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Abstract

We consider an in¯nitely repeated Bertrand game, in which prices are publicly observed

and each ¯rm receives a privately observed, i.i.d. cost shock in each period. We focus on

symmetric perfect public equilibria (SPPE), wherein any \punishments" are borne equally

by all ¯rms. We identify a tradeo® that is associated with collusive pricing schemes in which

the price to be charged by each ¯rm is strictly increasing in its cost level: such \fully sorting"

schemes o®er e±ciency bene¯ts, as they ensure that the lowest-cost ¯rm makes the current

sale, but they also imply an informational cost (distorted pricing and/or equilibrium-path

price wars), since a higher-cost ¯rm must be deterred from mimicking a lower-cost ¯rm by

charging a lower price. A rigid-pricing scheme, where a ¯rm's collusive price is independent

of its current cost position, sacri¯ces e±ciency bene¯ts but also diminishes the informational

cost. For a wide range of settings, the optimal symmetric collusive scheme requires (i). the

absence of equilibrium-path price wars and (ii). a rigid price. If ¯rms are su±ciently

impatient, however, the rigid-pricing scheme cannot be enforced, and the collusive price of

lower-cost ¯rms may be distorted downward, in order to diminish the incentive to cheat.

When the model is modi¯ed to include i.i.d. public demand shocks, the downward pricing

distortion that accompanies a ¯rm's lower-cost realization may occur only when current

demand is high.
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1. Introduction

In the standard model of collusion, symmetric ¯rms interact in an in¯nitely repeated Bertrand

game in which past prices are publicly observed. The standard model o®ers a number of insights,

but it presumes an unchanging market environment. This is an important limitation, since the

scope for testing a theory of collusion is greater when the theory o®ers predictions concerning

the manner in which collusive prices vary with underlying market conditions.

This limitation is partially addressed in two celebrated extensions. Rotemberg and Saloner

(1986) introduce publicly observed demand shocks that are i.i.d. over time.1 When the demand

shock is large, the incentive to cheat (undercut the collusive price) is acute, and collusion

becomes more di±cult to enforce. Rather than forego collusive activity altogether, ¯rms then

reduce the collusive price and thereby diminish the incentive to cheat. Thus, markups are

countercyclical. Like the standard model, their model does not predict that actual \price wars"

occur on the equilibrium path; rather, the success of collusion varies along the equilibrium path

with the demand shocks that are encountered.

Following the seminal work of Stigler (1964), a second literature stresses that a ¯rm may

be unable to perfectly monitor the behavior of its rivals. Green and Porter (1984) explore this

possibility in an in¯nitely repeated Cournot model. They assume that a ¯rm cannot observe

the output choices of rivals but that all ¯rms observe a public signal (the market price) that

is in°uenced both by output choices and an unobserved demand shock.2 A colluding ¯rm that

witnesses a low market price then faces an inference problem, as it is unclear whether the low-

price outcome arose as a consequence of a bad demand shock or a secret output expansion by

a rival. The Green-Porter (1984) model thus represents collusion in the context of a repeated

moral-hazard (hidden-action) model, and a central feature of their analysis is that wars occur

along the equilibrium path following bad demand shocks.

In this paper, we propose a third extension of the standard collusion model. We consider

an in¯nitely repeated Bertrand game, in which each ¯rm is privately informed of its unit cost

level in each period, where there is a continuum of possible costs and the cost realization is i.i.d.

across ¯rms and time. Current price selections (but not cost realizations) are publicly observed

before the beginning of the next period. We thus represent collusion in the context of a repeated

adverse-selection (hidden-information) model with publicly observed actions (prices).3

Our model is well-designed to contribute to a long-standing issue in Industrial Organization

1Bagwell and Staiger (1997) and Haltiwanger and Harrington (1991) consider further extensions.
2While the Green-Porter (1984) model is developed in the context of Cournot competition, the main insights

can be captured in a repeated Bertrand setting, as Tirole (1988) shows. The Green-Porter (1984) model is further

extended by Abreu, Pearce and Stacchetti (1986, 1990), Fudenberg, Levine and Maskin (1994) and Porter (1983).
3Our model is related to recent work that extends the Green-Porter (1984) model to allow for privately

observed demand signals. Compte (1998) and Kandori and Matsushima (1998) suppose that ¯rms publicly
choose \messages" after privately observing their respective demand signals. In our setting, ¯rms are privately

informed as to their respective costs and the public action is a (payo®-relevant) price choice.
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concerning the relationship between collusion and price rigidity in the presence of cost shocks.

Empirical studies by Mills (1927), Means (1935) and Carlton (1986, 1989) conclude that prices

are more rigid in concentrated industries, suggesting that collusion is associated with a greater

tendency toward price rigidity. Similarly, Scherer (1980, pp. 184-93) summarizes a number

of studies that ¯nd that collusion is often implemented with \rules of thumb," whereby the

collusive price is set at some focal level, such as a ¯xed percentage markup above a public

wholesale price, that is otherwise independent of the respective cost positions of member ¯rms.4

Finally, over the past several decades, antitrust enforcement has uncovered numerous price-

¯xing agreements in which ¯rms coordinate on a particular price and enforce stable market

shares over time. In these examples, colluding ¯rms adjust price occasionally in response to

changes in overall market conditions, but they sacri¯ce the e±ciency advantages that could be

gained by allowing a ¯rm with a temporary cost advantage to serve a larger market share.5

At the same time, the Industrial Organization literature has not provided a satisfactory

theory that links price rigidity with collusion. The best known theory is the \kinked demand

curve" theory o®ered by Sweezy (1939) and Hall and Hitch (1939). As Scherer (1980) and Tirole

(1988) discuss, however, this theory has important shortcomings.6 Industrial Organization

economists have thus gravitated toward the more informal view that price rigidity is appealing

to collusive ¯rms, because a rigid-price collusive scheme prevents mistrust and reduces the risk

of a price war. Carlton (1989) explains:

\The property of the kinked demand curve theory that price is unresponsive to
some cost °uctuations is preserved in most discussions of oligopoly theory whether
or not based on the kinked demand curve. The reasoning is that in oligopolies prices
°uctuate less in response to cost changes (especially small ones) than they would
otherwise in order not to disturb existing oligopolistic discipline. Anytime a price
change occurs in an oligopoly, there is a risk that a price war could break out. Hence,
¯rms are reluctant to change price." (Carlton, 1989, pp. 914-15).7

