the vector potential A calculated from

Eq. (7) is also a periodic function of x and y. One could

then think that the flux of the magnetic field across a unit cell

of the lattice, which is equal to the circulation of A on the

contour of the cell, is always zero. However, this does not

hold if the laser field is chosen such that A has singularities

inside the cell. Such singularities occur at locations where

sin$ ¼ 0, so that % is ill defined. Contrary toA, the magnetic

fieldB in these points, calculated from Eq. (8), is nonsingular.

Cooper (2011) showed that configurations exist where Bz

keeps a constant sign over the cell,2 with a magnitude

+ℏk2. In particular, the Chern number of the lowest allowed

energy band (Thouless et al., 1982) can be nonzero. This

scheme, which is actually still valid outside the adiabatic

limit (Cooper and Dalibard, 2011), thus constitutes an attrac-

tive alternative to the ones based on laser-assisted tunneling.

F. Non-Abelian gauge fields in a lattice

Optical lattices are also well suited for the generation of

artificial non-Abelian magnetic fields, as first proposed by

Osterloh et al. (2005), and we conclude this section by a brief

description of a possible implementation. As in Sec. IV, the

basic idea to generate non-Abelian potentials is to use several

internal atomic levels that are coupled by various laser beams.

Here we consider an atomic species with 2N quasidegenerate

sublevels, trapped either in sublattice g (sublevels gi, i ¼
1; . . . ; N) or in sublattice e (sublevels ej, j ¼ 1; . . . ; N).

Instead of a simple phase, laser-induced couplingsmust induce

a rotation in internal space, generated by a N * N matrix M

with noncommuting components Mx, My, and Mz. Consider

for instance a species with spin 1
2
in both the ground and excited

manifolds (the spin 1
2
plays the role of a fictitious ‘‘color’’

charge here), whichmoves in an optical lattice that is now state

dependent along both x and y. Laser-induced tunneling is used
along both axes, with the additional possibility of changing the

spin index mz ¼ 01=2. For instance, the lasers inducing

tunneling along y can be chosen to flip the spin (mz ! m0
z ¼

!mz), so thatMy / +/̂x þ ./̂y, where+ and. are numerical

coefficients depending on the laser phases. The lasers inducing

tunneling along x are then chosen to preserve the spin (mz !
m0

z ¼ mz), so that Mx / "1̂þ '/̂z. Provided that ' ! 0, i.e.,

the x lasers apply a different phase conditionally on the internal
color, this realizes a non-Abelian potential. The physical

effects that one expects from this non-Abelian setting are

similar to those discussed in Sec. IV, in particular, the emer-

gence of a Rashba-like spin-orbit coupling (Dudarev et al.,

2004; Osterloh et al., 2005; Goldman, 2007; Satija et al.,

2008; Goldman, 2009; Goldman et al., 2009a, 2009b).

VI. OUTLOOK

In this Colloquium we presented the physical principles

that lead to the generation of artificial gauge potentials on

neutral atoms, using their coupling to laser fields. We con-

sidered the cases of bulk systems and discrete lattices, and we

showed that both Abelian and non-Abelian gauge potentials

are accessible, provided one chooses a suitable atomic level

structure and proper incident light fields. We also explored

several physical consequences of these gauge fields, such as

the nucleation of quantized vortices in a superfluid, the

generation of a spin-orbit coupling via a non-Abelian gauge

field, or the possibility to address the strong magnetic field

limit in a 2D lattice with the corresponding Hofstadter butter-

fly energy spectrum. The variety of items in this (incomplete)

list shows the richness of the situations that can be realized.

These artificial fields also constitute novel tools for char-

acterizing the properties of an assembly of atoms. Cooper and

Hadzibabic (2010) suggested using a small artificial magnetic

field to probe the superfluidity of a gas. The field is generated

with a laser scheme close to the one of Sec. III.B, and it is

used to simulate a rotating bucket experiment and measure

the reduced moment of inertia of a fluid when it acquires a

superfluid component. In presence of the artificial field the

normal component will stay at rest in the laboratory frame,

whereas the superfluid component will rotate. A key feature

of this proposal is that one can use spectroscopic methods to

access the respective populations of the superfluid and normal

states, by measuring the populations of the various ground

states gj involved in the process.

2More precisely, the total field consists of a regular background

component with nonzero average, plus a periodic array of gauge-

dependent Dirac strings, located in points where cos$ ¼ !1 for the

gauge choice of Eq. (3), and carrying a flux of opposite sign as

compared to the background. The regular and singular components

together give a zero net flux over an elementary cell, as expected for

a periodic Hamiltonian. However the Dirac strings are nonmeasu-

rable and only the background component has an observable effect.
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In order to keep this Colloquium within reasonable limits,

we intentionally restricted our analysis to single-particle or

mean-field physics. However, it is clear that these gauge fields

can lead to interesting phenomena when combined with the

richness of strongly correlated states that emerge in many-

body physics. For the Abelian case in the continuum limit, the

situation is similar to the case of rotating gases, and paths to

quantum Hall physics that have been identified for Bose and

Fermi gases remain of order [for a review, see Cooper

(2008)]. In the context of the Bose-Hubbard model in the

presence of a uniform magnetic field, Möller and Cooper

(2009) recently proposed an approach based on the composite

fermion theory to establish the existence of strongly corre-

lated phases that have no equivalent in the continuum limit

[see also Polak and Kopeć (2009)]. Another line of research

with optical lattices deals with the combination of artificial

gauge fields and nearest-neighbor interactions, as recently

explored by Ruostekoski (2009).

To end on a somehow futuristic tone, we note that with the

generation of non-Abelian gauge fields on an atomic gas, one

will have at hand matter with intriguing topological charac-

teristics. A possible application is the simulation of topologi-

cal insulators with neutral atoms [see, e.g., Wu (2008),

Goldman et al. (2010), and Stanescu, Galitski, and Das

Sarma (2010)]. Another intriguing perspective could be to-

pological quantum computing (Das Sarma, Freedman, and

Nayak, 2006). In this respect the artificial gauge fields pro-

vide a different scenario compared to the anticipated emer-

gent non-Abelian excitations in, for instance, fractional

quantum Hall systems. With artificially created gauge poten-

tials the pseudospin is effectively turned into a non-Abelian

anyon, since two pseudospins which swap places will be

represented by different final states depending on whether

they were interchanged clockwise or counterclockwise. Such

effects may provide an atomic building block for fault toler-

ant topological quantum computing.
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optical lattice have been reported (Aidelsburger et al., 2011;

Struck et al., 2011).
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Juzeliūnas, G., and P. Öhberg, 2004, Phys. Rev. Lett. 93, 033602.
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Möller, G., and N. R. Cooper, 2010, Phys. Rev. A 82, 063625.

Moody, J., A. Shapere, and F. Wilczek, 1986, Phys. Rev. Lett. 56,

893.

Moody, J., A. Shapere, and F. Wilczek, 1989, in Geometric Phases

in Physics, edited by A. Shapere and F. Wilczek (World Scientific,

Singapore), p. 160.

Mueller, E. J., 2004, Phys. Rev. A 70, 041603.

Nenciu, G., 1991, Rev. Mod. Phys. 63, 91.

Osterloh, K., M. Baig, L. Santos, P. Zoller, and M. Lewenstein,

2005, Phys. Rev. Lett. 95, 010403.
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