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Recent progress and future prospects of matter-wave interferometry with complex organic mole-

cules and inorganic clusters are reviewed. Three variants of a near-field interference effect, based on

diffraction by material nanostructures, at optical phase gratings, and at ionizing laser fields are

considered. The theoretical concepts underlying these experiments and the experimental challenges

are discussed. This includes optimizing interferometer designs as well as understanding the role of

decoherence. The high sensitivity of matter-wave interference experiments to external perturbations

is demonstrated to be useful for accurately measuring internal properties of delocalized nano-

particles. The prospects for probing the quantum superposition principle are investigated in the limit

of high particle mass and complexity.
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I. INTRODUCTION

The wave nature of matter, most conspicuously revealed in

interference studies such as the double slit experiment, is a

paradigm of quantum mechanics. According to Richard

Feynman, it even ‘‘contains the only mystery’’ of quantum

physics (Feynman, Leighton, and Sands, 1965). And indeed,

the spatial delocalization of objects composed of hundreds of

atoms, over extensions that exceed the particle size by orders

of magnitude, clearly defies our common intuition. In spite of

that, such highly nonclassical states have been created re-

peatedly in the laboratory and are used for fundamental

science.

Recent matter-wave experiments with nanometer-sized

particles have opened a new field of research at the interface

between the foundations of physics, quantum optics, and

physical chemistry. Here we mainly focus on near-field

interference experiments, since they exhibit a number of

advantages over the conceptually simpler far-field arrange-

ments, if one is interested in massive and internally complex

particles. An overview of earlier experiments with more

elementary particles can be obtained from the comprehensive

reviews on interference with electrons (Tonomura, 1987;

Batelaan, 2007; Hasselbach, 2010), neutrons (Rauch and

Werner, 2000), and atoms (Berman, 1997; Cronin,

Schmiedmayer, and Pritchard, 2009).

There are two main motivations for probing the wave

nature of complex particles. First, we explain how it can be

exploited to study the internal properties and dynamics of

quantum delocalized particles. Quantum-assisted molecule

metrology is now becoming a viable tool for molecular

physics with prospects to outperform classical measurements

in the near future. Second, nanoparticle interference is well

suited for studying the quantum superposition principle in a

mass regime that has not been accessible hitherto. We show

how recent studies can quantitatively validate the predictions

made by decoherence theory, and we argue that matter-wave

experiments will set bounds to theories predicting a modifi-

cation of the Schrödinger equation at the quantum-classical

borderline.
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We start in Sec. II by discussing the general requirements

for de Broglie wave interferometry and the advantages of

near-field experiments. Section III describes three recent

near-field interferometer developments, their merits, and

drawbacks. The highly nonclassical states in these instru-

ments enabled studies of environmental decoherence, which

are reviewed in Sec. IV. While some types of interactions with

the environment induce the emergence of classical behavior,

others can be exploited to measure internal molecular prop-

erties, as explained in Sec. V.

In Sec. VI we present some challenges encountered in

the attempt to extend matter-wave interferometry to ever

more complex objects. This includes requirements for mo-

lecular beam sources, detection schemes, and ways to cope

with phase averaging. A quantitative theoretical approach

to describe all of these experiments is briefly introduced in

Sec. VII. To date, there has been no experimental indica-

tion that the quantum superposition principle may fail at

any mass or length scale. However, as discussed in

Sec. VIII, a number of modifications of the Schrödinger

equation have been suggested, and, in particular, the model

of continuous spontaneous localization may be the first

alternative that can be put to a definitive test in matter-

wave experiments with very massive clusters. We close in

Sec. IX with our conclusions and an outlook.

II. FROM FAR-FIELD TO NEAR-FIELD

INTERFEROMETRY

From a conceptual point of view, far-field diffraction is by

far the simplest and most palpable matter-wave phenomenon:

When a collimated and sufficiently slow particle beam im-

pinges on a mask perforated by equidistant slits the particle

density farther downstream exhibits a fringe pattern, whose

period is determined by the ratio �dB=d of the de Broglie

wavelength �dB and the slit separation d. Such experiments

have been implemented with electrons (Jönsson, 1961), neu-

trons (Zeilinger et al., 1988), and atoms (Keith et al., 1988;

Carnal, Faulstich, and Mlynek, 1991; Shimizu, Shimizu, and

Takuma, 1992). More recently, also beams composed of cold

helium clusters (Schöllkopf and Toennies, 1994; Brühl et al.,

2004), and hot fullerenes (Arndt et al., 1999) have shown

such far-field interference patterns, in complete agreement

with quantum expectations, including the subtle but signifi-

cant role of van der Waals forces between the molecules and

the material grating structures.

A number of alternative interferometer concepts have been

studied also with diatomic molecules: This includes Mach-

Zehnder interferometry with Na2, using three nanofabricated

gratings (Chapman, Hammond et al., 1995), Ramsey-Bordé

interference experiments, exploiting the near-resonant inter-

action with four running laser waves, with I2 (Bordé et al.,

1994) and K2 (Lisdat et al., 2000), and the observation of the

Poisson spot behind a circular obstacle with D2 (Reisinger

et al., 2009). The scattering of fast H2, as first studied by

Estermann and Stern (1930), has recently been extended to

quantum reflection studies with He2 by Zhao, Meijer, and

Schöllkopf (2011).

Most of these experiments operate in the far field,

thus requiring a collimation of the molecular beam that is

significantly narrower than the diffraction angle. This condi-

tion is the reason why it is difficult to extend these far-field

schemes to objects composed of, say, several hundred thou-

sand atoms: Their requirements with regard to source bril-

liance and coherence, interferometer size and stability, as

well as detection efficiency still necessitate the development

of new experimental methods for controlling nanoparticles.

In contrast, near-field phenomena, such as the Talbot-Lau

effect, allow one to operate with particle beams of modest

coherence, without the need for a spatially resolving particle

detector, and one can draw on favorable length and mass

scaling properties. In order to show this, we start by introduc-

ing some elementary coherence considerations and the basic

idea behind Talbot interference.

A. Coherence considerations

In the absence of external forces, the stationary

Schrödinger equation of quantum mechanics is formally

equivalent to the Helmholtz equation that governs the propa-

gation of light. This explains why many phenomena from

classical wave optics, such as diffraction and interference,

find a close analogy in nonrelativistic quantum mechanics.

Indeed, Huygens’ principle of elementary wavelets and the

Kirchhoff-Fresnel integral formula are closely related to a

Feynman path integral formulation of the dynamics of matter

waves (Storey and Cohen-Tannoudji, 1994).

Both in classical optics and in quantum mechanics the

ability to observe wave phenomena relies on the preparation

of sufficient spatial and temporal coherence, i.e., of stable

correlations between separate space-time points of the com-

plex wave field. They should be appreciable over a significant

portion of the diffracting element, e.g., over at least two slits

of a diffraction grating.

Most matter-wave experiments are operated with a par-

ticle beam propagating in a well-defined longitudinal direc-

tion. In many cases it is then justified to decouple the

forward direction from the transverse state of motion. If

we assume an initially incoherent particle source, its spatial

(transverse) coherence depends on the effective width a of

the source aperture. According to the van Cittert–Zernike

theorem the spatial coherence behind an incoherent source

is described by the same functional form that also quantifies

the intensity pattern due to diffraction behind the same

aperture under coherent plane wave illumination (Born

and Wolf, 1993). The coherence width at a distance L
behind the intrinsically incoherent particle source can there-

fore be estimated as 2L�dB=a. This illustrates that for

massive particles with small de Broglie wavelengths �dB

we will need either a narrow source opening a or a long

propagation distance L to prepare the required spatial

coherence.

Similarly, the Wiener-Khinchin theorem describes the lon-

gitudinal coherence function as the Fourier transform of the

beam spectral density (Born and Wolf, 1993). A narrow

distribution of de Broglie wavelengths, i.e., a good momen-

tum selection, is therefore required if we want to prepare

longitudinally extended matter-wave coherence. This is a

source property that cannot be improved by increasing the

distance between the source and the grating.
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B. Entering the near field

Many textbooks on classical optics restrict themselves to

far-field interference patterns described by the Fourier trans-

form of the diffraction mask. Also the first diffraction experi-

ments with C60 fullerenes were performed in this regime: an

effusive molecular beam with a velocity of about 100 m=s
was sent onto a nanomechanical grating with a slit separation

of 100 nm (Arndt et al., 1999). Given the de Broglie wave-

length of 5 pm, sufficient transverse coherence could be

prepared only by reducing the effective source width to

smaller than 10 �m. Since the first order interference fringes

were separated by only 50 �m at a distance of 1 m behind the

grating, a second 10 �m slit was placed immediately in front

of the grating to collimate the beam width to smaller than the

diffraction angle. This concept clearly worked, but at the

expense of reducing the detected particle flux by many orders

of magnitude. Experiments with more massive species must

cope with even smaller de Broglie wavelengths and even

stricter coherence requirements. Several strategies are con-

ceivable to fulfill them.