4Fixed markup rules are especially prevalent in oligopolies (Hall and Hitch (1939)) and are often used by
\loose-knit" cartels (Hel°ebower (1955)). They are also commonly observed among colluding ¯rms in retail
industries or in sectors where the price of a critical input is publicly observed. For example, Safeway and Kroeger
were accused of using ¯xed markups for dairy products (FTC Docket 7596, 1964), while European manufacturers

of stainless steel used a standard markup formula called the \alloy surcharge" (European Commission, 1998).
5For example, a European cartel of cartonboard producers set stable market shares, but adjusted the ¯xed

price every six months in response to changing demand conditions (European Commission, 1994a). Additional

examples are discussed in Scherer (1980) and Business Week (1975, 1995).
6The kinked demand curve theory employs an ad hoc behavioral postulate, compresses a dynamic story into

a static framework, and does not determine the collusive price. Maskin and Tirole (1988) o®er an equilibrium
interpretation of the kinked demand curve theory, in a model with alternating price choices, but their model
does not allow for cost shocks. An alternative theory is that ¯rms face \menu costs" when adjusting their prices.
But in many examples, a ¯rm's collusive price responds continuously to some variables (e.g., a public wholesale
price) and yet does not vary with other variables (e.g., ¯rm-speci¯c cost positions), and so the menu-cost theory

is also not fully satisfactory.
7For a similar view, see Scherer (1980, p. 180), who writes \Most oligopolies...appear willing to forego the

modest gains associated with micro-meter like adjustment of prices to °eeting changes in demand and costs in

order to avoid the risk of more serious losses from poorly coordinated pricing policies and price warfare."
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We develop here a rigorous evaluation of this informal reasoning. Focusing on the private cost

°uctuations that ¯rms experience, we explore the extent to which \mistrust" limits colluding

¯rms' ability to respond to their respective cost positions. The costs of mistrust are formalized

in terms of the price wars and pricing distortions that are required to dissuade ¯rms from

misrepresenting their private information.

We begin with a formal analysis of the static Bertrand game with inelastic demand and

private cost information.8 This game constitutes the stage game of our repeated-game model.

In the unique Nash equilibrium, the symmetric pricing strategy is strictly increasing in the

¯rm's cost level. An advantage of Nash pricing is that sales in the current period are allocated

to the ¯rm with the lowest cost. This is the e±ciency bene¯t of a \fully sorting" (i.e., strictly

increasing) pricing scheme. Of course, from the ¯rms' perspective, Nash pricing also has an

important limitation: sales are allocated at low prices.

We turn next to the repeated-game model and explore whether ¯rms can then support

better-than-Nash pro¯ts. We focus on the class of symmetric perfect public equilibria (SPPE).

An SPPE collusive scheme at a given point in time can be described by (i) a price for each

cost type and (ii) an associated equilibrium continuation value for each vector of current prices,

where the continuation value is symmetric across ¯rms. In an SPPE, therefore, colluding ¯rms

move symmetrically through any cooperative or price-war phases.

We observe that a collusive scheme must satisfy two kinds of incentive constraints. First, for

every ¯rm and cost level, the short-term gain from cheating with an o®-schedule deviation (i.e.,

with a price that is not assigned to any cost type and that thus represents a clear deviation)

must be unattractive, in view of the (o®-the-equilibrium-path) price war that such a deviation

would imply. As is usual in repeated-game treatments of collusion, this constraint is sure to

be met if ¯rms are su±ciently patient. Second, the proposed conduct must also be such that

no ¯rm is ever attracted to an on-schedule deviation, whereby a ¯rm of a given cost type

misrepresents its private information and selects a price intended for a di®erent cost type.

To characterize the optimal SPPE, we build on the dynamic-programming techniques put

forth by Abreu, Pearce and Stacchetti (1986, 1990) and Fudenberg, Levine and Maskin (1994).

We draw an analogy between our repeated hidden-information game and the static mechanism

design literature, in which the on-schedule incentive constraint is analogous to the standard

incentive-compatibility constraint, the o®-schedule incentive constraint serves as a counterpart

to the traditional participation constraint, and the continuation values play the role of \trans-

fers." However, unlike a standard mechanism design problem in which transfers are unrestricted,

the set of feasible continuation values is limited and endogenously determined. In particular,

we may associate a price war with a transfer that is borne symmetrically by all ¯rms.

8The Bertrand model assumes homogeneous goods, which is a common characteristic of collusive markets
(Hay and Kelley (1974), Scherer (1980, p. 203)). Collusion is also often associated with inelastic demand (Eckbo

(1976)).

3



We break our analysis of optimal SPPE into two parts. We suppose ¯rst that ¯rms are

patient, so that the o®-schedule constraint is met. The on-schedule constraint then captures

the informational costs of collusion that confront privately informed ¯rms. The central problem

is that the scheme must be constructed so that a higher-cost ¯rm does not have an incentive to

misrepresent its costs as lower, thereby securing for itself a lower price and a higher expected

market share. In an SPPE, the informational costs of collusion may be manifested in two

ways. First, the prices of lower-cost ¯rms may be distorted to sub-monopoly levels. This is

a potentially e®ective means of eliciting truthful cost information, since higher-cost ¯rms ¯nd

lower prices less appealing. Second, following the selection of lower prices, the collusive scheme

may sometimes call for a future equilibrium-path price war. The current-period bene¯t of a

lower price then may be of su±cient magnitude to compensate for the future cost of a price

war, only if the ¯rm truly has lower costs in the current period.

A rich array of collusive schemes ¯t within the SPPE category. One possibility is that ¯rms

incur the informational costs of collusion purely in terms of distorted pricing. An example

is the Nash-pricing scheme, in which ¯rms repeatedly play the Nash equilibrium of the static

game. Another possibility is that ¯rms initially achieve full sorting and adopt higher{than-Nash

prices. In this case, some of the informational costs of collusion must be re°ected in the future

cost of a price war: such a scheme satis¯es the on-schedule constraint only if equilibrium-path

wars sometimes follow the selection of lower-cost prices. A further possibility is that ¯rms may

neutralize the informational costs of collusion altogether, by adopting a rigid-pricing scheme,

in which each ¯rm selects the same price in each period, whatever its current cost position.

The downside of the rigid-pricing scheme is that it sacri¯ces e±ciency bene¯ts: one ¯rm may

have lower costs than its rivals, and yet the ¯rms share the market. These schemes highlight

the central tradeo® between e±ciency bene¯ts and informational costs that colluding ¯rms

must reconcile. More generally, collusive pricing schemes may be strictly increasing over some

intervals of costs and rigid over other regions, with wars following some pricing realizations.

