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Colloquium: Coherent Diffusion of Polaritons in Atomic Media
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Coherent diffusion pertains to the motion of atomic dipoles experiencing frequent collisions in
vapor while maintaining their coherence. Recent theoretical and experimental studies on the
effect of coherent diffusion on key Raman processes, namely Raman spectroscopy, slow polariton
propagation, and stored light, are reviewed in this Colloquium.
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I. INTRODUCTION

Coherent Raman processes, in which two or more
electromagnetic modes resonantly dress and excite an
atomic-like system, provide a powerful interface be-
tween light and matter. They are potentially a cor-
nerstone for future quantum information schemes and
quantum-technology sensors, allowing the initialization,
control, and monitoring of the quantum state of ei-
ther the material or the light. Various Raman pro-
cesses have been studied to date, namely, coherent
population trapping (CPT) (Arimondo, 1996a), nonlin-
ear magneto-optical rotation (NMOR) (Budker et al.,
2002), electromagnetically-induced transparency (EIT)
(Fleischhauer et al., 2005), and slow and stored light
(Hammerer et al., 2010; Lukin, 2003). These were
all first demonstrated in a hot atomic vapor, per-
haps the epitome of quantum-optics systems, combin-
ing high optical depth, low relaxation rates, and weak
atom-atom interactions with the simplicity of both
the experiments and the theoretical modeling. Indeed
— from the pioneering work of Alzetta et al. (1976)

and Arimondo and Orriols (1976) on dark resonances,
through later manifestations of elaborate Raman pro-
cesses and dark-state polaritons (Budker et al., 1999;
Harris, 1997; Phillips et al., 2001), and to state-of-the-
art magnetometers, gyrometers, and miniature atomic
clocks (Budker and Romalis, 2007; Knappe et al., 2004;
Smiciklas et al., 2011) — thermal atomic media have
been at the frontier of experimental progress.

Two profound mechanisms underlie the dynamics of
coherent processes in vapor: the continuous thermal mo-
tion of the atoms and the collisions amongst themselves
and with the walls of the vapor cell. Collisions dam-
age the internal atomic quantum state and set an upper
limit on the coherence time of the system. Although a
record coherence time of one minute was recently ob-
tained by Balabas et al. (2010) with an anti-relaxation
coating of the inner glass walls, it is often desirable to
add a foreign buffer-gas into the cell to delay the ac-
tive atoms from leaving the illuminated region and ap-
proaching the walls (Happer, 1972). Selected species,
such as noble gases or nitrogen molecules, have been
known for many years to preserve the ground-state co-
herence of alkali-metal atoms upon collisions (Walker,
1989). Buffered cells are now commonly used in coherent
Raman experiments (Brandt et al., 1997; Ezekiel et al.,
1995; Graf et al., 1995).

Frequent velocity-changing collisions, although pre-
serving the coherence, affect the atomic motion and mod-
ify the light-matter interaction. The original descrip-
tions, by C. Doppler, W. Voigt, and others, of the inter-
play between a moving radiator and the electromagnetic
field were augmented by R. H. Dicke (1953) to incor-
porate frequent changes in the radiator velocity. Dicke
predicted that, when collisions dominate, the Doppler-
broadened spectrum of a thermal gas will be narrowed.
The Dicke effect is closely related to motional narrowing
in NMR, treated previously in the pioneering paper by
Bloembergen et al. (1948). Subsequently, Galatry (1961)
formulated the spectral lineshape of a thermal atom un-
dergoing frequent collisions in a buffer gas. Nevertheless
it was only in 2003 when a signature of Dicke narrowing
was detected in the optical regime (Dutier et al., 2003),
because of the fundamental requirement that the mean
free-path between collisions Λ be much smaller the wave-
length λ = 2π/|q|, where q is the wavevector.

In Raman processes, however, the relevant wavevec-
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FIG. 1 Measured and calculated linewidths of a hyperfine
dark resonance in rubidium, demonstrating the reduction in
both the Doppler and transit-time broadenings with increas-
ing pressure of neon buffer-gas. Laser intensities are (�)
17, (△) 11, (©) 6, and (♦) 1 mW/cm2. From Brandt et al.

(1997).

tor for the Doppler and the Dicke mechanisms is due
to the difference between the two fields involved k =
q− qc, leading to the residual Doppler and Dicke effects
(Cyr et al., 1993). Broadening is avoided only in the so-
called Doppler-free arrangement, in which one light beam
excites an atom and a collinear beam of the same fre-
quency de-excites it, yielding k = q − q = 0. However,
in general either a small angular deviation or a small fre-
quency difference between the two beams yield a non-zero
Raman wavelength λR = 2π/|k| as small as a microm-
eter or as large as a centimeter, which affects the pro-
cess. Residual Dicke narrowing of a Raman transition at
the GHz frequency range is therefore readily obtained at
moderate buffer-gas pressures, as exemplified in Fig. 1
for a Raman dark-resonance. Correspondingly, general
multimode light fields that span a spectrum in k−space
exhibit a generalized motional effect.

From the spatial viewpoint, the consequence of
velocity-changing collisions in buffered cells is a Brown-
ian or diffusion motion of the atoms. The internal atomic
dipoles, e.g., those corresponding to the superposition
between the two Raman levels, diffuse across the vari-
ations of the light fields. It is the near degeneracy of
the Raman levels and the relatively large Raman wave-
length that make the coherent diffusion effectual. The
spatial effect is most clearly appreciated in light-storage
experiments, in which the relative amplitude of the Ra-
man fields is imprinted onto the spatial field of dipoles,
which subsequently undergoes diffusion. The evolution
becomes more complicated in slow-light experiments, in
which the propagation of polaritons — a combined exci-
tation of light and atomic coherence — is affected simul-
taneously by optical diffraction and atomic diffusion.

This field of research is largely motivated by appli-
cations, namely, high-precision measurements, especially
with spatial multi-pixel resolution (Kominis et al., 2003);
multi-mode quantum memories (Vasilyev et al., 2010);
and spatial information processing, either classical or

quantum (Marino et al., 2009). Atomic motion crucially
affects the spectral and spatial resolution, sensitivity, and
coherence time of these applications.

In this Colloquium, we review the recent progress in
the understanding of motional effects in Raman pro-
cesses. Spin-exchange among the active atoms and with
a polarizable buffer-gas (Walker and Happer, 1997) as
well as pressure broadening (Corey and McCourt, 1984;
Peach, 1981) are beyond the scope of the paper. We em-
phasize mostly the regime of a dense inert buffer gas, in
which the active atoms undergo perfect diffusion in the
medium, and employ the complementary spectroscopic
and spatial viewpoints. In doing so, we hope to illustrate
the underlying mechanisms and their consequences in hot
atomic media as well as in similar systems.

II. RAMAN SPECTRA OF DIFFUSING ATOMS

A. The Doppler-Dicke transition

The Doppler shift of a radiator moving at a velocity
v is given by ωDoppler = vq. The spectrum exhibits
side-bands at ±vq, if the radiator is confined within two
walls and periodically flips its direction. When the direc-
tion flips are frequent, spectral components at the origi-
nal frequency, as well as higher-order harmonics emerge.
For very frequent collisions, the carrier prevails, com-
pletely suppressing the Doppler effect. This narrowing
phenomenon is named after Dicke (1953). The distance
between collisions Λ, with respect to the radiation wave-
length λ, determines the narrowing factor. A movie clip
in the Supplementary Material illustrates the Doppler-
Dicke transition in the acoustic spectrum of a moving
emitter, obtained numerically by following Dicke (1953).

Doppler broadening in vapor originates from a picture
of individual atoms distributed among velocity groups
and experiencing distinct Doppler shifts. The Maxwell-

Boltzmann distribution F (v) = (2πv2T )−3/2e−v2/(2v2

T )

results in an inhomogenous broadening of

ΓDoppler = vT |q|, (1)

where vT =
√

kBT/m is the thermal velocity and m the
atomic mass (ΓDoppler refers to 1σ).

In a buffer-gas environment or due to confined cell ge-
ometries, the velocity-groups picture breaks down, as col-
lisions redistribute the velocities faster than it takes the
resonance to stabilize. Consequently, as we shall estab-
lish in this section, the light merely faces fluctuations
in the atomic velocities, leading to a crossover from the
Gaussian (inhomogenous) to a Lorentzian (homogenous)
lineshape. The average velocity associated with these
fluctuations is reduced with respect to vT by the Dicke
narrowing factor: 2πΛ/λ. The homogenous Dicke half-
width is thus given by (Galatry, 1961),

ΓDicke ≈ 2π
Λ

λ
ΓDoppler ≪ ΓDoppler. (2)
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FIG. 2 Transit-time interpretation of the Doppler and Dicke
effects. A beam of width ∆x has a span ∆k⊥ ∼ 1/∆x of
transverse momenta. The interaction time for an atom cross-
ing the beam with velocity vT (top) is τt = ∆x/vT , resulting
in a transit-time broadening of vT ∆k⊥ ∼ ΓDoppler. For dif-
fusing atoms (bottom), the mean interaction time is ∆x2/D,
leading to a broadening of D∆k2

⊥ ∼ ΓDicke. Right: Dark res-
onances in rubidium vapor measured by Bolkart et al. (2005)
for a beam diameter ∆x = 5.6 mm (top) without and (bot-
tom) with 20 Torr neon buffer-gas. The respective linewidths
are (solid lines) 2ΓDoppler = 100 kHz and 2ΓDicke = 6 kHz.
Dashed and dotted lines are measured with an angle between
the Raman beams of θ = 0.31 mrad and θ = 0.62 mrad,
respectively. Adapted from Bolkart et al. (2005).

The Doppler effect corresponds to a ballistic motion of
the atoms (Λ ≫ λ) and the Dicke effect to a diffusive
motion (Λ ≪ λ). One finds that ΓDicke is proportional
to the diffusion coefficient D = vT Λ and quadratic in
the radiation wavenumber (Corey and McCourt, 1984;
Nelkin and Ghatak, 1964),

ΓDicke = D |q|2 . (3)

Equations (1) and (2) can intuitively be understood as
the inverse time an atom travels a distance λ ballis-
tically (∝ λ/vT ) or diffusively (∝ λ2/D). Therefore,
they are also interpreted as a transit-time broadening,
as illustrated in Fig. 2. At low buffer-gas densities,
when the mean-free path is comparable to the wave-
length (λ/Λ ∼ 2π), the spectral width can be expressed
as (Rautian and Sobel’man, 1967)

ΓDoppler-Dicke =
vT
Λ

4

a2
H

(

2πa
Λ

λ

)

, (4)

where a2 = 2/ ln 2, and H(x) = e−x−1+x conveys at its
limits the Doppler trend [H(x → ∞) = x] and the Dicke
trend [H(x → 0) = x2/2].

The condition Λ ≪ λ can hardly be satisfied for opti-
cal resonances without introducing to much decoherence
due to collisions. For instance, room-temperature rubid-
ium with vT ≈ 170 m/s exhibits ΓDoppler ≈ 220 MHz
at λ = 780 nm. For this wavelength, neon buffer-gas
at a pressure of about 200 Torr is required for entering
the Dicke regime 2πΛ/λ ∼ 1. At this pressure, the de-
coherence induced by the neon on the optical resonance
results in an overwhelming pressure broadening of about

2 GHz (Ottinger et al., 1975). Optical lines therefore re-
main Doppler broadened in nearly all thermal media.

For ground-state atomic transitions, buffer gases at
the 1 − 100 Torr levels have been used since 1955 to de-
lay the atomic motion and reduce Doppler and transit-
time broadening (Happer, 1972). Since these transi-
tions survive millions of collisions with the buffer gas
before decohering, and since the associated microwave
and rf wavelengths are much larger than the optical
wavelength, Dicke narrowing becomes far more reachable
(Frueholz and Volk, 1985). As laid out in a pioneering
work by Cyr et al. (1993) and discussed in the rest of this
section, all-optical Raman processes based on these tran-
sitions were shown to exhibit roughly the same motional
broadening behavior, with the necessary adjustments due
to the optical Doppler broadening.