Novel source methods may serve to improve the coherence

and to increase �dB. However, slowing of the particle beam

alone does not solve the problem, since it reduces only the

forward velocity and therefore increases the beam divergence

by the same factor. Genuine cooling would reduce the mean

velocity, the velocity spread in all directions, and eventually

also the number of internal excitations. But cooling schemes

for interferometry with massive particles are still in an early

development stage (see Sec. VI). Improved detectors with

true single-particle sensitivity may allow one to compensate

for the small fluxes associated with a tight collimation. We

focus here on a third aspect, the implementations of novel

near-field interferometer schemes which relax the coherence

requirements and at the same time parallelize the diffraction

effect thousandfold.

Coherent diffraction at an arbitrary aperture is generally

described by the Kirchhoff-Fresnel integral (Born and Wolf,

1993). It can be viewed as a decomposition of the diffraction

pattern into spherical waves emanating from all points in the

aperture surface. Each contributes a phase 2�R=�dB with R
the distance between an aperture point and an image point on

a screen. The paraxial approximation holds if the latter is

located at a distance L large compared to the extension of the

aperture. The contributing phases can then be expanded to

second order in the lateral coordinates of aperture and screen,

� ¼ �ðxa � xsÞ2=�dBL.
One can further distinguish between far-field and near-field

interference based on the importance of the propagating wave

front curvature in � (Born and Wolf, 1993; Berman and

Malinovsky, 2010). In the Fraunhofer, or far-field approxi-

mation, the quadratic terms x2a and x2s may be neglected in �,

while they are required for Fresnel, or near-field diffraction.

Figure 1 shows the transition from the near-field to first

features of the far-field regime for diffraction at a grating of

ten slits. The proper far-field limit is then reached at the

characteristic distance a2=�dB, where the wave pattern is

already expanded to well beyond the size of the aperture a,
so that spherical waves can already be locally approximated

as plane waves.

Our near-field interferometers are based on the principle

of coherent lenseless self-imaging. This concept was first

developed for light optics (Talbot, 1836) and it is nowadays

often employed in situations where refractive optical ele-

ments are unavailable, such as with molecules (Brezger

et al., 2002) or x rays (Pfeiffer et al., 2006).

The effect, which can already be recognized in the near-

field region of Fig. 1, is illustrated in its idealized form in

Fig. 2: When a monochromatic plane wave illuminates a wide

grating of period d, interference of all diffraction orders will

reproduce a self-image of the intensity distribution in the

mask, at the distance

LT ¼ d2=�dB (1)

further downstream. The Talbot length LT is named after

Henry Fox Talbot who discovered the effect with light

(Talbot, 1836). Self-imaging recurs at integer multiples of

LT up to the point where diffraction at the edges of the grating

window becomes relevant. At odd multiples of LT the grating

image is shifted by half a fringe period, while it appears

Distance L/LT

0 4 8 12 16 20 24 28

FIG. 1 (color). Transition from near-field to far-field interference

for a plane wave illuminating a grating with ten equidistant slits

from the left. The brightness is scaled to be proportional to the wave

amplitude. In the near field, at integer multiples of the Talbot length

L=LT ¼ 1, 2, and 3, one observes partial recurrences of the intensity

distribution in the slits, while at greater distances the main diffrac-

tion orders of far-field interference start to emerge. The calculation

is done in the paraxial approximation, assuming ideal gratings with

a slit width of one-half the slit separation. Note that the axes are not

to scale.
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unshifted at even multiples; some therefore prefer to define

2d2=�dB as the Talbot length. Figure 2 also reveals fractional

revivals with smaller periods in distances which are rational

fractions of LT. The observed intensity distribution is an

example of wave physics and clearly incompatible with the

assumption of ray optics (Berry, Marzoli, and Schleich, 2001;

Case et al., 2009).

C. Concept of Talbot-Lau interferometry (TLI)

The implementation of the Talbot effect still requires a

high degree of coherence and has so far been observed with

atoms (Chapman, Ekstrom et al., 1995; Nowak et al., 1997)

and electrons (McMorran and Cronin, 2009) but not yet with

molecules. We can extend this concept to spatially incoherent

sources by adding a second grating of the same period. This

leads to the configuration of array illuminators which was

proposed by Lau (1948) and is nowadays widely used in light

optics (Patorski, 1989).

The intuitive picture behind this scheme is the following:

The first grating G1 acts as a periodic spatial mask which

prepares transverse coherence by slicing the incident wave

field into numerous wavelets. There is no phase coherence

between the waves emerging from neighboring slits.

However, each of the individual wavelets emanating from

any of the slits of G1 develops sufficient transverse coherence

on its way toward the second grating G2 to cover two or more

slits with a well-defined phase relation. This requires G2 to be

at a distance comparable to LT away from G1. Diffraction at

the second grating followed by the free evolution over the

Talbot distance then leads to the formation of a spatially

periodic intensity pattern whose period equals that of the

two gratings. This way, each slit in G1 gives rise to a fringe

pattern at the detection screen. All interferograms associated

with the individual source slits are synchronized in their

phase position such that they add up to a high-contrast density

pattern. A formal treatment shows that the fringe visibility

may actually have a minimum when the grating distance

exactly matches the Talbot length (Dubetsky and Berman,

1997a; Nimmrichter and Hornberger, 2008), but it reaches a

maximum in the close vicinity of LT.

A direct way to visualize the final molecular density

pattern is to capture and image the molecules on a clean

surface (Juffmann et al., 2009). Alternatively, one can scan

the interferogram with a third grating G3 of the same period

(Brezger et al., 2002). In this case the spatial resolution is

provided by the grating, so that the integration over a large

area leads to a significant gain in signal and a reduction of the

measurement time. This is of a particular advantage for

sources with a small flux and limited coherence. It also

provides a fast signal readout which is often required for

feedback and alignment purposes.

In Talbot-Lau interferometry the required grating period

d ¼ ffiffiffiffiffiffiffiffiffiffiffi
�dBL

p / m�1=2 is determined by the de Broglie wave-

length and the size of the interferometer L, independently of

the molecular beam width D. This scaling is much less

demanding than that of far-field diffraction d � L�dB=D /
m�1D�1. In comparison to single-grating far-field diffraction,

Talbot-Lau interferometry with three masks imposes more

stringent alignment requirements since both the rotation and

the longitudinal position of the gratings are important. On the

other hand, the arrangement of thousands of parallel slits

increases the signal by several orders of magnitude over

far-field experiments.

III. NEAR-FIELD INTERFERENCE WITH

NANOPARTICLES

Both the short de Broglie wavelength and the limited

coherence of available molecular beam sources are the rea-

sons why interferometry with large molecules started off with

only the advent of near-field interferometers. The concept

was first demonstrated for potassium atoms by Clauser and

Li (1994) and it was further explored in a number of

theoretical papers (Clauser, 1997; Dubetsky and Berman,

1997b; Rohwedder, 1999). Macromolecule interferometry

was then realized in the following steps.

A. Talbot-Lau interferometry

The first fullerene interferometer was implemented in a

Talbot-Lau (TL) configuration with three microfabricated

gold gratings, as illustrated in Fig. 3(a). The microstructures

were written with a period of 991 nm and an open slit width of

about 470 nm into 16 mm wide and 500 nm thin gold

membranes. Three identical gratings were adjusted with a

separation of 22 cm (Brezger et al., 2002).