Our ¯rst main ¯nding is that ¯rms fare poorly under any SPPE collusive scheme that insists

upon full sorting. In fact, considering the entire set of fully sorting SPPE, we ¯nd that ¯rms can

do no better than the Nash-pricing scheme. We next consider the full class of SPPE collusion

schemes and report a second main ¯nding: if ¯rms are su±ciently patient, then an optimal

SPPE collusive scheme can be achieved without recourse to equilibrium-path price wars (i.e.,

with stationary strategies). This ¯nding contrasts interestingly with the predictions of the

Green-Porter (1984) model.

Armed with these ¯ndings, we next add some additional structure and provide a character-

ization of the optimal SPPE collusive scheme. When ¯rms are patient and the distribution of

cost types is log concave, we establish a third main ¯nding: optimal SPPE collusion is charac-

terized by a rigid-pricing scheme, in which ¯rms select the same price (namely, the reservation

price of consumers) in each period, whatever their cost levels. We thus o®er an equilibrium
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interpretation of the association between price rigidity and collusion described above.

We then turn to the second part of our analysis and consider impatient ¯rms. We show

that impatience creates an additional disadvantage to price wars: a scheme with high prices

today sustained by wars in the future makes a deviation especially pro¯table today, while

simultaneously reducing the value of cooperation in the future. Our second (no-wars) ¯nding

therefore continues to hold when ¯rms are impatient. Next, we observe that the o®-schedule

constraint is particularly demanding for lower-cost types. Intuitively, when a ¯rm draws a

lower-cost type, the temptation to cheat and undercut the assigned price is severe, since the

resulting market-share gain is then especially appealing. For impatient ¯rms, a collusive scheme

thus must ensure that lower-cost types receive su±cient market share and select su±ciently low

prices in equilibrium, so that the gains from cheating are not too great.

This logic is reminiscent of the argument made by Rotemberg and Saloner (1986), although

here it is private cost shocks (as opposed to public demand shocks) that necessitate modi¯cation

of the collusive scheme. We con¯rm this logic with our fourth main ¯nding: if ¯rms are not

su±ciently patient to enforce the rigid-pricing scheme, they may still support a partially rigid

collusive scheme, in which the price of lower-cost types is reduced in order to mitigate the

incentive to cheat. This ¯nding suggests that symmetric collusion between impatient ¯rms may

be marked by occasional (and perhaps substantial) price reductions by individual ¯rms. These

departures occur when a ¯rm receives a favorable cost shock, and they represent a permitted

\escape clause" (i.e., an opportunity to cut prices and increase market share without triggering

retaliation) within the collusive scheme. More generally, we establish conditions for impatient

¯rms under which, if better-than-Nash pro¯ts can be achieved, then optimal SPPE collusion

is characterized by a stationary pricing scheme in which prices are rigid over intervals of costs

(i.e., the optimal pricing scheme is a weakly increasing step function).

To further develop the relationship between our theory and that of Rotemberg and Saloner

(1986), we next extend our model to include public i.i.d. demand shocks. The o®-schedule

constraint is then most di±cult to satisfy when market demand is high and a ¯rm's cost shock

is low. We thus o®er a ¯fth main ¯nding: in an extended model with public i.i.d. demand shocks,

if ¯rms are not su±ciently patient to enforce the rigid-pricing scheme, optimal SPPE collusion

may be characterized by a stationary pricing scheme, in which an individual ¯rm charges a

lower price in high-public-demand and low-private-cost states. Rotemberg and Saloner's (1986)

prediction of countercylical pricing is thus robust to private cost information. Our model has

the further prediction that prices are more variable when today's demand is high.

Throughout, we restrict attention to symmetric schemes. This restriction is important.

Asymmetric schemes allow one ¯rm to enjoy a more pro¯table continuation value than another.

Such schemes thus facilitate transfers from one ¯rm to another. This can be accomplished if

the scheme assigns history-dependent pricing behavior, so that a ¯rm with large market share

today relinquishes some market share to other ¯rms in the future. Firms are then able to
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enjoy e±ciency bene¯ts with lower informational costs, and the rigid-pricing scheme is no

longer optimal. In our working paper (Athey, Bagwell and Sanchirico (1998)), we present an

asymmetric scheme that improves upon the rigid-pricing scheme. For a two-type model, Athey

and Bagwell (forthcoming) construct an asymmetric perfect public equilibrium (APPE) that

delivers ¯rst-best pro¯ts when the patience of ¯rms exceeds a critical (¯nite) level.9

We focus on SPPE for four reasons. First, under many conditions the optimal SPPE is

stationary. While we do not propose a theory of how ¯rms coordinate upon an equilibrium, the

rigid-price SPPE (and more generally, stationary symmetric equilibria) are appealingly simple.

In fact, rigid-pricing schemes are widely used.10 By contrast, APPE improve upon SPPE only

for asymmetric equilibria that are nonstationary. Such schemes are more sophisticated, and may

be most plausible when a small number of ¯rms interact frequently and communicate explicitly.

Second, the informal literature highlights ¯rms' fear of industry-wide breakdowns in collusion,

and it is thus interesting to analyze SPPE, which isolate this consideration. Third, SPPE are

the only alternative if ¯rms can observe the prices o®ered in the market but cannot observe

(or infer) the identities of the ¯rms who o®er these prices. This occurs, e.g., in procurement

auctions with more than two bidders, if the winning bid - but not the name of the winner - is

announced. Finally, as we discuss further in the Conclusion, the methods developed here for

SPPE provide a foundation as well for the analysis of repeated interactions in which a single

player is privately informed.

Our ¯ndings are related to those developed by McAfee andMcMillan (1992), in their analysis

of bidding rings. They describe evidence that ¯xed-price schemes (i.e., \identical bidding") are

widely used. In a static model, they show that a ¯xed price is the optimal strategy for bidding

cartels in ¯rst-price auctions for a single object, when the cartels are \weak" (i.e., ¯rms are

unable to make transfers). Our analysis may be understood in terms of a procurement auction.

In fact, in our analysis of the optimal SPPE, we generalize the weak-cartel model, since the static

mechanism we analyze is directly derived from a repeated game and allows for a restricted class

of transfers (corresponding to symmetric price wars). Our rigid-pricing ¯nding thus provides

additional theoretical support for the practice of identical bidding. We also extend the analysis

to incorporate impatient ¯rms.