B. Motional broadening in Raman processes

We consider as a model system dark resonances cre-
ated via EIT in a Λ−configuration, depicted in Fig. 3(a).
In Λ−EIT, a probe field E and a coupling field Ec cou-
ple two states from the atomic ground level (|1〉 and |2〉)
to a common excited state (|3〉). The fields are here-
after assumed to be classical and characterized by the
Rabi frequencies Ω and Ωc via E = Re(~εΩ/µ31) and
Ec = Re(~εcΩc/µ32), where ε, εc are the field polariza-
tions and µ31, µ32 the transition dipole moments. In
the absence of the coupling field, the probe experiences
resonant absorption exp(−2αL), determined by the ab-
sorption coefficient 2α and the medium length L. The
combined action of the probe and the coupling fields (the
latter being usually much stronger, |Ωc|2 ≫ |Ω|2) drives
the atoms into a dark state — a coherent superposition
of the two lower states that inhibits the absorption of the
probe, rendering the medium transparent. One can easily
verify that the dark state on resonance Ω∗

c |1〉 − Ω∗ |2〉 is
decoupled from the excited state |3〉 under the influence
of the interaction Hamiltonian

HI = −~Ω |3〉 〈1| − ~Ωc |3〉 〈2| + h.c., (5)

essentially due to destructive interference between the
two excitation paths to |3〉.

The dark resonance depends on the two-photon (Ra-
man) detuning ∆ = ∆p − ∆c where ∆p and ∆c are,
respectively, the one-photon (optical) detunings of the
probe and coupling fields, and requires that ∆ be smaller
than the Raman linewidth. The latter varies from Hz to
tens of MHz in thermal vapor and is determined primarily
by the ground-state decoherence rate γ0, power broaden-
ing from the coupling light, and motional broadening.
For comparison, in most cases, the optical linewidth is
much broader, varying from a few MHz for stationary
(cold) atoms to a few hundreds of MHz in Doppler-
broadened systems. Therefore a narrow transparency
window forms at ∆p = ∆c within the optical absorption
line (Boller et al., 1991), as can be seen in Fig. 3(b).
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FIG. 3 (color online) Electromagnetically-induced trans-
parency in a Λ−scheme. (a) The Raman resonance |1〉 ↔ |2〉
is excited via the state |3〉 by ’probe’ and ’coupling’ light fields.
(b) Top: transmission of the probe (solid line) in the absence
of the coupling field and accompanied refraction (dashed line).
Bottom: dark resonance induced by the coupling field.

At the same time, the probe also experiences very steep
dispersion ω(dn/dω) ≫ 1 (dashed curve), leading to a
much reduced group-velocity. Ultra-narrow dark reso-
nances are used in a wide variety of processes, such as
slow light (Hau et al., 1999), stored light (Lukin, 2003),
and non-linear optics at low light levels (Harris and Hau,
1999; Peyronel et al., 2012).

The Raman detuning is sensitive to the difference be-
tween the Doppler shifts of the probe and the coupling
fields. When q = qc, there is no residual Doppler effect,
and only the optical transitions are Doppler broadened.
In a general situation however, the Raman wavevector

k = q− qc (6)

does not vanish, and the expected residual widths are

Γres.
Doppler = vT k ; Γres.

Dicke = Dk2 . (7)

where k = |k| . The ratio between Γres.
Dicke and Γres.

Doppler,

the Dicke narrowing factor, ranges between 10−1 to 10−5

for typical experimental conditions.
A chief example is the dark resonance among the two

hyperfine sublevels of ground-state alkali atoms, such as
rubidium or cesium (Akulshin et al., 1991). The hyper-
fine splitting, on the order of a few GHz, results in a
Raman wavelength λR = 2π/k on the order of a few cen-
timeters for collinear beams, implying a residual Doppler
width of tens of kHz in the absence of a buffer gas. With
a typical buffer-gas pressure of 10 Torr, the mean free-
path of the alkali atoms in the buffer gas is on the or-
der of micrometers (alkali-alkali collisions cause decoher-
ence but are much more rare). The narrowing factor
is therefore on the order of Λ/λR = 10−4, eliminat-
ing completely the residual Doppler effect. A system-
atic measurement of Dicke narrowing in dark resonances
was reported by Brandt et al. (1997) for cesium (Fig.
1), and later on by Erhard et al. (2000) for rubidium,
accompanied by a numerical model (Erhard and Helm,
2001). The remaining homogenous width, due to alkali-
alkali collisions, transit-time broadening, wall collisions,

FIG. 4 (color online) Residual Doppler-Dicke broadening of
dark resonances due to an angular deviation θ between the
Raman beams, measured in Rb vapor with 10 Torr neon. The
linewidth depends quadratically on θ, as both the Doppler
width (Γres.

Doppler = θΓ.
Doppler) and the Dicke narrowing fac-

tor (2πΛ/λR = θΛq) are linear in θ. The mean free-path
Λ ≈ 2 µm used in the theory (right, solid line) corresponds
to a collision rate of ∼ 108/sec and is calculated from the
Rb-Ne collisional cross-section (Gibble and Gallagher, 1991;
Graf et al., 1995). The broadening also leads to a decrease
of the resonance transmission. Adapted from Shuker et al.

(2007).

and spin-destruction collisions with the buffer gas, is on
the order of tens of Hz, enabling the implementation of
high accuracy all-optical frequency standards (Cyr et al.,
1993; Knappe et al., 2004; Nagel et al., 1999).

Carvalho et al. (2004) measured the residual Doppler
broadening in hyperfine dark-resonances by introducing
an angular deviation θ between the probe and the cou-
pling beams. Measurements of residual Dicke narrowing
in buffered cells were performed by Bolkart et al. (2005)
(Fig. 2, right) and Shuker et al. (2007) (Fig. 4) in a de-
generate Λ−scheme, using two Zeeman states from the
same hyperfine level so that |q| = |qc| . In this scheme,
k = |q− qc| ≈ θ |q| for small θ, featuring λR ≈ 1 mm for
θ = 1 mrad. For a mean free-path of a few micrometers,
one finds λ < Λ ≪ λR, i.e., the Raman resonance is in
the Dicke regime, while the optical resonance (λ . 1 µm)
is Doppler broadened. The latter is virtually insensitive
to θ and can be as large as a few GHz, also due to pres-
sure broadening. The θ dependence in Fig. 4 exhibits the
quadratic signature of diffusion, with a clear narrowing
effect: at θ = 0.5 mrad, the measured width is Γres.

Dicke = 2
kHz, much smaller than Γres.

Doppler = 250 kHz.
The light intensity has a strong effect on the Ra-

man spectra, due to optical pumping and the accom-
panying decoherence. The latter results in the so-called
power broadening of the natural width γ0. For an atom
at rest, the optical pumping rate and the EIT power-
broadening are given by γp = |Ωc|2 /Γ. Both become
smaller in a Doppler broadened medium, because the ef-
fectiveness of the pumping varies between the different
velocity groups. This is a one-photon motional effect, in
which each velocity group experiences different pumping
and decoherence rates, providing inhomogenous ’condi-
tions’ for the Raman process. The velocity-selective op-
tical pumping (Aminoff and Pinard, 1982; Gawlik, 1986)
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results in correlations between the Raman and opti-
cal processes, similar to those employed in the well-
known techniques of Doppler-free saturated-absorption
spectroscopy (Hänsch et al., 1971) or laser-induced line
narrowing (Feld and Javan, 1969). Naturally, buffer gas
and velocity-changing collisions play an important role
here, for example by allowing the cumulative optical
pumping of the whole Doppler profile or, alternatively,
by limiting the interaction time with a certain veloc-
ity group (Bjorkholm et al., 1982). These correlations
were studied for dark resonances1 in experiments by
Ye and Zibrov (2002) and later by Figueroa et al. (2006)
and Goldfarb et al. (2008), along with theoretical anal-
ysis by Javan et al. (2002) and Lee et al. (2003). Being
essentially a one-photon effect, it is beyond the scope of
this review; further details can be found in recent papers
by Xiao (2009) and Ghosh et al. (2009), and in references
therein.

In the absence of additional relaxation, the spectral
line at the extreme Doppler and Dicke limits is always,
respectively, a Gaussian and a Lorentzian. In the in-
termediate regime, however, it is determined by the na-
ture of the collisions. Depending mostly on the collid-
ing species, the collisions may either be strong (=hard)
or weak (=soft), resulting in, respectively, a large or
small relative change in the velocity upon a single col-
lision. A phenomenological characterization of the col-
lision strength is given by Keilson and Storer (1952) in
their popular collision kernel. For a given collision rate,
the kernel renders the mean free path Λ and the ve-
locity correlation time γ−1

c = Λ/vT . There is a vast
literature dealing with the sensitivity of atomic spec-
tra to the nature of collisions, see Ciury lo et al. (2001);
Liao et al. (1980); Rothberg and Bloembergen (1984),
and references therein. Steady-state experiments, and
spectroscopy in particular, depend relatively weakly on
the collision strength, as shown in Fig. 5. More elaborate
schemes are required to directly quantify the collision ker-
nels, e.g., tagging of velocity groups by selective optical-
pumping in dilute buffer-gas and the subsequent prob-
ing of the velocity redistribution (Gibble and Gallagher,
1991; McGuyer et al., 2012; Morgan and Happer, 2010).
An analogous problem with trapped cold atoms undergo-
ing elastic collisions was addressed by Sagi et al. (2010).

Most of the work discussed in this Colloquium is car-
ried out at the limits λR/Λ ≫ 2π or λR/Λ ≪ 2π, in
which the collision strength has negligible effect. In what
follows, we shall nevertheless introduce both approaches,
i.e., the Gaussian process at the weak-collision limit and
the Boltzmann relaxation at the strong-collision limit,
and show their equivalence in the far Doppler and Dicke

1 Even more intricate correlations arise in Raman schemes
involving two coupling fields, such as 4-wave mixing and
electromagnetically-induced absorption. Here, the optical
dipoles, and not only the ground-state’s populations and damp-
ing, become velocity dependent (Tilchin et al., 2011).

FIG. 5 (color) Absorption spectra of thermal atoms. In the
absence of collisions, the homogenous linewidth Γ is domi-
nated by the Doppler width ΓDoppler = 100Γ. The transition
from the (blue) Doppler limit to the (green) Dicke limit oc-
curs when the effective mean free-path Λ = vT /γc (γ−1

c is
the velocity correlation time due to collisions) is comparable
to the wavelength λ (red). The spectra for the (solid line)
weak and (dashed line) strong collisions are calculated from
Eqs. (11) and (20), respectively. The differences between
weak and strong collisions are not distinguishable at the far
limits (blue and green).

limits. A reader less interested in the mathematical
derivation of the spectra may proceed directly to sub-
section II.C.

1. Weak-collisions formalism

We shall derive the Raman spectrum in the weak-
collisions limit for stationary uniform fields (plane
waves), a weak probe, and no power broadening. As-
suming the Λ−atom of Fig. 3 travels along the classical
trajectory r = r (t) , either ballistic or diffusive, we plug
the time-dependent Rabi frequencies

Ω̃ (t) = Ωeiqr(t)−iωt, Ω̃c (t) = Ωce
iqcr(t)−iωct (8)

into the Hamiltonian (5), with ω = c |q| and ωc = c |qc|.
To account for relaxations, the individual atom is rep-
resented by a density matrix ρiss′(t) (s, s′ = 1, 2, 3) in a
master equation formalism, see for example, Cyr et al.