In the experiment care was taken to align all grating slits

with an accuracy of about 1 mrad with respect to each other

and to the Earth’s gravitational field. The interferometer was

placed in a high-vacuum chamber evacuated to better than

Distance L/LT

0 0.5 1 1.5 2

FIG. 2 (color). Detail of a Talbot carpet in the near-field region of

an extended grating generated by a plane wave from the left. As in

Fig. 1 bright colors indicate large wave amplitudes. At integer

multiples of the Talbot length LT it displays an exact image of

the intensity distribution in the grating (shifted by one-half a grating

period for odd multiples). To highlight the fractional recurrences at

rational multiples of L=LT the calculation was done (in the para-

xial approximation) with a small slit width of 15% of the grating

period. The Talbot-Lau interferometers described below are based

on the same resonant interference effect which gives rise to these

structures.
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10�7 mbar and isolated from floor vibrations by an inflated

optical table. A sublimation source emitted a thermal beam of

molecules, with an internal and motional temperature of up to

900 K, in the case of C60 and C70 fullerenes. The thermal

distribution contained a broad range of initial velocities. A

velocity band of �v=v ’ 20% was filtered out by selecting

the molecular free-fall parabola. In this interferometer ar-

rangement, high-contrast interference could be observed both

for the fullerenes by Brezger et al. (2002) and for the biodye

tetraphenylporphyrin (TPP) by Hackermüller et al. (2003).

In Fig. 4 we show an interferogram of C70 displaying high

contrast and a good signal-to-noise ratio. As in light optics,

we define the fringe visibility of a sine wave pattern as the

ratio of its amplitude over its offset.

In contrast to far-field diffraction, which is an unambigu-

ous wave phenomenon without any ray optics analog, the

appearance of molecular density fringes in a two-grating

experiment might also be explained by a classical moiré

shadow, to a certain degree. Fortunately, quantum diffraction

and moiré effects can be well distinguished by studying the

fringe visibility as a function of the particle velocity, as done

in Fig. 5. If molecules were classical particles traveling along

straight trajectories, their velocity would not influence the

moiré visibility. They should, therefore, all exhibit a visibility

of only 4% in our settings. In contrast to that, the de Broglie

wavelength of a quantum object is inversely proportional to

its velocity and we expect a periodic recurrence of the fringe

visibility with the velocity.

Interestingly, this idealized quantum wave picture (dotted

line in Fig. 5) does not reproduce the fullerene interference

experiment at all (black circles), since it ignores the

van der Waals interaction of the polarizable molecule with

the grating walls. Although the effect of grating interactions

was already observed in far-field diffraction at thin SiN masks

(Grisenti et al., 1999; Nairz, Arndt, and Zeilinger, 2003), it

becomes much more dominant in near-field interference, as

discussed in Sec. VII.

The C70 experiment can be better described by a quantum

model that includes the van der Waals attraction as in Fig. 5.

The solid line assumes the nonretarded van der Waals poten-

tial V ¼ �C3=r
3, with C3 ¼ 10 meV nm3 (Jacob, 2011),

and the dashed line the asymptotic long-distance form of

the Casimir-Polder potential V ¼ �3ℏc�stat=32�
2"0r

4,

with the static polarizability �stat=4�"0 ¼ 102� 10�30 m3

for C70 (Compagnon et al., 2001). The exact potential

according to Casimir and Polder (1948) leads to a curve close

to that of the nonretarded form in the present case. An

explanation of the remaining discrepancy between experi-

ment and theory requires future experiments with gratings of

(a)

(b)

(c)

G1

G2

G3

gravity

FIG. 3 (color). Near-field interferometers are optimized for beams

of low flux and limited coherence: (a) The Talbot-Lau interferome-

ter (TLI) uses three nanofabricated gratings. G1 prepares the

required spatial coherence, G2 diffracts the wavelets so that they

will form an interferogram, and G3 is scanned to sample the fringe

pattern (Clauser and Li, 1994; Brezger et al., 2002). (b) The

Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) eliminates the

dispersive van der Waals interactions between the molecules and

the grating walls inside the TLI, since the central diffraction element

is realized as an off-resonant standing light wave (Gerlich et al.,

2007). (c) An optical time-domain ionizing matter (OTIMA) inter-

ferometer, which has yet to be realized, consists of three ultraviolet

laser beams. Single-photon ionization in the antinodes of the

standing wave removes clusters from the incident particle cloud,

acting similarly as the massive bars of a material grating. Operated

in the time domain and using short and precisely timed laser pulses,

the OTIMA concept avoids many phase averaging effects. From

Nimmrichter, Haslinger et al., 2011.

FIG. 4 (color online). Talbot-Lau interference of C70 as seen in

experiments by Brezger et al. (2002). The data set is well

reproduced by a sinusoidal curve with a fringe visibility of 38%.
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variable thickness and different materials, as well as better

velocity selection. We note that also the classical treatment

must include the attractive force in the grating slit. The

expected visibility then follows a monotonic curve in the

same diagram (dash-dotted line in Fig. 5), but never exceeds

16% in our setting. This is clearly different from both the

quantum description and the experimental observation.

The polarizability of a mesoscopic particle is roughly

proportional to its volume. Therefore Casimir-Polder forces

have an even more significant effect on larger particles. This

explains why in a Talbot-Lau interferometer with material

gratings quantum interference may be difficult to observe for

more massive particles, unless we are able either to prepare a

sufficiently intense molecular beam with a narrow velocity

spread below 1% or to fabricate an atomically thin diffraction

mask, for instance, from graphene (Geim and Novoselov,

2007).

B. Kapitza-Dirac-Talbot-Lau interferometry (KDTLI)

The problem of van der Waals forces can be eliminated by

another interferometer scheme: Following the demonstration

of an optical phase grating for fullerenes by Nairz et al.

(2001) a new interferometer was proposed by Brezger, Arndt,

and Zeilinger (2003) and implemented by Gerlich et al.

(2007). This KDTLI combines the idea of TL near-field

parallelization with the concept of matter diffraction at a

standing light wave as originally proposed by Kapitza and

Dirac (1933) for electrons and first realized with atoms by

Moskowitz et al. (1983) in the Bragg regime.

The KDTLI evolves from a TLI if we replace the central

diffraction grating G2 by a standing laser light wave with the

same grating period; see Fig. 3. We still keep the mechanical

masks G1 and G3 for coherence preparation and interference

imaging. The van der Waals phases at these stages do not

perturb the final pattern since G1 and G3 act only as spatially

periodic transmission filters (each thinning out the beam by

about two-thirds).

The new optical phase grating G2 does not remove any

particles from the beam. Instead, the electric laser field E
interacts with the molecular optical polarizability �opt to

induce a rapidly oscillating electric dipole moment which

interacts again with the laser field. In a standing light wave,

the resulting dipole potential W ¼ ��optEðx; tÞ2=2 is spa-

tially modulated, and so is the imprinted molecular phase.

Given that its period is the same as that of G1, the free

evolution of the de Broglie waves behind the grating then

results in an observable molecular fringe pattern with the

same periodicity. As illustrated by Fig. 6, the elimination of

the molecule wall interaction at G2 significantly reduces the

monochromaticity requirement on the incident matter waves.

In our experiment the optical phase grating is realized by

retroreflecting a 532 nm laser of up to 18 W at a flat mirror.

Since the incident molecular beam has a divergence of about

1 mrad, it is important to orient the standing light wave such

that no semiclassical molecular trajectory crosses more than a

single node or antinode of the green light field. In order to

meet this condition the laser is focused along the molecular

beam axis to a narrow waist ofw ¼ 20 �m. The period of the

mechanical masks G1 and G3 was also carefully matched to

that of the laser grating (266 nm) since already a deviation

exceeding 0.05 nm would significantly reduce the interfer-

ence fringe visibility.

FIG. 6 (color online). Interference fringe visibility vs molecular

velocity for molecules of high polarizability. Dashed line: KDTLI

prediction for the perfluoralkylated nanosphere PFNS8 with a

polarizability of �opt=4�"0 ¼ 2� 10�28 m3; solid line: TLI pre-

diction for the same experimental arrangement, except for the laser

grating being replaced by a 200-nm-thick SiN wafer with a grating

period of 266 and 90 nm open slits. Even though the use of

mechanical gratings may allow one to achieve a high interference

contrast at a few selected velocities, real-world sources have a finite

velocity spread and the effective visibility in a TL interferometer

can be dramatically reduced when the velocity spread exceeds 1%.

From Gerlich et al., 2007.