We describe the static and repeated games in Sections 2 and 3, respectively. The latter

is related to the mechanism-design approach in Section 4. We present our ¯ndings for SPPE

9For a family of repeated private-information games, Fudenberg, Levine and Maskin (1994) show that ¯rst-

best payo®s can be reached in the limit as players become in¯nitely patient.
10There are many examples where a large number of ¯rms successfully collude using a rigid-pricing scheme. In

some cases, professional organizations coordinate prices for hundreds of individual service providers; examples
include interpreters and physician groups (FTC Dockets C-3430 and 9270); industry associations may play
the same role. In Europe, ¯xed-price rules were used by the cartonboard and steel beam cartels, each with
about twenty ¯rms (European Commission, 1994a, 1994b). In contrast, the cases we uncovered where colluding
¯rms used nonstationary market-share allocation schemes typically involved a small number of well-organized

conspirators; see Athey and Bagwell (forthcoming) for examples.
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among patient ¯rms in Section 5, and Section 6 considers impatient ¯rms. Both of these

sections close with a brief discussion of an extended model with downward-sloping demand.

This extension is formally analyzed in our discussion paper (Athey, Bagwell and Sanchirico

(1998)). Section 7 concludes.

2. The Static Game

We begin with a static game of Bertrand competition in which ¯rms possess private information.

This game illustrates the immediate tradeo®s that confront ¯rms in determining their pricing

policies and serves as a foundation on which our subsequent dynamic analysis builds.

We posit n ex ante identical ¯rms that engage in Bertrand competition for sales in a

homogenous-good market. Following Spulber (1995), we modify the standard Bertrand model

with the assumption that each ¯rm is privately informed as to its unit cost level. Firm i's

\type" µi is drawn in an i.i.d. fashion from the support [µ; µ] according to the commonly known

distribution function F (µ). We assume that the corresponding density f(µ) ´ F 0(µ) is strictly
positive on [µ; µ]. After the ¯rms learn their respective cost types, they simultaneously choose

prices. Let ½i 2 R+ denote the price chosen by ¯rm i, with ½ ´ (½1; :::; ½n) then representing
the associated price pro¯le. We assume a unit mass of identical consumers, each of whom has

an inelastic demand for one unit up to some reservation price r, where r ¸ µ.
A price strategy for ¯rm i is a function pi (µi) mapping from the set of cost types, [µ; µ], to

the set of possible prices, R+. The function pi is assumed continuously di®erentiable, except
perhaps at a ¯nite number of points (so as to allow for schedules with jumps). A price strategy

pro¯le is thus a vector p(µ) ´ (pi (µi) ;p¡i (µ¡i)), where µ ´ (µi; µ¡i) is the vector of cost types
and p¡i (µ¡i) is the pro¯le of rival price strategies. Each ¯rm chooses its price strategy with

the goal of maximizing its expected pro¯t, given its cost type. To represent a ¯rm's expected

pro¯t, we require two further de¯nitions. First, we de¯ne ¼ (½; µ) ´ ½ ¡ µ as the pro¯t that
a ¯rm receives when it sets the price ½ and has cost type µ and \wins" the entire unit mass

of consumers. Second, we specify a Bertrand market-share-allocation function, mi (½), that

indicates ¯rm i's market share when the vector of realized prices is ½. This function allocates

consumers evenly among ¯rms that tie for the lowest price in the market.11

We may now represent ¯rm i's interim pro¯t, which is the expected pro¯t for ¯rm i when

it has cost type µi, selects the price ½i and anticipates that rival prices will be determined by

the rival pricing strategy pro¯le, p¡i (µ¡i). With ¹m (½i;p¡i) ´ Eµ¡i [mi (½i;p¡i (µ¡i))]; ¯rm i's
interim pro¯t function may be written as

¹¼(½i; µi;p¡i) ´ ¼ (½i; µi) ¹m (½i;p¡i) : (2.1)

When ¯rms adopt a symmetric pricing strategy, p(¢);we use the notation ¹m (½i; p) and ¹¼(½i; µi; p):
11More precisely, mi (½) = 1 if ½i < minj 6=i ½j , mi (½) = 0 if ½i > minj 6=i ½j , and mi(½) = 1=L if there are

L¡ 1 other ¯rms that tie ¯rm i for the lowest price.
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We now describe the essential tradeo® that confronts a ¯rm when it sets its price. As

illustrated in (2.1), when a ¯rm of a given type considers whether to lower its price, it must

weigh the e®ect of an increase in the chance of winning (through ¹mi (½i; p)) against the direct

e®ect of the price reduction on pro¯t-if-win (through ¼(½i; µi)). An important feature of the

model is that di®erent types feel di®erently about this tradeo®. In particular, the interim pro¯t

function satis¯es a single-crossing property: lower types ¯nd the expected-market-share increase

that accompanies a price reduction relatively more appealing than do higher types, since lower

types have lower total costs and thus higher pro¯t-if-win. The single crossing property implies

that higher-cost ¯rms always select higher prices (i.e, pi(µi) is non-decreasing).

The stage game may be analyzed using standard techniques from the auction literature.12

Proposition 1. The static game has a unique Nash equilibrium, which 1) is symmetric: pi ´
pe, 8i; 2) is continuously di®erentiable and strictly increasing over µ 2 (µ; µ); 3) is below the
monopoly price: pe (µ) < r; 8µ < µ and; 4) yields positive interim pro¯t for all types but the
highest µ, who never wins and whose price pe(µ) = µ would yield zero pro¯t even if it did.

Notice that the symmetric equilibrium pricing strategy pe is continuous and strictly increasing.

Further, the price always falls at or below ¹µ; no matter how high is r.

3. The Repeated Game

In this section, we de¯ne the repeated game. We also present a \Factored Program" and

establish a relationship between solutions to this program and optimal SPPE.

3.1. The Model

Imagine that ¯rms meet period after period to play the stage game described in the previous

section, each with the objective of maximizing its expected discounted stream of pro¯t. Assume

further that, upon entering a period of play, a ¯rm observes only the history of: (i) its own cost

draws, (ii) its own pricing schedules, and (iii) the realized prices of its rivals. Thus, we assume

that a ¯rm does not observe rival types or rival price schedules.

Formally, we describe the repeated game in the following terms. A full path of play is an

in¯nite sequence fµt;ptg, with a given pair in the sequence representing a vector of types and
price schedules at date t. The in¯nite sequence implies a public history of realized price vectors

f½tg, and pathwise payo®s for ¯rm i may be thus de¯ned as

ui(fµt;ptg) = §1t=1 ±t¡1¼
¡
½ti; µ

t
i

¢
mi
¡
½t
¢
:

At the close of period ¿ , ¯rm i possesses an information set, which may be written as hi =

fµti ; pti;½t¡ig¿t=1. (The null history is the ¯rm's information set at the beginning of the ¯rst
12See also Spulber (1995), who establishes Proposition 1 for general demand functions.
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period.) A (pure) strategy for ¯rm i, si(hi)(µi); associates a price schedule with each information

set hi. Each strategy pro¯le s = (s1; :::; sn) induces a probability distribution over play paths

fµt;ptg in the usual manner. The expected discounted payo® from s is thus the expectation

¹ui(s) = E[ui(fµt;ptg)] taken with respect to this measure on play paths.

