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Photon-photon scattering in vacuum is extremely weak. However, strong effective in-
teractions between single photons can be realized by employing strong light-matter cou-
pling. These interactions are a fundamental building block for quantum optics, bring-
ing many-body physics to the photonic world and providing important resources for
quantum photonic devices and for optical metrology. In this Colloquium, we review
the physics of strongly-interacting photons in one-dimensional systems with no optical
confinement along the propagation direction. We focus on two recently-demonstrated
experimental realizations: superconducting qubits coupled to open transmission lines,
and interacting Rydberg atoms in a cold gas. Advancements in the theoretical under-
standing of these systems are presented in complementary formalisms and compared
to experimental results. The experimental achievements are summarized alongside a
description of the quantum optical effects and quantum devices emerging from them.

CONTENTS

I. Introduction

II. Single emitter

Scattering theory

Input-output formalism

Other theoretical techniques

Three-level emitter: a single-photon router

HOAaQw>

Superconducting circuits

III. Multiple emitters in the strong-coupling regime

A. Photon-mediated interaction between distant
emitters

B. Small ensemble of adjacent emitters

C. Directional photon propagation
IV. Multiple interacting emitters in the weak-coupling regime:
Rydberg polaritons
A. Two-photon dynamics
B. Many photons
C. Limitations and prospects
V. Conclusions and perspectives

A. Derivation of the input-output formalism

References

* Present address

B

HHEBem=

==
o b

-
2

&

.
5|

H B

l. INTRODUCTION

Photons, the carriers of the electromagnetic force,
are elementary particles with no charge and zero rest
mass. Photon-photon scattering in vacuum is extremely
weak (Tacopini and Zavattini, [1979; Karplus and Neu-|
man), 1951} |Schwinger, [1951) and has, in fact, never been
experimentally observed at optical or lower frequencies
(Zavattini et al., 2012). This makes photons excellent
long-distance carriers of classical and quantum informa-
tion. However, this seclusion of photons poses substantial
challenges for efficiently employing them for information
processing. In classical communication networks, opti-
cal signals are often converted to electrical signals, which
can then be manipulated using solid-state devices. How-
ever, existing conversion methods are inefficient at the
few-photon level and are ill-suited for quantum informa-
tion processing. This has motivated scientists in a num-
ber of fields, such as nonlinear quantum optics and cav-
ity quantum electrodynamics, to study effective photon-
photon interactions with the ultimate goal
of strong and controllable coupling between single pho-
tons. Interactions at the single-photon level are essen-
tial for a wide variety of quantum-optical applications.
For instance, they form the basis for all-optical quan-
tum gates (Imamoglu et al., [1997) and enable metrology
beyond the standard quantum limit (Napolitano et al.l
. They are also important from the fundamen-
tal physics viewpoint, endowing photonic systems with
matter-like properties and realizing strong correlations




and quantum many-body behavior in light
[and Ciuti, 2013 |Chang et al., 2008)).

Cavity quantum electrodynamics (QED) is a paradig-
matic discipline (Haroche and Raimond} [2013; Miller]
let al. 2005; Walther et all [2006) exhibiting effective
photon-photon interactions in the quantum regime
[baum et al., [2005; [Schuster et all,[2008]). In cavity QED,
atoms are placed inside a high-finesse electromagnetic
resonator, in which the radiation spectrum is discrete.
Bouncing between the resonator mirrors, a single pho-
ton interacts with the atoms effectively many times, sig-
nificantly enhancing the atom-photon coupling. This in
turn can generate strong correlations between the pho-
tons. Cavity QED experiments with free atoms have
been carried out with alkali metals in optical cavities
(Birnbaum et al., 2005; Dayan et al.l 2008; Mabuchi and|
Dohertyl, 2002} [Schuster et al., 2008} [Thompson et al.
@D and with Rydberg atoms in microwave cavities
(Deleglise et al., 2008 |Guerlin et al, [2007; Nogues et al.,
[1999; Raimond et al., |2001)). Cavity QED experiments
have also been conducted on a variety of solid-state sys-
tems, including quantum dots (QDs) in photonic crystals
(Badolato et al.,[2005; Carter et al.,2013;|Englund et al.,
2007; Fushman et ol 2008; [Hennessy et al., [2007; [Yoshie|
et al}|2004)) and superconducting microwave circuits. In
the latter, known as circuit QED (Blais et al. 2004
[Chiorescu et al) 2004} [Girvin et al) [2009; Wallraff et al.
2004), superconducting qubits acting as artificial atoms
are coupled to microwave photons in Fabry-Pérot cavi-
ties made of coplanar waveguides as shown in Fig. [I[a).
Both the fields of cavity and circuit QED have been very
successful, providing both significant fundamental results
and important advances in quantum information science.
Nevertheless, the cavities used to enhance the coupling
in these systems also present several disadvantages, for
instance, the narrow bandwidth of the emitted photons
and the problem of stochastic release of photons by the
cavity . A related challenge is the cou-
pling of photons into and out of the cavities with high
efficiency, as is required to link large numbers of nodes
in quantum networks (Aoki et all, 2009).

Because of these limitations, much recent work has fo-
cused on cavity-free systems. The coupling strength in
these system can be quantified by the extinction of a
propagating photon by a single emitter (1 — T'), where
T is the transmission coefficient. Although the nomen-
clature is still settling, a reasonable definition of strong
coupling in these open systems is that 1 — T > 50%,
which implies that the emission rate from the atom into
the desired mode is larger than the decoherence rate as-
sociated with all other process, including emission into
other modes. van Enk and Kimble| (2001)) and |Zumofen|
showed theoretically that a single atom can
fully block (1 — T = 100%) photons in open space, if
their spatial and temporal mode matches the atomic ra-
diation pattern, while a tightly focused beam is limited to
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FIG. 1 (Color online). (a) A superconducting qubit (marked
with an arrow) embedded in a one-dimensional transmission
line waveguide. A cavity is formed by two capacitive gaps
in the middle conductor. (b) Without the cavity. (c¢) Probe
light focused through a dense atomic cloud, exciting a single
Rydberg atom within the blockade sphere (dashed line).

1—T < 85%. In both cases, photons are transversely fo-
cused to an area A comparable with the scattering cross-
section of the atom o,, and their electric field becomes
large enough to excite the atom with near unity proba-
bility. The highest extinction by a single emitter experi-
mentally achieved in three-dimensional (3D) open space
is 1 —T = 30% (Maser et all,[2016).

A major barrier to higher extinction in open space
is the spatial-mode mismatch between the incident and
scattered waves. This problem has recently been solved
in two complementary ways, leading to strong cou-
pling and photon-photon interactions in cavity-free one-
dimensional (1D) systems:

(i) Superconducting qubits in open transmission lines,
which are related to circuit QED systems, as illustrated
in Fig. b). These systems enhance the coupling in
two ways, both inherited from circuit QED. Most impor-
tantly, superconductors can confine the microwave fields
to deeply subwavelength sizes in the transverse dimen-
sions. This produces a mode volume, in units of cubic
wavelengths, that is orders of magnitude smaller than
that of 3D cavities or free fields. In addition, transition
dipoles of superconducting qubits are much larger than
those of real atoms. These effects together allow for the
observation of strong coupling (Astafiev et all |2010al),
extinctions of 1 =7 > 99% (Hoi et al., 2011)), and strong
photon-photon correlations .

(ii) Rydberg atoms excited by focused optical beams in
a dense atomic gas. In these systems, strong coupling
is achieved by greatly enhancing the size of the effective
scatterer, thereby achieving mode matching to collimated
light beams. The dipolar interaction between Rydberg
atoms prevents the excitation of more than one Rydberg
atom inside the volume of a so-called blockade sphere.
With only zero or one excitation, each blockade sphere
thus acts as a “superatom” . The weak
coupling of photons to each individual atom can sum up
in a dense gas to a strong effective coupling with the
superatoms, leading to extinction of 1 — 7' > 95% (Baur]
2014). As long as the blockade sphere is wider than
the beam waist, as illustrated in Fig. c), the evolution
is limited to the longitudinal 1D continuum. Photon-
photon interactions were observed in this system, with




photons either blocking (Peyronel et all 2012) or spa-
tially attracting (Firstenberg et all) 2013]) each other.

These cavity-free systems feature intrinsically-
nonequilibrium, quantum many-body dynamics. The
input field is driven by either a laser or microwave
generator, imposing a nonequilibrium boundary con-
dition on the propagating photons in 1D. Therefore,
the study of photon-photon correlation mediated by
local light-matter coupling in 1D calls for advanced
quantum field theories in the strongly-interacting and
nonequilibrium regimes. Traditionally, photon transport
in this type of system is studied by employing a master
equation that assumes a weak coherent state as input
and usually involves approximations such as linearization
of operator equations (see Sec. for details) and the
Markovian approximation (Agarwal, [2013). Here, we
review the recent progress in developing new analytical
and numerical techniques to study collective scattering
of multiple photons from two-, three-, or multi-level
emitters in a 1D continuum.

This Colloquium presents an overview of this research,
emphasizing the systems discussed above. Other 1D sys-
tems with artificial atoms, which are outside the scope
of the paper, include QDs coupled to surface plasmons
of a metallic nanowire (Akimov et al), 2007; |Akselrod|
let al., 2014; Versteegh et al) [2014)) or to line-defects
in photonic crystals (Arcari et al) [2014; Javadi et all
[2015; [Laucht et al., [2012; [Lodahl et al) [2015]), and QDs
or nanocrystals coupled to semiconductor or diamond
nanowires (Babinec et all 2010; |Claudon et al., 2010;
[Reithmaier et al) 2015). In addition, strong coupling to
single emitters in 1D can also be achieved in an ion trap

(Meir et all [2014), with cold atoms trapped inside
2009)) or near (Vetsch et all [2010) an optical

fiber, or with single molecules doped in an organic crystal
inside a glass capillary (Faez et all [2014]).

In Sec. [T, we summarize the theoretical approaches
and experimental results for systems with single emitters,
along with a systematic description of various phenomena
and their application to quantum information process-
ing. Theories and experiments with multiple emitters
are presented in Sec. [[I]] in the strong-coupling regime,
and in Sec. [[V] in the weak-coupling regime in systems
of interacting Rydberg atoms. We conclude with a short
discussion on current research challenges in Sec. [V]

Il. SINGLE EMITTER

A model configuration of a two-level emitter (2LE) side
coupled to photons in a waveguide is shown in Fig. [2[a).
This is a common model for superconducting qubits cou-
pled to a transmission line (Astafiev et all [2010a;
let all 2012; [Wallraff et all 2004) and for QDs coupled
to surface plasmons (Akimov et al.,|2007). The model in
Fig. b) has the 2LE directly coupled to the photons in
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FIG. 2 (Color online). Two configurations of emitter-photon
coupling in an open waveguide. (a) Side-coupled, (b) direct-
coupled.

the waveguide. This model is popular for atomic cavity
QED experiments (Birnbaum et al., [2005) and is also of-
ten used in experiments with line-defect photonic crystals
(Faraon et al.[2007}; [Park et al)[2008). The transmission
and reflection of photons in the side-coupled configura-
tion can be mapped to those in the directly coupled con-
figuration (Shen and Fan| 2009).

Our model system also connects to a number of prob-
lems important in condensed matter physics, for instance,
the general problem of quantum tunnel in open (dissi-
pative) systems (Caldeira and Leggettl 1983; |Costi and|
Zarand|, [1999) and specifically the spin-boson problem
(Leggett et all [1987), which have seen renewed impor-
tance in describing decoherence in various implementa-
tions of quantum bits. In the systems of interest in
this colloquium, the photons in the 1D continuum play
the role of the bosonic bath in the condensed-matter
models. There are also exact analogies to various other
nonequilibrium quantum impurity models, including the
nonequilibrium Kondo model (Cronenwett et al.l [1998}
Dhar et al, [Goldhaber-Gordon et al. [1998} [Mehtal
and Andrei, 2006; Meir et al.,[1991; Nishino et al.l [2011)).
We note, however, that in the condensed matter context,
the models are most often concerned with the dynam-
ics of the spin or impurity. In the present work, we are
most often concerned with the dynamics of the bath it-
self, that is, the photons in the 1D continuum. In ad-
dition, the bosonic fields considered in most condensed-
matter models are actually collective excitations of mat-
ter, such as phonons. In that sense, experiments related
to these models are not generally concerned with light-
matter coupling.