(1993) and Nikonov et al. (1994). For brevity, we shall
characterize the relaxation of the optical dipole (3 ↔ 1, 2)
with a single decay rate Γ, dominated by pressure broad-
ening. The ground-state relaxation rate is γ0. For a given
atomic density n0, the absorption of the probe is calcu-
lated from the imaginary part of the linear susceptibility2

χ (−ω, ω) = g〈ρi31(t)/Ω̃(t)〉 where g = |q|n0|µ31|2/(~ǫ0),
ǫ0 is the vacuum permittivity, and 〈〉 ≡ limτ→∞

∫ τ

0
dt
τ .

We assume that the equilibrium state of the atom in
the absence of the probe is |1〉 〈1| (ρeq.11 = 1), regardless of

2 We define a linear susceptibility χ, such that the transfer func-
tion of the probe field is exp(iχz), as opposed to the prevailing
(unitless) definition exp(i|q|χz/2) (Fleischhauer et al., 2005).
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the velocity and the instantaneous coupling power, which
conforms with the limit of no power-broadening. The
first-order correction to the equilibrium state in the non-
saturated and weak-probe conditions Ω ≪ Ωc ≪ Γ in-
volves only the ground-state dipole ρi21(t) and the probe
transition dipole ρi31(t) (Kofman, 1997):

d

dt
ρi31 = iΩ̃c (t) ρi21 + iΩ̃ (t) ρeq.11 − i (ω − ∆p − iΓ) ρi31,

d

dt
ρi21 = iΩ̃ ∗

c (t) ρi31 − i (ω − ωc − ∆ − iγ0) ρi21. (9)

To obtain ρi31(t), Eqs. (9) can be integrated and
solved formally, by iterations up to first order in ρi31,
a valid approximation in the absence of power broaden-
ing

∣

∣Ω2
c

∣

∣ ≪ Γγ0. In this regime, the susceptibility be-

comes a sum χ (−ω, ω) = χI(ω) −
∣

∣Ω2
c

∣

∣χII(ω) of the Ra-

man resonance
∣

∣Ω2
c

∣

∣χII within the optical resonance χI

(Firstenberg et al., 2007):

χI = g

〈

i

t
∫

0

dt1e
(−i∆p−Γ)(t−t1)eiΦI

〉

, (10a)

χII = g

〈

i

t
∫

0

dt1

t1
∫

0

dt2

t2
∫

0

dt3
e(−i∆p−Γ1)(t−t1+t2−t3)

e−(i∆−γ0)(t1−t2)
eiΦII

〉

.

(10b)

The phases accumulated due to atomic motion though
the light fields are ΦI = q· [r (t) − r (t1)] and ΦII =
qc· [r (t1) − r (t2)] − q· [r (t) − r (t3)] .

At this point, one may recognize a homogenous
Lorentzian line

∫

dτe(−i∆p−Γ)τ in Eq. (10a), broad-
ened by the motional phase q · r (τ) . This is where
the weak-collisions limit enters: As laid out by Kubo
(1962) and Rautian and Sobel’man (1967), the assump-
tion of a Gaussian process for the random variable
ΦI, together with a Markovian velocity relaxation
〈ṙ (t) ṙ (t− τ)〉 = 3v2T e

−γc|τ |, renders the dephasing

〈eiΦI(t,t−τ)〉 ≈ e−〈Φ2

I
〉/2 ≈ e−|q|2Λ2H(γcτ), with H(x) =

e−x − 1 + x and Λ = vT /γc. This result leads to an
optical spectrum in the form of a Gumbel distribution
(Galatry, 1961):

χI(∆p) = ig

∫ ∞

0

dτe(−i∆p−Γ)τe−|q|2Λ2H(γcτ). (11)

The absorption line ImχI is shown in Fig. 5: At the
Doppler limit H(x) ≈ x2/2 (solid blue), it is a Gaus-
sian exp(−∆2

p/Γ2
Doppler/2); At the Dicke limit H(x) ≈ x

(green), it is a Lorentzian [Γ+ΓDicke]/[∆2+(Γ+ΓDicke)
2];

and in between (red), it is neither.
A more elaborate but analogous derivation was per-

formed by Firstenberg et al. (2007) for the Raman de-
phasing 〈eiΦII〉, resulting in a closed integral form for
χII. The Doppler-Dicke transition of the Raman reso-
nance was thereby formally obtained for the first time,

for the predominant case of a Doppler broadened optical
line and a nearly resonant coupling light:

χII(∆) =
ig

Γ2

∫ ∞

0

dτe(i∆−γ0)τe−k2Λ2H(γcτ). (12)

Remarkably, the transmission line (12) has the same form
as the absorption line (11), with the Raman parameters
(k, γ0) replacing the optical parameters (|q|,Γ).

2. Strong-collisions formalism

For the strong-collisions formalism, we shall use a
density-matrix distribution function in space and veloc-
ity ˜̺ss′ = ˜̺ss′(r,v, t), constructed from the sum over
(identical) individual atoms:

˜̺ss′ =
∑

i

ρiss′ (t) δ (r− ri (t)) δ (v − vi (t)) . (13)

This approach, first used by May (1999) in this context,
is general in that it allows atoms in different states to
travel or diffuse between the illuminated and the dark
areas, both in the real spatial space and in velocity
space, and thereby circumvents the approximation of an
open system (Nikonov et al., 1994). In a hot vapor, the
density-matrix distribution can be taken as classical in
the external-motion degrees of freedom, and evolves ac-
cording to

(∂t + v·∂r) ˜̺ss′ + (∂t ˜̺ss′)col . (14)

=
∑

i

(

∂tρ
i
ss′

)

δ (r− ri (t)) δ (v − vi (t)) ,

where (∂t ˜̺ss′)col . accounts for collisions. The right-hand
side of Eq. (14) describes the internal atomic dynamics,
which can be taken from Eqs. (9). Here however, to
set the stage for the description of polariton dynamics,
let us generalize Eqs. (9) and employ a structured (time-
dependent) probe and a structured (stationary) coupling:

Ω̃ = Ω (r, t) eiqr−iωt, Ω̃c = Ωc (r) eiqcr−iωct, (15)

where Ω (r, t) and Ωc (r) are slowly-varying envelopes of
the Rabi-frequencies. Correspondingly, we define the
slowly-varying atomic densities ̺31 = ˜̺31e

iωt−iqr and
̺21 = ˜̺21e

i(ω−ωc)t−i(q−qc)·r.
We shall now consider the strong-collisions limit. In

this limit, a single collision is enough to completely
randomize the atomic velocity. Here we assume that
the post-collision velocity is drawn from the equilibrium
distribution F (v) , regardless of the pre-collision veloc-
ity; the generalization to velocity-dependent kernels can
be performed along the same lines (Ghosh et al., 2009;
Shapiro et al., 2001). These assumptions pertain to a
Kubo-Anderson process, which in principle could be im-
plemented in the individual-atom formalism used above
for the weak-collisions limit (Brissaud and Frisch, 1974;
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Sagi et al., 2010). In practice however, calculating the
four-time dephasing of the Raman resonance [ΦII in Eq.
(10b)] under the Kubo-Anderson assumptions is pro-
hibitive. We thus resort to a more direct approach and
invoke a Boltzmann collision term with a single relax-
ation rate γc (Nelkin and Ghatak, 1964):

(∂t ˜̺ss′)col . = −γc [̺ss′(r,v, t) − ρss′(r, t)F (v)] , (16)

where the spatial density-matrix is

ρss′(r, t) =

∫

d3v̺ss′(r,v, t). (17)

The physical meaning of ρss′(r, t) is readily understood
by identifying its diagonal elements ρss(r, t) as the spa-
tial density of atoms at state |s〉 , and its off-diagonal ele-
ments as the polarization density P (r, t), e.g., ρ31 (r, t) =
εP31 (r, t) /µ∗

31. Note that Eq. (16) does not consider
pressure broadening, which we later introduce via the
atomic decay rates (Corey and McCourt, 1984).

Finally, identifying ρeq.11 ⇒ n0F (v) in Eq. (9) and sub-
stituting the definitions (15)-(17) in Eq. (14), we obtain
the equations of motion for the densities:

[∂t + v·∂r − iδp (v)] ̺31(r,v, t) − iΩc(r)̺21(r,v, t)

= γcρ31(r, t)F (v) + iΩ(r, t)n0F (v) , (18a)

[∂t + v·∂r − iδ (v)] ̺21(r,v, t) − iΩ∗
c(r)̺31(r,v, t)

= γcρ21(r, t)F (v) , (18b)

where δp (v) = ∆p − q · v + i (Γ + γc) and δ (v) =
∆−(q− qc) ·v+ i (γ0 + γc) are the Doppler-shifted com-
plex detunings. These equations, together with a wave
equation for the probe field, form the basis for the diffu-
sion of polaritons presented in the next section.

To derive the Doppler-Dicke profiles at this stage, we
restrict Eq. (18) to stationary plane waves,

iδ1(v)̺31(v) + iΩc̺21(v) = − (γcρ31 + iΩn0)F (v),
(19a)

iδ(v)̺21(v) + iΩ∗
c̺31(v) = −γcρ21F (v). (19b)

From Eqs. (19), Firstenberg et al. (2008) derived an ex-
act integral form for the susceptibility3 χ = (g/n0)ρ31/Ω
and exemplified numerically the Doppler-Dicke transition
of the dark resonance. The transition is similar to but
not exactly as that found in the weak-collisions limit. For

3 The steady state dipoles ρ31 and ρ21 are derived by formally solv-
ing Eqs. (19) for ̺31 (v) and ̺21(v), and integrating over veloci-
ties. The resulting susceptibility is χ = igγ−1

c [(1− iγcGδp )/G−

1], where G = (1 − iγcGδp )(1 − iγcGδ) + γ2
cG

2
|Ωc|

and GX =
∫
d3vX(v)F (v) /[δp(v)δ(v) − |Ωc|2]. Here, X stands for either

δp(v), δ(v), or |Ωc|. Generally, a calculation of the GX ’s inte-
grals is required to obtain the concurrent motional-broadening
of the optical and dark resonances.

the sake of elucidation, we may (as before) examine the
one-photon spectrum by substituting Ωc = 0,

χI = g
GI (∆p)

iγcGI (∆p) − 1
, (20)

where GI (∆p) is the widely used Voigt profile:

GI (∆p) =
1√

2πvT

∫

du
e−u2/(2v2

T )

∆p − |q|u + i (Γ + γc)
. (21)

The spectrum in the form of Eq. (20) exhibits the
Doppler-Dicke transition; see discussion by May (1999)
and references therein. A comparison in Fig. 5 to the
weak-collisions spectra reveals a maximal deviation of
10 − 20 percent at the Doppler-Dicke crossover.

C. The Raman resonance at the diffusion limit

We conclude this section by discussing the Raman line-
shape at the Dicke limit, for nearly degenerate, nearly
collinear beams, such that k = |q− qc| ≪ |q| . In the
vicinity of the Raman line (∆p ≈ ∆c), a closed set of
equations was obtained by Firstenberg et al. (2008)4 for
the optical dipoles ρ31 (r, t):

ρ31(r, t) =
i

Γ′
[Ω(r, t)n0 + Ωc(r)ρ21(r, t)] , (22)

and for the ground-state dipoles ρ21 (r, t):

[

∂t − i∆ + γ0 + γP (r) −D(∇ + ik)2
]

ρ21(r, t) = S(r, t).
(23)

The ground-state dipoles obey a diffusion-like equation
with the coefficient D = v2T /γc (∇ ≡∂r is the gradi-
ent). Here, S(r, t) = −n0Ω∗

c(r)Ω(r, t)/Γ′ is a source
term — the effective two-photon drive of the Raman res-
onance. γP (r) = |Ωc(r)|2/Γ′ is a spatially varying power-
broadening rate. Γ′ = Γ′(∆p) ≡ ig/χI is the one-photon
(Voigt) spectrum from Eq. (20) (Γ′ = Γ+i∆p for station-
ary atoms). Notably, atomic motion affects the Raman
resonance both directly, due to dephasing of the Raman
line, and indirectly via the power broadening.