3.2. A Dynamic Programming Approach

Under our assumptions, ¯rm types are i.i.d. across time (and ¯rms), and so the repeated game

has a recursive structure. It is therefore natural to follow Fudenberg, Levine and Maskin (1994)

[FLM] and employ a recursive solution concept; namely, we focus upon sequential equilibria

in which each ¯rm's strategy conditions only upon the publicly observed history of realized

prices. Such strategies are called public strategies and such sequential equilibria are called

perfect public equilibria (PPE). A public strategy may thus be abbreviated as a map from ¯nite

public histories f½tg¿t=1 to price schedules. Using standard arguments (see FLM), it is then
straightforward to show that the continuation of any PPE after any history is itself a PPE in

the full game and yields payo®s in the continuation equal to what would have been obtained

had the strategy pro¯le been used from the start.

We further restrict attention to symmetric perfect public equilibrium (SPPE), whereby fol-

lowing every public history, ¯rms adopt symmetric price schedules: si(½
1; :::;½¿ ) = sj(½

1; :::;½¿ );

8i; j; ¿; ½1; :::;½¿ : Symmetry means that all ¯rms su®er future punishments and rewards to-
gether on an industry-wide basis. Symmetric equilibria thus capture the \fear of breakdown"

that collusive ¯rms may experience, as discussed in the Introduction.13

Drawing on the work of Abreu, Pearce and Stacchetti (1986, 1990) [APS], we apply the tools

of dynamic programming to this settting. Let Vs 2 R denote the set of SPPE continuation val-
ues and write Vs ´ inf Vs and Vs ´ supVs: Note, initially, that with a continuum of possible

pricing strategies there is no a priori basis from which to argue that either Vs 2 Vs or Vs 2 Vs;14
if Vs 2 Vs; then we say that Vs is an optimal SPPE value. Following APS, any symmetric public
strategy pro¯le s = (s; :::; s) can be factored into a ¯rst-period price schedule p and a continua-

tion payo® function v : Rn+ ! R: The continuation payo® function describes the repeated-game
payo® v(½) enjoyed by all ¯rms from the perspective of period 2 onward after each ¯rst-period

price realization ½ = (½1; :::½n) 2 Rn+: We de¯ne ¹v(½i;p¡i) ´ Eµ¡i [v (½i;p¡i (µ¡i))] as the ex-
pected continuation payo® when a ¯rm selects ½i and expects other ¯rms to price according

to p¡i. In view of our symmetry restriction, we may simply write ¹v(½i; p); and similarly each
¯rm's expected payo® from s can be written as Eµi [¹¼(p(µi); µi; p) + ±¹v(p(µi); p)]:

13Despite its clear restrictiveness, a rich array of strategy pro¯les ¯t under the symmetric heading. Indeed,
any amount of history dependence is allowed, and so price wars can be triggered by any number of periods of
\bad behavior." For example, the law of large numbers may be utilized, in order to support \review strategies"
of the type examined by Radner (1981). Likewise, price wars can vary in severity and length and thus may be

tailored to the \¯t the crime."
14We could attempt to prove compactness of the set in general terms. Instead, we establish compactness in

the process of characterizing best and worst SPPE values.
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We now consider the Factored Program, in which we choose factorizations directly in order to

maximize a ¯rm's expected payo®, subject to (i). the feasibility constraint that the continuation

payo® rests always in the SPPE value set and (ii). the incentive constraint that a ¯rm cannot

gain by deviating to an alternative pricing schedule (given the continuation payo® function and

under the assumption that other ¯rms follow the pricing schedule):

The Factored Program: Choose price schedule p and continuation payo® function v to

maximize

Eµi [¹¼(p(µi); µi; p) + ±¹v(p(µi); p)]

subject to: 8½ 2 Rn+, v(½) 2 Vs; and
8~p, Eµi [¹¼(p(µi); µi; p) + ±¹v(p(µi); p)] ¸ Eµi [¹¼(~p(µi); µi; p) + ±¹v(~p(µi); p)]:

Lemma 1. Consider any symmetric public strategy pro¯le s¤ = (s¤; :::; s¤) with the corre-
sponding factorization (p¤; v¤): Then, s¤ is an optimal SPPE if and only if (p¤; v¤) solves the
Factored Program.

This lemma, standard in the literature, establishes that we may characterize the set of optimal

SPPE by solving the Factored Program.15

It is also possible to analyze the set of equilibria. If ¯rms can randomize over continuation

equilibria (e.g., using a public randomization device), then the set of SPPE values is convex and

is thus fully characterized when the best and worst SPPE are found, where the worst equilibrium

value is attained by minimizing rather than maximizing the objective in the Factored Program.

In Section 6, we analyze the worst SPPE; until then, we focus on optimal SPPE.

3.3. The Interim Program for Games with Private Information

We next reformulate the Factored Program so that it can be analyzed using existing tools from

the (static) mechanism design literature. We begin by observing that a SPPE in a repeated

game with private information must be immune to two kinds of current-period deviations.

A ¯rm deviates \o®-schedule" when it chooses a price not speci¯ed for any cost realization

(i.e., a price not in the range of p). When a ¯rm prices in this manner, it has unambiguously

deviated; consequently, if the collusive scheme prescribes a punishment (i.e., a continuation-

value reduction) following such a deviation, and if the prospect of such a punishment deters

a ¯rm from undertaking the o®-schedule deviation (i.e., if ¯rms are su±ciently patient), then

that punishment will never actually occur (i.e., it is o® the equilibrium path). Thus, the ¯rms

can relax this constraint, without directly a®ecting equilibrium-path pro¯ts, by using the worst

available punishment as a threat.

15The result follows from the fact that a strategy pro¯le is an SPPE if and only if its factorization satis¯es the
Factored Problem's two constraints. We refer the reader to our working paper (Athey, Bagwell, and Sanchirico

(1998)) or APS for more details.
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By contrast, a ¯rm deviates \on-schedule" when it chooses a price that is assigned under p

to some cost level, but not its own. For example, a ¯rm may be tempted to choose the lower

price assigned to a lower cost realization in order to increase its chances of winning the market.

Importantly, an on-schedule deviation is not observable, as a deviation, to rival players: a rival

can not be sure that the deviating ¯rm was not truly of the cost type that it is imitating.

Thus, ¯rms may consider a collusive scheme that imposes a punishment when low prices are

chosen, as this would serve to prevent on-schedule deviations by higher-cost types. But such a

punishment would be costly, since it would occur along the equilibrium path of play, whenever

¯rms actually realized low costs.