A general Hamiltonian of a 2LE side-coupled to pho-
tons in a 1D continuum is given by H = Hy + H;, where

o = / dk hupalan + h@e — e, (1)
iy = / dk WVi(allg) (el + le) (glax)- 2)

The first term in Eq. represents the propagating pho-
ton fields of frequency wy and wavevector k. The 2LE is
described by the second term in Eq. , with transition
frequency @, between states |g) and |e). The iy term ac-
counts for spontaneous emission into photon modes out-
side of the 1D continuum, which dominates in atomic sys-
tems (Shen and Fan| 2009). In Subsections [[IB and [[IE,
we discuss how to treat pure dephasing, which dominates




in superconducting systems. The interaction of the prop-
agating photons with the 2LE is governed by H,, which
is written in the rotating-wave approximation. This is
valid for typical light-matter coupling strengths available
in recent experiments. Here ay (aL) is the photon anni-
hilation (creation) operator, and the coupling strength of
a photon of wavevector k with the emitter is V.

The energy-momentum dispersion (wy versus k) of
photons in various 1D waveguides is generally nonlinear
and depends on the properties of the waveguide. How-
ever, it is convenient to assume linear dispersion to de-
scribe the first two theoretical approaches discussed here.
We can linearize the dispersion near some arbitrary fre-
quency wg with the corresponding wavevector +ky as
shown in Fig. The approximate linearized dispersion
of wy around kg (right-moving photons) and —ky (left-
moving photons) reads

/ wralay, ~ / (wo + vg(k — ko))ak yark, (3)

k~ko k~kq

/ wka;rgak ~ / (wo — vg(k + ko))a17kaL7k,
k~—kgo k~—kq

where a}qk (aTLyk) creates a right-(left-)moving photon
and v, is the group velocity of photons at wy. Thus
we divide the propagating photons into two oppositely
moving modes (channels). Next, we extend the limits of
the integration over k to (—o0, c0) for the left and right-
moving photons, as we are only interested in photons
with a narrow bandwidth in the vicinity of wg, and we
make a change of variables k F kg — k for the right- and
left-moving photons.

The total excitation operator Np = fdk [a}r%’kaR’k +

aTL’kaLJC] + |e){e|] commutes with the linearized Hamil-

tonian H. Subtracting the term hwoNg from the lin-
earized H gives the final Hamiltonian H = H —hwoNg =
Hy + Hy, where

Ho > i t ;
— = dk vgk(aR,kaR’k —ay park) + (We — iy)le)(el,

h —o0

m_ [~ dk[Vi(al ! h 4
no k(apy, +arp )|g){el + h.c], (4)
with w, = &, — wy.

Several interrelated theoretical techniques have been
employed in recent years for investigating correlated pho-
ton dynamics in a 1D continuum. We can divide them
into five different groups: (a) multiparticle scattering the-
ory in a continuum (Roy, [2010aj; |Shen and Fanl [2007alb;
Yudson and Reineker| [2008; Zheng et al., [2010), (b) the
input-output formalism of quantum optics (Fan et al.,
2010; [Koshino and Nakamural, 2012} |Peropadre et al.,
2013)), (c¢) an approach based on the Lippmann-Schwinger
equation (Royl, [2011a; |Zheng and Baranger} 2013), (d) a
method based on the Lehmann-Symanzik-Zimmermann
reduction for the multiphoton scattering process (Shi and
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FIG. 3 (Color online). Linearization of the dispersion rela-
tion of the waveguide mode. The full dispersion relation wy
is shown by the dashed curve. The linearized relations are
denoted by the two solid lines around the wavevectors +ko,
corresponding to a frequency wp.

Sun), 2009)), and (e) the time-dependent, wave-packet evo-
lution approach (Longo et all [2010). Scattering theory
is a well-known framework to study scattering of waves
and particles within the Schrodinger picture of quantum
mechanics, and it has been extensively applied in dif-
ferent branches of physics. The input-output formalism
was mainly developed for understanding light-matter in-
teraction, and it is based on the Heisenberg picture. In
what follows, we carefully discuss these two techniques
and the connection between them. We briefly mention
the applications of the other approaches later on.

A. Scattering theory

In scattering theory, the scattering matrix S expresses
how an incoming state of monochromatic, free photons
evolves via a local interaction with atoms into a superpo-
sition of outgoing monochromatic photons. The S-matrix
for scattering of an N-photon state is defined by (New-
tonl, |1982; | Taylor}, [2006))

SO = (plS|k), (5)

where |k) and |p) are incoming and outgoing photonic
states respectively. Here, the vectors k and p denote
the incoming and outgoing momenta of the N photons.
These incoming and outgoing states are considered to be
free states in the interaction picture, and they exist long
before (tg — —o0) and long after (t; — oo) the scattering
occurs. The operator

S = lim U](tl,to)

to——o0
t1—o0

is given by the time-evolution operator U; in the interac-
tion picture Uj(ty,ty) = etlotr/he=iHl(t1i=to)/ho=iHoto/h
and the above S-matrix can be redefined as

(p|S|k) = (p~ k™). (6)

The scattering eigenstates |k*) and |p~) evolve in the
interaction picture from a free-photon state either in the



distant past or the distant future :

k+) = Us (0, t)[K) = e/ k) = 0, k),
Ip~) = Ur(0,t1)|p) = ettr/hemifoti/hipy — O |p),

where we drop the limits of tg,¢; for compactness and
imply tg — —oo and ¢t; — oo in all forthcoming sim-
ilar expressions. It is also possible to introduce input
and output operators azmin(km) and aimyout (pm) respec-
tively, which create the incoming and outgoing scattering
eigenstates such that

SO = (plSIk) = (p~ k™) (7)
= (@laoy ,0ut(P1) o out (PN )a), 1 (k1)-al, 1 (kn)]e),

where |p) is the vacuum state, and

aim,in(km) == Q-&—aim,km Q:—? (8)
Qo,, out (km) = Qfaom,km Qia (9)

with the commutation relations

[aim,in(km)a al‘tn,in(kn)] = 5(km - kn)aim,in7
[aom,70ut (pm)a ain,out (pn)} = 5(pm - pn)‘som,on'

The indices i,,, 0,, can take on the values L, R for m =
1,2..N, depending on whether the m-th incoming or out-
going photon is left-moving or right-moving. The con-
nection of these input and output operators to those in
the input-output formalism will become clear in the next
subsection.

Shen and Fan (2007ajb) have recently developed a
method inspired by the nonperturbative Bethe-ansatz
calculation to derive exact scattering eigenstates |k™) of
a few photons. The incoming and outgoing photon states
can be obtained from the scattering eigenstate |k*). The
dynamics of two photons in this system are very different
from those of a single photon, as they become correlated
via the collective scattering from the 2LE (Cheng and
Kurizki, [1995; [Deutsch et al., {1992; |[Rupasov and Yud-
son, |1984a.b). The approach we present treats the atom-
photon dynamics in real space, which is particularly con-
venient for discussing steady-state photon transport from
one space-time point to another.

We start with an ansatz for the full scattering eigen-
state |k*) of H for a particular unscattered state |k) of
Hy. The total number of photons N is conserved dur-
ing the scattering process when using the rotating-wave
approximation. To calculate different amplitudes of the
scattering eigenstate, we employ the time-independent
Schrodinger equation H k') = hvg (ki + ko +..+kn)|kT)
with boundary conditions that determine the propaga-
tion direction of the incident photons. We now write
down an effective representation of H in real space, where
the evolution of the incident photons is more conveniently
described. To this end, we take the photon operators in

momentum space to be the Fourier transforms of real-
space operators, for example

ikx

1 o0
ARk = — dx ag(x)e "%,
ok m/,oo =(e)

where ag(x) annihilates a right-moving photon at posi-
tion x (Shen and Fan| 2009). Thus, we find an effective
real-space Hamiltonian for a 2LE coupled to 1D contin-
uum with linear dispersion,

H};f—f _ 7Z~/dx Vg [aTR(x)%aR(x) - CLTL($)%GL(1')}

e — i)ledlel + V [(ah(0) + af, (0))lgh{e] + h.c].(10)

We assumed here that the coupling V;, = V/ V27 is in-
dependent of the wavevector k (the Markov approxima-
tion). The Hamiltonian Heg is nonhermitian in the pres-
ence of the dissipation term . In the following, we calcu-
late |k*) using the hermitian Heg without v, and subse-
quently replace w, by w, —i7 in the final results (Rephaeli
and Fan| [2013)).

The incident photons can be injected in the right-
moving and/or left-moving channels. The nonequilib-
rium dynamics can be probed in experiments by measur-
ing the transmission and reflection of photons at the op-
posite sides of the waveguide. For a side-coupled 2LE, the
transmission coefficient is calculated from the number of
photons remaining in the incident channel (or channels)
after scattering, and the reflection coefficient is deter-
mined by counting photons in the opposite channel (or
channels) after scattering. For example, the transmis-
sion and reflection coefficient for IV right-moving incident
photons are respectively

(kHlah(@)an@)k?) o (kHal (@)ap(@)[k*)

 (Klah(@)ar(2)lk) T (Klak(a)ar(z)|k)

where the denominators are a measure of the incident
photon flux and are independent of x, x’. Here we choose
x>0 and ' < 0. Both T and R only provide informa-
tion about average photon transport in the waveguide.
Assessing other statistics of the scattered photons, such
as fluctuations in the photon number, requires calculat-
ing higher-order correlation functions.

We shall now calculate the single-photon and two-
photon scattering eigenstates for the Hamiltonian H.g
following [Roy| (2010a)) and |Zheng et al.| (2010).

Single-photon dynamics: The states of an inci-
dent photon in the right-moving channel is |k) =
fdweikxak(a:)hp)/\/ﬁ, where |¢) represents the photon
vacuum with the 2LE in the ground state. Considering
different scattering processes, we write an ansatz for the
scattering eigenstate,

)

6) = [ dolgn(e)al(a) + guoal () + S(a)enle) gl o),



where gr(z) and gz (x) are amplitudes for right-moving
and left-moving photons, respectively, and ey is the ex-
citation amplitude for the 2LE. Using the Schrodinger
equation Heglk™) = hvyk|k™), we obtain three coupled
linear equations for these three unknown amplitudes

vg(—ig —k)gr(z) + Verpd(z) =0,

Ox
vg(i% —k)gr(z) + Verd(z) =0, (11)
(we — 17 — vgk)er + V(gr(0) + g (0)) = 0.