It is important to realize that the diffusion term D∇2

in Eq. (23) corresponds to the actual diffusion of the
active atoms in the buffered cell. In fact, the descrip-
tion of spatial diffusion of the internal states of atoms
and molecules in the form of Eq. (23) dates back to
the seminal work by Torrey (1956) and has been the

4 Briefly, Eq. (22) is obtained by integrating Eq. (18a) and solv-
ing for ρ31, assuming it does not depend on the non-equilibrium
velocity-distribution of ρ21. Taking γc as the dominant rate in
the ground-state dynamics, Eq. (18b) is integrated over veloc-
ity to obtain a continuity equation and a diffusive-flux equation
(Fick’s first law) in terms of the current densities Jss′ (r, t) =∫
d3vv̺ss′ (r,v, t). Finally, the condition k ≪ |q| yields Eq. (23).
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common practice for optical-pumping experiments in
buffered cells (Bicchi et al., 1980; Happer, 1972). Ac-
cordingly, the term Dk2 (for non-structured stationary
beams ∂t = ∇ = 0) accounts for the diffusion of atoms
across the fields’ interference pattern. The linear suscep-
tibility is then easily obtained from Eqs. (22) and (23):

χ =
g

n0

ρ31
Ω

=
ig

Γ′

(

1 − γP
γ + Dk2 − i∆

)

. (24)

The two terms in the brackets correspond to the optical
resonance and to the dark resonance. The latter is given
as a complex Lorentzian, and its width is the sum of
the linewidth for stationary atoms γ ≡ γ0 + γP and the
motional broadening Dk2 (Fig. 4).

III. POLARITONS DYNAMICS IN DIFFUSIVE MEDIA

We have so far discussed the response of the atomic
medium to a given arrangement of light beams from
a spectroscopic viewpoint, but have not considered the
spatial consequences of atomic motion. As these were
taken into account in the dynamic description of the
density-matrix distributions, we may now directly ap-
ply the results of the previous section to the evolu-
tion of the structured light fields in space and time.
The non-local response arising from the atomic motion
and reflected in the dependence of the linear suscepti-
bility on the wavevector has been demonstrated in re-
cent years through various processes and, in particu-
lar, with slow light. In principle, it is the effective de-
lay of the light in the form of a light-matter polariton
(Fleischhauer and Lukin, 2000), becoming comparable to
the atomic motion through the beams, that renders these
effects pronounced. That said, the description of the phe-
nomena reviewed in this section is not always an obvious
spatial consequence of atomic motion, and it is sometimes
necessary to return to and employ the spectral picture of
a manifold of Doppler-Dicke spectra.

Slow light structured in the plane normal to the prop-
agation direction, denoted as slow images, exhibits re-
markable properties. A notable example is the delay and
preservation of spatial quantum coherence and entangle-
ment, demonstrated by Marino et al. (2009). The ’im-
age’ may be complex, having both amplitude and phase
patterns, conforming to the amplitude and phase of the
polariton’s dark state. A typical setup for a slow-image
experiment is shown in Fig. 6: while the coupling beam
is large and uniform, the probe is patterned, imaged onto
the cell, and eventually recorded. If the probe is also tem-
porally modulated into a pulse, the pulse, and thus the
whole image, is delayed in the medium.

The reduced group velocity of the probe fol-
lows directly from the linear susceptibility, v−1

g =
[d(Reχ)/d∆]∆=0 for vg ≪ c. At the diffusion limit,
for nearly resonant light (∆c ≈ ∆p ≈ 0, for which
the damping rates Γ′ and γP are real), Eq. (24)

FIG. 6 (Color online) Structured slow light. The probe beam
is patterned by using a transmission mask, a grating, or a
spatial light-modulator and imaged onto the cell. An iris may
be used to filter high-frequencies and limit the angular span.
After the cell, the probe is imaged onto a camera. Top photos:
Diffusion of (left) a line pattern with 1.5 lines-pair/mm after
(right) 6 µm delay. Taken in the setup of Shuker et al. (2008).

gives vg = (γ + Dk2)2/(αγP ). Here, 2α = 2g/Γ′ is
the absorption coefficient with no coupling field. As
also shown by Kash et al. (1999) for the bufferless case
(Doppler-broadened dark resonance), the group velocity
is k−dependent and only reverts to the known expression
vg = γ2/(αγP ) for small enough k. For typical values in
hot vapor γ ≈ γP ≈ 101 − 106 Hz and α ≈ 1/cm, vg is
on the order of m/s to km/s (Budker et al., 1999). The
group delay in a medium of length L ≈ 1− 10 cm is then
τd = L/vg ≈ 1 − 105 µs, easily comparable to the time
at which atoms can travel through the beam, or through
the 0.1 − 10 mm features of an image, in both buffered
and bufferless cells. In contrast, slow images with 0.1-
mm feature size delayed for only 10 ns using optical (not
Raman) resonances by Camacho et al. (2007), showed no
significant motional effects.

A. Transverse spreading of light

The reflection of atomic motion in the spatial vari-
ation of slow light was preceded by extensive research
on general spatial consequences of EIT and similar Ra-
man processes. The emphasis, in the first experi-
ments by Kasapi et al. (1995), Moseley et al. (1995), and
Jain et al. (1995), and in following years, was given to the
implications of finite and inhomogenous strong beams,
inducing inhomogenous absorption and refraction, and
to the related effects of self-focusing and waveguiding. A
direct observation of slow-light spreading due to atomic
motion was reported by Pugatch et al. (2007), using a
probe beam with a darkened (blocked) center. Images of
the beam taken on and off resonance showed that the 50
µs slowing delay was enough for the atomic diffusion in
the buffered cell to ’fill’ the 0.5-mm-diameter dark center
almost completely. In effect, the ground-state dipoles dif-
fusing to the center stimulate the conversion of coupling
light into probe light. The phase pattern of the dipoles
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FIG. 7 Phase coherence between the two ’output channels’ of
a slow-light beam-splitter by Xiao et al. (2008a). The atoms
moving in the bufferless wall-coated cell mediate the coher-
ence between the two channels. The measured transfer effi-
ciency (< 5%) is a function of the slowing delay (0.5 ms), the
decoherence due to wall collisions, and the beams/cell geom-
etry. Optimization of these factors promises efficiencies close
to unity. Adapted from Xiao et al. (2008a).

ensemble, originating from the incoming probe and cou-
pling fields, acts as a directional source for this stimulated
emission. In the alternative picture of polariton propa-
gation, the filling of the center is interpreted as diffusion
of the polaritons due to their atomic constituent.

A direct phase measurement of spreading light was re-
ported by Xiao et al. (2008a). Here the ballistic atomic
motion in a bufferless, wall-coated cell is used to coher-
ently transfer light between adjacent optical modes, as
shown in Fig. 7. Atomic coherence is created along the
input channel and is maintained as the atoms spread in
the cell and collide with the walls. While longitudinal
spreading has no significance for the degenerate arrange-
ment used (q = qc), the transverse spreading stimulates
the coherent excitation of a propagating pulse in the sec-
ond channel.

To understand the spreading of light within the
Doppler-Dicke context, we return to Eq. (24) with nearly
resonant beams (∆p ≈ ∆c ≈ 0), for which the absorption
spectrum of the probe is given by

Imχ = α

[

1 − γP (γ + Dk2)

(γ + Dk2)2 + ∆2

]

. (25)

The relative height at the center of the dark-resonance
(∆ = 0) depends on the Raman wavenumber k in the
form of a Lorentzian γP /(γ + Dk2) of width k0 =
(γ/D)1/2, as confirmed by Bolkart et al. (2005) and
Shuker et al. (2007) with a small deviation angle θ ≈
k/|q| between the coupling and probe beams (Fig. 8).
The dependency of the transmission on θ is manifested
in experiments with non-uniform, structured, light fields,
due to the angular span of beam. In the decomposition
of the field into a manifold of superimposed plane waves,
high-order transverse modes and finely-patterned beams
require a large angular span, which implies large Raman
wavenumbers (top sketch in Fig. 6). When these are at-

FIG. 8 (Color online) Resonant transmission versus the an-
gular deviation θ between the Raman beams. (a) Imaging ex-
periment, measuring the resonant transmission of a diverging
probe beam with a large (plane-wave) coupling beam. Pic-
tures are taken beyond the cell by impinging the beams di-
rectly onto a CCD detector, (top) with and (bottom) without
the atoms. Stronger absorption is observed away from the
center, where, in the optical ray approximation, θ is larger.
Maximal θ is ∼ 2 mrad at the beam radius. (b) A reference
with a non-diverging probe. (c) Scaled transmission (�) from
the aforementioned imaging experiment and (©) from spec-
troscopy (Fig. 4). The theoretical curve is calculated from
Eq. (25). Adapted from Shuker et al. (2007).

tenuated due to motional broadening, the fine structure
of the beam deteriorates. A maximum acceptance angle
θ = k0/|q| thus sets a minimum ’pixel’ size of 2π/k0 that
can be efficiently transmitted, whereas smaller features
are bound to spread. So atomic motion, via motional
broadening, results in the spreading of the light field.

B. Diffusion and motional-induced diffraction

At certain conditions, motional broadening results in
an exact diffusion of the slow polaritons, as well as in
a diffraction-like evolution. To this end, we employ the
following arrangement: a plane-wave coupling field along
the z−axis; a paraxial, nearly parallel, probe q ‖ qc with
a finite envelope in the transverse plane (x, y); and a
nearly degenerate Raman scheme |qc| ≈ |q| ≡ q so that
the Raman wavevectors resulting from the probe’s struc-
ture have a negligible z−component (hyperfine splitting
with λR on the order of centimeters is still permitted).
Note that the choice q = qc still allows for a small angu-
lar deviation between the beams via a phase term eiθqx

in the probe’s envelope. In the paraxial approximation,
the probe field obeys

(

∂t
c

+ ∂z − i
∇2

⊥

2q

)

Ω (r, t) = i
g

n0
ρ31 (r, t) , (26)

where ∇2
⊥ = ∂2

x + ∂2
y is the transverse Laplacian. Eqs.

(22), (23), and (26) compose the full set of equations of
motion for the slowly varying envelopes.

The group velocity vg obtained on page 8 is applica-
ble for pulses long enough such that their bandwidth (in
the temporal frequency domain) is within the linear dis-
persion regime. If the pulses vary more slowly than any
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other rate in the system, the time dependence can be
treated parametrically, based on a quasi-steady-state as-
sumption. The steady-state assumption can easily be
lifted within the linear response approximation, which
is valid as long as the coupling field is stationary and
uniform. Keeping in mind that the traveling pulses are
essentially delayed, it will still be meaningful in quasi-
steady-state to translate distance to time via vg.