With this distinction at hand, we take the constraints of the Factored Program, put them

in interim form and parse them into two groups, and rewrite this program as:

The Interim Program: Choose price schedule p and continuation payo® function v to

maximize

Eµi [¹¼(p(µi); µi; p) + ±¹v(p(µi); p)]

subject to:

O®-Schedule Constraints: 8½0 =2 p([µ; µ]);
(IC-o®1) 8µ¡i, v(½0;p¡i (µ¡i)) 2 Vs
(IC-o®2) 8µi, ¹¼(p(µi); µi; p) + ±¹v(p(µi); p) ¸ ¹¼(½0; µi; p) + ±¹v(½0; p)
On-Schedule Constraints: 8µ̂i,
(IC-on1) 8µ¡i, v(p(µ̂i);p¡i (µ¡i)) 2 Vs
(IC-on2) 8µi, ¹¼(p(µi); µi; p) + ±¹v(p(µi); p) ¸ ¹¼(p(µ̂i); µi; p) + ±¹v(p(µ̂i); p):

Notice how the on-schedule constraints are written in \direct" form: for given p and v, (IC-

on2) requires that a ¯rm with type µi does better by \announcing" that its type is µi than

by announcing some other type, µ̂i, when other ¯rms are presumed to announce truthfully.

This suggests that (IC-on2) may correspond to a \truth-telling" constraint in an appropriate

mechanism design formulation.

4. Collusion Among Patient Firms and Mechanism Design

In this section, we build on this suggestion, showing that when ¯rms are patient, the Interim

Program can be relaxed to yield a new program that we call the Mechanism Design Program.

We also use existing tools from the mechanism design literature to begin our characterization

of the optimal SPPE.

4.1. The Mechanism Design Program

Our general approach has two steps. First, we relax the Interim Program, by dropping o®-

schedule constraints and allowing continuation payo® functions beyond those that are actually
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feasible in the repeated game. With some notational adjustment, we then arrive at the Mech-

anism Design Program. Second, we provide conditions under which the solution in the relaxed

setting corresponds to a factorization that continues to satisfy all of the constraints of the

Interim Program. In this way, we identify conditions under which optimal SPPE may be char-

acterized by solving the Mechanism Design Program. The Mechanism Design Program is useful

because we can apply existing tools to it directly; for example, below we make repeated use of

the revenue equivalence theorem.

Our ¯rst step is to relax the constraints. In particular, we consider the Relaxed Interim

Program, which is the same as the Interim Program, except that (i). the o®-schedule constraints

are ignored and (ii). (IC-on1) is replaced with a relaxed constraint:

¹v(p(µ̂i); p) · Vs: (IC-on10)

The ¯rst relaxation is without loss of generality if ¯rms are su±ciently patient, since then o®-

schedule deviations are anyway not tempting. To appreciate the second relaxation, we recall

that under (IC-on1), for every on-schedule vector of prices, the continuation value is drawn

from the SPPE set, Vs; by constrast, (IC-on10) requires only that ¯rm i's expected continuation
value does not exceed the supremum of the SPPE set, Vs.16 Clearly, any (p,v) that satis¯es the
constraints of the Interim Program satis¯es the constraints of the Relaxed Interim Program.

We next use direct-form notation and de¯ne the Mechanism Design Program. Let ¦(µ̂; µ; p) ´
¹¼(p(µ̂); µ; p) denote the current-period pro¯t that a ¯rm of type µ would expect were it to an-

nounce that its type is µ̂. We de¯ne as well a general \transfer" or \punishment" function,

T (µ̂), which a ¯rm expects to incur when it announces µ̂.

The Mechanism Design Program: Choose price schedule p and a punishment function

T to maximize

E[¦(µ; µ; p)¡ T (µ)]
subject to : For all µ; T (µ) ¸ 0;

(IC-onM) 8µ̂; µ; ¦(µ; µ; p)¡ T (µ) ¸ ¦(µ̂; µ; p)¡ T (µ̂):

Suppose (p; v) satis¯es the constraints of the Relaxed Interim Program. We may then translate

(p; v) into (p; T ), according to T (µ̂) ´ ±[Vs ¡ ¹v(p(µ̂); p)]. It is direct that (p; T ) satis¯es the
constraints of the Mechanism Design Program; further, using this translation, the objectives of

the Mechanism Design and Relaxed Interim Programs rank (p; v) pairings in the same order.

The Mechanism Design Program is thus a relaxed version of the Relaxed Interim Program.

The meaning of T warrants emphasis. For a given SPPE, if a ¯rm that announces µ̂ expects

a continuation value below the supremum of the SPPE set (i.e., if Vs > ¹v(p(µ̂); p)), then we

16Note particularly that (IC-on10) allows v ´ Vs, even though we as yet have no assurance that Vs 2 Vs:
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may interpret the SPPE as specifying (in expectation) a \war." There is then \no war," if the

expected continuation value equals the supremum of the SPPE set (i.e., if Vs = ¹v(p(µ̂); p)).

Using the translation T (µ̂) ´ ±[Vs ¡ ¹v(p(µ̂); p)]; we thus may associate T (µ̂) > 0 (T (µ̂) = 0)

with a future that follows a ¯rm's announcement of µ̂ and in which there is a war (no war).

We come now to the second step in our approach, where we provide the conditions under

which a solution (p¤; T ¤) to the Mechanism Design Program can be translated back into a

factorization (p¤; v¤) that satis¯es all of the constraints of the Interim Program. The following

proposition identi¯es an important set of conditions of this kind:17

Proposition 2. (Stationarity) Suppose (p¤; T ¤) solves the Mechanism Design Program and

T ¤ ´ 0. Then 9±̂ 2 (0; 1) such that, for all ± ¸ ±̂; there exists an optimal SPPE which
is stationary, wherein ¯rms adopt p¤ after all equilibrium-path histories, and p¤ solves the
following program: maximize E¦(µ; µ; p) subject to 8µ̂; µ; ¦(µ; µ; p) ¸ ¦(µ̂; µ; p):

To establish this result, we ¯rst explore the implications of the condition that (p¤; T ¤ ´ 0)
is optimal in the relaxed environment. Using our translation above, if (p¤; T ¤ ´ 0) solves the
Mechanism Design Program, then (p¤; v¤ ´ Vs) is a solution to the Relaxed Interim Program.