Their solutions with the boundary conditions gr(z <
0) = e** //27, gr.(z > 0) = 0 and the continuity relation
9r/(0) = (9r/L(0+) + gr/(0—))/2 are

ikx

gr(r) = gx(x) = \e/% [9(—37) + tkﬁ(a:)},
g1(z) = ‘i/;;rka(—xy (12)
1 v

€ = . 3

V2r vgk — we +i(y+T)

where 6(z) is the step function. Here I' = V2 /v,, and we
identify 2I'" as the energy relaxation rate of the emitter
into the output channels. The transmission amplitude ¢y
and reflection amplitude 7 are given by

 vgk —we iy
© vgk —we +i(y+T)’

tk T = tk — 1, (13)

yielding the normalized 1-photon reflection and transmis-
sion coefficients

F2
R(k) = |7"k|2 = (vgk —we)® + (7 + r?’ (14)
() = |t = U w7 (15)

(vgh = we)® + (v + 1)

In the absence of loss (v = 0), R(k) + T(k) = 1,
and the 1-photon reflection exhibits a Breit-Wigner-like
(Lorentzian) lineshape around the resonance vgk = we, as
shown in Fig. [l An incident, resonant photon is totally
reflected by the emitter. Thus, a lossless side-coupled
emitter behaves as a perfect mirror for propagating pho-
tons in a 1D continuum (Shen and Fan|, 2005alb)).
Several features of these 1-photon lineshapes, including
both the real and imaginary parts of ¢, and rg, were ob-
served in the optical regime in various cavity QED setups
(Birnbaum et al., |2005). For example, a 40% reflection
of weak coherent light was obtained with microtoroidal
cavities interacting with single cesium atoms (Aoki et al.,
2009; Dayan et al 2008), as depicted in Figs. [5(a) and
(b). The observation of photon antibunching (Fig. [F|d))
in the reflected signal demonstrated that it was domi-
nated by single photons. The coupling to and from the
cavity was implemented with a tapered optical fiber in
the so-called overcoupled regime and thus dominated the
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FIG. 4 (Color online). The reflection coefficient (solid line)
and transmission coefficient (dashed line) of a single photon
propagating in a 1D continuum with a side-coupled lossless
two-level emitter.

internal system losses (Aoki et al.l 2009)). The 1-photon
lineshapes were also demonstrated with a photonic crys-
tal nanocavity coupled to a semiconductor QD (Englund
et al., 2007; Fushman et alf [2008)). In a 1D continuum,
strong scattering of single photons by a single emitter was
first observed for microwave photons in superconduct-
ing circuits by |Astafiev et al.| (2010a). Similar scattering
lineshapes were later observed for microwave and optical
photons in various 1D settings (Abdumalikov et al.; 2010
Goban et al., 2014; [Hoi et al., 2011). This strong scat-
tering of single photons has been exploited to construct
various all-optical quantum devices, such as a 1-photon
quantum switch (Zhou et al., 2008), quantum memory,
and quantum gates (Ciccarello et al.,|2012; Koshino et al.)
2010; Rosenblum et al., 2015; |Zheng et al., |2013]).

Two-photon dynamics: The dynamics of two photons
strongly coupled to a single emitter in 1D is interest-
ing and nontrivial. A 2LE is saturated by a single res-
onant photon, and a second photon in the waveguide
cannot be absorbed by the excited emitter. [Rephaeli
and Fan| (2012) show that the outcome of the interac-
tion depends on the spectral bandwidth of the second
photon’s wavepacket. If the extent of the wavepacket
is much longer than the spontaneous emission lifetime
(T +v)~! of the emitter, the excited emitter first decays
to the ground state and then completely reflects the sec-
ond photon. In the opposite limit of an extremely short
wavepacket, the emitter-photon interaction is inhibited,
and the second photon is fully transmitted. In both lim-
its, the first and second photons interact independently
with the emitter and thus remain uncorrelated. However,
for the intermediate regime, the second photon stimu-
lates the relaxation of the emitter to the ground state.
The two photons then leave the emitter simultaneously,
becoming correlated. This stimulated emission in a 1D
continuum is special, as the emission enhancement can-
not be entirely attributed to photon indistinguishability,
but largely results from the photon correlation generated
by the emitter (Rephaeli and Fan| |2012).

We shall construct a 2-photon scattering eigenstate in
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FIG. 5 (Color online). Reflection of single photons from a
coherent-state input by one atom near a microtoroidal cavity.
(a) Transmission 7o(t) and (b) reflection Ro(t) of the probe
field after averaging over atom transit events with a selection
criterion that the sum of the counts over a time interval of 4 us
is equal to or greater than a threshold count C, shown in the
legend of (a). (c), (d) The second-order (intensity) correlation

functions gg )R (7) for the transmitted and reflected fields. The

dip in gg)(r) around 7 = 0 indicates anticorrelation in the

detection of photons, which is a signature of antibunching
and indicates that the field is dominated by single photons.
Solid lines are a theoretical calculation described in[Aoki et al.l
from which the figure is adapted.

1D that covers all of the above limits. First, we write
the incident state for two photons with wavevectors k =
(K1, k2) in the right-moving channels

k) = / dmdmmk(mhx2>%a2<m1>ak<xz>|so>, (16)

where ¢y (1, x0) = (eF1@1Fih2ez 4 gikizatikozy) /(9,/97),
Our ansatz for the 2-photon scattering eigenstate is

|k+> — /da:ldxg [gRR(xl,xg)%ak(ml)aTR(xz)

+ en(w1)d(z2)al(x1)]e) (g]

+ gri(z1; 962)&1}%(331)@(@)

+ ep(22)d(x1)ak (z2)]€)(g]
1

+ grr(xy, IQ)TCLTL(M)GTL(M)} ),

- a7)

where grgr(z1,22), grr(z1,22) and gpr(xi,z) are 2-
photon amplitudes, and egr(z1) and er(z2) are ampli-
tudes of right- and left- moving photons with the 2LE
in the excited state. These five unknown amplitudes
can be found by solving five coupled linear differen-
tial equations, obtained from the 2-photon stationary
Schrodinger equation, Heg|kt) = hvg (k1 + k2)|k™). One
can solve the differential equations with boundary condi-
tions, grr(z1,22 < 0) = ¢x(x1,22), grr(z1,22 > 0) =
0, grr(z1 < 0;29 > 0) = 0 for the unscattered state in
Eq. (16]), and continuity relations for the amplitudes, e.g.,

9rr(0,z) = grr(z,0) = [grr(0+,2) + grr(0—,2)]/2.
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FIG. 6 (Color online). Correlations between scattered pho-
tons in the lossless resonant case. The calculated two-photon
scattering coefficients |t2|? and |re|® are plotted versus the
scaled separation I'(z1 — x2)/vg. (a) Bunching of transmit-
ted photons indicated by the peak in |t2]® at 21 = zo. (D)
Antibunching of reflected photons indicated by |rs|?> = 0 at
X1 = T2.

For example, the amplitudes of the right-moving photons
in terms of gi(z) and ey in Egs. are

1 r ,
9rr(Z1,%2) = 7 [9k, (21) gk, (w2) + 2@619161@261(]“%2)%
ei(kl+k2—2we/vg)z/2€—(’y+l‘)z/vga(x)e(x2)] + (xl VAN 33‘2),

(18)

63(1’1) = (gkl (xl)ekz + Gk, (1’1)6k1)

% . L
+ szfeklekzez(vgkﬁvgkz we+w+z1‘)x1/vgg(x1)7
g

(19)

where z, = (21 + 23)/2 and z = 21 — 5. We observe
that the second terms in ggrr(x1,22) and er(z1) decay
to zero with increasing |z1 — x2| and |x1|, respectively.
These terms are regarded as 2-photon bound states.

Recently, the existence of two-particle bound states
in the presence of a localized interaction has been dis-
cussed in the contexts of both photon
2010} [Shen and Fanl,[2007b)) and electron transport
et al., |2008; Nishino et al) 2011). Because the interac-
tion is spatially confined, energy and momentum can be
exchanged and redistributed between the photons (with
the constraint of fixed total energy), enabling the devel-
opment of photon-photon correlations. The correlation
strength depends on I'. Experimental evidence for the 2-
photon bound state appears in second-order correlation
measurements and the transmission and reflection coef-
ficients of the scattered fields (Firstenberg et all [2013}
2012)), which we discuss later.

It is interesting to study the asymptotic behavior
(away from the emitter) of the 2-photon scattering eigen-
state

) = /dzld%[”(xhxz)aTR(ﬂﬁl)aTL(IQ) +
W“Umﬂa}(@) + b(ﬁ\/;ﬁ

where to(x1, x2), r2(x1, x2) and rt(x1, x2) are two-photon
amplitudes where, respectively, both photons are trans-
mitted, both are reflected, and one is transmitted and the

aly(z1)ak (22)]]0),



other reflected. When two degenerate incident photons
are resonant with the lossless emitter (v k1 = vgka = we
and v = 0), we find (Shen and Fan| 2007a))

e2iwerc/v96_rlm|/v9’ (20)

tg(xl,l‘g) = —%

2

1 )

o) = e (= T, (1)
1 .

7"15(.171,.’1?2) — _;ezmem/vge—21"|mc\/vg7 (22)

Two important points to notice from the above expres-
sions are: (1) the outgoing state is not a product state,
and (2) the transmitted photons are bunched, whereas
the reflected photons are antibunched. Here, the sepa-
ration x between the two scattered photons is equiva-
lent to a time delay between them. When plotted versus
x in Fig. |§|, [ta(x1,22)|? shows a cusp, and |ra(z1,22)|?
shows a dip at x = 0. For a side-coupled 2LE, since
ro(x1,x2) arises entirely from emission without any con-
tribution from the incident photons, the antibunching in
ro(21,x2) confirms that a single emitter cannot simulta-
neously emit two photons. On the other hand, the behav-
ior of ta(x1,x2) and rt(xq,x2) involves interference be-
tween the incident and emitted photons. The behaviors
of ro(x1,z2) and to(x1,22) in Fig. |§| agree qualitatively
with the experimentally measured 2-photon correlations
g (1) of reflected and transmitted photons, shown in
Figs. [fj(c,d) and [I2) for optical and microwave photons.

An exact multiphoton scattering state for 2LEs (Zheng
et al., 2010) and multilevel emitters (Roy and Bondy-
opadhayal, 2014; |Zheng et al.,2012) has been derived, ex-
tending the above scattering theory. Multiphoton bound
states appear in these multiphoton scattering states. The
‘brute force’ technique we have used for constructing the
scattering eigenstates becomes much more laborious with
increasing photon number N, as the possible scatter-
ing configurations rapidly increase. An efficient method
to describe the evolution of an arbitrary initial state of
the present system has been developed by [Yudson and
Reineker| (2008) using the algebraic Bethe ansatz. This
elegant method avoids both the difficulty of following nu-
merous configurations and the subtle problems of nor-
malization and completeness of states. However, with
increasing photon number it becomes very difficult to
extract useful information from these exact multiphoton
scattering states, whether calculated using the algebraic
Bethe ansatz or scattering theory.

Coherent state input: Coherent states are an important
class of multiphoton states, describing the output of both
an ideal laser and a microwave generator. They are thus
commonly used as an input in experiments. [Zheng et al.
(2010) formulated the scattering of a weak coherent-state
wave-packet by a 2LE using the S-matrix in scattering
theory. The incident wave-packet is |a) = b7/ 2|),
where 71 = [ dk|a(k)|? is the mean photon number, which
is kept small 7 < 1 to observe few-photon behavior.
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FIG. 7 (Color online). Second-order correlation function
of the transmitted field at various emitter-photon coupling
strengths for a coherent state input with 7 < 1. The cou-
plings are (left) I'/v = 0.2, (middle) I'/y = 1.6, and (right)
I'/y = 3. Here vgko = we = 10y and A /vy = 1. Note the
different vertical scales. The second-order correlation shows
antibunching and bunching at different coupling strengths.

For a coherent-state wave-packet, the photon statistics
are Poissonian, implying that the variance of the photon
number is also 7. Here af, = [ dka(k)a} , for an inci-
dent wave-packet from the left. We employ a Gaussian
wave-packet (Zheng et al., 2010

Vi (k — ko)?

OZ(]{?) = Wexp( — W),

with width A, and mean momentum ky. The scattered
state can be expressed as [/") = " S™)|a), where
S(N) is the S-matrix operator of N incident photons,
whose elements can be calculated using scattering the-
ory. For example, S(©) = |p)(p| and

S = [ taly o) (elana+ [ di ral 1) (elars

where t;, and r; are the 1-photon transmission and reflec-
tion amplitudes of Eq. (13]). Following this prescription,
we find the transmission of a weak coherent state input

(3" |af ()ar (@) [¥3)
(alal(x)ar(z)|a)

_ fdkldk?a(kl)a(kZ)tklt;;Zei(kl_kQ)z

[ dEkidksa(ky)a(ky)eiki—k2)e

T(k()a Ak) =

(23)

where « > 0, and we have kept only the leading order
contribution coming from single-photon scattering. For
a long, monochromatic pulse (Ax < I' 4 7), the coeffi-
cient T'(ko, A) reduces to the single-photon transmission
coefficient T'(ko) in Eq. (1F)).