FIG. 5 (color online). Interference in the Talbot-Lau configura-

tion leads to near-sinusoidal fringes when the open fraction is

approximately 48%. The qualitative and quantitative dependence

of the fringe visibility of the molecular velocity is important for

discriminating the quantum wave behavior from classical moiré

patterns (Brezger et al., 2002). Full circles: experimental data

with statistical error bars; dotted line: quantum wave model,

ignoring the molecular polarizability; solid line: quantum wave

model including the attractive van der Waals interaction between

the polarizable C70 molecule and the gold grating wall; dashed

line: replacing the van der Waals attraction by the asymptotic form

of the Casimir-Polder interaction; dash-dotted line: classical

shadow contrast in the presence of van der Waals forces. All

theoretical curves include an average over the measured velocity

distribution in the beam.
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The gratings are mounted on a common base with a

mutual distance of 105 mm. This allows operating with a

de Broglie wavelength down to 1 pm, for instance, with

particles of 10 000 amu at a velocity of 40 m=s or corre-

spondingly higher masses at lower velocities. This design

was experimentally validated in our laboratory with a variety

of organic molecules, as shown in Fig. 7. We demonstrate

high-contrast quantum interference for many molecular

shapes, symmetries, masses, and internal excitations. Some

of these molecules contained more than 400 atoms, weighed

about 7000 amu, were thermally excited to 1000 K, or

measured more than 6 nm in diameter, and still they all

exhibited clear quantum interference (Gerlich et al., 2011).

In Fig. 8 we present the evolution of the fringe visibility for

the perfluoroalkylated nanosphere PFNS8 (356 atoms,

5672 amu) as a function of the diffracting laser power in

G2. The experimental data (full circles) show a visibility of

up to 50% and they are well described by the quantum

predictions (heavy line) and cannot be reproduced by clas-

sical physics (thin line). The relatively large error bars in this

experiment are due to the short measurement time resulting

from the thermal instability of the species and from the fact

that they are available only in small amounts.

C. Interferometry with pulsed optical gratings (OTIMA)

Although KDTLI is compatible with high molecular

masses, van der Waals forces in G1 and G3 may eventually

lead to a blockage of the grating due to adsorbed molecules

clogging the slits. It is therefore useful to consider an all-

optical setup, such as the optical time-domain ionizing matter

(OTIMA) interferometer we describe below.

As long as we are limited to incoherent sources, the first

grating must act as an absorptive mask to prepare the required

spatial coherence. Optical amplitude gratings were already

realized by Abfalterer et al. (1997) for metastable atoms by

FIG. 8 (color online). Fringe visibility of PFNS8 in the KDTLI as

a function of diffracting laser power at a mean molecular velocity of

75 m=s and a velocity spread of 10%. Experimental data are

represented by full circles; the error bars correspond to a 68%

confidence interval of the sinusoidal fit of the interference pattern.

The heavy line is the quantum prediction based on the expected

polarizability of �opt=4�"0 ¼ 2� 10�28 m3. The shaded area dis-

plays the effect of a �2 m=s variation of the mean molecular

velocity. The thin line gives the classically expected visibility.

From Gerlich et al., 2011.

FIG. 7 (color). Gallery of molecules that showed quantum interference in the KDTL interferometer. (a) Tetraphenylporphyrin (TPP);

(b) C60 fullerene; (c) PFNS10, a carbon nanosphere with ten perfluroalkyl chains; the variant PFNS8 with eight side arms was also used;

(d) a perfluoroalkyl-functionalized diazobenzene (Gerlich et al., 2007); (e), (f) two structural isomers with equal chemical composition but

different atomic arrangement (Tüxen et al., 2010); (g) TPPF152, a TPP derivative with 152 fluorine atoms (Gerlich et al., 2011).
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inducing transitions to undetected states. Since the high level

density in clusters and molecules usually precludes this

resonant excitation scheme, Reiger et al. (2006) proposed

photoionization gratings as a universal tool for complex

nanoparticles, where a single photon suffices to ionize and

remove the particles from the antinodes of a standing light

wave. The intensity maxima thus play the role of the grating

bars, but their transmission, periodicity, and the additionally

imprinted phase can be tuned by varying the pulse energy and

the laser wavelength. In variance to the TLI and KDTLI

designs, the second pulse G2 acts as a combination of both

an absorptive and a phase grating.

The use of pulsed optical gratings also allows one to

implement an interferometer in the time domain as discussed

in detail by Nimmrichter, Haslinger et al. (2011). Time-

domain interferometry was first proposed by Moshinski

(1952) for neutrons. Since then it has been implemented in

various atom experiments, for instance, by Kasevich et al.

(1991), Szriftgiser et al. (1996), Cahn et al. (1997), Fray

et al. (2004), and Turlapov, Tonyushkin, and Sleator (2005). It

permits one to eliminate many velocity-dependent dispersive

effects since all particles interact with all perturbations for the

same period of time.

A possible implementation for clusters is illustrated in

Fig. 3(c), where a cluster package passes along a plane mirror

surface. It is subjected to three retroreflected UV laser pulses

which form standing light waves. These pulses are separated

in time by a pulse delay of several tens of microseconds for

low-mass clusters and up to tens of milliseconds for clusters

around 106 amu. The time-domain analog of the Talbot

length is the Talbot time TT ¼ md2=h, proportional to the

particle mass. For light with a wavelength of 2d ¼ 157 nm as

generated by an F2-excimer laser it amounts to TT=ns ¼
15m=amu. F2 lasers have a coherence length of about 1 cm

(Sansonetti, Reader, and Vogler, 2001) and a pulse width of

about 10 ns, which suffices to form a laser grating up to a few

millimeter distance from the mirror surface. Other light

sources, such as high harmonics of solid state lasers, are

similarly conceivable.

One can scan the interference fringes, for instance, by

allowing the particles to fall freely in the gravitational field.

Since the delay time is the same for all clusters, they will fall

by the same distance, and will thus be effectively scanned by

laser grating G3, independent of their velocities. The simu-

lation presented in Fig. 9 shows that the quantum visibility

in such a scheme could reach as much as 100% for a given

mass.

IV. PROBING ENVIRONMENTAL DECOHERENCE

The experiments described in the previous section demon-

strate that complex particles can be delocalized over hundreds

of nanometers, a distance exceeding their size by orders of

magnitude. Given this clear confirmation of quantum me-

chanics, how can one understand that under normal circum-

stances molecules appear as well-localized objects? This

distinction of states with well-defined position can be ex-

plained within the framework of quantum mechanics by the

concept of environmental decoherence (Joos et al., 2003;

Zurek, 2003; Schlosshauer, 2007).

The theory accounts for the crucial influence of practi-

cally unobservable environmental degrees of freedom, such

as ambient gas particles or the radiation field. The inter-

action correlates the environmental quantum state with that

of the molecular motion, implying that some information

on the molecule’s whereabouts could be obtained in prin-

ciple by an appropriate measurement of the environment.

Even though this cannot be done in practice, the mere fact

that which-way information remains in the environment

suffices to affect the reduced state of the molecule in the

same way as if the particle position was continuously

monitored by a coarse-grained detector and the outcome

discarded. This leads to the effective localization of the

particle, i.e., to the reduction of spatial coherence, prohib-

iting its wave behavior in agreement with the complemen-

tarity principle (Bohr, 1949). Equivalently, one can view

the environment as exerting random momentum kicks on

the molecule, which blur the molecular state in the mo-

mentum representation.

The near-field interference setups discussed in Sec. III are

particularly well suited for quantitative decoherence studies

since a molecule will typically not be scattered out of the

detected beam after an environmental interaction. This en-

abled the first studies of thermal and collisional decoherence,

two paradigmatic mechanisms, which can be experimentally

well controlled and where the observed reduction of the

interference visibility can be compared with the quantitative

predictions of decoherence theory.
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FIG. 9. Predicted fringe visibility as a function of both the pulse

delay time and the mean number of absorbed UV photons. Matter-

wave self-imaging occurs at multiples of the Talbot time TT. Each

single-photon ionization grating leads to a spatially periodic re-

moval of clusters from the beam. The antinodes of the standing light

waves thus play the role of the mechanical bars in a nanofabricated

grating. By increasing the laser pulse energy one broadens the zones

from which the clusters can be efficiently extracted. This corre-

sponds to a reduction of the effective open slit width in a mechanical

grating. All gratings are not only ionizing, but are accompanied by

an additional phase modulation arising from the interaction between

the polarizable molecules and the laser field. This intensity depen-

dent phase gives rise to the predicted asymmetry of this figure.
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It should be emphasized that the fringe visibility may also

be degraded by more mundane effects which cannot be

related to the dissemination of which-way information,

even though they may be hard to distinguish from proper

decoherence. In practice the most relevant of these is the

blurring of the observed interference pattern due to the phase

averaging caused by vibrations and due to thermal drifts of

the grating positions and their alignment; also fluctuations of

electromagnetic field gradients can reduce the recorded in-

terference visibility. Such classical noise effects were suffi-

ciently suppressed in the experiments on thermal and

collisional decoherence.