In turn, this implies that (p¤; v¤ ´ Vs) is (weakly) superior to any SPPE factorization. We may
therefore draw the following conclusion: if (p¤; T ¤ ´ 0) solves the Mechanism Design Program,

then E[¦(µ; µ; p¤) + ±Vs] ¸ Vs.
Second, we explore the implications of the following observation: when ¯rms are su±ciently

patient and (p¤; T ¤ ´ 0) solves the Mechanism Design Program, the repeated play of p¤ (coupled
with appropriate o®-schedule punishments) is an SPPE. It is straightforward that this pattern

of play satis¯es the on-schedule incentive constraint: since p¤ satis¯es (IC-onM) when T ¤ ´ 0,
each ¯rm will follow p¤ when future play does not vary with the on-schedule price. Likewise,
we note that the repeated play of the static Nash equilibrium pe is always an equilibrium of the

repeated game; therefore, when ¯rms are su±ciently patient, the threat of Nash reversion is

su±cient to deter ¯rms from abandoning p¤ with an o®-schedule deviation.18 The observation is
thus established. Recalling the de¯nition of Vs; we may therefore draw the following conclusion:
if ¯rms are su±ciently patient and if (p¤; T ¤ ´ 0) solves the Mechanism Design Program, then

E[¦(µ; µ; p¤)]=(1¡ ±) · Vs.
Combining our two inequalities, we obtain the desired result: Vs = E[¦(µ; µ; p¤)]=(1¡±): In

words, if the Mechanism Design Program is solved with (p¤; T ¤ ´ 0), and if ¯rms are su±ciently
patient, then an optimal SPPE is easily characterized: ¯rms adopt the pricing schedule p¤ in
each period, where p¤ is the solution to the static program stated in Proposition 2.

17In our working paper (Athey, Bagwell and Sanchirico (1998)), we show that the general approach also extends
to cases where T ¤ can be strictly positive. T ¤ > 0 may be the unique solution when demand is downward-sloping,
but not, as we will show, for inelastic demand.
18We establish below in Proposition 5(ii) that for su±ciently patient ¯rms there always exists a stationary

SPPE that gives higher per-period pro¯ts than does the static Nash equilibrium.
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The o®-schedule constraints play a subtle but critical role. As noted, if (p¤; T ¤ ´ 0) solves
the Mechanism Design Program, then it must satisfy (IC-onM). This means that p¤ must
satisfy the on-schedule incentive constraints, period-by-period. One such pricing scheme is the

Nash pricing scheme, pe. But there are many others. For example, the on-schedule incentive

constraints are trivially satis¯ed, period-by-period, when ¯rms use a rigid-pricing scheme. To

map the solution of the Mechanism Design Program over to a stationary SPPE of the repeated

game, however, something more is required: it must also be true that no ¯rm would ever gain

from an o®-schedule deviation. This is assured if ¯rms are su±ciently patient.

It is now possible to preview the analysis that follows. In Section 4.2, we characterize the

set of (p; T ) that satisfy (IC-onM). This puts us in position to solve the Mechanism Design

Program, using tools standard in the mechanism design literature. In Section 5, we establish

that there is always a solution in which T ¤ ´ 0: For patient ¯rms, Proposition 2 then implies that
an optimal SPPE is characterized by the stationary adoption of the the accompanying pricing

schedule, p¤. Under the assumption that the distribution function F (µ) is log-concave, we ¯nd
that the optimal pricing schedule takes a simple form: p¤(µ) ´ r: We thus report conditions

under which for su±ciently patient ¯rms the optimal SPPE is stationary and requires all ¯rms

to charge the same price r, regardless of their costs. This rigid-pricing scheme is supported by

the threat that if any other price is observed, the ¯rms will revert to the worst SPPE, which

delivers continuation value Vs: When F (µ) is log-concave, we show in Section 6 that the worst
SPPE is attained through Nash reversion (i.e., the Nash-pricing scheme is used in each peroid).

We also establish there several additional predictions that arise when ¯rms are less patient.

4.2. Consequences of On-Schedule Incentive Compatibility

We begin our analysis of the Mechanism Design Program by characterizing the implications

of the on-schedule constraint (IC-onM). We do this in the following lemma (where we use the

notation ¦µ(µ; µ; p) =
@
@µ¦(µ̂; µ; p)jµ̂=µ):

Lemma 2. (Constraint Reduction) (p; T ) satis¯es (IC-onM) if and only if (p; T ) also sat-
is¯es:
(i). p(µ) is weakly increasing, and

(ii). ¦(µ; µ; p)¡ T (µ) = ¦(µ; µ; p)¡ T (µ)¡
µR
µ

¦µ(~µ; ~µ; p)d~µ.

This result is standard in the mechanism design literature, and it follows from the single-crossing

property.19 We develop next an interpretation of Lemma 2, in order to provide the intuitive

19See, for example, Fudenberg and Tirole (1991). Necessity of (i) follows from the single-crossing property of
¦(µ; µ; p). Necessity of (ii) follows, since, by the envelope theorem, d¦(µ; µ; p)=dµ = ¦µ(µ; µ; p) + T

0(µ) almost
everywhere if µ̂=µ is optimal (see Milgrom (1999) for an appropriately general statement of the envelope theorem).

Given (i), and under the single-crossing property, it is standard to show that (ii) is then su±cient.
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foundation for many of the ¯ndings that follow, in particular our result that often the optimal

SPPE uses the rigid-pricing scheme.

The situation analyzed here contrasts with the usual Principal-Agent formulation, since

now the \agents" (i.e., ¯rms) design their own schedule, with the goal of generating as much

pro¯t as possible, in light of their own incentive-compatibility constraints. The on-schedule

incentive constraint puts an upper bound on the pro¯ts that a type µ can earn: if µ were to

earn too much, other types would pretend to be µ. The expression in (ii) thus can be interpreted

broadly as re°ecting the pro¯t that can be distributed to µ, without inducing mimicry by other

types. As (ii) reveals, the interim pro¯t (inclusive of wars), ¦(µ; µ; p) ¡ T (µ), that is \left"
for type µ, after incentive-compatibility constraints are considered, consists of two terms: the

\pro¯t-at-the-top" and the \information" or \e±ciency" rents earned by higher types.20

To interpret these terms, let us consider a type µk that is just below µ: How much can this

type earn, without inducing mimicry by type µ? Type µk can earn the same pro¯t as does

type µ plus a bit extra, where the extra portion is attributable to the greater e±ciency (i.e.,

lower costs) that type µk actually enjoys. Similarly, let µk¡1 be a type that is slightly lower
yet. Then type µk¡1 can earn the same pro¯t as does type µk plus a bit extra. Pulling these
points together, it follows that type µk¡1 can earn the same pro¯t as does type µ plus a \couple
of bits" extra. But this leads to a direct interpretation of (ii): the pro¯t for any type µ equals

the pro¯t-at-the-top plus the accumulated e±ciency rents of higher types (note that ¦µ < 0):

An important implication is that an increase in the pro¯t-at-the-top permits a corresponding

increase in the pro¯t for all lower types. Intuitively, when the pro¯t-at-the-top is increased, the

highest type has less incentive to misrepresent itself as a lower type, and this relaxation in the

incentive constraints in turn permits lower types to earn higher pro¯ts.