In experiments, the statistics of scattered photons
is predominately determined by measuring second-order
correlations of the scattered fields. For the transmitted
beam, it is defined as

2) _ <¢3ut|ak($1)ak($2)aR($2)aR($1)\¢gut>
) = T ol anen) o)




By neglecting the contributions from N > 3 photons in
|out) for i < 1,|Zheng et al| (2010) have found

9 (22 — 21) (24)
| [ dkvdkaoky) (k) (b ty — Ty TRge” TT1EI/00) 2
|fdkldkga(kl)a(kg)tkltk2|2 ’

Here again, the distance separation can be converted to
time separation via 7 = (22 — 21)/vy, which is what
is typically measured in experiments. The first and
second terms in the numerator of Eq. are related
respectively to the noninteracting and the bound-state
parts of the 2-photon wavefunction. Without the bound-
state contribution (i.e., no effective photon-photon in-
teraction), ¢® (zy — ;) = 1. In the presence of the
bound state, g(? (x5 — x1) can show bunching and anti-
bunching of the transmitted photons at different values
of the coupling rate I', as shown in Fig. [} Note that
the observability of these effects also depends on having
the appropriate value of T'/y. For very strong coupling
T'/y > 1, ¢ (23 —x1) of the transmitted photons always
shows bunching [Fig. [7|c)] and was observed by [Hoi et al.
(2012). For very weak coupling T'/y < 1, g (zy —z1) is
nearly featureless, exhibiting only a small antibunching
dip [Fig. [{a)]. In the intermediate regime I'/y ~ 1, the
antibunching is more pronounced [Fig. [7[(b)].

B. Input-output formalism

The input-output formalism is a celebrated technique
for analyzing the effect of light-matter interactions on the
quantum statistics of light fields (Gardiner and Collett],
1985; \Walls and Milburn), |2008|). Based on the Heisenberg
picture, it allows one to study the time evolution of the
field operators, with the ability to account for various in-
put field states, for example, coherent states, Fock states
or squeezed states. [Fan et al| (2010) recently adopted
this formalism to investigate the few-photon scattering
by emitters in a 1D continuum, relating it to the scatter-
ing theory of correlated photons.

Equations of motion: Essentially, given a Hamiltonian
H , one uses the Heisenberg picture to derive a set of non-
linear differential equations for the time evolution of the
input and output fields by, in(t), bm,out(t) of left-moving
(m = L/+) and right-moving (m = R/—) photons,

1 .
by ,in(t) = E /dk amyk(to)ewnugk(tfm), (25)

1 N
b out (t) = E/dk U i (t1) ™R 1) (96)

iHto/hy, —iHto/h

where a,, k(to) = e
ity /hy " o—ilti/h

m k€ and am i(t1) =
are Heisenberg operators in the lim-
its tg — —o0, t; — oo. For clarity, we will use b, b
for operators in the input-output formalism and a, ' for
operators in scattering theory. The input-output opera-
tors are directly related to the operators that create and

destroy incoming and outgoing scattering eigenstates in
scattering theory [see Eqgs. and @] For example,

1 ) ) .
vain(t) = \/7277 /dketho/ﬁaRykeszto/ﬁefwgk(tfto)

— 1 dketho/hefngto/haR keiHoto/heftho/FLe*i’ng}t
V2m ’

1 .
- = / dkagin(k)e—0kt, (27)

where in the second line we replaced ap ekt

with e’iH"t"/ha&keiH"to/ﬁ by employing [Ho,ari] =
—hvgkar k. Thus, @, in/out(k) gives the spectral repre-
sentation of by, in/out(t). Using relations similar to ,
we can rewrite the S-matrix elements in Eq. as

SO = (p|Slk) (28)

= <(p|ao1,out (pl)“aozv,OUt (pN)a;rl7in(k1)"a:[N’in(kN)‘<p>
= .7:T2N<<P|b01,out(t1)..bozv,out (tN)b;fl,in(tll)"bIN,in(th)|90>7

where we use a global Fourier transform FTEN) =
(2m)~N f]_[jvzl dtjdt;-ei"’g(im'%_"jpftf) with i;,0; =
—(R),+(L) to relate the S-matrix in linearized momen-
tum (or frequency) and time. We shall now show how
the S-matrix elements are found within the input-output
formalism.

To simplify the presentation, we slightly rewrite the
emitter part in the Hamiltonian H using Pauli matri-
ces. We write the full Hamiltonian for a single 2LE side-
coupled to a 1D continuum as

Hio

© 1
== / dk vgkz(a;’kapwk — aTL,kaL)k) + JWe0

V o0
+\/ﬂ/ dk[(aE,kJraTL’k)U_ +ot(ark +ark)(29)

where o4 are raising and lowering operators for the 2LE
and 0, = 2040_ — 1. Here w, is again the transition
energy of the 2LE, and we have dropped the inelastic
loss term iy. We again assume that the coupling V to
the linearized modes is independent of the wavevector k.

One can write Heisenberg equations of motion for the
operators in Eq. and define input-output operators
for the fields, as illustrated in detail for a chiral model in
Appendix [A] One then gets

Vv
bR,out (t) = bR,in (t) —1—0_ (t)v

Vg
Vv
bL,out (t) = bL,in(t) - Z/U*O'_ (t)a (30)
g
do_ ) .
el —(iwe + T)o_ +iVo,[brin(t) + br in(t)],

again denoting I' = V2 /v,. We now have all the required

tools to study the scattering of photons in this system.
Scattering properties: The 1-photon scattering proper-

ties are encoded in the 1-photon S-matrix. For a single,



right-moving input photon, the transmission amplitude
is given by the following element of the S-matrix

(@lar.ou(p)ak i (K)]0)

1 )
= —— [ dt{o|br.ou (t)|ET)eeP", 31
= [ et lE)e (31)

where we use aR w(E)|e) = |ET) [see Eq. ] and write
aR,out(p) in terms of b ou(t). We therefore need to cal-
culate (p|br,out(t)|kT) to find the 1-photon transmission
amplitude. It can be obtained by sandwiching Eqs.
between (p| and |kT),

(@lbr)L,0ut (OET) = (lbr)Lm()|KT) (32)
~ iy (elo- (k).
3 lglo_ k™) = ~(iwe + D) glo_k*)  (33)

+ iV {p|o.[bRrin(t) + br i (t)]|ET).

One can easily find some parts of the above expressions,

e~ ivgkt
(lbrin (IET) = (plbr.n(t)ak 1 (k)] ) = T
(plbrin(DIET) = (olbrin(t)ak 1 (R)|w) = 0, (34)

(plobrn@®IkT) = —(plbrn)ET),

where o, |p) = —|p), as |p) is the photon vacuum state
with the 2LE also in its ground state. Plugging the re-
sults of Egs. into Eq. , we obtain a first-order
inhomogeneous differential equation with the solution

L+ e gkt Vv
<(P‘0——| > - m vgk‘—we—i-zT’ (35)
ng —ivgkt
(@l (£) ) = € (36)

V2r

Here t;, = t;(y = 0) is the 1-photon transmission am-
plitude ignoring decoherence and photon loss. Finally,
inserting Eq. in Eq. , we arrive at

(Plar.ou(p)ag(k)|e) = td(k = p). (37)

Similarly, we can derive the 1-photon reflection am-
plitude 7 = ¢, — 1 from the S-matrix element
<<p|aL70ut(p)aR By = 7rd(k + p). We thus see that
the 1-photon scattering amplitudes obtained here are the
same as those we found using scattering theory.

We note that the same result can also be arrived at
by directly approximating o, = —1 in Egs. , thus
linearizing the operator equations. Such an approxima-
tion is commonly used in many quantum optics calcula-
tions in the weak-excitation limit by considering the 2LE
to be mostly in its ground state. Physically, the weak-
excitation limit is valid for 1-photon scattering when the
1-photon wavepacket has a much longer duration than
the lifetime of the 2LE. However, the weak-excitation
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limit is not always valid, even for a 1l-photon pulse
(Rephaeli et al., [2010).

Similar derivations of the elements of the S-matrix are
carried out for multiphoton Fock states (Fan et al., 2010
Rephaeli et al., 2011} [Xu et all 2013) as well as for co-
herent state inputs (Koshino and Nakamural [2012; [Per-
opadre et all [2013)). Input-output theory can also be
easily extended using the master equation formalism to
include decoherence processes such as pure dephasing,
which dominates in superconducting systems (Koshino
and Nakamural, |2012; [Peropadre et al., [2013)). Finally,
the input-output formalism has been recently extended
to investigate scattering of multiple photons by multiple
interacting and noninteracting emitters in a 1D contin-
uum (Caneva et al., 2015} Xu and Fanl 2015). We discuss
these in the next section.

C. Other theoretical techniques

Until now we have discussed scattering of photons in a
1D continuum with a linearized dispersion relation and
the Markov approximation. However, there are exam-
ples where the linearization is a poor approximation, and
the nonlinearity gives rise to important physical behav-
ior (Longo et all [2010; [Royl |2011a; |Zhou et al., 2008)).
One such case is of coupled resonator arrays, exhibiting a
tight-binding dispersion relation that is strongly nonlin-
ear. These structures were realized in photonic crystals
(Notomi et al., 2008) and proposed in superconducting
systems (Zhou et all, 2008)).

For a sinusoidal tight-binding dispersion, the Hamilto-
nian in Egs. and can be rewritten as

H
e Z (afag i1 +al1a.) + (we —im)bTb
r=—00
fr ot U ot
+ Vo(abb + blao) + 7 bb(b'b — 1), (38)

where a! creates a photon at site z, and .J is the hopping
rate between nearest neighbor sites. Here, the 2LE is
replaced by an additional bosonic site, side-coupled at
x = 0 (Longo et all [2010; Roy, 2011a). The photon
creation operator at the additional site is bf. The states
of 0 and 1 photon correspond respectively to the ground
and the excited states of the 2LE in Eq. , whereas the
forbidden ‘multiphoton’ occupancy of the 2LE is avoided
by introducing the interaction term UbTb(bTb — 1)/2 and
taking the limit U — oo.

Scattering eigenstates for one and two photons can be
derived exactly for the Hamiltonian in Eq. using the
Lippmann-Schwinger equation. |Roy| (2011a)) compares
1-photon and 2-photon transmission for linear and (non-
linear) tight-binding dispersion relations and points out
the effect of band edges on the 2-photon transmission.
Here again, the 2-photon scattering eigenstates exhibit
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FIG. 8 (Color online). (a) A-type and (b) ladder-type three-
level emitters.

bound states due to inelastic exchange of photons. A
unique feature of this approach is the ability to exactly
calculate 2-photon scattering states for multiple emitters
separated by arbitrary distances (Zheng and Baranger,
2013)), similarly to the calculation of multiple quantum
impurities (Roy, [2010b)). Furthermore, one can numeri-
cally study 2-photon scattering by multilevel emitters.

Longo et al.| (2010)) investigate the scattering of few-
photon states in 1D lattice models using numerical time-
dependent wave-packet evolution. This framework allows
one to analyze both the dynamics of multiphoton wave
packets that interact with the emitter and the dynamics
of the emitter itself. Employing the approach of den-
sity matrix renormalization group (DMRG), they extend
their study for 3-photon and 4-photon transport. They
demonstrate that a single-particle photon-atom bound
state with an energy outside the band can be excited
via multiparticle scattering processes, which leads to ra-
diation trapping at the emitter. Another study worth
noting is based on the Lehmann-Symanzik-Zimmermann
reduction, a method to calculate S-matrix elements from
the time-ordered correlation functions. This approach is
employed by [Shi and Sun| (2009)) to investigate multipho-
ton S-matrices in various complex quantum networks of
propagating photons coupled to emitters.

D. Three-level emitter: a single-photon router

A single-photon router can route one photon from an
input port to either of two output ports, while con-
serving the superposition of input photonic states. It
thus finds important applications in optical quantum
networks. Building on the work of |Abdumalikov et al.
(2010), [Hoi et al| (2011) demonstrated that a driven
three-level emitter (3LE) strongly coupled to a 1D contin-
uum can act as an efficient single-photon router (Chang
et al.,2007; [Neumeier et al.l 2013} |Shomroni et al.l|2014]).
As we shall see, the presence or absence of a classical con-
trol field in this system determines a specific output port
for the probe photon.

