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Recent years have witnessed a controversy over Heisenberg’s famous error-disturbance relation.

Here the conflict is resolved by way of an analysis of the possible conceptualizations of measurement

error and disturbance in quantum mechanics. Two approaches to adapting the classic notion of

root-mean-square error to quantum measurements are discussed. One is based on the concept of a

noise operator; its natural operational content is that of a mean deviation of the values of two

observables measured jointly, and thus its applicability is limited to cases where such joint

measurements are available. The second error measure quantifies the differences between two

probability distributions obtained in separate runs of measurements and is of unrestricted

applicability. We show that there are no nontrivial unconditional joint-measurement bounds for

state-dependent errors in the conceptual framework discussed here, while Heisenberg-type meas-

urement uncertainty relations for state-independent errors have been proven.
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I. INTRODUCTION

In the past ten years, a growing number of theoretical and

experimental studies have claimed to challenge Heisenberg’s

uncertainty principle [see, e.g., Ozawa (2004a), Erhart et al.

(2012), Rozema et al. (2012), Baek et al. (2013), Branciard

(2013), Kaneda et al. (2014), and Ringbauer et al. (2014)].

Given the popular status of that fundamental principle, it is not

surprising that these reports have created a considerable furore

in popular science media and national newspapers across the

world. While the challenge is ultimately unfounded (as will be

shown here), it has helped to focus the attention of quantum
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physicists on a long-standing, important open problem: to be

sure, what is under debate is not the textbook version of

Heisenberg’s uncertainty relation that describes a trade-off

between the standard deviations of the distributions of two

observables in any given quantum state. Rather, the challenge

is directed at another facet of Heisenberg’s principle, the error-

disturbance relation and, a fortiori, the joint-measurement

error relation.

Perhaps surprisingly, in nearly 90 years of quantum

mechanics, Heisenberg’s celebrated ideas on quantum uncer-

tainty have, to our knowledge, never been subjected to direct

experimental tests. This fact becomes less astonishing if one

considers that neither Heisenberg nor, until rather recently,

anyone else has laid the grounds to such experimental testing

by providing precise formulations of error-disturbance rela-

tions and, more generally, joint-measurement error relations.

Ultimately, the reason for this omission lies in the fact that the

conceptual tools for the description of quantum measurements

had not been developed in sufficient generality until a few

decades ago. Thus, for a long time research on the joint-

measurement problem was restricted to model investigations

and case studies, and it was not until the late 1990s that the

first general, model-independent formulations of measure-

ment uncertainty relations were attempted.
1
Since then, in

apparent contradiction to the alleged refutations of

Heisenberg’s principle, rigorous Heisenberg-type measure-

ment uncertainty relations have in fact been deduced as

consequences of quantum mechanics.

The primary aim of this work is to explain the conceptual

difficulties in defining appropriate quantifications of meas-

urement error and disturbance needed for the formulation of

such relations and to describe how these difficulties have been

overcome. As a by-product we see how the apparent conflict

over Heisenberg’s principle is resolved. It can be expected

that this conceptual advance provides a firm basis for future

investigations into harnessing quantum uncertainty for appli-

cations in quantum cryptography and quantum metrology.

The claim of a violation of Heisenberg’s principle could

only ever arise due to the informality of Heisenberg’s own

formulations. He gave only heuristic semiclassical derivations

of his error-disturbance relation, which he expressed sym-

bolically as

p1q1 ∼ h: ð1Þ

Here q1 stands for the position inaccuracy and p1 for the

momentum disturbance, which Heisenberg identified with

the spreads of the position and momentum distributions in

the particle’s (Gaussian) wave function after an approximate

position measurement.

Given the vagueness in Heisenberg’s formulations of his

uncertainty ideas, it is not clear what an appropriate rigorous

formulation and generalization of Heisenberg’s measurement

uncertainty principle should look like. Rather than dwelling

on historic speculations, we propose to take inspiration from

Heisenberg’s intuitive ideas and ask the question whether and

to what extent quantum mechanics imposes limitations on the

approximate joint measurability of two incompatible quan-

tities. To give due credit to Heisenberg, we propose to call

such limitations Heisenberg-type measurement uncertainty

(or error-disturbance) relations if they amount to stipulating

bounds on the accuracies (or disturbances) of simultaneously

performed approximate measurements of two (or more)

incompatible quantities, where the bound is given by a

measure of the incompatibility.

Heisenberg’s principle is paraphrased in, for example,

Ozawa (2004a) or Erhart et al. (2012) as the statement that

the measurement of one quantity A disturbs another quantity B

not commuting with A in such a way that certain so-called

“root-mean-square” (rms) measures of error ϵNOðAÞ and

disturbance ηNOðBÞ (to be defined below) obey the trade-

off inequality

ϵNOðAÞηNOðBÞ ≥ 1

2
jhψ j½A; B�ψij: ð2Þ

It seems that the first reference to this inequality as a “Heisenberg

noise-disturbance uncertainty relation” appears in Ozawa

(2003b). According to Erhart et al. (2012), Heisenberg proved

this inequality in his landmark paper of 1927 (Heisenberg, 1927)

on the uncertainty relation. Such a proof cannot be found in

Heisenberg (1927), nor is there a formulation in this generality in

any of Heisenberg’s writings; finally, he did not use any explicit

definition for measures of error and disturbance—certainly not

those of ϵNO; ηNO. Hence there is no good reason to attribute the

inequality (2) to Heisenberg. It is therefore rather odd to base the

claim of a refutation of Heisenberg’s principle on a relation

[inequality (2)] that is actually incorrect according to quantum

mechanics itself given the definitions of ϵNO; ηNO chosen by the

authors of that claim.

Hall (2004), Ozawa (2004a), and Branciard (2013) for-

mulated inequalities (which are not entirely equivalent but of

similar forms) that are (mathematically sound) corrections of

Eq. (2). These inequalities, which all involve the quantities

ϵNO; ηNO in addition to standard deviations, allow for the

product ϵNOðAÞηNOðBÞ to be small and even zero without the

commutator term on the right-hand side vanishing. A number

of experiments have confirmed the inequalities (Erhart et al.,

2012; Rozema et al., 2012; Baek et al., 2013; Weston et al.,

2013; Kaneda et al., 2014; Ringbauer et al., 2014).

The definitions of the quantities ϵNO and ηNO in Eq. (2)

seem innocuous at first sight as they are based on the time-

honored concept of the noise operator, which has a long

history in the field of quantum optics, notably the quantum

theory of linear amplifiers. Nevertheless, as we show, ϵNO and

ηNO are problematic as quantum generalizations of Gauss’

root-mean-square deviations and hence their utility as esti-

mates of error and disturbance is limited.

In contrast, we give here an extension of the concept of

the rms error that remains applicable without constraint in

quantum mechanics. Our definition is based on the general

representation of an observable as a positive operator valued

measure, which is central to the modern quantum theory of

measurement; as we see, the observable-as-operator perspec-

tive underlying the noise-operator approach has a rather more

1
For a review of this development we refer the interested reader to

Busch, Heinonen, and Lahti (2007).
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limited scope and can lead to conceptual problems if not

applied judiciously.

Our measure of error obeys measurement uncertainty

relations of the form

ΔðQÞΔðPÞ ≥ ℏ

2
; ð3Þ

which we have proven in Busch, Lahti, and Werner (2013,

2014b) for canonically conjugate pairs of observables such as

position and momentum. We emphasize that ΔðAÞ is a state-
independent measure of error and is not to be confused with

the standard deviation of an observable A in a state ρ. We also

use the same concept for qubit observables and review a form

of additive trade-off relations for errors and for error and

disturbance, with a nontrivial tight bound that is a measure of

the incompatibility of the observables to be approximated; this

new relation, presented by Busch, Lahti, and Werner (2014a),

can be tested in qubit experiments of the types reported by

Erhart et al. (2012) and Rozema et al. (2012).

The paper is organized as follows. We begin with a brief

discussion of the problem of conceptualizing measurement

error and disturbance in quantum mechanics (Sec. II). Here

we draw attention to an important distinction between two

perspectives on error and disturbance that relate to different

physical purposes: on the one hand, one may be interested in

the interplay between the accuracy of a measurement per-

formed on a particular state and the disturbance that this

measurement imparts on the state; on the other hand, there is a

need to characterize the quality of a measuring device with

figures of merit that apply to any input state. The work of

Ozawa and Hall and of the experimental groups testing

inequality (2) and its generalizations is primarily concerned

with the first type of task while our focus is mainly on the

second.

Another distinction to be addressed in Sec. II concerns the

purpose of error analysis: one may be interested either in the

mean deviation of values or in a comparison of distributions.

The former kind of error measure is applicable only in the

restricted range of situations where quantum mechanics

permits the joint measurability of the observables to be

compared, whereas the latter is always applicable. The

noise-operator based measure is appropriately interpreted as

a measure of the first type and is therefore of limited use in

quantum mechanics.

We then review the relevant elements of the language of

quantum measurement theory (Sec. III). Next we recall the

definitions of the noise-operator based measures of error and

disturbance (Sec. IV) and present our alternative definitions

based on a measure of distance between probability measures

known as the Wasserstein 2-deviation (Sec. V). In Sec. VI

we compare the quantities ϵNO; ηNO with our distribution

deviation measures, highlighting their respective merits and

limitations. The inadequacy of the quantities ϵNO; ηNO as

measures of error and disturbance for an individual state will

be seen to be particularly striking in the qubit case. The

analysis in this section will reveal in which circumstances and

to what extent the quantities ϵNO; ηNO can be used as estimates

of error and disturbance.

Finally we review some formulations of the uncertainty

principle that have been proven as rigorous consequences of

quantum mechanics (Sec. VII). Among these are structural

theorems describing measurement limitations and some forms

of error-disturbance relations that can be considered to be in

the spirit of Heisenberg’s ideas.

The Colloquium concludes with a brief summary and

survey of recent work on alternative formulations of meas-

urement uncertainty relations inspired by the controversy over

Heisenberg’s principle (Sec. VIII).

II. THE TASK OF CONCEPTUALIZING ERROR AND

DISTURBANCE

Here we consider how one should define, say, the position

error and momentum disturbance in measurement schemes

such as, for instance, Heisenberg’s microscope setup. The

error ΔðAÞ of an approximate measurement of some observ-

able A clearly refers to the comparison of data obtained from

two experiments, namely, the given approximate measurement

and an accurate reference measurement, so ΔðAÞ is a quantity
comparing two measuring devices, assessing how much one

fails to match the performance of the other.

A meaningful error analysis in an experiment requires that

the proposed measure of error relates to the actual data

obtained in the experiments to be compared; more explicitly,

we hold that the following two requirements are necessary for

any good error measure:

(a) an error measure is a quantification of the differences

between the target observable and the approximator

observable being measured; in particular, it should

correctly indicate cases where the target and approxi-

mating observables do agree, and where they do not;

(b) the error can be estimated from the data obtained in the

experiment at hand and an ideal reference measure-

ment of the target observable.

A. Measurement error: Comparing values or distributions?

At this point it is necessary to reflect on the possibilities of

implementing such an experimental error analysis. In classical

physics it is common practice to test and calibrate the

performance of a new measuring device by comparing its

outputs with those obtained in a highly accurate standard

reference measurement. The mean error of the approximate

measurement C can then be defined as the rms deviation of its

outcomes ck from the “true value” a of the observable A to be

estimated, that is, symbolically, hðck − aÞ2i1=2.
In quantum physics, it is only in the exceptional case of

eigenstates that a quantity has a precise, definite value that

could be revealed by an accurate measurement. If one does not

want to restrict the assessment of the quality of a measurement

as an approximation of a given observable to its eigenstates,

one may consider calibrating the device by performing an

accurate reference measurement jointly with the given meas-

urement to be assessed. In this way one obtains value pairs

ðak; ckÞ and as a substitute for the unknown or imprecise true

value one can use the A measurement values as reference for

an error estimate, thus defining the value-comparison error as

the rms value deviation hðck − akÞ2i1=2.
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However, the target observable A and the observable C

measured to approximate it may not, in general, be compat-

ible, so that a joint measurement will not be feasible.

Therefore the value deviation concept is not universally

applicable. Moreover, even in cases where A and C are

compatible, the rms value deviation does not merely represent

random noise and systematic errors inherent in the perfor-

mance of the measuring device for C, but also encompasses

preparation uncertainty of A and correlations in the joint

values of A and C.
In order to find a universally applicable measure of error for

quantum measurements, one must therefore look for an

alternative approach. Since the signature of an observable

is the totality of its statistics for all states, a viable method that

offers itself is to apply the reference measurement and the

approximate measurement to different ensembles of objects in

the same state; one can then compare the two measurement

outcome distributions. This method may be referred to as

distribution error estimation.

We see that the definitions of errors used by Ozawa and

collaborators are appropriately understood as formal exten-

sions of the value-comparison error concept; they must

therefore be expected to be of limited use. Examples given

below demonstrate that where they fail to meet require-

ment (b), they also become unreliable and so fall short of

(a) as well. Our alternative error measure is an instance of the

distribution error method.