The changes of the probe along z are due to its finite
extent (in a pulsed experiment) and due to absorption
and refraction in the medium; both are assumed to vary
much more slowly than the envelope in the transverse
plane, making the diffusion negligible in the z−direction.
The relevant Raman wavevectors are thus identical with
the transverse spatial frequencies. Taking the Fourier
transform (x, y) → (kx, ky) = k⊥ of Eqs. (22), (23), and
(26) while maintaining the explicit z dependence, one
recovers the linear susceptibility χ (k⊥) = iα[1−γP /(γ+
Dk2⊥ − i∆)] and the steady-state evolution along z:

∂zΩ(k⊥; z) =

[

iχ (k⊥) − i
k2⊥
2q

]

Ω(k⊥; z). (27)

Clearly, the geometric effect of free-space diffraction
ik2⊥/(2q) influences slow images precisely as in free
space. For a confined k⊥−spectrum, the susceptibil-
ity can be expanded in orders of k2⊥ as χ (k⊥) = χ0 +
[χ (k⊥)]motional , where χ0 = iα[1 − γP /(γ − i∆)] is the
susceptibility for an atom at rest, and

ivg [χ (k⊥)]motional =
−γ2

(γ − i∆)
2Dk2⊥ + O(k4⊥), (28)

with vg = γ2/(αγP ). The k4⊥ term is negligible when the
probe’s spectrum is initially confined within k⊥ ≪ k0 =
(γ/D)1/2. The requirement k⊥ ≪ k0 is usually stricter
than the optical paraxial condition (for example, the typ-
ical values D = 10 cm2/s and γ = 10 kHz give k0 on the
order of 0.01 µm−1). Returning to (x, y) space,

∂zΩ =

[

iχ0 +

(D
vg

+
i

2q

)

∇2
⊥ + O(∇4

⊥)

]

Ω, (29)

we find an effective complex diffusion coefficient:

D = D
1 − (∆/γ)2

[1 + (∆/γ)2]
2 + iD

2(∆/γ)

[1 + (∆/γ)2]
2 . (30)

The real part of D corresponds to an actual diffusion of
the polariton. The imaginary part causes quadratic dis-
persion within the k⊥ spectrum, with a functional form
identical to that of the optical paraxial diffraction, and is
thus referred to as motional-induced diffraction (MID).

On resonance ∆ = 0, the polariton diffusion matches
precisely the atomic diffusion D = D. Besides an
overall absorption and phase-shift originating from iχ0,
the evolution of the polariton is a linear sum of op-
tical diffraction with respect to the distance travelled
(∂zΩ)diffraction = i∇2

⊥Ω/(2q) (due to the polaritons’s

FIG. 9 Polariton diffusion and motional-induced diffraction.
A Zeeman EIT setup is used, similar to that in Fig. 6, with
a cell length L = 5 cm and optical depth 2αL = 6. The free-
space diffraction (bottom left) is compared to transmitted
slow images at several Raman detunings (right). At ∆ = 0,
the polariton is delayed by ∼ 6 µs and experiences the combi-
nation of optical diffraction and diffusion (D = 11 cm2/s for
10 Torr of neon). At ∆ < 0, both diffusion and diffraction
are reduced, and at ∆ = −γ ≈ −70 kHz, they are completely
suppressed (Dq = vg ∼= 8700 m/s). Numerical calculations
confirm that the small difference between the input image and
the transmitted image at ∆ = −γ is primarily due to residual
∇4 terms. At ∆ = +γ, no diffusion occurs, but the polariton
experiences the sum of equal optical and motional-induced
diffraction, as if the image has propagated a free-space dis-
tance of 2L. Adapted from Firstenberg et al. (2009a).

light constituent) and atomic diffusion with respect to
time (∂tΩ)diffusion = D∇2

⊥Ω (due to its matter con-
stituent). For the latter, we translated vg∂z → ∂t. The
relative weight of diffraction and diffusion is thus con-
trolled by the group velocity. Off the Raman resonance
∆ 6= 0, the polariton diffusion slows down. The real part
of D decreases with increasing |∆|, until vanishing com-
pletely at ∆ = ±γ. At this detuning, the polariton does
not experience any standard diffusion, while the remain-
ing O(∇4

⊥) term gives rise to sub-diffusion evolution.
Moreover, at ∆ 6= 0 the MID becomes nonzero and

adds up to the optical diffraction. The detuning deter-
mines the sign of the MID, with Im(D) > 0 at positive
detuning adding to the optical diffraction, and Im(D) < 0
at negative detuning negating it. While the maximum
MID is obtained at ∆ = ±3−1/2γ, the more interesting
case is ∆ = ±γ, in which D = ±iD/2 is purely imaginary,
inducing diffraction without diffusion. Here the ratio be-
tween ±D/vg and 1/q determines the balance between
the optical and induced diffraction, and, for given D and
q, it is governed by the group velocity.

Firstenberg et al. (2009b) proposed utilizing MID to
completely eliminate the paraxial diffraction in the
medium, by choosing ∆ = −γ and vg = qD. At these
conditions, both the imaginary and the real parts of the
∇2

⊥ coefficient vanish in Eq. (29), rendering a diffraction-
less, diffusion-less, medium. Conversely, at ∆ = +γ the
actual diffraction in the medium is twice that in free-
space. The non-diffraction condition vg = qD can in-
tuitively be derived by requiring the diffusion spreading
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FIG. 10 (color online) Collective rotation of a vortex array
due to induced diffraction by Shwa et al. (2012). Hyperfine
EIT with 87Rb is performed in a cell of length L = 7.5 cm with
20 Torr neon (D = 6 cm2/s, vg = 5000 m/s). An array of four
m = +1 vortices (total angular momentum J = 4) rotates
clockwise at ∆ = 0 (panel b), the same as it does in free-
space. At (a) ∆ < 0, the optical diffraction is counteracted,
leading to a counterclockwise rotation with respect to ∆ = 0.
At (c) ∆ > 0, diffraction is enhanced, leading to increased
clockwise rotation. Images are 1 mm × 1 mm. (d) Rotation
angle for a two-vortex array with (red ©) J = 2, (blue �)
J = −2, and (green ⋄) J = 1 − 1 = 0. All-optical control on
the vortices motion could be useful for fast optical-trapping
applications. Adapted from Shwa et al. (2012).

of a focused Gaussian beam to be equal to its diffraction
spreading after one Rayleigh distance zR = qw2

0/2, where
w0 is the beam waist-radius. Since the beam does not ex-
pand, it is virtually trapped in two dimensions by the dif-
fusing atoms, in an interesting analogy to the mechanism
of Doppler cooling of atoms by red-detuned light. The
latter also relates to a proposal by Kocharovskaya et al.

(2001) to stop light propagation using one-photon detun-
ing in a bufferless cell.

These effects were studied by Firstenberg et al.

(2009a) at the condition vg = qD and are all demon-
strated in Fig. 9: The image exhibits optical diffrac-
tion (far detuned), diffusion (∆ = 0), non-diffraction
(∆ = −γ), and double diffraction (∆ = +γ). Shwa et al.

(2012) examined the MID of an array of optical vortices,
as shown in Fig. 10.

As we mentioned earlier, extensive study was devoted
to the manipulation of diffraction by modulating the
susceptibility in real space, with either the coupling
beam, the probe beam, or the medium itself inducing
the necessary inhomogeneity of the refraction index5. In
all these schemes, specific transverse modes are main-
tained, but a general multi-mode field disperses and

5 Electromagnetically-induced focusing by an inhomogenous cou-
pling field was realized by Moseley et al. (1995) in hot vapor
and by Mitsunaga et al. (2000) in a cold ensemble. Schemes
in which certain transverse modes evolve without diffracting
due to the non-uniformity of the coupling field were referred
to as induced solitons (Bortman-Arbiv et al., 1998), induced
waveguides (Kapoor and Agarwal, 2000; Truscott et al., 1999),
and transverse confinement (Andre et al., 2005; Cheng et al.,
2005). Waveguiding was also demonstrated using the inho-
mogenous density in a cold atomic cloud (Tarhan et al., 2007;
Vengalattore and Prentiss, 2005). Lastly, it was proposed that
self-focusing via a Kerr-like effect will support spatial solitons
(Friedler et al., 2005; Hong, 2003).

FIG. 11 Probe deflection. (a) Non-diffraction can be under-
stood as the deflection of all rays into a common direction.
The rays maintain their phase relations while traversing the
medium and afterwards deflect back into their original di-
rection. (b) Generally, the probe beam deflects towards the
direction of the coupling beam for ∆ < 0 and away from the
coupling for ∆ > 0. At ∆ = ±γ, a Snell-like law determines
the ratio between θr and θc. (c) In the non-diffraction condi-
tions, the probe beam assumes the direction of the coupling
beam for small enough angles (◦ are measurement, line are
theory). Adapted from Firstenberg et al. (2009a).

may perhaps regenerate after a certain self-imaging dis-
tance (Cheng and Han, 2007). In contrast, diffraction-
manipulation with linear optics in k⊥−space, in the form
of Eq. (29), applies to multi-mode fields with arbitrary
phase and intensity patterns. Since no actual waveguide
is defined, the medium suspends the expansion of an in-
coming beam wherever it impinges on the input plane.

It is instructional to define an index of diffraction

ndiff = (1 − qD/vg)−1, equivalent to the index of re-
fraction as far as paraxial diffraction is concerned. With-
out atomic motion (D = 0), diffraction is not altered
(ndiff = 1). At the non-diffraction conditions, the index
diverges (ndiff → ∞). Snell’s law, sin θi = ndiff sin θr,
then implies no angular divergence inside the medium
θr = 0 regardless of the incident angle θi and hence no
diffraction, as illustrated in Fig. 11a.

Now, consider the possibility of reducing vg below qD,
still with ∆ = −γ, so that the (negative) MID be further
strengthened. Then, both the overall diffraction of the
polariton and the index of diffraction become negative.
The medium undoes a paraxial diffraction that already
took place, manifesting a negative-index lens in the spirit
of Vaselago (1968) and Pendry (2000). Remarkably, the
imaging conditions of such a lens are insensitive to its
position between the object and the image, as shown for
ndiff = −1 in Fig. 12.

An important caveat when working at large Raman
detunings is the reduced transmission; even for high cou-
pling intensities (γ = γP ), the absorption at ∆ = ±γ
cannot be rendered lower than Imχ0 ≈ α/2. This trans-
lates to a low transmission, of about exp (−5) , at the
Rayleigh distance of a beam with w0 = π/k0, which is
the minimal pixel size allowed under the k⊥ ≪ k0 condi-
tion. The experiments by Firstenberg et al. (2009b) took
place under these conditions.
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FIG. 12 (color online) Manifestation of a negative-diffraction
lens with ndiff = −1. The optical diffraction is exactly re-
versed by setting vg = Dq/2, so that an image diffracting
along a distance L before the cell is re-imaged at the end
of the cell. The positive and negative diffraction ’commute’,
e.g., it makes no difference if the positive diffraction occurs
partly before and partly after the cell, as exemplified by the
two right images. The restriction k⊥ ≪ k0 was not fulfilled
in this experiment, hence the imperfections in the imaging.
Solid arrows indicate geometrical rays (not q vectors) refract-
ing oppositely to the incident angle θr = −θi, according to
Snell’s law sin θi = ndiff sin θr, as expected in a negative-index
material. Adapted from Firstenberg et al. (2009a).

C. Induced drift and artificial vector-potential

The attentive reader may have already realized that,
while ndiff alters the refraction at the entrance and the
exit of the medium, it is the direction of the coupling
beam that determines the virtual plane of incidence for
this refraction. In fact, since the real index of refraction
in dilute vapor is only marginally different than unity
(n = 1 ± 10−6), the actual entrance plane of the cell has
no optical significance. It is thus the virtual plane per-
pendicular to the coupling-beam direction which defines
the incident and refraction angles for the modified Snell’s
law sin(θi−θc) = ndiff sin(θr−θc), where θc = 0 for an ax-
ial coupling beam. Therefore, tilting the coupling beam
results in an angular deflection of the probe beam in the
cell. For a straight-on incidence (θi = 0), the modified
Snell’s law yields θr = θc(1−n−1

diff) (see Fig. 11b). In par-
ticular, at the non-diffraction conditions (ndiff → ∞), the
probe deflects exactly onto the direction of the coupling
beam (θr = θc), as shown in Fig. 11c.