A. Endogenous heat radiation

Every complex particle with a finite temperature emits

thermal radiation. The localization due to that radiation is

thus a basic decoherence effect expected to occur in any

thermal object. It can be studied conveniently with fullerenes

since they behave in many ways similar to a small solid when

heated to high internal energies.

At temperatures exceeding 1000 K fullerenes radiate in a

continuous optical spectrum, similar to a blackbody (Hansen

and Campbell, 1998). They also start to evaporate C2 subunits

and to emit thermal electrons. All of these processes can

occur while the hot molecules traverse the Talbot-Lau inter-

ferometer. However, ionization and fragmentation lead to a

complete loss of the molecules and thus do not contribute to

the recorded signal.

In the experiment the fullerenes were heated by several

intense laser beams in front of the interferometer

(Hackermüller et al., 2004). Both the ionization yield in

the excitation region and the increased final detection effi-

ciency are recorded as a function of the heating laser power

and the particle velocity, providing a temperature calibration.

The agreement of these measurements with a model calcu-

lation yields the distribution of microcanonical temperatures

in the molecular ensemble (Hornberger, Hackermüller, and

Arndt, 2005). Photoemission is the fastest and most efficient

cooling process, and a good portion of the internal energy is

emitted before the molecules enter the interferometer.

However, it still is probable for the molecules to emit several

near-infrared or even visible photons during their transit

between the first and the third grating.

The theoretical account of the expected decoherence must

consider the fact that fullerenes differ from ideal blackbody

emitters. A microscopically realistic description of the spec-

tral emission rate is obtained by including their known

frequency-dependent absorption cross section, their finite

heat capacity, and the fact that they are not in thermal

equilibrium with the radiation field (Hornberger,

Hackermüller, and Arndt, 2005).

As shown in Fig. 10, the prediction from decoherence

theory is well confirmed by the experimental observation:

The interference visibility is gradually reduced with increas-

ing molecular temperature until it vanishes completely. The

upper scale gives the mean microcanonical temperature in the

molecular beam, showing that at 1500 K the fullerenes still

behave as quantum waves in this experimental arrangement,

while they are indistinguishable from classical particles when

close to 3000 K. The calculation shows that between three

and four photons are typically required to reduce the visibility

by one-half. This is consistent with the emitted wavelength

being comparable to the spatial delocalization of the molecu-

lar matter waves.

These studies imply that thermal decoherence can turn

into a serious obstacle for interferometry with very complex

particles. In particular, the effect suffices to explain the

localization of truly macroscopic objects, since the critical

temperature for the effective quantum-to-classical transition

decreases with increasing size (Joos et al., 2003;

Hornberger, 2006). At the same time, thermal decoherence

should be avoidable for particles with masses up to

109 amu by cooling them to their vibrational ground state,

i.e., below 77 K; at these masses also the vacuum chamber

containing the setup needs to be cooled to avoid decoher-

ence due to blackbody radiation (Nimmrichter, Hornberger

et al., 2011).

B. Collisional decoherence

A second fundamental decoherence effect is related to the

scattering of ambient gas particles off the delocalized mole-

cule. Using a Talbot-Lau interferometer one can study this

effect quantitatively by the gradual admission of different

gases into the vacuum chamber. At room temperature, the

collisional momentum and information transfer is so high that

already a single scattering event per molecule suffices to fully

destroy the interference. On the other hand, because of the

FIG. 10 (color online). Observation of thermal decoherence in a

Talbot-Lau interferometer. The expected visibility reduction (solid

line) is in good agreement with the experimental observation

(points). The bottom scale gives the heating laser power, and the

top scale shows the mean molecular temperature at the interfer-

ometer entrance. The maximal interference path separation of

990 nm is comparable to the wavelengths of the thermal photons,

implying that more than a single photon has to be emitted to fully

destroy the fringe visibility. Combined with the highly nonlinear

temperature dependence of the emission probability, this explains

the particular form of the curve. In the experiment the gratings are

separated by 38 cm and the mean beam velocity is 100 m=s. From

Hackermüller et al., 2004.

Klaus Hornberger et al.: Colloquium: Quantum interference of clusters . . . 165

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012



high mass of the interfering particles and the wide detection

area there is no dominant beam depletion due to collisions

within the interferometer.

As shown in Fig. 11 an exponential decay of the fringe

visibility can be observed as the gas pressure increases

(Hornberger et al., 2003). This is consistent with assuming

that a single collision process is able to resolve the molecular

position, or equivalently to blur the interference pattern by the

random momentum transfer. We note that also the molecular

transmission decreases exponentially, though this is mainly

due to collisions outside the interferometer.

We find a good quantitative agreement with decoherence

theory, as indicated by the solid line in Fig. 11. The calcu-

lation is based on a semiclassical approximation for the

velocity-dependent total scattering cross section, which is

determined by the interparticle van der Waals potential, and

which must be averaged over the velocity distribution in the

gas; see Hackermüller et al. (2003). This experiment serves

also to confirm the short time limit of the quantum linear

Boltzmann equation for a tracer particle in a gas (Vacchini

and Hornberger, 2009).

The interference of fullerenes yields substantial visibilities

even at moderate pressures of 10�7 mbar (and an interfer-

ometer transit time of 5 to 10 ms). However, we estimate that

quantum interference with gold nanoclusters of 106 amu will

require a pressure of less than 10�9 mbar (Nimmrichter,

Haslinger et al., 2011).

V. INTERFERENCE-ASSISTED MEASUREMENTS

The narrow spacing of the quantum interference fringes

and the high sensitivity of their position to external forces

allows one to turn molecule interferometry into a viable

tool for quantum-enhanced metrology. The high potential

of interference-assisted measurements has already been

demonstrated with atoms. Static polarizabilities (Ekstrom

et al., 1995; Miffre et al., 2006a; Holmgren et al., 2010),

the ratio ℏ=mCs (Weiss, Young, and Chu, 1993), the gravita-

tional acceleration (Peters, Chung, and Chu, 1999), and

Earth’s rotation (Gustavson, Bouyer, and Kasevich, 1997)

have been measured interferometrically, to name a few.

Here we focus our discussion on the combination of

Kapitza-Dirac-Talbot-Lau interferometry with conventional

Stark deflectometry (De Heer and Kresin, 2010) to determine

the internal properties of large organic molecules. This pro-

vides valuable insight into physical chemistry, and it is also

important for future interference experiments since the cou-

pling of the molecule to the environment depends on these

parameters.

A. Optical polarizability

In KDTLI the light grating G2 interacts with the molecular

optical polarizability �opt and modulates the de Broglie phase

shift. The influence of the laser power P on the fringe

visibility V was already illustrated in Fig. 8 for the perfluor-

alkylated nanosphere PFNS8. For smaller molecules with a

higher signal-to-noise ratio, such as the fullerenes,

Hornberger et al. (2009) found that the excellent agreement

between theory and experiment permits the determination of

�opt with an accuracy of around 10% (dominated by the

systematic uncertainties in the power and the vertical waist

of the diffracting laser). This allows, for instance, a clear

distinction between C60 and C70, directly from the power

dependence of their fringe visibility. KDTLI may thus be

used for identifying properties which cannot be discriminated

by a mass spectrometer alone (Gerlich et al., 2008).

B. Electric polarizability

The KDTLI can be extended by a pair of electrodes

(Stefanov, Berninger, and Arndt, 2008) in front of G2, as

shown in Fig. 12, to access the static polarizabilities. The

inhomogeneous electric field E produced by the electrodes

provides a homogenous transverse force on a polarizable

particle of polarizability �stat. The magnitude of the final

quantum fringe shift

�x ¼ K
�stat

2mv2

@

@x
ðE2Þ (2)

is identical to the displacement of a classical particle beam

of mass m and velocity v. K is a constant defined by the

geometry of the electrodes. Matter-wave interferometry,

however, additionally imprints a nanosized, high-contrast

fringe pattern whose shift can be monitored with a resolution

of a few nanometers. This exceeds the spatial resolution of

typical classical experiments by orders of magnitude.