For the disturbance ΔðBÞ of an observable B in a meas-

urement of A (such as the disturbance of the momentum in a

microscope observation) we face the same issues. One has to

allow for the possibility that the momenta before and after the

measurement interaction do not necessarily commute, so the

difference cannot be determined by comparing individual

values to be obtained in joint measurements. In contrast, it is

always possible to compare the distribution of the measured

momenta after the position measurement with the distribution

of an accurate momentum measurement performed directly on

the same input state.

This is precisely how we detect disturbance in other typical

quantum settings. Consider, for example, the double slit

experiment. Illuminating the slits enough to detect the passage

of a particle through one or the other hole makes the

interference fringes disappear. Clearly the light used for the

observation disturbs the particles, and the evidence for this is

once again the change of the distribution on the screen. This is

illustrated schematically in Fig. 1.

B. State-specific error versus device figure of merit

The problem of quantifying measurement error and

disturbance can be approached in two distinct ways. First,

one may be interested in the question of how close a given

measurement device comes to realizing a good approximate

measurement of some observable in a particular fixed state of

the system. This question can be approached by defining

state-specific error and disturbance measures. Such state-

dependent measures would allow one to determine the

imprecision that one has to accept in the measurement of

some observable if it is required that the disturbance

imparted on some other observable should be limited to a

specified amount.

We have already seen that the notion of value-comparison

error does not lend itself to being widely applicable to

quantum measurements; thus it appears that one must take

resort to using distribution comparison errors. However,

state-dependent distribution comparison measures do not

yield nontrivial joint-measurement error bounds or error-

disturbance trade-off relations, as shown in the following

example.

Consider a perfectly accurate position measurement

where the state change is given as a constant channel. For

any given state ρ, one can choose the measurement such that

the constant channel output state is identical to ρ; then

no disturbance of the state occurs, and any error and

disturbance measures that just compare distributions will

have value zero.

For some time the only state-dependent error approach to

formulating measurement uncertainty relations has been that

of Ozawa (2004a) and Hall (2004), which is based on the

noise-operator based quantities ϵNO; ηNO. We provide evi-

dence showing that these quantities are useful only as error

and disturbance measures for a limited class of measurements.

It follows that Ozawa’s and other inequalities based on ϵNO
and ηNO cannot claim to be universally valid uncertainty

relations—these inequalities do admit an interpretation as

error or disturbance trade-off relations for a limited class of

approximate joint measurements only.

The second approach to quantifying measurement errors is

one of interest to a device manufacturer, who wants to specify

a worst-case limit on the error and disturbance of a device; this

allows the customers to be assured of (say) an overall error

bound that applies to all states they want to measure. Such

device figures of merit will thus be state-independent mea-

sures of error and disturbance.

There are (at least) two ways of obtaining state-independent

error measures. The first is to define a state-dependent

measure for all states and define the worst-case error as the

least upper bound of these numbers. Alternatively, one can

focus on a representative subset of states, namely, the (near)

ρ P'Q'

ρ P

ρ Q

M

 ∆(P, P'  )

 ∆(Q, Q' )

FIG. 1. Comparison of experiments involved in an error-

disturbance relation. The dotted box indicates that the sequential

measurement consisting of first performing an approximate

position and then an ideal momentum measurement can just

be considered as a single approximate joint measurement. The

joint-measurement view thus restores the symmetry between

position and momentum in uncertainty relations.
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eigenstates, and define the mean or the worst-case error across

these. Error measures obtained by the latter method will be

called calibration errors.

Realistic measuring devices will not normally work on all

input states; they have a finite operating range. For the

purposes of the present paper we mainly maintain the

idealization of allowing arbitrary input states; this is in line

with the common idealized representation of observables like

position and momentum as unbounded operators with an

infinite range of possible values. As mentioned, one way of

taking into account the finite operating range is to consider

calibration error measures.

Measurement uncertainty relations for such overall errors

and calibration errors were proven by Appleby (1998a,

1998b), Werner (2004), and Busch and Pearson (2007) for

various state-independent measures, and more recently by

Busch, Lahti, and Werner (2013, 2014a, 2014b) for a general

family of error measures. Some of these results are reviewed in

Sec. VII.C.

III. OPERATIONAL LANGUAGE OF QUANTUM

MECHANICS

We briefly review the key tools of operational quantum

mechanics [see, e.g., Davies (1976), Holevo (1982), Ludwig

(1983), and Busch, Lahti, and Mittelstaedt (1991)] required

for our analysis; these are observables as positive operator

valued measures; the description of state changes through

measurements in terms of the notion of instrument; and the

general concept of measurement scheme. We also comment

on the restrictive observable-as-operator point of view that is

still predominant in the literature but becomes problematic

when adhered to in the modeling of approximate measure-

ments and the search for measures of approximation errors.

A. Observables

In quantum mechanics, the states of a physical system are

generally represented as the positive trace-one operators, also

called density operators, acting on the Hilbert space H

associated with the system. Any observable of the system

is uniquely determined through the distributions of measure-

ment outcomes associated with the states ρ; thus an observable

F can be described as a map that associates a probability

measure Fρ with every state ρ ↦ Fρ, where Fρ is defined on

the set Ω of outcomes, equipped with a σ algebra of subsets Σ.

The form of the distributions is automatically in accordance

with the Born rule FρðXÞ ¼ tr(ρFðXÞ). Here FðXÞ is a

positive operator for each X ∈ Σ with FðXÞ ≤ 1 (such

operators are called effects), and X ↦ FðXÞ the normalized

positive operator (valued) measure (occasionally abbreviated

POVM or POM) representing the observable F. The standard,
sharp observable, given by a spectral measure, is included as a

special case.

For any (measurable) scalar function f, one can define a

unique linear operator F½f� such that hψ jF½f�ψi ¼
R

fðxÞFρðdxÞ for all ρ ¼ jψihψ j with
R

jfj2FρðdxÞ < ∞. In

the case of measurements with real values (Ω ¼ R) we

follow a widespread abuse of notation by denoting functions

x ↦ xn by their values. Thus we can define the moment

operators F½xn� of F through the moments Fρ½xn� ¼
R

xnFρðdxÞ of the distribution Fρ; with a slight abuse of

notation we also write hF½xn�iρ ≡ trðρF½xn�Þ for
R

xnFρðdxÞ
whenever

R

x2nFρðdxÞ < ∞.

If F is a projection valued measure, then F½x� alone

determines this measure F uniquely, and the domain of

F½x� consists of the vectors ψ for which the square integrability

condition
R

x2hψ jFðdxÞψi < ∞ holds. F is then the spectral

measure of the self-adjoint operator F½x�.
If A is a self-adjoint operator, we let A (or also EA) denote

the unique spectral measure associated with A, so that

A ¼ A½x� ¼ EA½x�. Since the distinction between operator

measures and operators is so crucial for the topic in question,

we always use sans serif-type letters such as A for observables

(as measures) and italic-type letters for operators such as A,
even for sharp observables where A and A are in one-to-one

correspondence with each other.

For a general POVM F the operator F½x� does not determine

the full probability distributions; many different POVMs may

have the same first moment operator, so it makes no sense to

call this operator “the observable.” von Neumann’s terminol-

ogy (in which operators and observables are the same thing) is

so deeply rooted in physics education that it seems appropriate

to elaborate once more on the difference between observables

and their first moment operators, especially since the con-

flation directly enters the definition of the quantities ϵNO; ηNO.
Even in the context of projection valued observables alone,

there is good reason to distinguish conceptually between the

operator and its spectral measure. Indeed, there are situations

where for two noncommuting observables F and G the sum

operator H ¼ F½x� þG½x� is self-adjoint (or has a self-adjoint
extension). It is then clear how to set up an experiment to

determine the expectation trðρHÞ, namely, by measuring F on

a part of the sample and G on the rest, and adding the

expectation values. However, there are no “outcomes” h ∈ R,

which appear in this combined experiment, and no probability

distribution associated with that operator. One has simply

performed two incompatible measurements on different parts

of a sample of equally prepared systems. In particular, there

is no way to directly determine trðρH2Þ from the two

measurements.

If we follow the rules of the book, this is how we should do

it: Compute the spectral measure H so that H ¼ H½x�. Then
invent a new experiment in which this observable is measured.

Next, measure this new observable on ρ and compute the

second moment of the statistics thus obtained. The problem is

that we have no handle on how to design a measurement of the

observable H. The connection between F, G, and H is, in fact,

so indirect that a good part of most quantum mechanics

textbooks is devoted to the simplest instances of this task:

Diagonalizing the sum of two noncommuting operators

(namely, kinetic and potential energy if H is the

Hamiltonian), each of which has a simple, explicitly known

diagonalization. This problem is further underlined by a

subtlety for unbounded operators: Even if the summands

are both essentially self-adjoint on a common domain, their

sum may fail to be so as well, so that the expectation of H is

well defined but not the spectral resolution.

Since for a general (real) observable F the second moment

cannot be computed from the first, it is sometimes helpful to
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quantify the difference. We have F½x2� ≥ F½x�2 in the sense

that the variance form

VFðϕ;ψÞ ¼
Z

x2hϕjFðdxÞψi − hF½x�ϕjF½x�ψi; ð4Þ

defined for ϕ;ψ in the domain of F½x�, is non-negative for

ϕ ¼ ψ [see Werner (1986) and Kiukas, Lahti, and Ylinen

(2006)]. Sometimes this extends to a bounded operator which

we denote by VðFÞ, so hϕjVðFÞψi ¼ VFðϕ;ψÞ. In particular,

if F½x� is self-adjoint, then F½x2� ≥ F½x�2 on the domain of F½x�
and the difference operator VðFÞ ¼ F½x2� − F½x�2, occasion-
ally called the intrinsic noise operator, allows one to express

the variance ΔðFρÞ2 ¼
R

ðx −
R

xFρðdxÞÞ2FρðdxÞ of an

observed probability distribution Fρ as a sum of two non-

negative terms:

ΔðFρÞ2 ¼ tr(ρVðFÞ)þ ΔðEF½x�
ρ Þ2: ð5Þ

This shows that the distribution of the observable F is always

broader than the distribution of the sharp observable repre-

sented by F½x� (assuming the latter is a self-adjoint operator),

and the added noise is due to the intrinsic unsharpness of F as

measured by VðFÞ. It is worth noting that this equation

presents a splitting of the variance of the probability distri-

bution Fρ into two terms that are not accessible through the

measurement of F: the term trðρF½x�2Þ cannot be determined

from the statistics of F in the state ρ—unless F is projection

valued, which is equivalent to F½x� being self-adjoint and

F½x�2 ¼ F½x2�, that is, VðFÞ ¼ 0.

Example 1.—Consider an observable on R of the con-

volution form μ � F, with a fixed (real) probability measure μ.

Thus, μ � F is the unique observable defined by the map

ρ ↦ μ � Fρ, where the convolution μ � ν of two (real) prob-

ability measures μ; ν is the unique probability measure defined

via the product measure μ × ν,

ðμ � νÞðXÞ ¼ ðμ × νÞ½fðx; yÞ ∈ R
2jxþ y ∈ Xg�:

For later use we note that Δðμ � FρÞ2 ¼ ΔðμÞ2 þ ΔðFρÞ2 and
the intrinsic noise operator is the constant operator Vðμ � FÞ ¼
ΔðμÞ21 (with the obvious restrictions on the domains and

assuming that ΔðμÞ < ∞).

B. Measurements

There are two equivalent ways to model measurement-

induced state changes. One can use an “axiomatic” description

starting from a set of minimal requirements imposed by the

statistical interpretation of the theory. This leads to the

definition of an instrument.
2
Alternatively, one can work

constructively and describe a measurement scheme involving

a unitary coupling between the object and a measurement

device and subsequent measurement of a pointer observable

on the measuring device.
3
That these approaches agree, a

consequence of the Stinespring dilation theorem, makes the

definition of the class of measurements very canonical.

Given a physical system with Hilbert space H, an instru-

ment I describes all the possible output states of a meas-

urement conditional on the values from an outcome spaceΩ; it

is thus a collection of completely positive maps on the trace

class IðXÞ∶T ðHÞ → T ðHÞ, labeled by the (measurable) sets

X ⊆ Ω of outcomes, such that for each input state ρ the map

X ↦ tr(IðXÞðρÞ) is a probability measure. The interpretation

is that tr(IðXÞðρÞB) is the probability for a measurement

result x ∈ X in conjunction with the “yes” response of some

effect B ∈ LðHÞ (0 ≤ B ≤ 1) after the measurement. When

we ignore the outcomes there is still a disturbance of the

input state ρ, represented by the channel ρ ↦ IðΩÞðρÞ.
Alternatively, we may choose to ignore the system after the

measurement, setting B ¼ 1 in the probability expression, and

obtain an observable F on Ω via
4

tr(ρFðXÞ) ¼ tr(IðXÞðρÞ) ¼ tr(ρIðXÞ�ð1Þ): ð6Þ

It is a simple observation that for any observable F there is an

instrument I such that tr(ρFðXÞ) ¼ tr(IðXÞðρÞ) and that the
association I ↦ F is many to one. For later reference we note

the class of instruments with constant channel associated with

an observable F and a fixed state ρ0, where

IF
ρ0
ðXÞðρÞ ¼ tr(ρFðXÞ)ρ0: ð7Þ

The disturbance exerted by this type of instrument on any

observable B has the effect of turning B into a trivial

observable B0:

tr(ρB0ðYÞ) ¼ tr(ρIF
ρ0
ðΩÞ�½BðYÞ�) ¼ tr(ρ0BðYÞ) ð8Þ

for all Y, so that B0ðYÞ ¼ Bρ0
ðYÞ1.