Mathematically, tilting the coupling beam superim-
poses a transverse phase grating exp(ixqθc) on the Ra-
man interference pattern, replacing Dk2⊥ in Eq. (28) by
D(k⊥ − qθcx̂)2. For angles small enough (qθc ≪ k0),
the resulting term in Eq. (29), 2(D/vg)∇⊥ · x̂qθc, in-
duces a directional deflection on the probe at an angle
θr = ∓(qD/vg)θc = ∓(1 − n−1

diff)θc, in accordance with
the modified Snell’s law. It is worthwhile emphasizing
that the deflection effect does not involve an actual re-
fraction of the optical wavevector (q). Similarly to the
walk-off phenomenon in birefringent crystals, the wave
fronts (equal phase planes) maintain their original orien-
tation. Hence, the deflection is unobservable for plane
waves and has meaning only for finite beams. In anal-
ogy to a group velocity, which can be modified either via

n or via the dispersion dn/dω, the deflection here is a
(spatial) group effect, in which the transverse dispersion
∼ dn/dk⊥ changes the propagation trajectory.

In the popular analogy between paraxial light propaga-
tion and the Schrödinger dynamics of a massive particle
in two-dimensions, the wavevector plays the role of the
mass. When the MID at ∆ = ±γ dominates the optical
diffraction, and one translates z → vgt in Eq. (29), the
effective mass is m = ±~/D. A phase gradient imposed
by the coupling fields thus translates to a vector potential
(VP) for a charged particle:

i~∂tΩ(x, y) =
1

2m
(i~∇⊥ + eA)2Ω(x, y), (31)

where A = i~∇⊥ ln Ω∗
c(r) and e = 1.

As reviewed by Dalibard et al. (2011), artificial VP
created by the optical dressing of neutral atoms is a ma-
jor field of study. Here however, the polaritons, and not
the atoms themselves, experience the artificial VP. As
a result, the coupling beam can be used to mimic the
operation of electromagnetic fields on the polariton. In
particular, a tilted coupling beam Ωc(r) = Ωc exp(ixqθc)
produces a uniform VP A =~qθc, explaining the deflec-
tion effect via a momentary electric ’kick’ at the entrance
of the cell Ein = −∂tA = δ(t − tin)~qθcx̂, after which
the probe propagates in a straight trajectory. A sec-
ond kick at the exist face deflects the probe back to its
original direction. Alternatively, a vortex coupling beam
with a helical phase exp(imφ) (φ the azimuthal angle)
inflicts a kick in the azimuthal direction. The underly-
ing VP A =~m∇⊥φ implies an artificial magnetic field
B = ∂xAy−∂yAx = 2πδ(x)δ(y)~m along the dark vortex
core, whereas the probe can only propagate at the bright-
ened areas around the core. Altogether, a probe in the
form of a ring of lobes is predicted to rotate while prop-
agating in the medium and cease rotating upon exiting
(Yankelev, 2012).

IV. COHERENT DIFFUSION OF STORED LIGHT

Diffusion and diffraction of dark-state polaritons, dis-
cussed in the previous section, arise from the interplay
between the atomic motion and the propagating excita-
tion. Perhaps more elementary is the effect of the atomic
motion on the atomic coherence in the absence of the
light, as occurs during light storage. In light storage,
the polariton is transformed into a matter-only excita-
tion which does not propagate. The ground-state atomic
coherence stores the light amplitude in the form of a spa-
tial spin-wave, later to be mapped back to a propagating
polariton. Storage of light is accomplished with EIT by
switching-off the coupling beam — and switching it back
on for retrieval (Liu et al., 2001; Phillips et al., 2001),
see Figure 13 (left). Storage and retrieval can also be
performed with a longitudinal gradient of the frequency
detunings. This method, known as gradient-echo mem-
ory (GEM), was recently implemented with ground-state
coherence in a Λ−system (Hétet et al., 2008).
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FIG. 13 (color online) Diffusion during storage-of-light in va-
por. Left: The first half of the probe pulse is allowed to leak
before storage. The second half is stored by turning off the
coupling beam for a duration τ , after which the probe revives.
The traces show the probe for τ = 5, 15 and 25 µs, and the
coupling for τ = 25 µs. Right: The spatial effect of diffusion
is observed by comparing the images of the input probe (top
row) and the retrieved probe (bottom row). Storage durations
are τ = 2, 6, and 9 µs. Adapted from Shuker et al. (2008).

When light storage is performed with a single quan-
tum, ideally by storing a single photon, it realizes a quan-
tum memory — a fundamental building block for quan-
tum communication and computation (Duan et al., 2001;
Hammerer et al., 2010). In atomic ensembles, the single
quantum is stored in the collective state of all atoms. Un-
conditional storage of light on the level of single-photons
was recently achieved by Hosseini et al. (2011a) using
GEM in a hot buffered cell. However, most of the experi-
ments so far have used spontaneous Raman scattering to
generate the spin wave, conditioned on the detection of a
scattered photon (Bashkansky et al., 2012; Chou et al.,
2004; Eisaman et al., 2005; Matsukevich et al., 2006;
Zhao et al., 2008c). Diffusion of the atoms before the
spin wave is converted back to light poses the same is-
sues as in unconditional storage, as we describe in this
section.

A. Diffusion of a stored coherence field

When storage is performed, the three-dimensional spa-
tial envelope of the probe Ω(r) is linearly mapped onto
the ground-state coherence6 ρ12(r, τ = 0). The dynamics
during the storage time τ is governed by

∂τρ12(r, τ) = D(∇ + ik)2ρ12(r, τ) − γ0ρ12(r, τ), (32)

which derives from Eq. (23) in the absence of
light. Even for a uniform envelope and negligi-
ble damping (∇ → 0, γ0 → 0), the diffusion of
atoms through the Raman wave results in a dephas-
ing of rate Dk2. Fleischhauer and Lukin (2002) and

6 Alternatively, in spontaneous storage, the superposition of the
coupling beam and a spontaneously generated photon heralding
the storage is saved on the coherence field ρ12(r, τ = 0).

Mewes and Fleischhauer (2005) show that the decoher-
ence of the quantum memory (in terms of the fidelity of
the stored state) is proportional to this dephasing.

In a recent experiment, Zhao et al. (2008a) showed
that the memory time in a cold atomic gas reduces with
the angle between the Raman beams and is determined
by the time it takes the atoms to (ballistically) move one
Raman wavelength (τd ∝ k−1 ∝ θ−1). Indeed, memory
times as long as milliseconds were achieved by Zhao et al.

(2008a) and by Zhang et al. (2009) using collinear beams
(k ≈ 0), and by Zhao et al. (2008c) with an optical trap
that confines the atomic motion in the direction of k.
Furthermore, Schnorrberger et al. (2009) demonstrated
light storage with ultra-cold atoms trapped in a three-
dimensional optical lattice (a Mott insulator). The con-
finement of atomic motion to a site much smaller than
the optical wavelength allowed Schnorrberger et al. to
imprint phase gradients of wavenumbers k= θq, with θ
as large as 25 mrad, while maintaining the memory for
more than 0.1 ms. All this of course does not apply to a
BEC where, due to its long-range coherence, stored light
was retrieved even after the atoms moved numerous λR

(Ginsberg et al., 2007).

Nevertheless, even when k ≈ 0, atomic motion plays
an important role in the storage of finite-size and struc-
tured fields. Diffusion of the atomic coherence7 ∂τρ12 =
D∇2ρ12 can be observed directly by comparing the in-
put image to the retrieved image at different storage du-
rations. This is especially true when the propagation
time before and after storage is much shorter than the
storage duration itself, as is often the case. Figure 13
(right) presents measurements of diffusion with stored
images (Shuker et al., 2008). Diffusion is clearly observed
by the smearing of the digits’ image and is more pro-
nounced as the storage duration increases. The spread-
ing of stored information was used by Zibrov et al. (2002)
to perform storage and retrieval at two distant locations
in the cell. As a complementary concept, Novikova et al.

(2005b) demonstrated two retrievals from the same loca-
tion due to diffusion of coherence out and back into the
beam area.

Let us now take an ideal case with k = 0 and a coupling
beam that covers the whole medium. Naively it might
seem that the total power of the restored probe is not
altered by diffusion, as diffusion is a conserving process,
∫

ρ12 =const. However, it is the light-field amplitude Ω ∝
ρ12, rather than its intensity |Ω|2, that effectively dif-
fuses, and the total power P ∝

∫

|Ω|2 decays. For exam-
ple, a stored Gaussian beam that doubles its area due to
diffusion conveys a half of its initial power. This geomet-
ric effect was shown to limit the storage time of images
and of narrow beams in buffered cells (Glorieux et al.,

7 Note that the ground-state populations, ρ11(r) and ρ22(r), dif-
fuse in a similar manner, but, in the weak-probe regime, their
contribution to the storage is small.
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FIG. 14 (color online) Diffusion of coherence fields with uni-
form and nonuniform phase patterns. A flat-phased ring (top
left) is filled-up after a short storage duration, while a vortex
ring with a helical phase is preserved (top right). Similarly,
the blurring of a line pattern (bottom left) can be reduced by
flipping the phase between adjacent lines (bottom right). As
evident, the visibility of the lines with the alternating phase
remains much higher than the flat-phased image. The vortex
radius is 670 µm, the lines are 1.5/mm, and D = 10 cm2/s.
Adapted from Pugatch et al. (2007); Shuker et al. (2008).

2012; Hosseini et al., 2011b; Shuker et al., 2008).
In contrast to standard ’heat’ diffusion, stored ’im-

ages’ can be complex-valued, as the phase pattern of
the probe is exactly imprinted on the diffusing coher-
ence (Fleischhauer and Lukin, 2000). Patterned phase
leads to effects of constructive and destructive interfer-
ence during diffusion, similar to those occurring in light
propagation. For instance, consider the diffusion of the
annular ring shown in Fig. 14 (top). A flat-phased ring is
completely filled up after a short storage time, while the
dark center of a stored vortex (LG01 mode) is well main-
tained. The vortex core remains dark due to destructive
interference: the phase around the dark center completes
a 2π twist, and the contributions of all atoms diffusing in-
wards sum up to zero. Similar behavior is achieved by ap-
plying a well-designed phase pattern on specific images.
The blurring of three resolution lines in Fig. 14 (bottom)
is reduced by flipping the phase between adjacent lines.
The decay of the lines’ visibility due to diffusion is dra-
matically slowed down. The same principles are used in
optical phase-shift lithography to overcome the diffrac-
tion limit of small adjacent features. The downside of
using destructive interference is the faster decay of the
total retrieved power. The decay rate increases with the
complexity of the phase pattern, thereby decreasing the
fidelity of the retrieved states (Wang et al., 2008).

An alternative method utilizing the phase pattern for
the suppression of diffusion was analyzed by Zhao et al.

(2008b) and realized by Vudyasetu et al. (2008) (Fig.
15). Instead of the image itself, Zhao et al. suggested
storing the Fraunhofer diffraction pattern at the center
of a 4f telescope. Rather than filtering the high spa-
tial components (a convolution with a Gaussian), diffu-
sion merely attenuates the outermost parts of the original
image (Gaussian multiplication), thereby maintaining its
fine details. In contrast with the phase-shift method, no
a-priori information about the image is required.

FIG. 15 (color online) By storing the Fraunhofer diffraction
pattern (top right) instead of the image itself (top left) the
fine details of the image are better preserved under diffusion
(bottom). Rather, diffusion attenuates the outer parts of the
beam. Adapted from Vudyasetu et al. (2008).