Because of that, quantum experiments can operate at lower

fields and be less intrusive. At present, the experimental

uncertainty in quantum deflectometry is still comparable to

its classical analog (Berninger et al., 2007), since the

experimental precision is currently limited by the uncer-

tainty of the velocity measurement and the error of the

geometry factor K. Future experiments featuring an im-

proved velocity selection and a better calibration, for

FIG. 11 (color online). Interference fringe visibility of C70 fuller-

enes as a function of the methane gas pressure in a TLI (semi-

logarithmic scale). The exponential decay indicates that already a

single collision leads to a complete loss of coherence. Good

agreement is found with the prediction of decoherence theory (solid

line), which is based on the microscopic scattering dynamics. From

Hornberger et al., 2003.
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instance using an atom beam, are expected to achieve an

accuracy of better than 1%. This is close to the intrinsic limit

for thermally excited molecules undergoing state changes on

a rapid time scale, as shown later.

C. Structural isomers

The molecular polarizability is also closely linked to the

intramolecular atomic arrangement. Stark deflectometry

therefore allows one to distinguish structural isomers, i.e.,

molecules which have the same chemical composition and

mass but a different atomic arrangement. This is the case for

the compounds in Figs. 7(e) and 7(f) which were tailor made

by Tüxen et al. (2010). Molecular beams of both species are

prepared under equal conditions and delocalized over similar

areas in the same interferometer. The stretched compound in

Fig. 7(f), however, contains a delocalized �-electron system

which enhances the electronic polarizability with respect to

the value of the compound in Fig. 7(e) with a tetrahedral core.

Interferometric deflectometry can then distinguish between

these two species and in principle even sort them spatially

(Ulbricht et al., 2008). This occurs without the exchange of

any which-path information, since the interaction of the

molecules with the external field is conservative and

reversible.

D. Thermal dynamics

In contrast to atoms, whose interaction with an electric

field is determined by the static atomic polarizability alone,

complex molecules are bestowed with many additional de-

grees of freedom. Even intrinsically nonpolar particles, with a

point-symmetric thermal ground state, may develop vibra-

tionally induced electric dipole moments which fluctuate on a

short time scale. The beam shift in an external field is then

again determined by a polarizability as in Eq. (2). However,

in place of only the static polarizability, which describes the

response of the electron cloud, we must use the sum of �stat

and a temperature dependent nuclear term accounting for the

nuclear motion. It is determined by the thermal average hd2i
of the squared electric dipole component (Compagnon et al.,

2002):

�tot ¼ �stat þ
hd2i
3kBT

: (3)

Although the underlying conformation changes occur on a

subnanosecond time scale and average the expectation value

of the dipole moment to zero, the squared dipole remains

finite at finite temperatures. This picture was experimentally

tested with hot perfluoroalkylated azobenzene molecules,

shown in Fig. 7(d). At 500 K they undergo rapid fluctuations

with dipole variations between 0.8 and 3.6 D. Interferometric

deflectometry yields a total polarizability of �tot=4�"0 ¼
ð95� 3� 8Þ � 10�30 m3, which is larger than the value

for the electronic polarizability �stat=4�"0 ¼ ð61� 1�
7Þ � 10�30 m3, as taken from a visibility-versus-power

curve. Here the first uncertainty values give the statistical

error, and the second ones give the systematic error. The

observed total polarizability is numerically consistent with

the sum of the electronic polarizability and the temperature

dependent term in Eq. (3) (Gring et al., 2010).

E. Permanent electric dipole moments

While all measurements described so far are contrast

preserving at a fixed molecular velocity, the interaction be-

tween a static molecular moment and an external field may

eventually lead to a loss of the fringe visibility due to the

molecular rotation. If a polar molecule is exposed to an

external field gradient, a deflection force F ¼ �rðd �EÞ
will displace the interference pattern in dependence of the

molecular orientation with respect to the field. Thermally

excited molecules will generally leave the source with a

random orientation, rotating at frequencies around 1010 Hz.
The fringe shift then varies not only in magnitude but also in

direction such that the interference pattern washes out already

at moderate external field strengths. This is a typical example

where the fringe visibility is reduced by phase averaging

instead of genuine decoherence, i.e., without the dissemina-

tion of which-path information into the environment

(Eibenberger et al., 2011).

F. Absolute absorption cross sections

The experiments of Sec. IV illustrated how the emission of

photons can lead to the decoherence of matter waves. This

sensitivity to the recoil of a single photon can be brought to

practical use in an interferometric measurement of the abso-

lute molecular photoabsorption cross section (Nimmrichter

et al., 2008). Photon absorption may be induced by the

running wave of an additional laser beam crossing the mo-

lecular beam in the direction of the grating vector. Given

the Poissonian photon number statistics, a small discrete

number of photons can be absorbed, and the corresponding

FIG. 12 (color online). Interferometric Stark deflectometry com-

bines the high spatial resolution of the KDTL experiment [see

Fig. 3(b)] with the fringe deflection in an electric force field. Beam

shifts as small as 10 nm can easily be resolved and be used to

evaluate both intramolecular properties and external forces. From

left to right: A thermal source emits an intense beam of neutral

molecules. A pair of electrodes, placed in between G1 and G2,

provides the deflection field. An electron impact ionization quad-

rupole mass spectrometer (QMS) serves as detector.
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interferograms are shifted in discrete steps which add up to an

interference pattern with reduced visibility. By a judicious

choice of the laser position the interference visibility is

maximally blurred already if a single photon is absorbed on

average. It is thus possible to determine the absorption cross

section without knowing the molecular density in the beam, a

frequent challenge in physical chemistry. This exemplifies the

fact that quantum decoherence phenomena can become a tool

for molecular metrology.

VI. EXPERIMENTAL CHALLENGES

Interference experiments are only as good as their beam

sources and detectors. In the following, we briefly describe

some schemes which are currently available or under inves-

tigation for matter-wave interferometry. For brevity we limit

the discussion to neutral clusters and molecules.

A. Molecular beam sources

An ideal source emits velocity- and mass-selected particles

at low internal and external temperatures in a well-defined

direction into ultrahigh vacuum. Up to now, molecular inter-

ference experiments had to rely on either supersonic sources

or thermal beams. Effusive sources are particularly appealing

for matter-wave experiments as they are fully vacuum com-

patible, simple, and have the capability of generating beams

of molecules exceeding 10 000 amu with velocity distribu-

tions that have significant components at velocities as low as

10 m=s. Supersonic sources, on the other hand, generate

beams which emerge at much higher velocities, but exhibit

much smaller velocity spreads and internal temperatures

(Scoles, 1988), which makes them still suitable for interfero-

metric metrology experiments with polypeptides and oligo-

nucleotides. Mechanical slowing mechanisms (Gupta and

Herschbach, 1999; Narevicius et al., 2007) and electromag-

netic slowing mechanisms (Bethlem, Berden, and Meijer,

1999; Fulton, Bishop, and Barker, 2004; Narevicius et al.,

2008) have been used to decelerate molecules around

100 amu. Molecules beyond the size of a single virus may

be volatilized by matrix assisted laser desorption ionization

(Tanaka et al., 1988) or electrospray ionization (Fenn et al.,

1989).

Large clusters of metals and semiconductors can be pre-

pared using aggregation sources (Martin, 1984; Haberland,

Karrais, and Mall, 1991; von Issendorff and Cheshnovsky,

2005) with diameters up to several nanometers, both as

neutrals as well as ions, and with a base velocity of about

200 to 300 m=s in a carrier gas at 77 K. Further slowing and

internal state cooling can be achieved using a cold buffer gas

or cryogenic ion traps.

Low molecular beam velocities are expected via sympa-

thetic cooling by laser cooled ions (Molhave and Drewsen,

2000) or by cooling in an off-resonant cavity (Horak et al.,

1997; Chang et al., 2010; Nimmrichter et al., 2010; Romero-

Isart, Pflanzer, Blaser et al., 2011). However, many experi-

mental challenges still have to be overcome to turn any of

these sources into a reliable method for nanoparticle quantum

optics.

B. Detection methods

All experiments described in this review were carried out

using either thermal laser ionization or electron impact quad-

rupole mass spectrometry. Thermionic emission of electrons

is an efficient and fast detection method for stable particles,

such as fullerenes, which exhibit thermal photon emission

rather than fragmentation when heated to high temperatures

(Campbell, Ulmer, and Hertel, 1991; Hansen and Campbell,

1998).

Electron impact ionization quadrupole mass spectrometry,

on the other hand, is more universal at low masses, but limited

to a typical detection efficiency of 10�4 and often compro-

mised by uncontrolled fragmentation at high mass.