A measurement scheme M comprises a probe system in a

fixed initial state σ from its Hilbert space K, a unitary map U

representing the coupling of object and probe that enables the

information transfer, and a probe observable Z representing

the pointer reading.
5
This is connected with the notion of

instrument and the observable F by

tr(IðXÞðρÞB) ¼ tr(ðρ ⊗ σÞU�½B ⊗ ZðXÞ�U); ð9Þ

tr(ρFðXÞ) ¼ tr(ðρ ⊗ σÞU�½1 ⊗ ZðXÞ�U): ð10Þ

2
The concept of an instrument as an operation-valued measure was

introduced by Davies and Lewis in the late 1960s (Davies, 1976).

They did not explicitly stipulate the complete positivity of operations

as part of the definition, a property that was already known to be a

crucial feature required from the perspective of measurement theory

[see, e.g., Kraus (1974, 1983) and Davies (1976)]. Here we follow the

practice introduced by Ozawa (1984) of including complete pos-

itivity in the definition of an instrument.

3
Amodern presentation of this latter approach, which goes back to

von Neumann (1932), can be found, for instance, in Busch, Lahti,

and Mittelstaedt (1991).
4
Here we use the notation I� for the dual instrument toI, defined

via the relation tr(IðXÞðρÞB) ¼ tr(ρIðXÞ�ðBÞ), required to hold for
all ρ; X; B.

5
The probe observable can always be assumed to be a sharp

observable so that we may also refer to Z ¼ Z½x� as the probe

observable.
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In the first case, these equations show that each measurement

scheme M defines an instrument I and the accompanying

observable F. The converse result is obtained from the

Stinespring dilation theorem for completely positive instru-

ments. We summarize this fundamental connection in a

theorem. [To the best of our knowledge, the first explicit

proofs of these results in this generality has been given by

Ozawa (1984).]

Theorem 1.—Every measurement schemeM determines an

instrument I and an observable F through (9) and (10).

Conversely, for each instrument I and thus observable F,
there exist measurement schemes M implementing them, in

the sense that (9) and (10) hold.

C. Sequential and joint measurements

A sequential measurement scheme for two observables

F;G with respective value spaces Ω1;Ω2 is defined via Eq. (9)

when the effects B are chosen to be those of an observable

Y ↦ GðYÞ; then for any X ⊂ Ω1; Y ⊂ Ω2,

tr(IðXÞðρÞGðYÞ) ¼ tr(ðρ ⊗ σÞU�½GðYÞ ⊗ ZðXÞ�U) ð11Þ

defines a sequential biobservable ðX; YÞ ↦ EðX; YÞ ¼
IðXÞ�½GðYÞ�, with the probabilities of pair events (biprob-

abilities) given as

tr(ρEðX; YÞ) ¼ tr(ρIðXÞ�½GðYÞ�): ð12Þ

The two marginal observables E1;E2 are

E1ðXÞ ¼ EðX;Ω2Þ ¼ IðXÞ�ð1Þ ¼ FðXÞ; ð13Þ

E2ðYÞ ¼ EðΩ1; YÞ ¼ IðΩ1Þ�½GðYÞ� ≕ G0ðYÞ: ð14Þ

This shows that the first marginal observable is the observable

F measured first by M, whereas the second marginal

observable G0 is a distorted version of the second measured

observable G, the distortion being a result of the influence

of M.

There is an important special case.

Proposition 1.—If one of the marginal observables of a

sequential biobservable E is projection valued, then

EðX; YÞ ¼ E1ðXÞE2ðYÞ ¼ E2ðYÞE1ðXÞ ð15Þ

for all X; Y.
For a proof of this presumably well-known result we quote

Ludwig (1983), Theorem 1.3.1, together with Kiukas, Lahti,

and Schultz (2009), Lemma 1.

We say that two observables F and G (with value sets Ω1

and Ω2) are jointly measurable if there is a measurement

procedure that reproduces the statistics of both in every state;

that is, there exist a measurement schemeM and (measurable)

pointer functions f and g such that

tr(ρFðXÞ) ¼ trððρ ⊗ σÞU�(1 ⊗ Z½f−1ðXÞ�)UÞ; ð16Þ

tr(ρGðYÞ) ¼ trððρ ⊗ σÞU�(1 ⊗ Z½g−1ðYÞ�)UÞ: ð17Þ

If M is the observable defined by M through Eq. (10), then

FðXÞ ¼ M½f−1ðXÞ� and GðYÞ ¼ M½g−1ðYÞ�; that is, F and G
are functions of M. An alternative definition of joint meas-

urability requires the existence of a joint observable for F and

G, that is, an observable E defined on the (σ algebra of subsets

of Ω1 × Ω2 generated by the) product sets X × Y such that F
and G are its marginal observables

FðXÞ ¼ E1ðXÞ and GðYÞ ¼ E2ðYÞ: ð18Þ

These two notions of joint measurability are known to be

equivalent. If F and G have a joint observable E, they are also
jointly measurable. The converse result that the biobservable

ðX; YÞ ↦ M½f−1ðXÞ∩g−1ðYÞ� extends to a (unique) joint

observable of its marginal observables holds, in particular,

in the case of observables on R. This is a consequence of a

more general statement proven, e.g., by Berg, Christensen,

and Ressel (1984), Theorem 1.10. Hence, for any two

observables on R the following three conditions are equiv-

alent: they have a biobservable, they have a joint observable,

and they are functions of a third observable.

IV. NOISE-OPERATOR BASED ERROR

We now review the definition of the noise-based quantities

ϵNO; ηNO and associated uncertainty relations.

A. Definitions

Consider a measurement scheme M ¼ ðK; σ; Z; UÞ as an
approximate measurement of a sharp observable A ¼ A½x�.
We denote by C the observable determined by M. Instead of

seeking a measure that quantifies the difference between the

distributions Cρ and Aρ, the noise-operator approach defines

the error in approximating A with M in a state ρ via

ϵNOðA;M; ρÞ2 ¼ tr(ðρ ⊗ σÞ½U�ð1 ⊗ ZÞU − A ⊗ 1�2):

This expression is usually justified with an appeal to classical

analogy [see, e.g., Kaneda et al. (2014)], where it represents

the root-mean-square deviation between the values of two

simultaneously measured random variables.

The state change caused by M is described by the

associated instrument via the channel ρ ↦ IðRÞðρÞ; this

entails that the initial distribution Bρ of any other sharp

observable B is changed to BIðRÞðρÞ ≡ B0
ρ. Again, instead of

comparing the distributions Bρ and B0
ρ, the noise-operator

approach takes the disturbance caused byM on B in a state ρ

to be quantified by

ηNOðB;M; ρÞ2 ¼ tr(ðρ ⊗ σÞ½U�ðB ⊗ 1ÞU − B ⊗ 1�2);

where B is the unique self-adjoint operator defining B.

B. Historic comments

With the notation ϵNO, ηNO we indicate the underlying

observable-as-operator point of view. These quantities are

defined via expectations of the square of an operator that is the

difference of an input and output operator. We refer to
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ϵNO; ηNO as the NO error and NO disturbance, since they are

modeled after the concept of noise operator in quantum optics,

which was formalized by Haus and Mullen (1962) as the

difference of the operators representing the signal and output

[for some useful reviews, see Yamamoto and Haus (1986),

Haus (2004), and Clerk et al. (2010)].

The use of the noise operator in the modeling of quantum

measurement error can be traced to the seminal work of

Arthurs and Kelly (1965), which was elaborated further by

Arthurs and Goodman (1988). The quantity ϵNO appears there

as an auxiliary entity in the derivation of generalized prepa-

ration uncertainty relations for the output distributions in a

simultaneous measurement of conjugate quantities that reflect

the presence of the inevitable fundamental measurement

noise. It is of interest to note that, in these works, no

independent operational meaning is expressly assigned to

ϵNO, and the inequality

ϵNOðA;M; ρÞϵNOðB;M; ρÞ ≥ 1

2
jtrðρ½A; B�Þj ð19Þ

for a joint approximate measurement of two observables A; B

is deduced under the assumption of unbiased approximations.

Somewhat later, rigorous proofs of this inequality for

unbiased measurements were given by Ishikawa (1991) and

Ozawa (1991).

The approach of Arthurs and Kelly was taken up by

Appleby (1998a), who used it to formulate various kinds of

joint-measurement error and disturbance relations. He clearly

recognized that the inequalities of Eqs. (2) and (19) are bound

to fail for state-dependent measures; accordingly he proceeded

to deduce state-independent measurement uncertainty rela-

tions for generic joint measurements of position and momen-

tum (Appleby, 1998b), using the suprema of ϵNO; ηNO over all

states. He also generalized these relations to approximate

measurements with finite operating range (see Sec. VII.C).

C. Ozawa’s inequality and generalizations

For the numbers ϵNO; ηNO Ozawa derives the inequality

ϵNOðA;M; ρÞηNOðB;M; ρÞ þ ϵNOðA;M; ρÞΔðBρÞ
þ ΔðAρÞηNOðB;M; ρÞ ≥ 1

2
jtrðρ½A; B�Þj; ð20Þ

which is proposed as a universally valid error-disturbance

relation. There is a corresponding joint-measurement error

relation where M is an approximate joint measurement of

A and B; this is obtained by substituting ϵNOðB;M; ρÞ
for ηNOðB;M; ρÞ.
Ozawa’s inequality was recently strengthened by Branciard

(2013) for the case of pure states ρ ¼ jφihφj [here we use the
simplified notation ϵNOðA;M; ρÞ≡ ϵNOðAÞ, etc.]:

ϵNOðAÞ2ΔðBρÞ2 þ ϵNOðBÞ2ΔðAρÞ2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔðAρÞ2ΔðBρÞ2 − 1

4
jh½A; B�iφj2

q

ϵNOðAÞϵNOðBÞ

≥ 1

4
jh½A; B�iφj2: ð21Þ

This inequality is in fact tight: for any A; B; ρ ¼ jφihφj, there
are measurements M for which equality is achieved.

As noted earlier, variations of Ozawa’s inequality based on

the quantity ϵNO have been proposed, notably by Hall (2004)

and Weston et al. (2013). Branciard (2014) showed that these

three types of (inequivalent) inequalities can be obtained as

special cases of his own.

V. DISTRIBUTION ERRORS

A. Distance between distributions

Earlier we noted quantum measurement errors cannot in

general be determined as value deviations by performing the

approximate measurement jointly with an accurate control

measurement on the same system. But they can be estimated

as distribution deviation measures, namely, by comparing the

actual statistics with those of an independent (and ideally

accurate) reference measurement of the target observable on a

separate ensemble of systems prepared in the same state.

When the state is fixed, the comparison thus amounts to an

evaluation of the difference between two probability distri-

butions. Therefore, the key to a definition of the quality of a

measurement, as compared to an ideal one, lies in finding a

measure of distance between two probability measures.

For a general outcome space Ω there are many ways of

doing this, just as there are many ways of defining a metric on

Ω. For uncertainty relations, however, we want, for instance,

the distance between position measurements to be in physical

length units. This is a requirement of scale invariance and also

fixes the metric on Ω to be the standard Euclidean distance.

A similar consideration is encountered in the definition of the

“spread” of a probability distribution, as needed in the

preparation uncertainty relation. The conventional root-

mean-square deviation clearly has the right units, but so does

a whole class of the so-called power-α means. Instead of

developing the general theory [cf. Busch, Lahti, and Werner

(2014b)] we consider here only the case of α ¼ 2 and Ω ¼ R,

equipped with the Euclidean distance Dðx; yÞ ¼ jx − yj.
Identifying a fixed point y ∈ R with the point measure δy

concentrated at y, the root-mean-square deviation

Δðμ; δyÞ ¼
�
Z

jx − yj2μðdxÞ
�

1=2

ð22Þ

is a measure for the deviation of a probability measure μ from

the point measure δy. In particular,Δðδx; δyÞ ¼ Dðx; yÞ, which
further emphasizes the intimate connection of the deviation

with the underlying metric structure of Ω, here R. The

standard deviation is then

ΔðμÞ ¼ inffΔðμ; δyÞjy ∈ Rg; ð23Þ

with the minimum obtained for y ¼ μ½x� (if finite).
The deviation (22) can readily be extended to any pair of

probability measures μ; ν using their couplings, that is,

probability measures γ on R × R having μ; ν as the

(Cartesian) marginals. Given a coupling γ between μ and ν

one can define

Δ
γðμ; νÞ ¼

�
Z

jx − yj2γðdx; dyÞ
�

1=2

; ð24Þ
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as a deviation of μ from ν with respect to γ. The greatest lower

bound of the numbers Δγðμ; νÞ with respect to the set Γðμ; νÞ
of all possible couplings of μ and ν is then a natural distance

between μ and ν, known as the Wasserstein 2-deviation:

Δðμ; νÞ ¼ inffΔγðμ; νÞjγ ∈ Γðμ; νÞg: ð25Þ

If ν ¼ δy, then γ ¼ μ × δy is the only coupling of μ and ν, in

which case Eq. (25) reduces to Eq. (22).