We consider a 3LE with either the A or ladder-type
structures in Fig. [8] with the probe light tuned to the
lg) — |e) transition. A classical light field drives the |e) —
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|s) transition with a Rabi frequency Q. and frequency
detuning A.. The Hamiltonian describing the system
HR _ HeH

R B e+ B = il + 2 (el + ),

2
(39)

extends the Hamiltonian Heg of the 2LE in Eq. (10).
Losses from the state |s) are accounted for by the imagi-
nary term —ivy,. With natural atoms, |g) and |s) can be
two different Zeeman states, and the transitions |g) — |e)
and |e) — |s) would couple to different optical polariza-
tions based on selection rules.

Witthaut and Sgrensen| (2010) and Roy| (2011b)) study
the transmission and reflection line-shapes for the A-type
system. The 1-photon transmission and reflection am-
plitudes are given respectively by ¢, = x/(x + ') and
ri, = —il'/(x + i) [see, e.g., Roy and Bondyopadhayal
(2014) for a derivation], where again I' = V* /v, and

2
. C

X =A+1dy 0+ (40)
Here A = vyk — w, is the detuning of the incident probe
photon from the |g) — |e) transition, and 6 = A — A,
is the Raman detuning. We plot in Fig. [J] the trans-
mission coefficient T"(k) = |t;|? for different values of
the parameters. In the absence of the control field, the
probe photon is reflected due to the |g) — |e) transition
[Fig. @(a)], whereas in the presence of a control, when
02 > T'y,, a transmission window appears at the Raman
resonance A = A, (6 = 0) [Figs. [0fb-d)].

Two parameter regimes are of interest. In the first
regime, predominantly characterizing atomic A-systems,
the |s) state is metastable and much longer lived than
the |e) state, that is vs < 7,[. This yields a nar-
row transmission window within the broader reflection
or absorption line, an effect known as electromagnet-
ically induced transparency (EIT) (Boller et al.l [1991;
Fleischhauer et all [2005; Harris et al.[1990). Intuitively,
EIT results from a destructive interference between two
allowed transitions, leading to cancellation of the pop-
ulation of |e) and to formation of a ‘dark state’. With
increasing strength of the control field, the width of the
transparency window increases, as shown in Fig. El(c)

In the second regime, generally characterizing super-
conducting ladder systems, |s) is shorter lived than |e)
due to population relaxation, as the |s) — |e) transition
also couples strongly to the transmission line. There-
fore vs = «,T', and narrow EIT lines cannot be obtained.
Rather, stronger control fields Q. > T' are needed to
drive the |s) — |e) transition and open a transparency
window (Anisimov et al |2011), an effect known as the
Autler-Townes splitting (ATS). The width of the trans-
mission window due to ATS is €, as shown in Fig. @(d)
In both regimes, a sufficiently strong control field allows
the probe photons to pass the emitter without being re-
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FIG. 9 (Color online). Prefect reflection (a), electromagnet-
ically induced transparency at the Raman resonance A =
A, for weak control field (b,c) and Autler-Townes splitting
for stronger control fields (d). The splitting between the
Autler-Townes doublet is .. The parameters are A./I' =
—1/2, 4/T = 1/4, ~,/T = 1/40.

flected. Thus, the presence or absence of a control field
determines the route of the probe photon.

The recent experiments by [Abdumalikov et al. (2010)

and (2011)) used a ladder-type superconducting

qubit and observed transparency windows due to ATS, as
shown in Figs. [L0[a,b). By tuning the control field,
demonstrated the routing of a single-photon
probe. Since both relaxation and dephasing are impor-
tant in superconducting systems, a generalized model
was introduced by [Abdumalikov et al.|(2010) to describe
the experiments, replacing the effective non-Hermitian
Hamiltonian with a Markovian master equation for
the density matrix. The transmission spectra calculated
by [Abdumalikov et al/ (2010) are shown in Figs. [[0[c,d)
and are similar to our ¢}, given above [with their loss
terms 791 and 731 corresponding roughly to our (y +T)
and s, respectively].

Recently, more complicated superconducting systems
have been used to make effective A-systems.
realized an effective “impedance-matched”
A-type emitter using dressed states of a driven supercon-
ducting qubit-resonator system. Novikov et al| (2016)
demonstrated EIT in a superconducting circuit using the
Jaynes-Cummings dressed states of a strongly coupled
qubit-cavity system as an effective A-system.

Photon-photon correlations have also been calculated

for 3LE systems (Li et al.,2015). To do this, one needs to

derive the multiphoton scattering states for the system.
derive the 2-photon scattering state of the
probe field for a 3LE weakly driven by a control field. An
exact 2-photon scattering state for an arbitrary strength
of Q. is calculated by Roy and Bondyopadhaya (2014
and |Zheng et al.|(2012). |Roy and Bondyopadhayal (2014
show that the second-order correlation of the transmitted
photons near the Raman resonance changes from bunch-
ing to antibunching to constant, as the strength of the
control field is ramped up from zero to a higher value
where the ATS appears.
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FIG. 10 (Color online). One-photon transmission amplitudes
t versus the probe detuning dw, = A for a superconduct-
ing three-level qubit coupled to a microwave waveguide. (a)
and (b) are the experimentally measured real and imaginary
parts of the transmission amplitudes for various control field
amplitudes Q, specified in (b). The curves show typical dis-
persion for the Autler-Townes splitting. Re(t) near dw, = 0
approaches unity with increasing Q.. (c) and (d) are cor-

responding theoretical curves. Adapted from [Abdumalikov
(2010).

E. Superconducting circuits

While proposed in a variety of experimental systems,
the strong coupling of propagating light to matter was
first demonstrated in a circuit QED setting, with su-
perconducting qubits playing the role of artificial atoms
(Astafiev et all [2010a). The major advantage of these
types of systems in achieving strong coupling is that the
electromagnetic fields can be tightly confined into quasi-
1D superconducting waveguides (vg ~ ¢/3). In a typical
implementation, the lateral dimensions are of order 10
microns while the corresponding wavelength is of order
10 mm. (In the direction of propagation, the light is un-
confined.) The mode volume is then ~ 1075\3, compared
to ~ 13 for optical systems, implying strongly enhanced
electric field strengths. It is, furthermore, straightfor-
ward to fabricate superconducting qubits with dipole
moments in this range (Wallraff et all |2004), meaning
that efficient mode matching can be easily accomplished.
These were the key insights leading to the rapid growth
of experimental work in this field.

These systems work in the microwave regime. In this
frequency range (~ 5 GHz), where the photon energy fiw
is well below the superconducting gap energy Agc, super-
conductors have very little loss, which protects the coher-
ence of the circuits. In aluminum for instance, Agc/h ~
50 GHz. At optical frequencies (hw > Agc), metals
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FIG. 11 (Color online). Spectroscopy of an artificial atom
coupled to an open 1D transmission line. The colormap shows
the power transmission T = |t|* versus flux bias 6® and in-
cident microwave frequency w. When the incident radiation
is on resonance with the emitter, a dip in T reveals a dark
line. Inset: |t|> at 6® = 0 as a function of the probe detuning
0w = A from the resonance frequency w./2m =10.204 GHz.
The maximal power extinction of 1 —T = 94% takes place on
resonance (dw = 0). Adapted from |Astafiev et al.| (2010a).

are not superconductors and are very lossy. Therefore,
metallic waveguides are not useful in confining optical
light at these size scales. The trade-off is that these mi-
crowave systems must be operated at very low tempera-
tures, typically below 50 mK, in order for the background
thermal (blackbody) field to be sufficiently suppressed.

The first demonstration of the strong scattering of
propagating microwave light by a single artificial atom
was achieved by |Astafiev et alf (2010a) from the NEC
Corporation group (see Fig. . They observed a
strong extinction of the transmitted light corresponding
to 1 — T = 94%. This was the first time that the hall-
mark result of 1 — T > 50% was achieved for a single
scatterer in any type of system, clearly separating the
coherent and incoherent scattering regimes. They also
derived reflection (r) and transmission (¢) amplitudes of
an incident coherent state using input-output theory and
the master equation approach to treat decoherence:

1+iA/T,
T )
91+ (A/T2)2 + Q2T T,

T =

t=1-—r, (41)

with 79 the maximal reflection amplitude and €2 the Rabi
frequency of the incident probe. Therate I'y =T’y /24T,
where I'1 is the energy relaxation rate and I',, is the pure
dephasing rate. Note that there is a sign difference in the
definition of reflection amplitude in Eq. [12] and |Astafiev
et al| (2010a)). For superconducting systems, the rate
of emission into spurious modes is negligible, implying
I’y = 2T". For weak driving (2 < T'1,T'), Eq. agrees
with Eq. if we further identify I'y = . We note
again that this is a typical distinction between atomic
and superconducting systems, that is, in the supercon-
ducting systems we consider here, emission into spurious
modes is negligible while pure dephasing is significant.
The NEC group demonstrated a number of proto-
typical atomic physics effects using their artificial atom
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including resonance fluorescence of the Mollow triplet
(Astafiev et all [2010alb) and induced transparency due
to the Autler-Townes splitting (Abdumalikov et al.,
2010) as discussed before. These results demonstrated
that the quality of coherence in superconducting qubits
had become sufficiently high for them to genuinely be
considered “artificial atoms.” NEC’s work was repro-
duced by the Chalmers group, who improved the scat-
tering efficiency by more than an order of magnitude by
increasing the coupling strength, achieving 1—-T = 99.4%
(Hoi et al., [2013bj, [2011)).

Importantly, the simple measurement of the coherent
scattering properties at single-photon probe powers can
be fully explained by a classical model of scattering from
a harmonic oscillator, i.e., an LC circuit. Essentially, as
long as the probe only weakly excites the atom from the
ground state, it does not obtain information about the
presence of higher levels and cannot distinguish between
a two-level and a multilevel system. To rule out that the
observed signal is purely classical, we must look beyond
the linear response of the system. The experiments men-
tioned above which involve stronger probes and nonlinear
response, such as the resonance fluorescence experiment,
are not simply explained by a classical model of the emit-
ter. Still, they tell us very little about the state of the
scattered electromagnetic field.

As we have shown theoretically, the light scattered by
a single emitter should be distinctly nonclassical, which
can be characterized by higher-order correlation mea-
surements. The Chalmers group measured the second-
order correlation function g(®)(7) of the scattered field
and showed that it was significantly less than 1 (Hoi
et all 2012)). The essential idea is that the emitter can
only scatter one photon at a time, so it only reflects
the 1-photon component of the input coherent state,
while transmitting the higher photon number compo-
nents. The reflected state is then a superposition of only
the vacuum and the 1-photon state, which exhibits pho-
ton antibunching as shown in Fig. The antibunching
behavior reveals the quantum nature of the scattered field
(Kimble et al., (1977} Paul, {1982).

These circuits have also been explored in terms of pos-
sible applications for quantum communication networks.
One broad architecture of a network imagines quantum
nodes, which perform basic processing tasks, connected
by long-distance channels carrying quantum information
(Kimble, [2008). By far, the leading candidates for im-
plementing quantum channels involve optical or telecom
photons propagating in fibers or free space. A number
of physical systems are being actively investigated for
implementing quantum nodes (De Greve et al., 2012; [Di-
Carlo et all 2009; |Gao et al.l 2012; [Ritter et all 2012;
Sherson et al., 2006) with superconducting circuits in
open environment being one of the promising candidates.