Complementary to that, single-photon or two-photon meth-

ods seem to be adapted for the detection of clusters of almost

any size, yet they often fail for large organic molecules

(Hanley and Zimmermann, 2009).

This is why scanning tunneling microscopy (Juffmann

et al., 2009) or fluorescence methods (Stibor, Stefanov

et al., 2005) have been established to image surface deposited

interferograms. Their high detection efficiency, however, has

to be weighed against the difficulty of distinguishing mole-

cules from their fragments.

C. External perturbations

Classical noise phenomena, which should be distinguished

from the decoherence processes described in Sec. IV, are

conceptually less intriguing, but are in practice often more

relevant to the experiment. A theoretical discussion in the

context of atom interferometry was given by Schmiedmayer

et al. (1997) and Miffre et al. (2006b), and for molecule

experiments by Stibor, Hornberger et al. (2005).

In a three-grating interferometer the fringe shift �x de-

pends on the relative position of all gratings as given by

�x ¼ �x1 � 2�x2 þ �x3. Grating vibrations may destroy

the interference fringes already at amplitudes as small as a

few nanometers. In the presence of a constant acceleration a
the fringe shift is �x ¼ �2ðaT2=2Þ þ að2TÞ2=2 ¼ aT2, with

T the free evolution time between two subsequent gratings.

This applies to the Earth’s gravitational acceleration ag ¼
9:81 m=s2, the Coriolis acceleration ac ¼ 2v��E, or any

constant electromagnetic acceleration.

An overall fringe shift will not destroy the interference

pattern. However, if different particles experience different

shifts due to different transit times the final molecular pattern

will be a mixture of differently shifted interferograms, and the

visibility can be drastically reduced. An interferometer in the

time domain (see Sec. III.C) can eliminate all phase shifts that

depend on transit times. Even the intrinsically velocity-

dependent Coriolis force can be compensated then by a reor-

ientation of the interferometer grating vector parallel to �E.

VII. THEORY OF TALBOT-LAU NEAR-FIELD

INTERFERENCE

We now provide an overview of the theory, which

permitted us to design the interferometers such that the

quantum mechanically predicted fringe visibility is always
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considerably larger than of the moiré-type shadows expected

by classical physics.

In Talbot-Lau near-field interference, many different dif-

fraction orders contribute to a resonant interference effect.

Even small distortions of the various wave fronts can there-

fore result in large effects. This applies, in particular, to the

influence of the dispersion forces between the polarizable

molecules and the grating walls. An accurate description

must also account for the finite longitudinal coherence in

the initial beam, as well as the incoherent effects of photon

absorption and Rayleigh scattering in the standing laser light

wave. For precise predictions also the finite width and the

transverse coherence of the molecular beam entering the

interferometer must be included, as well as the effects of

grating vibrations and inertial forces due to gravity and the

rotation of the Earth.

All this can be accounted for in a transparent and largely

analytical fashion by expressing the state of the particle beam

and its evolution in phase space in terms of the Wigner

function (Wigner, 1932; Schleich, 2001). This also facilitates

the incorporation of decoherence effects caused by the emis-

sion of thermal radiation or the scattering of particles.

Comparison with the classical prediction, including all forces

and environmental effects, then simply requires one to re-

place the Wigner function by the classical phase-space

distribution.

A. Phase-space formulation

A quantum phase-space theory of Talbot-Lau interferom-

etry was developed by Hornberger, Sipe, and Arndt (2004)

and refined to the treatment of grating dispersion forces

beyond the eikonal approximation by Nimmrichter and

Hornberger (2008). It is based on earlier treatments using

wave functions (Patorski, 1989; Clauser and Reinsch, 1992;

Berman, 1997; Brezger, Arndt, and Zeilinger, 2003). The

concept was later extended to Kapitza-Dirac-Talbot-Lau in-

terferometry (Hornberger et al., 2009) and to time-domain

interferometry with ionizing laser beams (Nimmrichter,

Haslinger et al., 2011).

We assume a coarsely collimated molecular beam where

the longitudinal speed exceeds the transversal velocity. The

change of the longitudinal velocity component vz may then

be neglected as the particles pass the interferometer, and the

description can be confined to the transverse state of motion

in a longitudinally comoving frame. One considers how the

transverse Wigner function transforms under the sequential

steps of passages through the gratings and the stretches of free

propagations, and includes the longitudinal coherence only in

the end by averaging over the velocity distribution in the

beam. The classical prediction can be obtained in much the

same way, since the Wigner function and the classical phase-

space distribution exhibit the same shearing transformation

during the free motion in between the gratings.

To keep the presentation simple we focus here on the

results for the special case of equidistant gratings with equal

period d, and we assume a transversally extended and inco-

herent initial beam. The periodic nature of the diffraction

masks then allows us to expand the expected periodic fringe

pattern in a Fourier series,

wTLðxÞ ¼
X1

m¼�1
B�
mð0ÞB2m

�

m
L

LT

�

exp

�

2�im
x

d

�

: (4)

It involves the Talbot-Lau coefficients

Bmð�Þ ¼
X1

j¼�1
bjb

�
j�m exp½i�ðm� 2jÞ��: (5)

The bj components are the Fourier coefficients of the trans-

mission function of the second grating G2,

tðxÞ ¼ bðxÞ exp
��i

ℏvz

Z

Vðx; zÞdz
�

¼
X1

j¼�1
bj exp

�

2�ij
x

d

�

: (6)

They are determined by the aperture amplitude 0 � bðxÞ � 1,
and they also involve a complex phase if the grating potential

Vðx; zÞ caused by dispersion forces or optical dipole forces is

included.

It follows from Eq. (5) that for integer � ¼ n the BmðnÞ
reduce to the Fourier coefficients of the transmission proba-

bility jtðxÞj2 (shifted by half a grating period for odd n). This
is the same self-imaging phenomenon encountered if a plane

wave illuminates a single grating; see Sec. II.B. Indeed, the

density pattern of the basic Talbot effect consists of the same

coefficients (5), and reads as (Nimmrichter and Hornberger,

2008)

wTðxÞ ¼
X1

m¼�1
Bm

�

m
L

LT

�

exp

�

2�im
x

d

�

: (7)

At integer multiples of the Talbot length, i.e., L ¼ nLT, one

indeed recovers the grating profile jtðxÞj2 ¼ jbðxÞj2. At frac-
tional multiples, L=LT ¼ n=m, smaller periods appear in the

interferogram. This can be clearly seen, e.g., for n=m ¼ 1=2,
1=3, 1=4, in the carpet of Fig. 2, which was produced with this
formula for V ¼ 0.

The comparison with Eq. (4) shows that in an incoherently

illuminated TLI or KDTLI the density pattern wTLðxÞ at the
position of the third grating is given by a convolution of the

Talbot pattern (7) with the first grating mask jtðxÞj2. If a third
grating is used to scan the interferogram, another convolution

of Eq. (4) with the transmission probability jtðxÞj2 produces

the same form as Eq. (4) with another factor of B�
mð0Þ,

such that the transmitted signal has the Fourier components

Sm ¼ ½B�
mð0Þ�2B2mðmL=LTÞ. The fringe visibility of a sinu-

soidal fit to the density pattern, as done in the experiment, is

then obtained as the ratio of the first and zeroth Fourier

components, V sin ¼ 2jS1=S0j. The general form of the visi-

bility curves of Figs. 5, 6, and 8 can be reproduced with these

formulas.

The time-domain interferometer of Sec. III.C can be de-

scribed by the same formalism, if we replace the longitudinal

position of the comoving frame of reference by the evolved

time. The length ratio of L=LT is then replaced by the time

ratio T=TT.
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B. Incorporating decoherence

Our phase-space formulation also allows one to easily

incorporate the effects of decoherence discussed in Sec. IV.

During the free propagation of the matter wave any scattering

or emission event will reduce the off-diagonal elements

of the motional density matrix in position representation,

hxj�jx0i ! �ðx� x0Þhxj�jx0i. The decoherence function �
describes the reduction of the fringe visibility, satisfying

j�j � 1 and �ð0Þ ¼ 1. It can be calculated for various deco-

herence processes based on their detailed microscopic phys-

ics (Hornberger, Sipe, and Arndt, 2004).