B. Shape-preserving modes of coherent diffusion

In free-space optics, the paraxial-diffraction equation
∂zΩ = i∇2

⊥Ω/(2q) has several sets of shape-preserving
solutions. These are notably the polynomial-Gaussian
modes, including the well-known standard Hermite-
Gauss (sHG) or Laguerre-Gauss (sLG) modes. Their
transverse intensity pattern is maintained along the prop-
agation direction z and scaled according to the beam
radius wz = w0

√

1 + (z/zR)2, where zR = qw2
0/2 is

the Rayleigh distance. For example, the sHG mode
EsHG

n,m (x, y, z;w0) has the form

Hn

(√
2
x

wz

)

Hm

(√
2
y

wz

)

exp

(

−x2 + y2

w̃2
z

)

,

where w̃z =
√

2(zR − iz)/q is the complex radius and Hk

the Hermite polynomials. N = n + m is the total mode
order.

A less familiar solution for paraxial diffraction is the
set of elegant modes, first studied by Siegman (1986) for
their neater mathematical form. The elegant Hermite-
Gauss (eHG) mode EeHG

n,m (x, y, z;w0) has the form

Hn

(

x

w̃z

)

Hm

(

y

w̃z

)

exp

(

−x2 + y2

w̃2
z

)

.

Contrast this with the standard mode above, here the
polynomial and the Gaussian have a mutual (complex)

scaling, and the
√

2 in the polynomial argument is absent.
A corresponding elegant form for the circular-symmetric
LG modes also exists.

The elegant modes are not shape-preserving in free-
space optics and are thus rarely used. Remarkably, at
the focal plane (z = 0), they were found to be the basis
for the shape-preserving solutions of coherent diffusion in
two dimensions (Firstenberg et al., 2010). Substituting
EeHG

n,m ⇒ ρ12 in Eq. (32) with k = 0, one finds

Eretrieved
n,m (τ) = e−γ0τs (τ)

−(N+1)
EeHG

n,m (x, y, z = 0;wτ )
(33)
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FIG. 16 (color online) Diffusion of ’common’ modes during
storage. Left: Intensity patterns of (top to bottom) Gaus-
sian, LG01, LG02, and HG01, expanding due to diffusion while
preserving their shape. Top right: Normalized cross-sections
at different storage durations, τ =(©) 2, (�) 20 , (△) 40,
(⋄) 60 µs, rescaled horizontally by the stretching factor s(τ ).
Bottom right: Decay of the total power, increasing with the
total mode order N . Dashed line is e−2γτ , solid lines are
e−2γτ s(τ )−2(N+1). Adapted from Firstenberg et al. (2010).

where wτ = w0s (τ) is the expanding waist radius and
s (τ) = (1 + 4Dτ/w2

0)1/2 is the stretching factor. The
shape is therefore preserved, while expanding, through-

out the diffusion. The algebraic decay s (τ)
−2(N+1)

of
the total power P ∝

∫

|E|2, explicated previously for the
Gaussian (N = 0) case, becomes faster with increasing
mode order due to interference between atoms diffusing
through the oscillating phase patterns.

Note that the standard and elegant sets differ only in
their polynomial terms, and therefore low-order HG and
all vortices (LGp=0) are common to both sets and pre-
serve their shape under the simultaneous action of dif-
fusion and diffraction. They are thus the natural modes
for slow light — a result which is standard and elegant,
in both meanings of the words.

The diffusion of low-order (common) LG and HG
modes during light storage in EIT is presented in Fig. 16.
After scaling and normalization, the cross-sections at dif-
ferent storage durations of each of the modes collapse to
a single curve. Higginbottom et al. (2012) used GEM to
demonstrate the shape-preserving evolution of HG modes
and the associated algebraic decay. By probing an opti-
cally pumped medium, the diffusion of LG beams with
radial or azimuthal polarization (vector beams) was ob-
served by Fatemi (2011). Yankelev et al. (2012) exper-
imented with the high-order modes sHG22 and eHG22

(Fig. 17). As expected, the shape of the sHG22 mode is
preserved during diffraction while dramatically altering
during diffusion, and vice-versa for the eHG22.

Quite an interesting effect occurs when diffusion is per-

FIG. 17 (color online) Evolution of (top row) sHG22 and
(bottom row) eHG22, measured by Yankelev et al. (2012), for
(center column) diffraction in free space and (right column)
diffusion during storage of light. The standard mode is only
preserved during diffraction, whereas the elegant is only pre-
served during diffusion. Adapted from Yankelev et al. (2012).

FIG. 18 (color online) Shape-preserving contraction and sub-
sequent expansion of LG01 during storage. Due to destructive
interference, the diffusion of a diverging beam initially de-
creases the beam area w2

τ (line is the theoretical prediction).
Adapted from Firstenberg et al. (2010).

formed away from the focal plane of the beam. The ra-
dial phase-oscillations in the transverse plane, due to the
curved phase-fronts of the diverging beam, lead to de-
structive interference at the outskirts of the beam during
diffusion. The result is a shape-preserving contraction of
the beam, as shown in Fig. 18, in contrast to the obvious
consequence of diffusion. In effect, diffusion acts to (vir-
tually) expand the waist radius at the focal plane (z = 0),
even if this plane lies outside the medium, which leads
initially to contraction at |z| > zR (see sketch in Fig. 18).
This effect is directly related to the contraction of slow
light out of focus, presented in Fig. 8.

V. FINITE-SIZE BEAMS, RAMSEY NARROWING

Up until now, we have mainly considered a large and
uniform coupling beam, such that any inhomogeneity ex-
perienced by the atoms was set by the weak probe. In
fact, the atoms are constantly driven towards the dark
state by the perpetual coupling field, and those that are
slow enough can adiabatically follow the local dark-state
∝ Ω∗

c |1〉−Ω∗(r) |2〉 . However this situation is not preva-
lent, especially when the Raman fields (in a single or two
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FIG. 19 (color online) Ramsey narrowing. Left: Dark-
resonance spectrum for rubidium in 5 Torr neon with 1-mm-
wide beam, measured by Xiao et al. (2006) and calculated
using the repeated-interactions model by Xiao et al. (2008b).
The comparison to the transit-time (τ−1

t ) broadening high-
lights the substantial Ramsey narrowing. Right: The diffu-
sion solutions (35) by Firstenberg et al. (2008), for 2a = 0.2
mm, D = 10 cm2/s, no walls, and large power-broadening
γp = 20γ0 = 2 kHz. Ramsey narrowing produces a central
feature narrower than 2γp. Adapted from Firstenberg et al.

(2008); Xiao et al. (2008b).

beams) have a more symmetric role, such as in CPT and
NMOR. There is often a finite ’bright’ region, covered
by the light, and a remaining large ’dark’ region. The
atomic motion within these regions and between them is
the subject of this section.

Finite excitation times of ground-state coherence is a
well-studied phenomena, as described by Gawlik (1986)
and Arimondo (1996b), with the atoms either spatially
leaving the illuminated area or shifting out of resonance
due to some inhomogenous mechanism. The observed
spectra are more elaborate than those we have stud-
ied hitherto, because the finite pumping time rules out
the linear response assumption. Instead of an instan-
taneous pumping action, the process becomes kinetic,
with different atomic trajectories contributing differently
to the spectra. An example of a non-Lorentzian, cusp-
like spectrum, was presented by Pfleghaar et al. (1993).
Pfleghaar et al. fully described the spectrum by using an
exact geometrical transit-time model, taking into account
the possible atomic trajectories through the inhomoge-
nous beam. Trajectories with a transit time short com-
pared to the pumping and damping rates τt ≪ γ−1

0 , γ−1
P

contribute to the transit-time-limited broad feature; tra-
jectories with long transit time contribute to the nar-
rower central part of ultimate width γ ≈ γ0 + γP . We
note here that non-Lorentzian spectra also arise for atoms
at rest, when non-uniform power broadening dominates
(Taichenachev et al., 2004) .

Coherently pumped atoms that have left the beam may
return in a later time before losing their coherence. Co-
herent recurrence occurs in wall-coated or buffered cells,
and has long been known as a narrowing mechanisms in
standard rf spectroscopy (Robinson and Johnson, 1982).
While the homogenous damping rate (γ0) sets a lower
limit on the width of any spectral feature, transit-
time broadening (τ−1

t ) is reduced by recurring atoms

FIG. 20 (color online) Left: Ramsey fringes in a dark-
resonance, obtained by Zanon et al. (2005) with 80-µs pulses
separated by 1 ms. Right: Probability distribution of the du-
rations in the beam (tin) and in the dark (tout), calculated by
Xiao et al. (2006) for atoms diffusing in a cylindrical geome-
try. Adapted from Xiao et al. (2006); Zanon et al. (2005).

that effectively increase the interaction time, and power
broadening (γP ) is reduced because the recurring atoms
have evolved predominantly in the dark. The initial
pumping of the atoms in the bright region, the subse-
quent evolution in the dark, and their contribution to
the spectrum upon return, correspond to the Ramsey
method of separated oscillating fields (Ramsey, 1950).
The associated narrowing was therefore named Ramsey

narrowing. For all-optical Raman resonance, Ramsey
narrowing was first observed in wall-coated cells with
NMOR (Budker et al., 1998; Kanorsky et al., 1995) and
EIT (Klein et al., 2006). In both processes, the spec-
trum exhibits a broad pedestal feature, attributed to
single-transit trajectories, and a narrow peak, due to
coherent atoms returning after long times in the dark
(Budker et al., 2002, 2005). Diffusion-induced Ramsey
narrowing in buffered cell was observed in various Raman
processes (Alipieva et al., 2003; Novikova et al., 2005a,b;
Zibrov et al., 2001), as exemplified in Fig. 19 (left).

The difficulty of writing a linear susceptibility in the
form of Eq. (24) originates from the nonlinear terms
in Eq. (23). Even for negligible power-broadening
γP (r) → 0, the source term Ω∗

c(r)Ω(r) yields a convo-
lution in k−space that, although accurate, makes it hard
to solve for the spectrum. The following two approaches
to calculate the spectrum thus stay in real space.

A. Repeated interaction

Following the original ideas by Frueholz and Volk
(1985), the repeated-interaction model builds the spec-
trum from an ensemble average of stochastic atomic
trajectories, as delineated by Xiao et al. (2008b). Tra-
jectories may comprise a single transit time (tin), a
Ramsey process (tin/tout/tin), or any longer sequence
(tin/tout/tin/tout/tin · · · ). The contribution of longer tra-
jectories is smaller due to the constant damping γ0, and
the sum thus converges. During the dark period, the
ground-state dipole oscillates at the Raman-detuning fre-
quency ∆ with respect to the beating frequency of the
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FIG. 21 Dispersion spectrum with a one-dimensional light-
sheet of width 126 µm. Right: Universal power-lows with
exponents −1 (Lorentzian) and −0.5 (one-dimensional recur-
rence). Adapted from Pugatch et al. (2009).

Raman beams. An atom leaving the beams in a per-
fect dark-state will have the probability Re[e−(i∆+γ0)tout ]
of returning in-phase (in the dark state), resulting in
Ramsey fringes with respect to ∆. These can be mea-
sured by a fixed pulse sequence as shown in Fig. 20
(left). As with Ramsey spectroscopy, the fringes’ period
is set by the dark time t−1

out and their envelope by the
bright time t−1

in . Ramsey fringes were observed with Ra-
man processes by separations in the velocity, time, and
space domains (Buhr and Mlynek, 1986; Schuh et al.,
1993; Zanon et al., 2005; Zibrov and Matsko, 2001).

Due to the distribution of the times spent in the bright
and dark areas, a weighted average of such Ramsey
fringes constitutes the spectrum. Xiao et al. (2006) cal-
culated the time probability-distribution of staying in the
bright area Pin(t) and dark area Pout(t) for atoms diffus-
ing through a cylindrical beam (Fig. 20, right). Similar
analysis for ballistic motion in wall-coated cells was car-
ried out by Klein et al. (2011). The calculations assume
two spatial dimensions, as the process is virtually insen-
sitive to the axial motion of the atoms. If the dipole
amplitude A of an atom leaving the beam was fixed, the
ensemble average would have read

A

∫ ∞

0

dtPout(t)e
−(i∆+γ0)t = APout(s), (34)

where s = i∆ + γ0 and Pout(s) is Laplace transform
of Pout(t). The full repeated interaction model involves
nested integrals essentially similar to that of Eq. (34).
To calculate the more intricate evolution in the bright
stages, which involves dark-state pumping, Xiao et al.