Strictly speaking, Δðμ; νÞ may fail to be a distance, since

Eq. (22) can be infinite. But if one restricts Δð·; ·Þ to measures

with finite standard deviations, then it becomes a proper

metric (Villani, 2009). This metric also has the right scaling: if

we denote the scaling of measures by sλ, so that for λ > 0 and

measurable X ⊂ R, sλðμÞðXÞ ¼ μðλ−1XÞ, then Δðsλμ; sλνÞ ¼
λΔðμ; νÞ, showing that the metric is compatible with a change

of units. Moreover, the metric is unchanged when both

measures are shifted by the same translation.

If μ and ν have finite standard deviations, then the Cauchy-

Schwarz inequality gives the following bounds:

½ΔðμÞ − ΔðνÞ�2 þ ðμ½x� − ν½x�Þ2 ≤ Δðμ; νÞ2

≤ ½ΔðμÞ þ ΔðνÞ�2 þ ðμ½x� − ν½x�Þ2; ð26Þ

which are obtained exactly when there is a coupling giving

perfect negative, respectively, positive, correlation between

the random variables in question, i.e., the variables are linearly

dependent.

B. Errors as device figures of merit

Given a distance for probability distributions we can

directly define a distance of observables E;F,

ΔðE;FÞ ¼ supρΔðEρ;FρÞ: ð27Þ

Note that we are taking the worst case with respect to input

states. Indeed, we consider the distance of an observable F
from an “ideal” reference observable E as a figure of merit for

F, which a company might advertise: No matter what the input

state, the distribution obtained by Fwill be ε close to what you

would get with E. When closeness of distributions is mea-

sured by Δð·; ·Þ, then Eq. (27) is the best ε for which this is

true. As noted earlier, the distances ΔðEρ;FρÞ for individual
states are practically useless as benchmarks since the defi-

ciencies of a device may not be detectable on a single state.

However, these state-dependent measures may be useful if the

goal is to control error or disturbance in a particular state.

The additional maximization in Eq. (27) leads to some

simplifications. Indeed, assume that E is a sharp observable

and that F differs from E just by adding noise that is

independent of the input state, that is, F ¼ μ � E for some

probability measure μ. Then (Busch, Lahti, and Werner,

2014b)

ΔðE; μ � EÞ ¼ Δðμ; δ0Þ ¼
ffiffiffiffiffiffiffiffiffiffi

μ½x2�
q

; ð28Þ

so that ΔðE; μ � EÞ ≥ ΔðμÞ, and equality holds exactly in the

unbiased case μ½x� ¼ 0.

C. Calibration error

The supremum (27) over all states may not be easily

accessible in experimental implementations. Therefore, it

seems more reasonable to just calibrate the performance of

a measurement of F as an approximate measurement of E by

looking at the distributions Fρ for preparations for which Eρ is

nearly a point measure, i.e., those for which E “has a sharp

value.”
6
This can always be achieved when E is sharp, and in

this case we are led to define the calibration error ΔcðE;FÞ
of F with respect to E as the greatest lower bound of the

ε-calibration errors, ε > 0, as follows:

Δ
εðE;FÞ ¼ supfΔðFρ; δyÞjy ∈ R;ΔðEρ; δyÞ ≤ εg; ð29Þ

ΔcðE;FÞ ¼ inffΔεðE;FÞjε > 0g. ð30Þ

Provided that ΔðFρ; δyÞ is finite for at least some ε > 0, the

limit in Eq. (30) exists, because Eq. (29) is a monotonely

decreasing function of ε. Otherwise the calibration error is

said to be infinitely large and F is to be considered a bad

approximation. In the finite case, the triangle inequality gives

that ΔεðE;FÞ ≤ εþ ΔðE;FÞ, and hence

ΔcðE;FÞ ≤ ΔðE;FÞ: ð31Þ

From Eq. (28) we observe that if F just adds independent noise

to the results of E, then ΔcðE;FÞ ¼ ΔðE;FÞ. In general,

however, the inequality (31) is strict.

The Wasserstein distance of probability distributions may

not at first sight be a practical quantity as it can be difficult to

calculate directly. However, there is an alternative method of

computing the error defined here as the infimum over all

couplings; this is provided by Kantorovich’s duality theorem

(Villani, 2009), according to which this infimum over cou-

pling measures is shown to be equal to the supremum over a

certain set of functions. Illustrations of this technique are

found in our related works (Busch and Pearson, 2014; Busch,

Lahti, and Werner, 2014b).

Example 2.—The method of adding independent noise

provides an important example of a joint approximate meas-

urement of two observables. Consider any two sharp observ-

ables A and B. If these observables do not commute in any

state there is still the possibility that they can be measured

jointly in an approximate way. In an approximate

von Neumann measurement of A, with U ¼ eiλA⊗Pp ,

Z ¼ Qp, σ ¼ jϕihϕj, the measured distribution is of the form

μ � Aρ; hence the measured observable is μ � A. Then we

obtain ΔcðA; μ � AÞ ¼ ΔðA; μ � AÞ ¼
ffiffiffiffiffiffiffiffi

μ½2�
p

. The disturb-

ance caused on B can be described in terms of the distributions

as Bρ ↦ BIðRÞðρÞ ≡ B0
ρ.

The observable B could also be measured approximately by

a von Neumann measurement, realizing ν � B as an approxi-

mation. It may happen that the measurements μ � A and ν � B
can be combined into a joint measurement, in which case one

has errors

6
If Eρ is a point measure concentrated at ξ then the effect EðfξgÞ

has an eigenvalue of 1 and ρ is a corresponding eigenstate.
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ΔðA; μ � AÞ ¼
ffiffiffiffiffiffiffiffi

μ½2�
p

; ΔðB; ν � BÞ ¼
ffiffiffiffiffiffiffiffi

ν½2�
p

: ð32Þ

For position and momentum this happens exactly when μ and

ν are Fourier related (Carmeli, Heinonen, and Toigo, 2005), in

which case
ffiffiffiffiffiffiffiffi

μ½2�
p ffiffiffiffiffiffiffiffi

ν½2�
p

≥ ΔðμÞΔðνÞ ≥ ℏ=2.

VI. COMPARISON

We now investigate the justification of the interpretation of

ϵNO as a putative state-specific quantification of measurement

errors and compare this quantity with the state-dependent

distribution error based on the Wasserstein 2-deviation. Both

quantities serve to define state-independent error indicators,

which we discuss later.

A. Ways of expressing the noise-based error quantity

We begin by writing the quantity ϵNO in a variety of ways

and proceed to interpret each of these forms. We introduce

some shorthand notation: Ain ≔ A ⊗ 1, Aout ≔ U�ð1 ⊗ ZÞU,

and NðAÞ ≔ Aout − Ain for the noise operator. Then we have,

denoting by A ¼ EA the sharp target observable and by C the

approximating observable actually measured by the given

scheme M:

ϵNOðA;M; ρÞ2 ¼ hNðAÞ2iρ⊗σ ð33Þ

¼
Z

x2hENðAÞðdxÞiρ⊗σ ð34Þ

¼
Z

ðx − yÞ2RehAinðdxÞAoutðdyÞiρ⊗σ

¼
Z

ðx − yÞ2RehAðdxÞCðdyÞiρ ð35Þ

¼ hA2iρ þ hC½x2�iρ − 2RehAC½x�iρ ð36Þ

¼ hC½x2� − C½x�2iρ þ hðC½x� − AÞ2iρ: ð37Þ

The first line is a compact rewriting of the definition of ϵNO
and the second gives this explicitly as the second moment of

the distribution of the noise operator in the state ρ ⊗ σ. In the

next two lines we introduced the bimeasure

ðX; YÞ ↦ ξA;Cρ ðX; YÞ≡ RehAinðXÞAoutðYÞiρ⊗σ

¼ RehAðXÞCðYÞiρ ∈ ½−1; 1� ð38Þ

to write ϵNO formally as a squared deviation (which works

mathematically since the integrand is separable). The last term

of Eq. (36) arises from tr(ðAρ ⊗ σÞU�ð1 ⊗ ZÞU) and its

complex conjugate by applying Eq. (10) with Aρ replacing ρ.

The last line expresses ϵNO in terms of the intrinsic noise

operator. This shows that ϵNO depends only on the first two

moment operators of A and C.
Essentially the only justification for the interpretation of

ϵNO as an error measure given by its proponents [see, e.g.,

Ozawa (2004b)] is by making reference to the context of

calibration for the approximate measurement of an observable

A. If the input state ρ is an eigenstate of A, so that Aρ is a point

measure δa, then one has

ϵNOðA;M; ρÞ2 ¼ Cρ½x2� þ a2 − 2aCρ½x�

¼
Z

ðx − aÞ2CρðdxÞ ¼ ΔðCρ; δaÞ2; ð39Þ

showing that ϵNO corresponds to the classic Gaussian expres-

sion for the rms deviation from the true value. In this special

situation ϵNO coincides thus with the Wasserstein 2-deviation

ΔðCρ; δaÞ. However, in noneigenstates, there is no true value.

We note that similar expressions can be given for the noise-

based disturbance quantity. We introduce the disturbance

operator DðBÞ ≔ Bout − Bin, where Bin ≔ B ⊗ 1 and

Bout ≔ U�B ⊗ 1U. Denoting by B the spectral measure EB

and by B0 its distortion, B0 ¼ IðRÞ�½Bð·Þ� by the instrument

associated with M, we obtain

ηNOðB;M; ρÞ2 ¼
Z

x2hEDðBÞðdxÞiρ⊗σ

¼
Z

ðx − yÞ2RehBinðdxÞBoutðdyÞiρ⊗σ

¼
Z

ðx − yÞ2RehBðdxÞB0ðdyÞiρ

¼ hB0½x2� − B0½x�2iρ þ hðB0½x� − BÞ2iρ:

Our subsequent discussion focuses mainly on ϵNO, with

analogous comments applying to ηNO.

B. Limitations of the interpretation of the noise-based error

The immediate quantum mechanical meaning of ϵNO is that

of being the square root of the second moment of the statistics

obtained when the observable associated with the (presum-

ably) self-adjoint difference operator NðAÞ ¼ U�ð1 ⊗ ZÞU −

A ⊗ 1 is measured on the system-probe state ρ ⊗ σ. Hence,

viewing the definitions of ϵNO; ηNO from the perspective of

classical statistical error analysis makes it extremely sugges-

tive (perhaps almost irresistible) to consider them as “natural”

quantum extensions of the notion of mean deviation between

pairs of values of the input and output observables measured

jointly on the same object—hence as value deviations.

However, as discussed in Sec. III.A, one cannot, in general,

assume the output operator U�ð1 ⊗ ZÞU and input operator

A ⊗ 1 commute, so that measuring the difference observable

requires quite a different procedure than measuring the two

separate observables or than measuring them jointly (which is

generally impossible). Neither of the three measurements will

be compatible unless the output pointer and target observables

do commute. It follows that the value of ϵNO cannot be

obtained from a comparison of the statistics of the measure-

ment M and a control measurement of A in the state ρ. Put

differently, declaring ϵNOðA;M; ρÞ to represent the error of

M as an approximate measurement of A in the state ρ would

be analogous to claiming that the measured values of the

harmonic oscillator energy are equal to the sum of the values

of the kinetic and potential energy (where these clearly have

no simultaneous values).

Thus, unless A and C are jointly measurable (at least

in the particular state of interest), there is no justification

to the claim that ϵNO is a quantification of experimental
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error—notwithstanding the fact that this quantity can be

experimentally determined itself.

A similar discussion applies to the formulation of ϵNO in

terms of Eq. (38). This bimeasure will not in general be a

probability bimeasure as there will not be joint measurements

of the respective pairs of observables Ain;Aout and A;C unless

they are compatible, which requires their commutativity.

We note that the commutativity of A;C is related to that of

Ain;Aout via

hAinðXÞAoutðYÞ − AoutðYÞAinðXÞiρ⊗σ

¼ hAðXÞCðYÞ − CðYÞAðXÞiρ:
Without the commutativity of A and C, the terms appearing

in Eq. (36) require a measurement of the observable given

by AC½x� þ C½x�A, which generally will not commute with

either of the noncommuting operators A and C½x�; hence the

determination of ϵNO via Eq. (36) is seen to require three

incompatible measurements.

The unavailability of ϵNO as a universally valid error

measure may itself be construed as a quantum phenomenon.