Given the rate RðtÞ of interaction events with the environ-

ment, the effect of decoherence is accounted for by replacing

the Talbot-Lau coefficients Bmð�Þ in Eq. (4) by

Bmð�Þ exp
�

�
Z L=vz

�L=vz

RðtÞ
�

1� �

�
md

2

jvztj � L

LT

��

dt

�

:

The m ¼ 0 coefficient, describing the mean particle current,

remains unaffected. Them ¼ 2 coefficient, on the other hand,
which determines the sinusoidal visibility gets reduced by an

exponential factor. It is determined by an integral over the

decoherence function, whose argument is the effective sepa-

ration between two neighboring interference paths. We ob-

serve that decoherence is most effective at the position

vzt ¼ 0 of the central grating, whereas there is no effect at

vzt ¼ �L and vzt ¼ L where all interference paths coalesce.

This agrees with the intuitive picture that decoherence is

related to the degree of information gained by the environ-

ment in the interaction process: Which-path information is

best available where the interference paths are farthest apart,

i.e., at the central grating.

In the case of decoherence due to collisions between

delocalized molecules and residual gas particles, the deco-

herence function � is given by an angular integration involv-

ing the scattering amplitude f, the total cross section 	, and
an average over the distribution of gas velocities vg

(Hornberger, Sipe, and Arndt, 2004),

�ðxÞ ¼
�Z

d�
jfð cosð
ÞÞj2

	ðvgÞ
sinc

�

sin

�



2

�
2vgmgx

ℏ

�	

vg

:

The argument of the function sincðzÞ ¼ sinðzÞ=z compares

the distance x between the interference paths to the wave-

length associated with the momentum exchange experienced

if the gas particle scatters with angle 
. Thus, the better the

probing gas particles can resolve the separation between the

interference paths, the stronger the reduction of the fringe

visibility. This is analogous to the case of a Heisenberg

microscope, where the spatial resolution is determined by

the wavelength of the probe particles.

VIII. EXPLORING NEW PHYSICS WITH MESOSCOPIC

MATTER WAVES

So far, we discussed the recent progress in high mass

interferometry, as well as the challenges related to extensions

into the mass range beyond 106 amu. Complementary to that,

various theories have been put forward over the last decades

for an objective modification of the quantum superposition

principle for macroscopic objects. Such speculations range

from nonlinear extensions of the Schrödinger equation

(Bialynicki-Birula and Mycielski, 1976; Großardt and

Giulini, 2011), dephasing due to space-time fluctuations

(Wang, Bingham, and Mendonca, 2006), and gravitational

collapse models (Karolyhazy, 1966; Diosi, 1989; Penrose,

1996), to spontaneous localization theories (Ghirardi, Rimini,

and Weber, 1986; Pearle, 1989; Ghirardi, Pearle, and Rimini,

1990). These models have in common the fact that they

modify the motional dynamics of quantum objects in such a

way that the quantum superposition principle fails above a

certain mass scale of the objects. This way they lead to a

macrorealist description (Leggett, 2002), where nonclassical

delocalized quantum states of macroscopic objects are

excluded.

While most of the suggested models provide at most rough

estimates of the critical mass range, the theory of continuous

spontaneous localization (CSL) by Ghirardi, Pearle, and

Rimini (1990) has been extensively studied (Bassi and

Ghirardi, 2003) and yields quantitative predictions. In the

CSL model a stochastic term is added to the many-particle

Schrödinger equation which randomly collapses the wave

function to a length scale given by the localization length

parameter, commonly estimated as rc ¼ 100 nm. The rate of

the localization events grows quadratically with the mass of

the composite object. In the CSL literature the rate parameter

�0 is specified as the localization rate for a single nucleon

(m ¼ 1 amu). Current estimates of the strength of the CSL

effect by Adler (2007) and Bassi, Deckert, and Ferialdi

(2010) locate its value between 10�12 and 10�8 Hz, which
also ensures that the CSL predictions are consistent with all

currently known microscopic and mesoscopic quantum

phenomena.

Nimmrichter, Haslinger et al. (2011) showed that the

OTIMA interference experiment outlined in Sec. III.C should

be able to test the predictions of CSL with nanoparticles in

the mass range between 106 and 108 amu. This is illustrated
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FIG. 13. Critical mass for testing the continuous spontaneous

localization model (Ghirardi, Pearle, and Rimini, 1990) in the

OTIMA interferometer (Nimmrichter, Haslinger et al., 2011)

with gold clusters. For a mass beyond 106 amu the experiments

already rule out a significant value range of the localization

parameters � and rc of the model. High-contrast interferometry

with m ¼ 108 amu largely exclude the validity of all current

estimates of the CSL model.
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in Fig. 13, where the critical mass for testing the continuous

spontaneous localization is plotted for reasonable values of

the free localization parameters �0 and rc. Observing inter-

ference at 108 amu in this setting would largely rule out the

CSL model in its currently estimated strength.

IX. CONCLUSIONS

Matter-wave interferometry with nanoscale objects is still

a young discipline at the interface between the foundations of

quantum physics, atomic, molecular and cluster physics, and

the nanosciences. We have seen that the de Broglie wave well

describes the center-of-mass motion of even very complex

particles, giving rise to interference phenomena which can be

surprisingly robust against a large variety of internal state

transformations and against interactions between external

force fields and internal particle dynamics.

In the coming years we expect to exploit the finesse of

quantum effects for measuring electromagnetic and structural

properties of nanosized objects with growing sensitivity.

It is important to do so, not only to obtain insights about

nanoparticles, but also to assess the feasibility of quantum

experiments with ever more complex compounds. Future

explorations should also study the effect of atomic or mo-

lecular adducts to the interfering nanoparticles, and the role

of thermal, optical, or magnetic properties of the diffracted

species.

We also indicated the interesting prospects for matter-wave

interferometry with particles in the mass range of 106 amu
and beyond. Various experimental challenges are still to be

overcome to get there, but they will enable new tests of

decoherence mechanisms and experimental explorations of

standing hypotheses on modifications of established quantum

physics.

Cluster interferometry can be contrasted with the enor-

mous progress seen in the development of ultracold Bose-

Einstein condensates (BEC), which have opened a new class

of atomic quantum coherence experiments (Anderson et al.,

1995; Davis et al., 1995). BEC experiments are complemen-

tary to the studies described here. A single BEC may contain

as few as several hundred atoms, comparable to the PFNS10

or TPPF152 molecules, or up to 109 atoms all occupying one

single-particle state. But the parameter range of highly di-

luted, weakly bound ultracold atoms at temperatures below

1 �K differs by many orders of magnitude from that of

molecular and cluster physics, where hundreds of atoms are

bound together in a small but dense piece of condensed

matter at internal excitations well above room temperature.

In contrast to cold atom experiments, in cluster interferom-

etry the entire compound is delocalized and interferes as a

single entity. This is implied by the fact that, unlike in a BEC,

the de Broglie wavelength is given by the mass of the whole

object.

Our experiments are also complementary to proposals for

using mechanical oscillators to test the limits of the quantum

superposition principle (Marshall et al., 2003; O’Connell

et al., 2010; Romero-Isart, Pflanzer, Blaser et al., 2011).

Mechanical devices are orders of magnitude more massive

than even the largest clusters conceivable in foreseeable

matter-wave experiments. However, the high cantilever

mass limits the maximal spatial separation between two

superposed center-of-mass wave packets. It will remain

many orders of magnitude smaller than the separation rou-

tinely achieved in molecule interferometry.

Bose-Einstein condensation, interferometry with nanopar-

ticles, and quantum studies with nanomechanical oscillators

are therefore truly complementary approaches to investigate

the nature of macroscopic quantum physics.
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Bordé, C., N. Courtier, F. D. Burck, A. Goncharov, and M. Gorlicki,

1994, Phys. Lett. A 188, 187.

Born, M., and E. Wolf, 1993, Principles of Optics (Pergamon Press,

Oxford).

Brezger, B., M. Arndt, and A. Zeilinger, 2003, J. Opt. B 5, S82.

Brezger, B., L. Hackermüller, S. Uttenthaler, J. Petschinka, M.

Arndt, and A. Zeilinger, 2002, Phys. Rev. Lett. 88, 100404.
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Mayor, and M. Arndt, 2008, Angew. Chem., Int. Ed. Engl. 47,

6195.

Gerlich, S., et al., 2007, Nature Phys. 3, 711.

Ghirardi, G. C., P. Pearle, and A. Rimini, 1990, Phys. Rev. A 42,

78.

Ghirardi, G. C., A. Rimini, and T. Weber, 1986, Phys. Rev. D 34,

470.

Gring, M., et al., 2010, Phys. Rev. A 81, 031604.
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