Using the architecture described above, the Chalmers
group has already demonstrated a number of prototype
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FIG. 12 (Color online). Second-order correlation function
g(2) versus the time separation 7 between the photons for a
thermal state, a coherent state, and the scattered states gen-
erated by the artificial two-level emitter. (A) ¢®(7) of a
thermal state and a coherent state. (B) g‘®(7) of the reso-
nant transmitted microwaves for four different incident pow-
ers. (C) g®(7) of a resonant reflected field for two different
incident powers. g<2)(0) does not reach zero because of well-
understood experimental imperfections, including the band-
width of the measurement system. (D) ¢‘®(7) of a resonant
reflected field for different measurement bandwidths (BW),
illustrating how decreasing bandwidth decreases the depth
of the dip. The solid curves in (A)-(D) are theory curves.
Adapted from [Hoi et al.| (2012).

elements for quantum nodes. In the first experiment,
as mentioned earlier, they demonstrated a router that
exploited the ATS to direct a microwave input at the
single-photon level between two ports (Hoi et al.l 2011)).
The on-off ratio of the router was 99% with a switching
time of a few nanoseconds. The ability to produce non-
classical light, which is a required resource for a quantum
network, by scattering classical light from a purely pas-
sive device as described above (Hoi et al., 2012) also has
potential technological applications. This can be consid-
ered as a “quantum-state filter” that accepts a desired
portion of the input state (the 1-photon component) and
rejects the rest (the higher photon numbers). We com-
pare this to a conventional frequency filter that accepts a
desired set of frequencies while rejecting others. More ad-
vanced quantum-state filters, containing multiple qubits,
could be an economical way to produce nonclassical light
for quantum networks.

In a separate experiment, the Chalmers group demon-
strated that the single qubit worked as a highly effec-
tive cross-Kerr medium (Hoi et all, 2013a). The cross-
Kerr effect is essentially an effective interaction between
light at two different frequencies mediated by a nonlin-
ear medium (Shen| 1984)). The basic effect is that the
presence of one beam induces a phase shift in the other
beam that is proportional to intensity. The cross-Kerr
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effect has been studied extensively in the past as a possi-
ble route to, e.g, quantum nondemolition measurements
(QND) of single photons (Munro et al., [2005) and pho-
tonic gates (Milburnl (1989; [Turchette et al.,|1995). How-
ever, the strength of the cross-Kerr effect is generally too
weak in bulk nonlinear crystal for any of these applica-
tions to be realizable. In the Chalmers experiment, by
contrast, the bulk nonlinear medium is replaced by a sin-
gle 3-level (artificial) atom, and the two input fields are
tuned to the |g) — |e) and the |e) — |s) transition fre-
quencies. The experiment was performed with coherent
states, demonstrating an average cross-Kerr phase shift
of 20° per photon, surpassing the previous state-of-the-
art of 0.01° per photon for propagating light (Matsuda
et al) 2009; |Perrella et all |2013; [Venkataraman et al.
2013). In parallel, a phase shift of 45° was demonstrated
with Rydberg atoms, as discussed in Sec. [[V]

This work on the cross-Kerr effect has stimulated a
great deal of theoretical work analyzing the prospects of
this system to be used for the QND detection of photons.
Interestingly, a first work concluded that QND detection
could not be achieved with a single atom, due to atomic
saturation effects (Fan et al.,2013)). Because a bulk non-
linear crystal can largely be considered as an incoherent
ensemble of such atoms, this work strongly suggest that
QND detection is not possible in a bulk system, which
was an important general result. However, subsequent
work has shown that careful arrangements of multiple
atoms, sequentially interacting with the propagating pho-
ton, can achieve QND detection of a single propagating
photon (Fan et al.,|2014; Sathyamoorthy et al., [2014).

The Chalmers group has also looked at a system with
one atom in front of a “mirror” (Hoi et al 2015)). In
this case, the mirror-like boundary condition is created
by simply terminating the transmission line with a short
circuit to ground at one end. The effective separation
is modulated around the value of A/2. Interference be-
tween the input field, the field scattered by the atom and
the field reflected by the mirror creates a standing wave
pattern. When the separation is exactly A/2, the atom
sits at a node of the field, and it is effectively hidden
from the probe. This can be thought of as an interaction
between the atom and its image in the mirror, much in
the same way that the two real emitters interact in the
Ziirich experiment (van Loo et all [2013]) described be-
low. Interestingly, it was shown that the atom not only
hides from the classical probe field, but also from vacuum
fluctuations, with a suppression of the free-space relax-
ation rate by a factor of 50 being observed. In contrast to
the Purcell effect, where a cavity can be used to suppress
the relaxation rate, the suppression achieved through this
novel form of vacuum engineering occurs even though the
atom is coupled to a continuum of propagating states.

While superconducting circuits interacting with mi-
crowave photons show great promise for implementing
quantum nodes, the implementation of long-distance



FIG. 13 (Color online). Photon-mediated interaction be-
tween distant emitters in superconducting circuits. Transmon
qubits (length ~ 300um) acting as emitters are coupled to an
open 1D transmission line. Adapted from [Lalumiere ef al]

@013,

quantum channels using optical photons is very far ad-
vanced, with records distances of > 100 for free-space and
in-fiber transmissions (Korzh et al., 2015} [Ursin et al.|
2007). This state of affairs has motivated considerable
work in recent years towards the development of a quan-
tum interface between microwave and optical photons.
The fundamental difficulty is the several orders of magni-
tude that separate the energy scales of these two classes of
photons. A number of research groups have attempted to
bridge this gap in a wide variety of physical systems. One
common approach is to use ensembles of dopant atoms
in a host crystal, taking advantage of the fact that spe-
cific transition can be excited both through microwave
and optical Raman transitions. Ensembles are used to
enhance the coupling to single photons. A number of
different systems are being studied including nitrogen-
vacancy centers in diamond (Amsiiss et al., 2011} |Grezes|
et all [2014; |Julsgaard et all [2013; [Kubo et al., 2011}
Putz et al., 2014) and rare-earth ions, especially erbium
(Afzelius et al.) [2013; Bushev et al. [2011} Probst et all
[2013; |Staudt et al, 2012). An entirely different ap-
proach that has shown promise is to use optomechani-
cal systems, where mechanical vibrations (phonons) in
nano- or micro-mechanical systems act as an interme-
diary between the microwave and optical photons
drews et all, [2014; [Bochmann et all, 2013} [Lin et all
2010). Finally, collective magnon excitations in macro-
scopic ferrimagnetic crystals are also being studied as a
potential medium for an interface (Tabuchi et all [2014).
The shear range of physical systems being studied as a
potential implementation of a quantum interface speaks
to the compelling nature of the problem.

IIl. MULTIPLE EMITTERS IN THE STRONG-COUPLING
REGIME

Investigating the interaction of propagating photons
with multiple emitters in 1D continuum, as illustrated
in Fig. [[3] is of fundamental and practical importance.
For example, photon-mediated interaction between dis-

tant emitters, as recently demonstrated in 1D (Lalumiére|
let all 2013} |van Loo et al) [2013), can be used to
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generate long-range entanglement between the emitters
(Gonzalez-Tudela et al. [2011}; |Greenberg and Shtyga-|
Ishevy, 2015} Zheng and Baranger], [2013). More generally,
we can imagine systems with multiple emitters being used
in increasingly more advanced quantum communication
nodes. Moreover, strong coupling of multiple emitters
with propagating photons confined below the diffraction
limit has potential practical applications for detection
and subwavelength imaging of atoms, ions, molecules,
QDs, or color centers in a host crystal (Bushev et al.
2011}, [Chen et all, [2010; [Kuhn et all, 2006; Rezus et al.
2012} [Roy, [2013b} [Smolyaninov et all 2005). Finally,
systems of multiple emitters may realize photonic simu-
lators for the quantum many-body dynamics of electrons
in condensed matter. Examples of analyzed phenomena
in such simulators include a Luttinger liquid of photons
(Angelakis et all |2011), quantum phase transitions of
light (Greentree et al.,|2006; Hartmann et al., 2006), op-
tical Josephson interferometry (Gerace et al., [2009), and
the Tonks-Girardeau gas of photons (Chang et al.,|2008).

The potential of multi-emitter systems has motivated a
number of theoretical studies in recent years. While most
have been within the standard Markovian approximation
(Caneva et al., 2015; |Chang et al} 2012 Dzsotjan et all
[2010; Roy, [2013a; [Yudson and Reineker] [2008), others
have looked for distinctly non-Markovian effects
land Pletyukhovl [2014; [Zheng and Baranger], [2013)).

A. Photon-mediated interaction between distant emitters

The interaction of an isolated emitter with the vac-
uum fluctuations of the electromagnetic field leads to the
spontaneous emission of real photons and to a renormal-
ization of its transition frequency (Lamb shift) via the
emission and absorption of virtual photons. A second
emitter in the system can absorb both types of these
photons, giving rise to an effective interaction between
the two emitters (Goldstein and Meystre, [1997). In a 3D
space, the strength of such interaction falls off rapidly
with the separation between the emitters because of the
large mode volume of the photons and the resulting mode
mismatch with the emitters. (DeVoe and Brewer] [1996}
\Eschner et al.,|2001). As we saw for single emitters, these
limitations are mitigated by confining the system to 1D.

Recently, the Ziirich group observed clear signatures of
photon-mediated interaction between two superconduct-
ing transmon qubits (van Loo et al,2013). The physical
separation between the emitters was large enough that
there was no direct coupling between them. While the ac-
tual separation d = 18.6 mm was fixed in the experiment,
the normalized separation d/\, measured in transition
wavelengths, was changed by tuning the transition fre-
quency of the emitter. The normalized separation could
be tuned between d/\ =1 and d/\ = 3/4.

For d/A = 1, the two emitters are driven with the same
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FIG. 14 (Color online). Photon-mediated exchange interac-
tion between two distant superconducting qubits in an open
transmission line. (A and B) Power spectral density (PSD)
of the resonance fluorescence of two qubits in resonance at
d ~ 3\/4, driven at the indicated Rabi rates, Qr. PSD falls
with decreasing Q2. At drive rates much lower than the re-
laxation rate, Qr/2m < 5 MHz, the observed double-peak
structure reveals the effective exchange interaction between
the two qubits. Adapted from [van Loo et al| (2013).

amplitude and phase by any resonant field in the trans-
mission line. This led to the observation of a superradiant
bright state and a subradiant dark state. For d/\ ~ 3/4,
one emitter is at a node of the propagating field when
the other is at an antinode, suppressing these superradi-
ant effects. However, an exchange interaction mediated
by virtual photons is maximized. The anticrossing in the
two qubit spectrum caused by this exchange interaction
was observed in the resonance fluorescence spectrum of
the driven two-emitter system, as shown in Fig.
lumiere et al| (2013) described the two-emitter system
of the Ziirich group using a Markovian master equation
along with input-output theory (Lehmberg, 1970)), ob-
taining good agreement with the experimental results.

We note that the coherent exchange mediated by pho-
tons can generate a high degree of long-distance entangle-
ment between the emitters (Dzsotjan et al 2010; Fang
and Baranger| 2015} [Fang et all [2014}; |Gonzalez-Tudela
et al, 2011} [Hensen et al. [2015) which is an important
ingredient for quantum information science.

B. Small ensemble of adjacent emitters

Several studies have been carried out on small ensem-
bles of adjacent emitters with no intrinsic interaction.

(We consider intrinsic interactions in Sec. [[V}) [Rephaeli
(2011)) calculate 2-photon scattering from a pair

of adjacent 2LEs, predicting that the fluorescence of the
emitters is completely quenched for a proper choice of
input (Zhou and Swain|, [1996]). Roy| (2013b) compared
1-photon and 2-photon scattering from two 2LEs ver-
sus a single V-type 3LE, showing that the two cases can
be distinguished by the statistics of the scattered field.
|Zapasskii et al.| (2013) successfully demonstrated this in
optical spin-noise spectroscopy experiments.
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C. Directional photon propagation

Strong transverse confinement of guided photons leads
to large intensity gradients on the wavelength scale. In
this nonparaxial regime, spin (polarization) and orbital
angular momentum of light are coupled, an effect known
as spin-orbit coupling. In particular, the spin state varies
within the transverse plane and along the propagation
direction in the waveguide. Interestingly, the local spin
of this strongly confined light can be orthogonal to the
propagation direction.