Consider a measurement of a sharp observable C ¼ C½x�
as an approximation of observable A. In that case VðCÞ ¼ 0

and according to Eq. (37) one has then ϵNOðA;M; ρÞ2 ¼
hψ jðA − CÞ2ψi if ρ is a pure state with associated unit vector

ψ . For simplicity we assume that A;C are bounded. The

condition ϵNOðA;M; ρÞ ¼ 0 implies that Aψ ¼ Cψ , and if the

spectral measures A;C commute on ψ , this entails Anψ ¼
Cnψ for all n ∈ N, and this yields Aρ ¼ Cρ. This is analogous

to the classical case, where the vanishing of the squared

deviation implies that the two random variables in question are

equal with probability 1. Put differently, in classical proba-

bility, vanishing rms deviation of two random variables in a

given probability distribution entails that the rms deviation

between any functions of them vanishes as well. This is no

longer true in quantum mechanics: if A;C do not commute,

then ϵNOðA;M; ρÞ ¼ 0 gives only Aψ ¼ Cψ but generally

Aρ ≠ Cρ. We give examples showing that such false indica-

tions of perfect accuracy do happen.

In order to fix this deficiency, Ozawa (2005a) has given a

characterization of perfect accuracy measurements for a given

pure state ψ in terms of perfect correlations between input

and output observables, in that state; he showed that these

conditions can be satisfied only on states that are in the

commutativity subspace of the two observables—which there-

fore has to be nontrivial.
7
Accurate measurements in such a

state ψ are then also characterized by the vanishing of ϵNO on a

suitable subspace of vectors in this commutativity subspace.

This underlines the fact that ϵNO is valid as an error measure

only to the extent to which the approximating observable

commutes with the target observable.

C. Ways of measuring noise-based error and disturbance

1. Directly measuring the noise operator

As noted earlier, the immediate meaning of ϵNO is related to

its expression as the expectation of the square of the noise

operator hNðAÞ2iρ⊗σ. The experimental methods used by the

Toronto group in confirming Ozawa’s inequality (Rozema

et al., 2012) can be adapted to perform a direct measurement

of NðAÞ2.

2. Method of weak values

It was noted by Lund and Wiseman (2010) that the numbers

ξA;Cρ ðX; YÞ ∈ ½−1; 1� can be determined experimentally by

application of weak measurements; then in the case of discrete

finite observables, the integral (sum) form (35) may be used to

reconstruct the value of ϵNOðA;M; ρÞ. This weak value

method was first used in the experiment of Rozema et al.

(2012), in which ϵNO; ηNO are determined in this way.

However, in that case the approximators and target observ-

ables do actually commute, so that the numbers ξA;Cρ ðX; YÞ are
in fact probabilities and could have been determined directly

from sequential measurements instead.

3. Three-state method

In response to comments on the interpretational problems

associated with ϵNO; ηNO (Busch, Heinonen, and Lahti, 2004;

Werner, 2004), Ozawa (2004b) proposed a method of meas-

uring ϵNO that was later termed the three-state method by the

experimenters who used it to measure ϵNO and ηNO and test

Ozawa’s inequality (Erhart et al., 2012); it is encapsulated

in the formula, obtained readily by further manipulation of

Eq. (37):

ϵNOðA;M;ρÞ2 ¼ trðρA2Þ þ trðρC½x2�Þ
þ trðρC½x�Þ þ trðρ1C½x�Þ− trðρ2C½x�Þ; ð40Þ

where the (non-normalized) states ρ1; ρ2 are given by

ρ1 ¼ AρA, ρ2 ¼ ðAþ 1ÞρðAþ 1Þ. While now the quantity

ϵNO is manifestly determined by the statistics of A and C,
one can no longer claim it to be state specific. This is

because now ϵNO is a combination of numbers that are

obtained from measurements performed on three distinct

states ρ; ρ1; ρ2.

4. Using sequential measurements

In the case of a discrete sharp target observable A
(with a complete family of spectral projections Ai) and

commuting approximator C, one can use a sequential

measurement of A and then C to realize the joint (product)

spectral measure defined by X × Y ↦ AðXÞCðYÞ provided

the first measurement is a Lüders measurement, that is, its

channel is ρ ↦
P

iAiρAi. One can then apply Eq. (35) to

determine ϵNO.

Perhaps somewhat surprisingly, the same method can be

used to obtain the disturbance measure ηNOðB;M; ρÞ if the

disturbed observable B0 commutes with B. This possibility

was considered unavailable by Lund and Wiseman (2010) but

shown to work by Busch and Stevens (2014) if B is sharp and

discrete (with spectral projections Bk) and the Lüders channel

is used for the initial control measurement of B. The task is to

compare the values of measurements of B before and after a

measurement ofCwith instrumentI (used to approximate A).
If B0 ¼ IðRÞ�½Bð·Þ� commutes with B, then the marginal

joint observable for B and B0 in this sequence of three

7
For an analysis of the commutativity subspace and the joint

measurability of two sharp observables, see Ylinen (1985).
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measurements is in fact the product observable given by

X × Y ↦ BðXÞB0ðYÞ and thus leads to a direct determination

of ηNO as a value deviation measure.

D. Commuting target and approximator

We now turn to the case of commuting target A and

approximator C. In this instance, as given above by the

integral form (35), ϵNO has a probabilistic interpretation as a

value-comparison error since ξA;Cρ extends to the quantum

mechanical joint probability distribution of the two observ-

ables A and C. Since now ξA;Cρ constitutes a coupling γ for Aρ

and Cρ it follows that

ϵNOðA;M; ρÞ2 ¼ Aρ½x2� þ Cρ½x2� − 2hAC½x�iρ
¼ Δ

γðAρ;CρÞ ≥ ΔðAρ;CρÞ: ð41Þ

Thus, in this commutative case, the NO error provides a

simple upper bound for the state-dependent error ΔðAρ;CρÞ.
This is in line with the fact that ϵNO accounts for the

correlation between A and C as well as preparation uncer-

tainty, while Δ merely compares their distributions. Similar

remarks apply to ηNO.

In the case of approximations with independent noise,

represented by an approximator C ¼ μ � A to a sharp target

observable A (see Example 2), one has

ϵNOðA;M; ρÞ ¼
ffiffiffiffiffiffiffiffi

μ½2�
p

¼ ΔðAρ; μ � AρÞ: ð42Þ

Observe that here the state-specific errors have become

entirely state independent and the value-comparison and

distribution errors coincide.

Example 3.—Rozema et al. (2013) noted that there are

instances where the quantities ϵNO; ηNO are more sensitive to

deviations between the target and approximator observables

than the Wasserstein 2-deviation. This is nicely illustrated

with the following example, where the observable to be

measured is position Q and the approximator is the sharp

observable Q0 ¼ −Q. Then for any state ρ one has

ϵNOðQ;M; ρÞ2 ¼ tr(ρ½Q − ð−QÞ�2)
¼ 4Qρ½x2� ¼ 4ΔðQρÞ2 þ 4hQiρ2:

Now if the density of Qρ is an even function, then

ϵNOðQ;M; ρÞ ¼ 2ΔðQρÞ, while ΔðQρ;Q
−
ρ Þ ¼ 0 since the

distributions coincide; here Q− is the spectral measure of

−Q. Thus ϵNO is more capable of seeing the difference

between Q and −Q in the present case, particularly in an

even probability distribution. This is easily understandable

since here the value-comparison error analysis is available and

provides more detailed information: the quantity ϵNO captures

the strong anticorrelation between the jointly measured

quantities Q and −Q that arises due to their functional

dependence. By contrast, the quantity ΔðQρ;Q
−
ρ Þ describes

the deviation between the distributions Qρ and Q−
ρ , and thus

vanishes if these distributions are even functions.

The following examples involve approximators and dis-

torted observables that are trivial. These are of course very bad

as approximations of sharp observables, but still this does not

always show at the level of distributions. It will be seen that

the value-comparison method, which is applicable in these

cases, is more sensitive in exhibiting the poor quality of trivial

approximators. With both measures one can indeed verify that

the approximations are trivial if one is allowed to test the

devices on sufficiently many states.

Example 4.—Consider two sharp observables A and B and

an arbitrary state ρ. Define trivial observables C ¼ Aρ1,

D ¼ Bρ1. Then, if the joint measurement M of C and D is

applied to the state ρ, the distributions of both A and B are

accurately reproduced in that state. Hence there is no non-

trivial bound to the combined distribution errors for two

observables in an arbitrary state ΔðAρ;CρÞ ¼ 0 ¼ ΔðBρ;DρÞ.
By contrast,

ϵNOðA;M; ρÞ2 ¼ 2ΔðAρÞ2. ð43Þ

This quantity being nonzero reflects the independent contri-

butions of the random spreads of A and C as they are being

jointly measured.

Next we consider some model realizations of error- or

disturbance-free joint measurements, while nevertheless the

quantities ϵNO and ηNO are nonzero in some or all states.

Example 5.—Here is an instance of a disturbance-free

measurement where the measured observable is trivial; yet, for

any given state the measurement can be adapted to reproduce

the statistics accurately while the value-comparison error

ϵNO ≠ 0.

Take the probe to be a system of the same kind as the object,

U the identity, Z ¼ A. This measurement scheme gives one

and the same output distribution (namely, Aσ) for every input

state ρ. Such a measurement is completely uninformative as

it does not discriminate between any pair of different input

states. In other words, the measured observable is trivial

CðXÞ ¼ AσðXÞ1, and thus commutes with A.
This model is comparable to a broken clock that works

perfectly accurately every 12 hours—except one cannot tell

when this would be unless one knows the time by other

means. Knowing that the error is small for a set of input states

with certain properties does not help unless one has the prior

information that a given input state is from this class.

The NO error can be determined via the value-comparison

method, that is, by measuring A on the object system jointly

with measuring A on the probe. The value of ϵNOðA;M; ρÞ2 is

ϵNOðA;M; ρÞ2 ¼ ΔðAρÞ2 þ ΔðAσÞ2 þ ðhAiρ − hAiσÞ2

≥ ΔðAρ;CρÞ2 ¼ ΔðAρ;AσÞ2:

This illustrates the different roles of the two state-dependent

measures: Δmeasures the difference between the distributions

Aρ and Cρ ¼ Aσ , which are indicated as being identical when

σ is chosen to be equal to a given ρ. By contrast, ϵNO shows

that the two Ameasurements performed simultaneously on the

object and probe are statistically independent giving three

separate contributions to the measurement noise: the system-

atic error as the deviation between the mean values, the

random noise arising from the probe preparation σ, and the

preparation uncertainty of A arising from the state ρ of

the object.
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Since the state does not get altered, one has B0 ¼ B and so

ηNOðB;M; ρÞ ¼ 0 and ΔðBρ;B
0
ρÞ ¼ 0 for any (sharp or

unsharp) observable B in any state ρ.

We can now see how Ozawa’s or Branciard’s inequalities

incorporate the possibility of vanishing disturbance (or error,

as shown in the next example): when ηNOðB;M; ρÞ ¼ 0, the

inequality reduces to

ϵNOðA;M; ρÞΔðBρÞ ≥ 1

2
jh½A; B�iρj.

Since ϵNO carries a preparation uncertainty contribution, one

has ϵNOðA;M; ρÞ ≥ ΔðAρÞ, and the trade-off is seen to be one
for preparation uncertainties rather than for error and disturb-

ance. In fact, if A has an eigenvalue one can choose σ to be an

associated eigenstate, so that the random noise arising from

the probe preparation vanishes, ΔðAσÞ ¼ 0; moreover for

states ρ with hAiρ ¼ hAiσ , then also the systematic error

vanishes, and ϵNOðA;M; ρÞ is reduced to the pure preparation
uncertainty ΔðAρÞ.
Example 6.—Next we construct an example of an accurate

measurement which also has vanishing disturbance on a

particular state while the NO disturbance has a nonzero

value.

Such a model is obtained by taking U as the swap

operation. Here we have C ¼ A and B0 ¼ Bσ1. This scheme

gives a NO disturbance ηNOðB;M; ρÞ, which is very small for

some input states and a suitable probe state and becomes

arbitrarily large on other states:

ηNOðB;M; ρÞ2 ¼ ΔðBρÞ2 þ ΔðBσÞ2 þ ðhBiρ − hBiσÞ2

≥ ΔðBρ;B
0
ρÞ2 ¼ ΔðBρ;BσÞ2:

For σ ¼ ρ, ΔðBρ;B
0
ρÞ ¼ 0, indicating correctly that there is no

disturbance in the distribution of B, while ηNOðB;M; σÞ ¼
ffiffiffi

2
p

ΔðBσÞ indicates that the distorted observable B0 has

become statistically independent of the observable B.
Ozawa’s inequality (20) has been presented as an invalida-

tion of Heisenberg’s error-disturbance relation. As we see

in the present example, error and disturbance can easily be

simultaneously small for particular choices of individual states,

in particular, small enough to violate any Heisenberg-type

inequality of the form (2). This is true for any state-dependent

measure of error and disturbance, including our measures

ΔðAρ;CρÞ; see, for instance, Korzekwa, Jennings, and

Rudolph (2014).