(2008b) use the 3-element vector model by Shahriar et al.

(1997). The model reduces the master equation of the
density matrix into a set of three Bloch equations, un-
der the assumption of negligible γ0. The evolution of
the reduced vector has a closed mathematical solution in
the form of a damped precession. A Ramsey sequence is
then obtained by chaining three (in/out/in) solutions.
Xiao et al. (2008b) generalize the vector model to ac-
count for finite γ0 and obtain an analytic expression for
all Ramsey spectra. Integrating over the trajectories us-
ing Pin(t) and Pout(t), the reconstructed spectrum agrees

very well with the measurements (Fig. 19, left) for a
range of experimental parameters. Klein et al. (2011)
augment the model with a forth atomic state, to account
for optical pumping out of the Λ−system due to strong
light fields. Indeed, for both ballistic and diffusing atoms,
the distribution of bright times turns the Ramsey enve-
lope into a broad spectral feature, while the distribution
of dark times wipes out the Ramsey fringes, leaving a
single pronounced narrow feature at the line center.

Recently, Pugatch et al. (2009) analyzed the limit of
an infinitely small beam, for which the transit-time
broadening, and hence the fringes envelope, is very large.
Since Pin(t > 0) → 0, the bright periods have a neg-
ligible effect on the spectrum, which becomes indepen-
dent of the beam size and, in that respect, universal.
While the atoms are essentially always in the dark, a
non-zero ground-state dipole is sustained by the weak
beam. The average dipole is given by an infinite sum of
multiple periods in the dark, each one given by Eq. (34),
A
∑

n Pout(s)
n = A/[1 − Pout(s)]. As evidenced by this

expression, the resulting complex spectrum, measured by
Pugatch et al. (2009) (Fig. 21, left), constitutes a direct
signature of the time distribution in the dark. Moreover,
as the beam is infinite small, Pout(t) is equivalent to the
so-called first return-time distribution FRT(t), which is
the universal probability distribution for a random walker
of returning to the origin at time t. In one dimensional
diffusion, corresponding to the sheet-like beam used in
the experiment, FRT(s) = Pout(s) = (4Ds)−1/2, in strik-
ing contrast to the complex Lorentzian spectrum ∝ s−1.
These power-low decays are shown in Fig. 21, right.

B. Diffusion solution

Although providing insight into the Ramsey-narrowing
process, the repeated-interaction model applies the same
physics already contained in the diffusion-equation for-
malism of the previous sections. One can essentially ob-
tain the spectra from the coupled internal and external
dynamics of the density-matrix distribution. To this end,
we express the spatially dependent source and pump-
ing rates, S(r, t) and γP (r) in Eq. (23), using the pro-
files of the beams, Ω(x, y) and Ωc(x, y), and then solve
the diffusion equation for the steady-state distribution
of the ground-state dipoles ρ21(x, y). The optical dipole
ρ31(x, y) is calculated from Eq. (22), and an integra-
tion over the beam profile yields the absorption spectrum
P ∝ Im

∫

dxdyΩ∗ρ31. As a matter of fact, such mathe-
matical procedure conflicts with a previous notion, that
steady-state solutions cannot accurately describe transit-
time-limited spectra (Gawlik, 1986).

Xiao et al. (2008b) wrote a similar diffusion equation
using the 3-element vector model and by that generalized
Eq. (23) to include a non-weak probe — and essentially
any ratio between the Raman beams, including the bal-
anced case. Numerical solution of the diffusion equation
in this model, for a small Gaussian beam, was shown by
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Xiao et al. to agree with the repeated-interaction model.
For a few simple geometries, it is possible to obtain

closed-form expressions for the spectra, as corrections
R (∆) to the stationary spectrum χ0 → χ0(1−R). For a
stepwise light sheet (1d) or a top-hat beam (2d) of widths
2a, and absorbing boundary conditions at the walls at a
distance b, the diffusion solution gives

R1d (∆) =
1

κa

tanh(κa)

1 + (κ/κ0) tanh (κa) tanh[κ0 (b− a)]
,

R2d (∆) =
2

κa

[

I0 (κa)

I1 (κa)
+

κ

κ0

K0 (κ0a)

K1 (κ0a)
(1 − β)

]−1

,

(35)

where β = K0 (κ0b)K
−1
0 (κ0a) I−1

0 [κ0(b− a)] is due to
the walls. Here, κ and κ0 are defined via Dκ2 =
γ0 + γp − i∆ (inside the beam) and Dκ2

0 = γ0 − i∆
(outside), and In, Kn are the modified Bessel functions.
These expressions revert to the transit-time limit for a
circumferential wall (b = a) that depolarizes all atoms be-
fore they recur. The solution with no walls (b → ∞) was
presented by Firstenberg et al. (2008) and shown in Fig.
19 (right); The reduction of power broadening is clearly
visible on the central feature. One may also recovers the
asymptotic universal behavior shown in Fig. 21 by tak-
ing a → 0. Finally, minor corrections for non-flat beams
where solved by Romanenko and Yatsenko (2008).

VI. OUTLOOK

We have presented the physics of Raman processes
with hot atoms, whose internal coherence is preserved
despite their external motion. The unique combination
of rapid atomic motion, large Raman wavelengths, long
lifetimes, and large group delays, was shown to have di-
verse, significant spectral and spatial consequences. The
same physical principles hold for a rich variety of Raman
schemes and matter systems that are either out of the
scope of this Colloquium or yet to be explored.

The spectra we have been studying derive from the ex-
ponential or Gaussian dephasing rate, pertaining to reg-
ular thermal motion. In two dimensional systems, power-
law decay of the velocity correlation is manifested by
Lévy-like Raman spectra, whereas more intriguing spec-
tra are expected for non-equilibrium one dimensional sys-
tems. These are realizable with cold atoms, for which it
is also exciting to explore anomalous diffusion, ballistic
motion, and billiard dynamics. Oscillatory motion in a
confining trap adds a modulated component to the ve-
locity correlation function, which is also measurable as
periodic revivals of spatial structures.

Various matter-wave phenomena can find their ana-
logue in polariton diffusion, as diffusion manifests the
diffraction equation in imaginary time. Thus, a speckle
field of ’traps’ that locally depolarize the dark state re-
lates to the Anderson problem in one or two dimen-
sions, and is measurable spectrally and spatially. Here

one can extend the study to the sub-diffractive, sub-
diffusive (∇4) evolution (Staliunas and Herrero, 2006) by
controlling the slow-light parameters. Identifying the
transverse modes of either ordered or disordered con-
figurations is an important, instructive stage for under-
standing these systems (Wang and Genack, 2011). Ex-
tensions to the nonlinear realm can be performed with
diffusion and diffraction manipulation in Raman 4-wave
mixing schemes, which will further allow optical conjuga-
tion and gain (Katzir et al., 2012; Marino et al., 2009).
These promising avenues, which represent a subset of
what is currently being explored in this exciting field,
are not only of fundamental interest, but could also have
a profound impact on future quantum-technology appli-
cations.
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tion and gratefully acknowledge discussions with P. Lon-
don, Y. Sagi, and D. Yanekelv. OF acknowledges support
from the Harvard Quantum Optics Center. ND acknowl-
edges support by the ISF, DIP and Minerva foundations.

References

Akulshin, A. M., A. A. Celikov, and V. L. Velichansky, 1991,
Opt. Comm. 84, 139.

Alipieva, E., S. Gateva, E. Taskova, and S. Cartaleva, 2003,
Opt. Lett. 28, 1817.

Alzetta, G., A. Gozzini, L. Moi, and G. Orriols, 1976, Nuovo
Cimento Soc. Ital. Fis., B 36, 5.

Aminoff, C. G., and M. Pinard, 1982, J. Physique 43, 263.
Andre, A., M. Bajcsy, A. S. Zibrov, and M. D. Lukin, 2005,

Phys. Rev. Lett. 94, 063902.
Arimondo, E., 1996a, ”Coherent Population Trapping in

Laser Spectroscopy”, Progress in Optics (Elsevier, Amster-
dam), volume 35.

Arimondo, E., 1996b, Phys. Rev. A 54, 2216.
Arimondo, E., and G. Orriols, 1976, Lett. Nuovo Cimento

Soc. Ital. Fis. 17, 333.
Balabas, M. V., T. Karaulanov, M. P. Ledbetter, and D. Bud-

ker, 2010, Phys. Rev. Lett. 105, 070801.
Bashkansky, M., F. K. Fatemi, and I. Vurgaftman, 2012, Opt.

Lett. 37, 142.
Bicchi, P., L. Moi, P. Savino, and B. Zambon, 1980, Nuovo

Cimento 55B, 1.
Bjorkholm, J. E., P. F. Liao, and A. Wokaun, 1982, Phys.

Rev. A 26, 2643.
Bloembergen, N., E. M. Purcell, and R. V. Pound, 1948, Phys.

Rev. 73, 679.
Bolkart, C., D. Rostohar, and M. Weitz, 2005, Phys. Rev. A

71, 043816.
Boller, K.-J., A. Imamolu, and S. E. Harris, 1991, Phys. Rev.

Lett. 66, 2593.
Bortman-Arbiv, D., A. D. Wilson-Gordon, and H. Friedmann,

1998, Phys. Rev. A 58, R3403.
Brandt, S., A. Nagel, R. Wynands, and D. Meschede, 1997,

Phys. Rev. A 56, R1063.
Brissaud, A., and U. Frisch, 1974, J. Math. Phys. 15, 524.
Budker, D., W. Gawlik, D. F. Kimball, S. M. Rochester, V. V.

Yashchuk, and A. Weis, 2002, Rev. Mod. Phys. 74, 1153.



19

Budker, D., L. Hollberg, D. F. Kimball, J. Kitching,
S. Pustelny, and V. V. Yashchuk, 2005, Phys. Rev. A 71,
012903.

Budker, D., D. F. Kimball, S. M. Rochester, and V. V.
Yashchuk, 1999, Phys. Rev. Lett. 83, 1767.

Budker, D., and M. Romalis, 2007, Nature Physics 3, 227.
Budker, D., V. Yashchuk, and M. Zolotorev, 1998, Phys. Rev.

Lett. 81, 5788.
Buhr, E., and J. Mlynek, 1986, Phys. Rev. Lett. 57, 1300.
Camacho, R. M., C. J. Broadbent, I. Ali-Khan, and J. C.

Howell, 2007, Phys. Rev. Lett. 98, 043902.
Carvalho, P. R. S., L. E. E. de Araujo, and J. W. R. Tabosa,

2004, Phys. Rev. A 70, 063818.
Cheng, J., and S. Han, 2007, Opt. Lett. 32, 1162.
Cheng, J., S. Han, and Y. Yan, 2005, Phys. Rev. A 72,

021801(R).
Chou, C. W., S. V. Polyakov, A. Kuzmich, and H. J. Kimble,

2004, Phys. Rev. Lett. 92, 213601.
Ciury lo, R., R. Jaworski, J. Jurkowski, A. S. Pine, and

J. Szudy, 2001, Phys. Rev. A 63, 032507.
Corey, G. C., and F. R. McCourt, 1984, J. Chem. Phys. 81,

2318.
Cyr, N., M. Tetu, and M. Breton, 1993, IEEE Trans. Instrum.

Meas. 42, 640.
Dalibard, J., F. Gerbier, G. Juzeliūnas, and P. Öhberg, 2011,
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