Utilizing the spin-orbit coupling, several experimen-
tal groups (Le Feber et al. [2015} [Petersen et al., [2014)
have recently demonstrated nonreciprocal scattering of
light from dipolar scatterers (QDs, gold nanoparticles,
alkali atoms) coupled to waveguides (photonic crystals,
nanofibers). The propagation direction of scattered light
in such systems depends on the spin direction of the inci-
dent light. Control of the directionality of the scattering
process with over 90% efficiency has been achieved in
such nanophotonic waveguide interfaces.
have further shown directional spontaneous emis-
sion of photons from emitters into a nanophotonic waveg-
uide. Bliokh et al| (2015) argue that the transverse spin
in evanescent waves and the spin-controlled directional
excitation of surface or waveguide modes is analogous to
the quantum spin Hall effect.

Directional propagation due to collective scattering,
distinct from the above effects, was theoretically stud-
ied by [Roy]| (20104 20134)) in spatially asymmetric atom-
waveguide interfaces. Two different structures were in-
vestigated using scattering theory: a 2LE directly cou-
pled to two waveguides with different coupling strengths,
and a chain of closely spaced 2LEs with varying transition
frequencies (Fratini et al. |2014) along the chain. While
the 1-photon transmission is reciprocal in these systems,
the two or multiphoton transmission is nonreciprocal due
to the broken spatial symmetry. These systems can thus
act as optical diodes or isolators (Jalas et al., [2013)) for
few photon states.

IV. MULTIPLE INTERACTING EMITTERS IN THE
WEAK-COUPLING REGIME: RYDBERG POLARITONS

Up until this point, we have considered explicitly only
the interaction between photons arising from their cou-
pling to the same emitter. In these configurations, ef-
ficient interaction requires the strong-coupling condition
I'/y > 1, where the coupling I" of the emitter to the
confined probe channel is faster than all other relax-
ation rates -y, including spontaneous emission to the vac-
uum environment. In the alternative approach we shall
now discuss, the interaction between photons is obtained
without mode confinement in the opposite regime of weak
coupling I'/y < 1, by utilizing many atoms, which in
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FIG. 15 (Color online). (a) Schematics of a typical Rydberg-polaritons setup: a cloud of ultracold alkali atoms is held
between two confocal lenses. The outgoing probe photons are measured using single-photon detectors. (b) Normalized second-
order correlation g(2) of the outgoing probe versus the time separation 7 between the photons, showing the transition from
antibunching in the dissipative regime (A = 0) to bunching in the dispersive regime (A = 4.67y). The group delay in the
medium was 0.25 ps. Points are experimental data, lines are numerical simulations. (c) Conditional phase-shift obtained
from a tomographic reconstruction of the outgoing 2-photon wavefunction. (d) Signature of the 2-photon bound state: The
interaction potential U(r) is approximated by a well of width 2rg (bottom, dash-dot line). The resulting bound state, observed
in the shape of the measured g(2) (top, circles, where time is converted to distance via z2 — x1 = TvgrT), conforms to that
calculated using Eq. (top, solid line). The initial state 1 (r,0) = 1 (bottom, dashed line) is a superposition of the bound
state (bottom, thick line) and the manifold of scattering states (bottom, thin line). Adapted from |Peyronel et al.| (2012)) and

[Firstenberg et al.| (2013).

turn are intrinsically interacting.

In free space, the cumulative effect of IV atoms is of-
ten characterized by the resonant optical depth OD =
2NT/(y+T) = No, /A (Caneva et al.,2015). The atomic
cross-section o, is at most ~ A? and typically much
smaller than the focused beam area A, hence high OD are
obtained only for large N. Taking ¢; from Eq. (13), we
recover a well-known expression for the total transmis-
sion amplitude ¢ = exp(—oTDATm) at I'/y < 1, where
A is the detuning of the light from resonance. However
contrary to the strong-coupling case, here most of the
non-transmitted light is lost rather than reflected. The
ratio between the single-atom reflection coefficient |rg|?
from Eq. and the loss 1 — |r|? —|tx]? is T'/(27) < 1.
Furthermore as we have seen, strong coupling is required
for obtaining significant photon-photon correlation (cf.
Fig. [7). Indeed while high OD is useful for observing
and utilizing single-photon effects, two more ingredients,
namely the cooperative behavior of the atoms and sup-
pression of loss, are required for strong photon-photon
interactions in the weak-coupling regime.

Rydberg atoms provide such cooperativity via the
dipole blockade mechanism (Lukin et al.l 2001). When
exciting two or more atoms to Rydberg states — elec-
tronic states with a large principal quantum number n
(typically n = 40 to 100) — the dipolar interaction be-
tween them shifts their Rydberg levels and consequently
their excitation frequency (Reinhard et all 2007). Be-
low a certain distance between the atoms, known as the
blockade radius rg (typically < 10 pm), the frequency
shift is larger than the excitation linewidth (typically
1 — 10 MHz for cold atoms), blocking the excitation
of more than one atom. Such large rg are achieved at

the van-der-Waals regime, where the frequency shift de-
pends on the extremely large dipoles (~ 10* Debye) to
the power of 4. The blockade effect itself can be used
for various quantum information processes with atoms
(Miiller et al.l [2009; [Saffman et al., 2010).

The consequence of the dipole blockade for propagating
photons in quite intuitively understood. A single photon,
exciting a single Rydberg atom, can block the excitation
of all Ng > 1 atoms in the surrounding virtual sphere
of radius rg. If the optical depth of the blockade sphere
ODgp = Npo,/A is large, it allows a single photon to
significantly alter the optical response for other photons.

The final ingredient required for effective photon-
photon interactions in the weak-coupling limit is the sup-
pression of loss, which can be accomplished using EIT as
proposed by |[Friedler et al| (2005). A ladder-type con-
figuration as in Fig. b) is used, with a probe photon
exciting the ground-state atom to an intermediate state,
which is coupled to the Rydberg state by a strong control
field with Rabi frequency €2.. The probe is transmitted
due to EIT within a narrow spectral window. By shift-
ing this window, the dipole blockade disables the EIT for
more than one probe photon in the blockade sphere. A
strong dependence on the rate of incoming probe pho-
tons can be observed by monitoring the average trans-
mission (Pritchard et al), 2013). The optical nonlinear
behavior and the emergence of non-classical correlations
during propagation were theoretically investigated within
the mean-field approximation by [Pritchard et al. (2010]),
[Sevingli et al.| (2011)), Petrosyan et al.f(2011), and others.

The transmitted probe experiences strong dispersion
and thus reduced group velocity vgiT < ¢, where c is the
speed of light in vacuum. It is therefore instructive to




view each propagating photon as a slow light-matter po-
lariton (Fleischhauer and Lukin| [2000). Typically these
polaritons have a negligible photonic component, of order
vEIT/C, guaranteeing the excitation of a Rydberg atom
per each propagating photon at any given time. The
strong dipolar forces between two Rydberg atoms thus
effectively mediate interaction between the two propa-
gating photons.

A. Two-photon dynamics

Gorshkov et al| (2011) provide a quantum descrip-
tion for two photons, which we now follow. A probe
photon in the form of a polariton blocks EIT for the
second probe photon, which experiences the response
e = exp(—% ATW) of bare two-level atoms. The na-
ture of the photon-photon interaction is thus controlled
by the detuning of the probe A from the intermediate
atomic state. On-resonance excitation (A = 0) leads
to scattering of the second photon, inducing an effec-
tive dissipative interaction between the photons. The
second photon is scattered inside the blockade sphere
with a probability 1 — e=©PB.  In contrast, for off-
resonance excitation (|A| > ), the second photon expe-
riences much less scattering but acquires a nonzero phase
¢ = —(y/A)ODg/2. This leads to a conditional phase
shift ¢ for two or more photons, inducing a dispersive
interaction between the photons. We see that for both
on and off resonant processes, ODg is the key parameter
determining the strength of the effective interaction.

Nonlinear optical response with Rydberg polaritons
was demonstrated originally with ODg < 1 by |Pritchard
et al.| (2010). The limit of quantum nonlinearity was
afterwards reached with ODg =~ 10 by [Peyronel et al.
(2012) in a system illustrated in Fig. a). The long
axis of an elongated cloud of ultra-cold atoms was L ~
100 pm, and so naively could fit 10 blockade spheres of
radius g ~ 10 pm, each containing Np ~ 1000 atoms.
To render an effective 1D system, the light was focused to
a diameter larger than the wavelength but smaller than
rg. In this way, paraxial diffraction did not substantially
alter the transverse extent of the photon wavefunction
along its propagation, and at the same time, two polari-
tons propagating side-by-side blocked each other.

Quantum tomography can be used to completely char-
acterize the outgoing 2-photon state as a function of
the time separation T between the photons (Firstenberg
et al.,[2013). In particular, it yields the second-order cor-
relation function ¢(®(7) and the conditional phase-shift
¢(7) relative to the noninteracting case.

The dissipative interaction at A = 0 was observed by
Peyronel et al.| (2012)) at an average level of less than one
photon in the medium. The probability that two photons
exit the medium simultaneously was suppressed by the
blockade mechanism, resulting in photon antibunching

18

g (0) < 1, as seen in Fig. [15(b). The dispersive inter-
action at A # 0 was demonstrated by |[Firstenberg et al.
(2013). In addition to a large conditional phase shift
$(0) = 45° [Fig. [15{(c)], photon bunching ¢®(0) > 0 was
observed [Fig. [L5|b)].

The bunching in the dispersive regime can be at-
tributed to an effective attractive force between the pho-
tons, intuitively arising from an increase in the group
velocity inside the blockade volume. To better describe
the 2-photon dynamics, one defines an effective 2-photon
wavefunction inside a medium of length L as a function
of the coordinates 1 and 2 of the two photons

(pla(z1)a(z2)|¥)
(plalz:)| W) (pla(za)[¥)

Here |¥) is the full wavefunction of the system and a(x)
annihilates a photon at position x. We assume a station-
ary scenario with a constant incoming coherent state.
Due to symmetry, it is useful to work with the rela-
tive r = xo — x; and mean R = (x1 + x2)/2 coordi-
nates. From the definition , classical light in the
absence of photon-photon interactions is described by
¥(r, R) = 1; complete photon blockade corresponds to
¥(0,L) = 0, which is measured in experiments using
(0, L)|? = g®(0); and a pure conditional phase ¢ cor-
responds to (0, L) = e'?.

Firstenberg et alf(2013]) show for Q. < A that ¥ (r, R)
approximately follows a Schrodinger-like equation with R
playing the role of time,

%_413A827’L/)+ 7
YOR T 4 oz T LA

Here I, = L/OD = 2rg/ODg is the attenuation length.
Assuming a repulsive van-der-Waals interaction, the ef-
fective potential can be approximated by the step func-
tion U(|r| < rg) = 1. The effective photon mass of this
Schrodinger-like evolution originates from the quadratic
component (o< k?) of the dispersion of individual polari-
tons. This component causes the change in group velocity
when the Rydberg level shifts.

Equation approximately describes a potential
well. Both the mass and the potential terms flip signs for
A — —A, so the effective force remains attractive. The
2-photon bound state of the finite-well potential, shown
in Fig. d), governs the evolution of an incoming wave-
function #(r,0) = 1. In Fig. d), in order to compare
the measured g(® (7) to the calculated ¢ (r, L), the time 7
has been converted to distance r using the group velocity
verT = 122%/(27). In experiments, Q2 < ¢y/l, and thus
vEiT K ¢, as we have assumed throughout this section.

Following this initial model, Bienias et al.| (2014) have
used scattering theory to study the 1D scattering prop-
erties for two photons for a wide range of the system
parameters. By calculating the effective 1D scattering
length, they predict the existence of scattering resonances
analogous to Feshbach resonances in cold atoms, where

/(/)(xlv x2) =

(42)

U(r). (43)



the interaction turns from attractive to repulsive. For
the experimental parameter regime described above, [Bi-
enias et al.[(2014) generalize Eq. to account for non-
stationary (but slowly-varying) probe input, essentially
replacing the term 9/0R by d/0R + 9/(verrot).