The previous examples highlighted the different purposes

served by the state-dependent measures Δ and ϵNO; ηNO. They

also provided test cases showing that the Ozawa and Branciard

inequalities do not universally represent “pure” error-error

or error-disturbance trade-off relations but generally involve

preparation uncertainties and may even sometimes reduce to

the standard preparation uncertainty relation.

In these examples, we have also seen that it is possible to

isolate the systematic and random error parts from the

preparation uncertainties contained in ϵNO; ηNO; one may

even have these genuine error contributions both vanish in

suitable measurement schemes. This demonstrates that on

individual states, perfectly error-free and disturbance-free

measurements are in fact possible—a result that goes beyond

Ozawa’s aim of showing that the error-disturbance product

may vanish.

The fact that even a measurement of a trivial observable can

mimic a perfectly accurate measurement in some states

highlights the need to test a measuring device on a sufficiently

rich variety of object states in order to be able to assess the

accuracy and precision of the device. State-dependent error

measures can answer only rather more limited questions. In

fact, the distribution deviation measure indicates merely how

much the distribution of the approximating observable differs

from that of the target observable. The value-comparison error

(where it can be applied) enables one to detect whether or not

the approximating observable is correlated with the target

observable; the method of its determination involves a joint

measurement of the target A and the approximator C; note that
this also yields Aρ and Cρ and thus allows one to compute the

distribution deviation.

E. Unbiased approximator

The NO error becomes more directly tied to the Wasserstein

2-deviation in the class of measurements with constant bias,

characterized by the condition that C½x� − A is a constant, c1.

Here one has

ϵNOðA;M; ρÞ2 ¼ ΔðCρÞ2 − ΔðAρÞ2 þ c2: ð44Þ

In the unbiased case, ϵ2NO coincides with the surplus variance

of the approximator C over the target A, a quantity that one

could have considered independently as a distribution com-

parison error measure in this case.

The bounds for ΔðAρ;CρÞ arising from Eq. (26) then also

apply to ϵNOðA;M; ρÞ; in fact, in the unbiased case ϵNO is the

geometric mean of these bounds and hence less flexible as an

evaluation of the deviation than Δ, but still gives a simple

estimate of the latter.

However, note that the condition (a) (given at the start of

Sec. II) of a good error measure is not met by ϵNO, even when

this measure is restricted to unbiased approximators. This will

be demonstrated in Example 9 of Sec. VI.F. We therefore

proceed to further investigate the true meaning of ϵNO for

unbiased approximators.

In the case of an unbiased approximator c ¼ 0, Eq. (37) for

ϵNO reduces to ϵNOðA;M; ρÞ2 ¼ tr(ρVðCÞ). For unbiased

joint approximations of two noncommuting observables the

following result holds.

Theorem 2.—Let A;B be sharp observables and C;D be

jointly measurable unbiased approximations of A;B. Then the
intrinsic noise operators of C;D satisfy the trade-off

tr(ρVðCÞ)tr(ρVðDÞ) ≥ 1

4
jtrðρ½A; B�Þj2: ð45Þ

Furthermore, the standard deviations obey the uncertainty

relation

ΔðCρÞΔðDρÞ ≥ jtrðρ½A; B�Þj: ð46Þ

Versions of the inequalities (45) and (46) have appeared for

the special case of position and momentum in Arthurs and

Kelly (1965) and with a rigorous proof in Stulpe, Gudder, and

Paul Busch, Pekka Lahti, and Reinhard F. Werner: Colloquium: Quantum root-mean-square error … 1273

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



Hagler (1988); proofs of different degrees of generality, rigor,

and elegance can be found in Arthurs and Goodman (1988),

Ishikawa (1991), Ozawa (1991, 2005b), Hayashi (2006), and

Polterovich and Rosen (2014).

The inequality (45) can be rewritten in terms of ϵNO and

ηNO, thus confirming that Eq. (2) holds in the unbiased case.

We state this here for general joint measurements with

unbiased approximators:

ϵNOðA;M; ρÞϵNOðB;M; ρÞ ≥ 1

2
jtrðρ½A; B�Þj: ð47Þ

However, we now see that this inequality is, in the first place,

appropriately interpreted as a constraint on the intrinsic

unsharpness of the approximators: one can say that if the

approximators are emulating the targets too well (here in the

sense that the first moment operators coincide) then the price

arising from the noncommutativity of the target observables is

that the approximators must be sufficiently unsharp. In the

second place, when applied to unbiased approximators, ϵNO
gives an estimate of the distribution comparison error [see

Eq. (44)], as it accounts for the intrinsic noise inherent in the

approximating observable; therefore the inequality (47) also

admits an interpretation as a joint-measurement error relation

in the case of unbiased approximators.

One would usually consider unbiasedness, or absence of

systematic errors, to be a feature of a good approximate

measurement. In that case, the inequality (47) constitutes a

Heisenberg-type measurement uncertainty relation, notably in

the case of position and momentum. It seems puzzling that in

order to obtain a violation of this inequality, one must search

for joint approximate measurements where the quality of the

approximators is degraded: systematic errors must be allowed.

One explanation of this puzzle is apparent from the above

examples: while for unbiased approximations the quantity ϵNO
comprises 100% intrinsic noise and hence error, changing the

approximators all the way to trivial ones transforms ϵNO into a

quantity that may contain 100% preparation uncertainty;

according to Ozawa’s inequality this makes room for the

other quantity to have vanishing error ϵNO; but in this case

Ozawa’s inequality has become an expression of preparation

uncertainty.

F. Noncommuting target and approximator

The limitations of ϵNO and ηNO as state-specific measures

of error and disturbance become manifest when target and

measured observables do not commute, or similarly, where

the disturbance is such that the distorted observable does not

commutewith the one prior to measurement. One can construct

measurement schemes that are evidently quite bad approxima-

tions, leading to vastly different distributions, but nevertheless

yield small or even zero ϵNO on some states. This canhappen in a

measurement M in which the measured approximator C is

projection valued, so that the intrinsic noise term in Eq. (37)

vanishes; then ϵNOðA;M; ρÞ2 ¼ hðC½x� − AÞ2iρ, and this

vanishes when C½x� − A has eigenvalue zero and ρ is an

associated eigenstate. Note also that in such situations the

value-comparison interpretation is not available as there are no

jointly obtainable values.

Example 7.—In this example the spectrum of the approx-

imator observable C is discrete while that of the target,

position Q, is continuous. Hence for every state ρ the

distributions Qρ and Cρ are vastly different but ϵNO ¼ 0 on

some states.

Let A ¼ Q, and assume C is the spectral measure of

Q0 ¼ Qþ α½P2=2mþ ðmω2=2ÞQ2 − ðℏω=2Þ1�, where α is

a positive constant. Then Q0−Q¼ α½P2=2mþðmω2=2ÞQ2−

ðℏω=2Þ1�, and the square of this operator has vanishing

expectation value for the ground state ψ0 of the harmonic

oscillator. Thus, ϵNOðQ;M; ρ0Þ ¼ hðQ0 −QÞ2iψ0
¼ 0 for

ρ0 ¼ jψ0ihψ0j. Having a purely discrete spectrum, the sharp

observable C is clearly a bad approximation to Q, but the

quantity ϵNO does not notice this in the state ψ0.

The above failure depends on the noncommutativity of Q0

and Q. Take again A ¼ Q and C ¼ EQ0
. If Q0 ¼ fðQÞ and

ϵNOðQ;M; ρÞ ¼ 0, then fðxÞ ¼ x almost everywhere with

respect toQρ; that is,Cρ ¼ Qρ. For example, ifQ0 differs from
Q by a piecewise constant function of Q, defined as

Q0 −Q ¼ aQðRn½−a; a�Þ, then in the interval ½−a; a�, the

measurements coincide but outside they differ by a constant

value a. For all states ρ ¼ jψihψ j given by functions ψ that are

localized in the interval ½−a; a� we have ϵNOðQ;M; ρÞ ¼ 0

and Cρ ¼ Qρ.

Example 8.—In this example the approximate position

measurement is sharp, and almost all states are measured

with ϵNO ¼ 0. The pointer observable is the standard position

observable, as is often assumed for “pointers.” Nevertheless

the output distribution is different from the correct position

distribution for every input state.

Consider a measurement interaction U of the form U ¼
Fð1 ⊗ VÞ, where F denotes the swap map, and since standard

positionQ ismeasured on the pointer, we haveU�ð1 ⊗ QÞU ¼
ðV�QVÞ ⊗ 1. This also holds for all functions of Q, so the

resulting observable is sharp. The NO error is

ϵNOðQ;M;ψÞ2 ¼ hψ jðQ − V�QVÞ2ψi: ð48Þ
It is possible to construct

8
a unitary operator V such that

V�QV ¼ Qþ jϕihϕj for some (not necessarily normalized)

nonzero vector ϕ. Therefore, we have ϵNO ¼ 0 for all input

vectors ψ orthogonal to ϕ. For a suitable choice of

ϕ the distributions of Q and Q0 will be distinct for all input

states.

For an accurate measurement of some quantity A Ozawa’s

inequality reduces to

ηNOðB;M; ρÞΔðAρÞ ≥ 1

2
jh½A; B�iρj:

This was used by Ozawa (2003a) to show, for a specific

scheme realizing an accurate position measurement, that

one can have ϵNOðQ;M; ρÞ ¼ 0 and arbitrarily small

ηNOðP;M; ρÞ by choosing states ρ with a sufficiently large

standard deviation of the position. It is argued there that this

phenomenon of a disturbance-free, precise measurement may

open up possibilities for novel high resolution measurement

methods. However, small and even vanishing values of

8
The proof of this and the further claims made here involve some

functional analysis and are deferred to the Appendix.
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ηNOðP;M; ρÞ can still go along with significant disturbances,

so that such a far-reaching conclusion seems unfounded.

Examples for this can be constructed in analogy to Examples 7

and 8.

Our next example shows that even within the restricted

class of unbiased approximators, ϵNO may wrongly indicate

perfect accuracy.

Example 9.—In this example we construct an approximator

observable C that is unbiased with respect to the observable A
defined as the spectral measure of A ≔ C½x� but nevertheless
does not commute with A and yet ϵNOðA;M; ρ0Þ2 ¼ 0 for

some state ρ0.

Let H ¼ C
2 and define C as the three-outcome observable

1 ↦ C1 ¼ γ
1

2
ð1þ σ1Þ;

−1 ↦ C2 ¼ γ
1

2
ð1þ σ2Þ;

0 ↦ C3 ¼ 2ð1 − γÞ 1
2

�

1 −
1
ffiffiffi

2
p ðσ1 þ σ2Þ

�

;

where γ ¼ 2 −
ffiffiffi

2
p

. Here σ1; σ2 denote the first two Pauli

matrices. Noting that γ ¼
ffiffiffi

2
p

ð1 − γÞ one confirms immedi-

ately that C1 þ C2 þ C3 ¼ 1. Note that C1; C2; C3 are positive

rank-1 operators. Next we compute

C½x� ¼ 1

2
γðσ1 − σ2Þ ≕ A;

C½x�2 ¼ 1

2
γ21;

C½x2� ¼ γ½1þ 1

2
ðσ1 þ σ2Þ�:

It follows that

C½x2� − C½x�2 ¼ 2ð1 − γÞ 1
2

�

1þ 1
ffiffiffi

2
p ðσ1 þ σ2Þ

�

:

This is a rank-1 positive operator and the eigenstate associated

with the eigenvalue zero is given by the projector

ρ0 ¼
1

2

�

1 −
1
ffiffiffi

2
p ðσ1 þ σ2Þ

�

:

Therefore, ϵNOðA;M; ρ0Þ ¼ 0, despite the fact that C is an

obviously bad approximator to A and the distributions Aρ0
and

Cρ0
are different.

Finally we show how an experimenter could achieve joint

approximations with both NO errors vanishing while these

approximations are actually quite poor.

Example 10.—In Example 7, observable C was defined

as the spectral measure of C½x� ¼ Q0 ¼ Qþ α½P2=2mþ
ðmω2=2ÞQ2 − ðℏω=2Þ1�, and this was used to approximate

A ¼ Q. One may take the same observable C to also

approximate B ¼ Qþ β½P2=2mþ ðmω2=2ÞQ2 − ðℏω=2Þ1�,
which for β > 0 is again a shifted and scaled harmonic

oscillator Hamiltonian. If β ≠ α, we have that the

difference operatorC½x�−B¼ðα−βÞ½P2=2mþðmω2=2ÞQ2−

ðℏω=2Þ1�, so that for the ground state ψ0 of the standard

harmonic oscillator we have ϵNOðA;M;ψ0Þ2¼hðC½x�−
QÞ2iψ0

¼0 and also ϵNOðB;M;ψ0Þ2 ¼ hðC½x� − BÞ2iψ0
¼ 0.

Yet again the distributions of B and C in the state ψ0 are quite

different.

The vanishing of both NO errors in this example suggests

perfect accuracy, and both the Ozawa and Branciard inequal-

ities become tight, assuming zero value on both sides. Given

that the approximations in the state ψ0 are anything but good,

one must conclude that these inequalities are not always

meaningful as error trade-offs, even at their tight limits.

However exotic or artificial one may consider the meas-

urement schemes constructed above to be, they constitute

theoretical possibilities and thus test cases against which the

suitability of any putative measure of error and disturbance

could and should be considered. The above examples show

that the quantities ϵNO; ηNO are unsuitable as universal bench-

marks for error and disturbance of a measurement schemeM,

particularly in a single state; they may vanish in cases where

the measurements are clearly not accurate. The final example

highlights a limitation of the scope of the Ozawa and

Branciard inequalities as meaningful error trade-offs.

G. Noise-based errors in qubit experiments

The values of ϵNO and ηNO have been determined for qubit

measurements, using the three-state method in an experiment

carried out in Vienna (Erhart et al., 2012; Sulyok et al., 2013)

and the weak measurement method in Toronto (Rozema

et al., 2012).

The experiments are realizations of spin-1=2 and polariza-

tion observables. A detailed analysis was carried out by

Busch, Lahti, and Werner (2014a). In the Vienna experiment

a projective (von Neumann–Lüders) measurement of a sharp

observable C is performed as an approximation of a sharp

observable A on the states ρ; ρ1; ρ2, as described in Eq. (40);

the required moments of C and A are obtained from the

statistics of this measurement and a direct accurate A
measurement. Similarly one obtains the moments of B;B0

by measuring the observable B on the required states directly

and after the C measurement.

The approximate measurement investigated in the Toronto

experiment is found to constitute an approximate joint

measurement of sharp qubit observables A;B (with values

�1) by means of compatible observables C;D. Here the pairs
A;C and B;D do actually commute, so that the value-

comparison method based on sequential measurements is

applicable. However, the experimenters chose to use the

indirect method of weak values to determine the values of

ϵNOðA;M; ρÞ and ηNOðB;M; ρÞ.
It is instructive to compare the NO errors with the

Wasserstein deviations for these experiments.

We use the Bloch sphere notation to write the spectral

projections of A ¼ a · σ as A� ¼ 1=2ð1� a · σÞ, so that

A ¼ Aþ − A−, and similarly for an observable B ¼ b · σ,

where a; b are unit vectors. For optimal approximations the

approximators C;D need to be assigned the same values

�1, so that, for example, C is given as a map �1 ↦ C�, with
the positive operators Cþ ¼ 1=2ðc01þ c · σÞ, C− ¼ 1 − Cþ.
(Positivity of C� is equivalent to ‖c‖ ≤ minfc0; 2 − c0g ≤ 1.)

The Wasserstein deviation between Aρ and Cρ for a state

ρ ¼ 1=2ð1þ r · σÞ is then
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ΔðAρ;CρÞ2 ¼ 2j1 − c0 þ r · ða − cÞj;

which gives

ΔðA;CÞ2 ¼ 2j1 − c0j þ 2‖a − c‖:

The best joint approximations are obtained for covariant

approximators [see Busch, Lahti, and Werner (2014a)], where

a covariant observable C is characterized by c0 ¼ 1. The

experiments quoted are using such approximators. The quan-

tity ϵNOðA;M; ρÞ is then readily computed using Eq. (37):

ϵNOðA;M; ρÞ2 ¼ 1 − ‖c‖2 þ ‖a − c‖2

¼ hVðCÞiρ þ 1

4
ΔðA;CÞ4;

hVðCÞiρ ¼ 1 − ‖c‖2: ð49Þ

Here we see that ϵNO is in fact state independent. This quantity

is a mix of an error contribution and the intrinsic noise of the

approximator observable—which is already accounted for in

the Δ term; it is not hard to see that ϵNOðA;M; ρÞ ≤ ΔðA;CÞ.
For approximators that are smearings of the target observable,

so that c ¼ γa, one has in fact ϵNOðA;M; ρÞ ¼ ΔðA;CÞ. This
situation arises in the Toronto experiment.

We thus see that in the particular case of covariant qubit

observables, ϵNO has lost what the advocates of this measure

consider to be one of its virtues: its state dependence. It was

already manifest in light of the availability of the three-state

method that ϵNO cannot be expected to be sensitive to

differences in the observables being compared on a particular

state. In fact, ϵNO cannot capture the peculiar situation that was

noted to arise in both the Vienna and Toronto experiments,

where the input and output distributions are identical, so that

the state-dependent (distribution) error vanishes.

From the perspective of someone interested in assessing the

overall performance of a measuring device, this apparent

deficiency of ϵNO turns out to be an advantage: instead of

having to probe the whole state space, one can just apply the

three-state method to obtain the worst-case error.

In both the Vienna and Toronto experiments (Erhart et al.,

2012; Rozema et al., 2012), the quantities ϵNO; ηNO are

carefully determined. However, the experimenters do not

report any attempt to confront these values with an actual

estimation of errors for the measured observables C;D as

approximations to the target observables A;B. Without such a

comparison, a test of Heisenberg-type error-disturbance rela-

tions is not complete.

VII. QUANTUM MEASUREMENT UNCERTAINTY

We next present some theorems highlighting general

aspects of the measurement uncertainty theme. We focus

on the disputed error-disturbance relations and the closely

related approximate joint-measurement problem. By compari-

son, the preparation uncertainty relation is uncontroversial.

The Kennard-Weyl-Robertson relations have been firmly

established as rigorous consequences of the quantum formal-

ism. We stress only that the idea of preparation uncertainty

is not exhaustively formalized in these relations either, and

further aspects are elucidated in alternative forms, such as

entropic uncertainty relations (Hirschman, Jr., 1957; Krishna

and Parthasarathy, 2002; Berta et al., 2010; Bialynicki-Birula

and Rudnicki, 2011) or trade-off relations for the overall

widths of the distributions concerned (Landau and Pollak,

1961; Cowling and Price, 1984; Uffink and Hilgevoord,

1985). An excellent review of such relations has been given

by Folland and Sitaram (1997).

A. Structural measurement limitations

Heisenberg’s considerations concerning measurement

uncertainty can be readily cast in the operational language

of quantum mechanics. His basic observation, namely, that

good measurements necessarily disturb the system, holds as a

general principle, not just for position and momentum. It is

expressed in the slogan “No measurement without disturb-

ance,” stated precisely as follows: if the measurement is

disturbance free, in the sense that IðΩÞðρÞ ¼ ρ for all input

states ρ, then the measured observable is trivial, that is,

FðXÞ ¼ μðXÞ1, for some probability measure μ. Put differ-

ently, if a measurement tells us anything at all about the input,

in the sense that the distribution of outcomes depends in some

way on the input state, then some states must be changed

through the measurement.
9

The above “folk theorem” would be practically worthless,

however, if it were restricted to the completely disturbance-

free case. Fortunately, it can be extended to the statement

that “small disturbance implies small information gain.” One

straightforward formulation runs as follows. The disturbance

will basically be the largest change of output versus input

state, measured in trace norm, and allowing input states to be

entangled with some other system. That is, the disturbance of

a channel T, a trace preserving completely positive map on the

trace class, is set to be

‖T − id‖cb ¼ sup tr(½T ⊗ idnðρÞ − ρ�B); ð50Þ

where the supremum runs over all integers n, density

operators on H ⊗ C
n, and operators B on that space with

jjBjj ≤ 1. The index stands for “complete boundedness”

(Paulsen, 2002), and the same expression has also been

introduced by Kitaev as the “diamond norm.” For the output

probability measures we use the total variation norm jj · jj1.
Then we have the following theorem (Kretschmann,

Schlingemann, and Werner, 2008), which is proved by

establishing a continuity property for the Stinespring dilation.

Theorem 3.—Let I be an instrument with the property that

‖IðΩÞ − id‖cb ≤ ε. Then there is a probability measure μ on

the outcome space Ω such that, for every input state ρ one has

jjFρ − μjj1 ≤
ffiffiffi

ε
p

, where F is the observable defined by I.

In some sense this is a universal measuring uncertainty

relation. It shows that there is some truth in Heisenberg’s

paper regarding the disturbance by measurement. However, it

demands much more of a low disturbance measurement than

9
This was well but perhaps not widely known in the mid 1990s, if

not earlier. An explicit statement with proof sketch appears in the

1996 second edition of Busch, Lahti, and Mittelstaedt (1991).
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just “low disturbance of momentum,” and in return gives a

much stronger result than “poor measurement of position.”

Therefore, more specific results, especially aimed at the

position and momentum pair, are given in Sec. VII.C.

Given the maximality of the position and momentum

observables Q;P, Proposition 1 has a dramatic consequence

for their sequential measurements.

Proposition 2.—LetM be a measurement scheme realizing

an accurate measurement of position Q, with instrument I.

Then for any observable G measured after the execution of

M, the effects G0ðYÞ ¼ IðRÞ�½GðYÞ� of the distorted observ-
able G0 are functions of Q.

Thus, whateverG is chosen for the second measurement,G0

is a poor approximation of P. This measurement M com-

pletely obviates the momentum distribution associated with

input state ρ. Similarly, any accurate momentum measurement

destroys all the information about the position distribution of

the input state ρ.

B. Covariant phase space observable

The prime example, for the purpose of this Colloquium, of a

joint observable is that of a covariant phase space observable,

which represents a joint measurement of some smeared or

fuzzy versions of position and momentum. We briefly recall

the definition and a characterization of such observables

(Davies, 1976; Holevo, 1982; Werner, 1984; Cassinelli,

De Vito, and Toigo, 2003; Kiukas, Lahti, and Ylinen, 2006).

By a covariant phase space measurement we mean a

measurement applicable to a quantum particle that has a

characteristic transformation behavior under translations of

both position and momentum. Thus, if the measurement is

applied to an input state shifted in position by δq and in

momentum by δp, the output distribution will look the

same as without the shift, except that it is translated by

ðq; pÞ ↦ ðqþ δq; pþ δpÞ. This symmetry is implemented

by the unitary Weyl operators (or Glauber translations)

Wðq; pÞ ¼ eði=ℏÞqp=2e−ði=ℏÞqPeði=ℏÞpQ

acting in the L2ðRÞ representation of the particle’s Hilbert

space as

½Wðq; pÞψ �ðxÞ ¼ e−ði=ℏÞðqp=2−pxÞψðx − qÞ:

Then the whole observable can be reconstructed from its

operator density at the origin (Holevo, 1982; Werner, 1984),

which must be a positive operator τ of trace 1 (i.e., a density

operator as for a quantum state), up to a factor of ð2πℏÞ−1. The
probability for outcomes in a set Z ⊆ R

2 is then given by the

positive operator

MτðZÞ ¼ 1

2πℏ

Z

Z

Wðq; pÞ�τWðq; pÞdqdp: ð51Þ

The property that allows the interpretation of such measure-

ments as approximate joint position-momentum measure-

ments is the form of their marginals Mτ
1
, Mτ

2
, which are

convolutions of the form Mτ
1;ρ ¼ μτ �Qρ and Mτ

2;ρ ¼ ντ � Pρ,

with μτ ¼ QΠτΠ� and ντ ¼ PΠτΠ� , where Π is the parity

operator, ðΠψÞðxÞ ¼ ψð−xÞ. As a consequence of Eqs. (32)

and (42), we then have the same Heisenberg-type inequality

for both Wasserstein deviations and NO errors, which here are

state independent:

μτ½x2�ντ½x2� ≥ ðΔμτÞ2ðΔντÞ2 ≥
ℏ
2

4
: ð52Þ

The first inequality becomes an equation if the measurements

are unbiased, μτ½x� ¼ ντ½x� ¼ 0. If in addition τ is the ground

state of the harmonic oscillator, then also the second inequal-

ity becomes an equation. In this case, the associated phase

space distribution is named after Husimi, who discovered it in

1940 (Husimi, 1940).

We note that any covariant phase space observable Mτ can

be implemented as the high amplitude limit of the signal

observable measured by an eight-port homodyne detector

(Caves and Drummond, 1994); for a rigorous proof of this

statement, see Kiukas and Lahti (2008). Another model

realization of covariant phase space observables is provided

by the Arthurs-Kelly model (Arthurs and Kelly, 1965). This

was shown by Busch (1985) in the case where the initial state

of the two probes is a pure product state and by Bullock and

Busch (2014) for arbitrary probe states.

C. Joint-measurement relations

The following measurement uncertainty relations for Q

and Pwere proven for state-independent calibration errors and

the maximized Wasserstein 2-deviations in Busch, Lahti, and

Werner (2013, 2014b).

Theorem 4 (measurement error relations).—Let M be any

observable with outcome space R
2. Then

ΔcðQ;M1ÞΔcðP;M2Þ ≥
ℏ

2
ð53Þ

and

ΔðQ;M1ÞΔðP;M2Þ ≥
ℏ

2
ð54Þ

whenever the terms on the left-hand sides are finite. In both

cases equality holds for a covariant phase space measurement

Mτ whose generating density τ is the ground state of the

operator H ¼ Q2 þ P2.

It is not hard to see that if one of the error terms tends to

zero, that is, the corresponding marginal is (nearly) error free,

then the other error becomes infinite in the limit, so that the

above inequalities hold in these limiting cases. This can be

shown explicitly using Proposition 2 when one or the other

error is actually zero; in this case the other error is infinite.