Lately, two more treatments for the system have been
introduced. |Caneva et al.| (2015) model the atomic en-
semble by a chain of 3LEs along a 1D waveguide, general-
izing the input-output formalism presented in the previ-
ous sections. With this effective description, they recover
the mean ensemble behavior (e.g., the optical depth and
verr) and provide a recipe for calculating the high-order
correlations of the outgoing photons. In parallel, [Moos
et al.| (2015) write down an exact many-body model for
the system, including the loss (scattering out of the sys-
tem) and the paraxial propagation of the probe light, and
provide the conditions under which the model is reduced
to an effective many-body system of slow-light polari-
tons in 1D. They verify the model in the 2-photon case
by comparing it to exact numerical simulations.

B. Many photons

Recently, two groups have demonstrated storage of Ry-
dberg polaritons for implementing a single-photon switch
or transistor (Baur et al., [2014}; |(Gorniaczyk et al., 2014;
Tiarks et all|2014a). In these experiments, a ‘gate’ Ry-
dberg polariton is first converted into a stationary exci-
tation (a spin wave) of one Rydberg atom by turning off
the control field. Subsequent ‘signal’ polaritons, coupled
to a different Rydberg state, are blockaded by the stored
polariton. The number of signal photons gated by the
stored excitation determines the ‘gain’ of the transistor,
recently reaching 100 (Gorniaczyk et al., |2016)).

So far, the many-body behavior of Rydberg polaritons
has been limited to theoretical studies. |[Zeuthen et al.
(2016) describe the many-body evolution in the dissipa-
tive regime, where the system can act to transform a clas-
sical input to a regular train of single photons. [Bienias
et al|(2014) formulated a low-energy many-body Hamil-
tonian in the dispersive regime based on their deriva-
tion of the 1D scattering length. |Otterbach et al.| (2013])
introduced an approximate Hamiltonian and used Lut-
tinger liquid theory to predict the Wigner crystalliza-
tion of Rydberg polaritons. To this end, they assumed
an initial transient (preparation) phase where co-located
polaritons are scattered out of the system, such that the
photon-photon interaction is dominated by the tail of the
repulsive van-der-Waals interaction. Moos et al.| (2015)
followed up on these arguments to derive their aforemen-
tioned effective many-body model and used numerical
calculations (with the DMRG method) to compare with
the Luttinger liquid result.
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C. Limitations and prospects

In a long medium (L > 2rp), a co-propagating pair of
interacting photons traverses several blockade radii. The
accumulated effect of the interaction can be calculated
from Eq. or from its generalization to the dissipa-
tive regime. Such calculations take into account the dis-
tortion (dispersion and absorption) of the photon wave-
packet due to the finite bandwidth of the EIT transmis-
sion window, manifested in Eq. by the mass term.
The results depend on both OD and ODg, with dissipa-
tive interaction (A = 0) yielding a blockade probability
1— OD /2¢=0D= (Peyronel et all|2012)) and dispersive
interaction (A > ) yielding a conditional phase shift
# x vVOD x ODg (Firstenberg et al., 2013).

Nevertheless, while OD strengthen the overall effect as
implied by the above expressions, it is now widely ac-
cepted that ODp > 1 alone is the key condition for high
fidelity of quantum-information operations. Under this
condition, the optimized arrangement is a medium com-
pletely residing within one blockade volume (L < 2rp)
and thus OD = ODg > 1. Intuitively in the co-
propagating case, this arrangement guarantees that the
wave-packets of both photons are fully contained within
the interaction range (rg), so that the fidelity is not re-
duced by partial entanglement of different parts of the
wave-packets. In the case of the aforementioned photonic
switch, the gating probability of a ‘signal’ polariton by a
stored ‘gate’ polariton equals 1 —e~©°P® and the decoher-
ence of the 'gate’ during the operation scales as e~ 9P (Li
and Lesanovskyl 2015; Murray et al.l [2016)); the overall
infidelity of the switch is thus governed by the inefficiency
of storage and retrieval of the 'gate’, scaling unfavorably
as 1/0Dg = 1/0D (Gorshkov et all [2007). For realizing
strongly-correlated many-body states of co-propagating
photons, such as the photon train or the Wigner crystal,
the requirements on ODp become even more stringent
(Otterbach et al., [2013; [Zeuthen et al., [2016).

So far, experiments have reached OD = ODg = 13
(Tresp et al. [2016). When using a single Rydberg level,
Gaj et al| (2014) and [Baur et al| (2014) predicted a
limit ODp < 20 due to formation of Rydberg molecules
at high atomic densities. A particularly promising ap-
proach to circumvent this limit is by tuning so-called
Forster resonances between two different Rydberg lev-
els (Gorniaczyk et all |2016; Tiarks et all |2014b). An-
other approach is the introduction of an optical cavity
with a finesse F around the atomic ensemble, where the
condition ODp > 1 is replaced by FODp > 1 (Das
et al.,2016). Such enhancement of the coupling was first
demonstrated by |Parigi et al.|(2012), and recently long-
lived cavity-Rydberg polaritons were realized (Ningyuan
et al.l |2016)).



V. CONCLUSIONS AND PERSPECTIVES

Advances in both quantum optics and classical non-
linear optics were fueled by developments in laser, ma-
terial, and electronic technologies, but apart from occa-
sional intersections, these two fields remained almost sep-
arated for half a century. Research was mostly limited
to the study of either high-intensity fields with macro-
scopic or mesoscopic materials or low-intensity fields with
individual atoms. It is the recent development in real-
izing and understanding effective strong photon-photon
interactions at low light intensities in various systems
that triggered the new field of ‘quantum nonlinear op-
tics’ (Chang et al., [2014).

There has been significant progress in theoretically de-
scribing nonlinear, out-of-equilibrium dynamics of scat-
tered photons from individual emitters in a 1D contin-
uum. A large set of all-optical quantum devices and
logic, such as single-photon routers and switches, few-
photon optical diodes, and conditional phase gates, has
been proposed using individual two- or multi-level emit-
ters in 1D. Some of these could find potential applications
in future optical quantum circuits. However, our current
understanding of light-matter interactions in the meso-
scopic regime, with an ensemble of intrinsically interact-
ing or noninteracting emitters, and the ensuing strongly-
correlated dynamics, is still at its infancy. This meso-
scopic quantum regime was addressed earlier in theoret-
ical studies of quantum solitons in optical fibers (Drum-
mond et al.,[1993). Hydrodynamic, as well as microscopic
descriptions, were developed to investigate strong light-
matter interaction in this regime. However, the intrinsic
nonequilibrium nature of the current experimental sys-
tems calls for more careful investigation to obtain a fully
quantum mechanical theory in the mesoscopic regime.
Numerical methods — especially time-dependent DMRG
— may play an important role.

The dynamics of strongly confined propagating pho-
tons interacting with multiple emitters is similar to the
nonequilibrium dynamics of many-body condensed mat-
ter systems, but still shows some important differences.
One significant feature of photonic systems is the control-
lability over their parameters, including the strength of
the interactions and dissipation. This makes the photonic
systems suitable candidates for performing quantum sim-
ulation of condensed matter phenomena. Nevertheless,
it is also of fundamental interest to investigate quantum
nonlinear dynamics in the regime where the number of
particles (i.e., photons) is not conserved. This is a unique
feature of photonic systems compared to natural closed
material systems. In particular, it is interesting to ex-
plore the role of loss and dissipation in the quantum-
to-classical transition of mesoscopic many-body systems.
The interplay of spin-orbit interactions and the collective
scattering of light has not been studied so far, and it is
an important direction for future studies. In the presence
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of disorder, these nonlinear systems have the potential
to exhibit many-body localization of photons, which has
been very little explored theoretically or experimentally.

In a few short years, the experimental efforts with scat-
tering of microwave photons from superconducting arti-
ficial atoms and with Rydberg polaritons in cold atomic
ensembles have produced multiple interesting and impor-
tant results. So far, the majority of the results with su-
perconducting systems have involved only a single arti-
ficial atom. However these systems are very well suited
for scaling up to more atoms. The standard nanofabrica-
tion techniques employed in making the devices studied
here can easily produce devices of many atoms with well-
controlled spacing, coupling, detunings, etc.. The range
of possible experiments is diverse, ranging from exploring
fundamental physics of mesoscopic atom-photon systems
to more sophisticated devices for quantum nodes. In ad-
dition to increasing the system size, superconducting cir-
cuits have room to increase the atom-photon coupling
strengths into new regimes that have not been explored
experimental in any system. In fact, ultrastrong cou-
pling, where I' ~ w,, has recently been demonstrated
experimentally (Forn-Diaz et al.l 2016 Peropadre et al.,
2013}, [Sanchez-Burillo et al.) 2014). The ultrastrong-
coupling regime promises many new surprises.

At the same time, we saw that strong photon-photon
interactions are also enabled in the weak-coupling regime
by the action of atomic cooperativity in an ensemble.
Rydberg atoms, in particular, exhibit such cooperativ-
ity via the blockade mechanism. The dipolar interaction
between the Rydberg atoms conceptually transforms the
blockade sphere to a two-level superatom, replacing the
2LE of the strong-coupling regime. In both regimes, the
photon-photon interaction is governed by the 2-photon
bound states and changes its nature depending on the
frequency detuning. However, while a strongly-coupled
2LE preserves the photon number in the channel, the res-
onant response of the superatom is predominantly lossy
(while the superatom is transparent due to EIT for a
single photons on resonance, it scatters the subsequent
photons, which is exactly the opposite of a 2LE). Conse-
quently, the reflection associated with a strongly-coupled
2LE is negligible in the superatom case. The large extent
of the superatom relatively to the optical wavelength also
contributes to the diminishing of reflection.

Some directions are being studied in both the 2LE and
the Rydberg systems, such as nonlinear transmission at
the few-photon level, switching and photonic transistors,
conditional-phase gates, production of bunched or anti-
bunched light, and deterministic entanglement of initially
independent photons. The distinct features of the Ry-
dberg systems make them suitable to pursue a variety
of rich two-body phenomena, such as a finite-size pho-
tonic molecule and exotic many-body behavior, particu-
larly photon crystallization. With the increasing under-
standing of the capabilities and the limitations of the ex-



perimental systems, further developments are soon to be
implemented in the preparation of the atomic medium,
the atomic excitation schemes, and the optical mode con-
finement. We expect the field to continue evolving along-
side the single-emitter systems and predict that many of
the existing ideas, and certainly more to come, will be
realized in the near future.
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Appendix A: Derivation of the input-output formalism
The effective Hamiltonian of a two-level emitter cou-

pled to chiral (right-moving) photon mode in 1D contin-
uum is given by

oo 1
HE Jh = / dk vgkaly yapy + >

Wl
dk| a o_+oa Al
\/ﬂ/ R,k +%R, k] ( )
The Heisenberg equations of motion for the operators are
d 1V
Czl}z’k = —ivgkapn — \%U (A2)
do_

% = —iWeO_ + — /dkazaR ks (A3)

do, 2V
prai NG dk:(aRyka, —otapy). (A4)

Equation (A2) is formally solved by multiplying it by

e™s¥t and integrating from an initial time ¢y < t to get
ivgk(t—to) a4 ! ivgk(t' —t)
aR’k(t) = CLR’k(t())e_w“’ - — dt'o_ (t/)elvg .
A 2T to

(A5)

Next we integrate Eq. (A5|) with respect to k and intro-
duce a field operator

zla (1),

B(1) = bron() ~ i, (46)
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where ®(t) = (1/v2n) [ dkag i(
tor (Fan et al.l 2010

\ﬁ/dk app(to)e Uakt=to) (A7)
Plugging Eq. (| in Eqgs. and (| ., we get

), and an input opera-

bR 1n

do_ | )
W = ZVO'ZbR’in(t) — 50'7 — 1We0 —, (AS)
dNe .
=~V (0sbrn(t) = U 5, ()o-) — TN, (A9)
where I' = V? /v, and N, = (0, + 1)/2. Similarly by

integrating Eq. (A2)) up to a final time t; > ¢, we find

14
O(t) = brout(t) + i=—0_(1). (A10)
2vg
Finally we can write from Eqs. (A6]) and (A10)
VvV
brout(t) = brin(t) — zv—a,(t). (A11)
9
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