It must be noted that the above joint-measurement trade-off

relation for maximized 2-deviations is an idealization: for

realistic measurements M with finite operating ranges, the

quantities appearing in Eqs. (53) and (54) will be infinite, so

that these inequalities become trivial. In the general case of a

phase space measurement with finite operating range, the

task of proving a nontrivial error trade-off relation can be

approached by restricting the supremum of the Wasserstein

2-deviations to those states that are localized within the

operating range, thus yielding finite errors. While a proof
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of measurement uncertainty relations for Wasserstein

2-deviations amended along these lines is presently outstand-

ing, we expect it will work in a similar way to the approach

taken by Appleby in the case of the maximized NO errors; we

briefly review this next.

Appleby (1998b) gives a proof sketch for the trade-off

relation

ϵNOðQ;MÞϵNOðP;MÞ ≥ ℏ

2

for any approximate joint measurement M of position

and momentum, where ϵNOðQ;MÞ ¼ supρϵNOðQ;M; ρÞ,
ϵNOðP;MÞ ¼ supρϵNOðP;M; ρÞ. He then proceeds to indi-

cate how similar arguments can be used to obtain a trade-off

for measurements with finite ranges, characterized by the

restriction of states ρ to those whose first moments hQiρ, hPiρ
are bounded within fixed intervals of sizes δq and δp and

whose variances ΔðQρÞ and ΔðPρÞ are not greater than given

numbers Δq and Δp, respectively (where ΔqΔp ≥ ℏ=2):

�

ϵNO
0ðQ;MÞ þ ℏ

δp

��

ϵNO
0ðP;MÞ þ ℏ

δq

�

≥
ℏ

2

�

1þ 2ℏ

δqδp

�

:

Here ϵNO
0ðQ;MÞ, ϵNO

0ðP;MÞ are the suprema over all

states that satisfy the above constraints. It is clear that in

the limit δq → ∞, δp → ∞, the previous idealized inequality

is recovered.

It is a curiosity that the maximized NO error is a reliable

indicator of the presence or absence of differences between the

target and approximator observables, despite the fact that the

error interpretation of the state-dependent quantities used for

its determination is not generally applicable. It is worth noting

here that the example of Ozawa’s and Branciard’s inequalities

highlights the advantages of joint-measurement trade-off

relations for state-specific errors as the latter typically do

have finite values for a large class of states (this holds

notwithstanding the provisos we have pointed out regarding

these specific relations).

Error trade-off relations have also been proven for approxi-

mate joint measurements of a pair of �1-valued qubit

observables A;B (Busch and Heinosaari, 2008; Busch,

Lahti, and Werner, 2014a). In such a case the product of

deviations does not possess a nontrivial bound, so that it is

more informative to minimize the sum of the (squared) errors.

This yields the following result for the qubit observables A;B,
with the notations of Sec. VI.G.

Theorem 5 (qubit error relation).—Let M be any approxi-

mate joint measurement of the �1-valued qubit observables

A;B. Then

ΔðA;M1Þ2 þ ΔðB;M2Þ2 ≥
ffiffiffi

2
p

½‖a − b‖þ ‖aþ b‖ − 2�:

This bound is tight and quantifies the degree of incompati-

bility of A;B. It can be satisfied when the approximators

M1;M2 are covariant.

As a consequence of Theorem 5 and the close quantitative

connection between ϵNO and the Δ distance given in Eq. (49),

it turns out that the NO errors obey a Heisenberg-type trade-

off themselves: in any joint approximate measurement M of

two qubit observables A;B, with covariant approximators one

has (Busch, Lahti, and Werner, 2014a)

ϵNOðA;M; ρÞ þ ϵNOðB;M; ρÞ

≥
1
ffiffiffi

2
p ½‖a − b‖þ ‖aþ b‖ − 2�:

This is an inequality in the spirit of Heisenberg’s original

ideas, in that it states a trade-off between the approximation

errors in an approximate joint measurement of incompatible

observables A;B, where the bound is determined by their

degree of incompatibility. Given that Branciard’s tight

inequality for the case of qubits is compatible with our

Heisenberg-type relation, it must be seen as a confirmation

rather than a violation of Heisenberg’s ideas.

VIII. CONCLUSION

We investigated what is required for establishing

Heisenberg-type error-disturbance relations as rigorous con-

sequences of quantum mechanics and reviewed forms of such

relations on the basis of two proposed quantum generalization

of Gauss’s classic root-mean-square deviation.

We compared definitions of measurement error and dis-

turbance in terms of Wasserstein 2-deviations with the

definitions based on the expectations of the squared noise

and disturbance operators. In both cases, state-dependent and

state-independent versions are available, the latter being

defined as maxima over all states of the respective state-

dependent quantities. The Wasserstein 2-deviation is con-

ceived as a distribution comparison measure that can be

applied to all approximators of a given observable. The

noise-based quantities ϵNO, ηNO are best understood as

value-comparison measures, and as such they are applicable

only in cases where the target and approximator observables

are compatible. Within this constraint, value comparison can

be more informative than mere distribution comparison as

its method employs joint measurements on the same system

rather than separate measurements performed on distinct

systems in the same state.

Even where the value-comparison method is applicable,

ϵNO and ηNO are not always purely measures of error and

disturbance alone since they also contain preparation uncer-

tainty contributions. It follows that Ozawa’s and Branciard’s

inequalities do not represent a pure form of error trade-off

for joint approximate measurements, particularly, due to the

presence of preparation uncertainties besides the error

contributions.

We showed that ϵNO; ηNO become unreliable as indicators of

error and disturbance in the case of noncommuting target and

approximator observables; this entails the fact that the Ozawa

and Branciard inequalities cannot claim universal validity.

We take the limitation of the applicability of ϵNO, ηNO as

error and disturbance measures as a demonstration of the

limitations of the observable-as-operator point of view that has
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so long dominated the teaching of quantum mechanics.

However, it was also noted in the last section that these

limitations do not apply to the maximized noise-based error

measure, as proposed and developed by Appleby (1998a,

1998b). Universal joint-measurement uncertainty relations

have been established for maximized NO errors and maxi-

mized Wasserstein deviations in the case of position and

momentum and of qubit observables.

Since the noise-operator based measures have until recently

been the only candidates considered as state-dependent value-

comparison errors, the question whether quantum mechanics

entails nontrivial error and disturbance bounds for joint

measurements on individual states must be considered an

open problem. As seen, the distribution comparison error

measures cannot be expected to obey nontrivial, unconditional

uncertainty relations.

We note that since the publication of Busch, Lahti, and

Werner (2013), there has been growing critical awareness of

the shortcomings of the quantities ϵNO; ηNO, with some similar

comments and analyses as given here [see, e.g., Dressel and

Nori (2014) and Korzekwa, Jennings, and Rudolph (2014)].

Our analysis is a development of arguments that were

presented by Busch, Heinonen, and Lahti (2004) and

Werner (2004), which were largely misunderstood in that

our criticism of what we referred to as lacking operational

significance (the failure of ϵNO to reliably indicate the

presence or absence of errors for all approximators) was

wrongly taken as an assertion that the quantities ϵNO; ηNO were

not accessible to experimental determination.

As interesting venues for further research into uncertainty

relations we mention possibilities of defining measures of

error and disturbance other than those based on the

Wasserstein 2-deviation. Very recently, trade-off relations in

the spirit of our calibration relation were formulated and

proven for entropic measures of error and disturbance

(Coles and Furrer, 2013; Buscemi et al., 2014). Ipsen

(2013) used the total variation norm to deduce error trade-

off relations for discrete observables for finite dimensional

systems. The concept of error bar width, introduced by Busch

and Pearson (2007) to formulate a calibration error relation for

position and momentum, was adapted to yield generic joint-

measurement error relations for arbitrary pairs of discrete

observables in finite dimensional Hilbert spaces in Miyadera

(2011). Yet another recent line of research has led to

uncertainty relations in the context of quantum estimation

theory [see, e.g., Hofmann (2003), Watanabe, Sagawa, and

Ueda (2011), and Dressel and Nori (2014)], which concern

parameter comparisons in contrast to comparisons of observ-

ables that are the focus of the present study.

To conclude, there remain many interesting open questions

concerning quantum measurement uncertainty, not least the

problem of casting and rigorously proving error and disturb-

ance relations for measurements with finite operating ranges.
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APPENDIX: PROOF CONSTRUCTION FOR EXAMPLE 8

There are two claims made in the text of Example 8.

a(A) For suitable ϕ the operators Q and Q0 ¼ Qþ
jϕihϕj are unitarily equivalent, so thatQ0 ¼V�QV
for some unitary operator V.

a(B) The probability distributions for Q and Q0 are

different for all input pure states, provided ϕ is

suitably chosen.
For both issues it is helpful to consider the resolvents

of Q and Q0. For z ∈ CnR we denote the resolvents by

Rz ¼ ðQ − z1Þ−1 and R0
z ¼ ðQ0 − z1Þ−1. Then

R0
z − Rz ¼ −R0

zjϕihϕjRz;

R0
zϕ ¼

�

1þ hϕjRzϕi
�

−1

Rzϕ;

R0
z ¼ Rz −

RzjϕihϕjRz

1þ hϕjRzϕi
: ðA1Þ

The first equation results from writing −jϕihϕj ¼ ðQ − zÞ−
ðQ0 − zÞ. This equation is applied to the vector ϕ in the

second equation, and solved for R0
zϕ. This is then reinserted

into the first equation.

Now for (A) we need to show that Q and Q0 have the same

spectrum: absolutely continuous and equal to R. For this we

use the observation (Reed and Simon, 1978, Theorem XIII.20)

that for Q0 to have a purely absolutely continuous spectrum it

is sufficient that the matrix elements jhψ jR0
xþiεψij be bounded

as ε → 0 for some dense set of vectors and uniformly over

intervals in x. Now from the resolvent formula (A1) we see

that this can be guaranteed by corresponding properties of the

resolvent Rz of Q. Matrix elements of the resolvent can be

rewritten as

hϕjRzψi ¼ i

Z

∞

0

dkeizk
Z

∞

0

dxe−ixkϕðxÞψðxÞ. ðA2Þ

Now suppose that ϕ;ψ are polynomials times a Gaussian

function. Then so is ϕ̄ψ and its Fourier transform, which is the

x integral in Eq. (A2). This makes the k integral uniformly

bounded for z with small imaginary part. By multiplying ϕ

with a suitable factor we can thus guarantee that

jhϕjRzϕij < 1 − ε ðA3Þ

with ε > 0, uniformly for z ∈ CnR with small imaginary part.

In fact, this is also necessary to exclude poles of the resolvent

and hence eigenvalues. Furthermore, for a dense set of ψ ,

the matrix elements hϕjRzψi will also be bounded, i.e., we

conclude that Q0 has purely absolutely continuous spectrum.

But then, because jϕihϕj is, in particular, a trace class
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operator, the Kato-Rosenblum theorem (Kato, 1995, Sec. 4,

Theorem 4.4) asserts that the absolutely continuous subspaces

are unitarily equivalent. This proves claim (A).

Regarding claim (B), we first establish the conditions that,

for some initial state vector ψ, the probability distributions for

Q and Q0 coincide. Since by the resolvent equation products

of resolvents can be converted to linear combinations, the span

of the functions E ↦ 1=ðE − zÞ is a * algebra which is dense

in the set of all functions of E vanishing at infinity. Therefore,

our aim is equivalently formulated as finding criteria so that

hψ jRzψi ¼ hψ jR0
zψi for all z. By Eq. (A1) this is equivalent to

the product hψ jRzϕihϕjRzψi vanishing identically for z∉R.
Since at least one of these analytic factors has to have

accumulating zeros in the upper half plane, one factor has

to vanish identically on the upper half plane. The other factor

then automatically vanishes on the lower half plane. Now the

vanishing of

hψ jRzϕi ¼
Z

ψðxÞϕðxÞ
x − z

dx ðA4Þ

for ℑmðzÞ > 0 means that the L1 function ψ̄ϕ is Hardy class,

i.e., its Fourier transform vanishes on a half line. This happens

sometimes (for example, when ϕ and ψ̄ are both Hardy class),

but (B) claims that for suitably chosen ϕ it never does.

Indeed, if the subspace generated by all Rzϕ with ℑmz > 0

is dense, we can find no vector ψ such that Eq. (A4) vanishes

on a half plane. As a concrete example, we again take a

Gaussian ϕ. We claim that, for any polynomial p, the function

pðxÞϕðxÞ is in the closed span of the vectors Rzϕ with

ℑmz > 0. Since the set of functions pϕ is dense in Hilbert

space, this proves claim (B). Given a polynomial p, choose
some zα with ℑmzα > 0, namely, at least as many as the

degree of p, and form the function

~pðxÞ ¼ pðxÞ
Y

α

zα
x − zα

: ðA5Þ

By partial fraction decomposition this function can be written

as a linear combination of the 1=ðx − zαÞ, so ~pϕ is in the linear

hull of the vectors Rzα
ϕ. On the other hand, taking zα → ∞ in

~p returns p, so ~pϕ → pϕ by dominated convergence.
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