What determines the magnitude of the e±ciency rents? To answer this, let us de¯ne the

market share expected by a ¯rm when it announces µ̂ as M(µ̂; p) ´ ¹m(p(µ̂); p), where the

expectation is over the announcements of other ¯rms (assumed truthful). We observe that

¡
µZ
µ

¦µ(~µ; ~µ; p)d~µ =

µZ
µ

M(~µ; p)d~µ (4.1)

The magnitude of the e±ciency rents is thus determined by the allocation of market shares

across types.

We note that the ¯rms have two instruments, prices and wars, with which to sort between

types. It is useful to consider whether the availability of the war instrument expands the set

20In the standard Principal-Agent problem, the principal designs a schedule that extracts as much rent from
the agent as possible. Incentive compatibility then puts a lower bound on the rent that the principal can extract
from an agent of type µ: if the principal attempts to extract too much rent from type µ, then that type would
misreport. In the optimal schedule, the principal typically extracts all of the rent from the highest-cost agent
(corresponding to the pro¯t-at-the-top term in (ii)) and necessarily leaves some e±ciency rents for other types.

As we explain below, the optimal schedule di®ers markedly, when agents design their own schedule.
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of incentive-compatible market-share allocations. To explore this issue, we introduce a simple

restriction. Consider a scheme (p; T ) and let µK denote the lowest µ for which p(µ) = p(µ). We

restrict attention to schemes (p; T ) for which ¦(µK ; µK ; p)¡T (µK) ¸ 0. This restriction entails
no loss of generality and simpli¯es the exposition of our ¯ndings.21 We can now establish that

the use of wars does not expand the range of sorting alternatives available to the ¯rm. Formally:

Lemma 3. Given an incentive-compatible scheme (p; T ) and associated market-share alloca-
tion M(µ; p), there exists an alternative scheme (~p; ~T ´ 0) which is also incentive compatible,
and such that M(µ; p) =M(µ; ~p) and ¦(¹µ; ¹µ; p)¡ T (¹µ) = ¦(¹µ; ¹µ; ~p):

In short, given an original incentive-compatible scheme and market-share allocation, we may

construct an alternative incentive-compatible scheme that delivers the same market-share allo-

cation without using wars, while also providing the same pro¯t-at-the-top. This construction

requires that the prices are adjusted away from their original levels, and so the lemma does not

determine which ¯rm types (if any) are better o® under the alternative scheme. We explore

this issue next.

Using Lemma 2 and (4.1), we observe that type µ's interim pro¯t is determined as:

¦(µ; µ; p)¡ T (µ) = ¦(µ; µ; p)¡ T (µ) +
µZ
µ

M(~µ; p)d~µ: (4.2)

The next result, which is well-known from auction theory, follows directly:

Lemma 4. (Revenue Equivalence Theorem) Consider any (p; T ) which satis¯es (IC-onM):
Then any other (~p; ~T ) which satis¯es (IC-onM), M(µ; p) = M(µ; ~p) and ¦(¹µ; ¹µ; p) ¡ T (¹µ) =
¦(¹µ; ¹µ; ~p)¡ ~T (¹µ) must also satisfy ¦(µ; µ; p)¡ T (µ) = ¦(µ; µ; ~p)¡ ~T (µ) for all µ:

Intuitively, suppose that ¯rms start with the scheme (p; T ) and that they then consider an

alternative scheme (~p; ~T ) which is on-schedule incentive compatible and delivers the same pro¯t-

at-the-top. If in addition the alternative scheme maintains the original market-share allocation,

then the e±ciency rents are also preserved for every type. As the alternative scheme alters

neither the pro¯t-at-the-top nor the e±cicency rents, it follows from (4.2) that this scheme

maintains as well the original interim pro¯t for all types.

At this point, we have extracted three lessons. First, after accounting for incentive com-

patibility, ¯rms may be attracted to pricing schemes that raise the pro¯t-at-the-top. Second,

for a given amount of sorting, ¯rms are free to choose whether to implement the correspond-

ing market-share allocation with wars. Third, once the pro¯t-at-the-top and the market-share

allocation are determined, interim pro¯t is ¯xed for all types. With these lessons in place, we

are prepared now to characterize optimal SPPE for patient ¯rms.

21If a scheme imposed negative pro¯t (inclusive of wars) for µK , then all types higher than µK would do even
worse, and an alternative scheme (in which µK and higher types set \non-serious" higher prices and receive zero
market share while also avoiding wars) would yield a higher value for E[¦(µ; µ; p)¡ T (µ)]: In the repeated-game
context, the superior scheme would make such types inactive in the current period and follow such a realization

with a no-war continuation value, Vs.
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5. Optimal Collusion Among Patient Firms

In this section, we analyze optimal symmetric collusion among ¯rms that are patient. We

present our central points in ¯ve steps. First, we consider symmetric collusive schemes that

are fully sorting (i.e., p(µ) is strictly increasing). Second, we explore whether an optimal SPPE

for patient ¯rms requires equilibrium-path wars (i.e., T (µ) > 0 for some µ). Third, we add

further structure and characterize the optimal symmetric pricing scheme. Fourth, we identify

the relationships between our ¯ndings and those in the broader literature. Finally, we discuss

the manner in which our results extend when demand is downward-sloping.

5.1. Fully Sorting Pricing Schemes

We now consider fully sorting collusive pricing schemes. The set of such schemes includes a

variety of candidates. One possibility is that the ¯rms employ the static Nash equilibrium in

each period. Alternatively, the ¯rms may attempt to sort in the ¯rst period with higher prices,

perhaps near the monopoly level. Such schemes satisfy on-schedule incentive constraints only

if they include equilibrium-path wars.

Under full sorting, the highest type makes no sales, and the pro¯t-at-the-top is simply

¡T (µ).22 The full-sorting requirement further implies that a ¯rm wins the market if and only

if all other ¯rms announce higher types, and so e±ciency rents are uniquely determined for

the class of fully sorting schemes, with M(µ; p) = [1¡ F (µ)]n¡1. Thus, as Lemma 4 con¯rms,
any two fully sorting schemes which satisfy (IC-onM) di®er only if the pro¯t-at-the-top di®ers.

Within the fully sorting class, the best pro¯t-at-the-top is achieved when T (µ) = 0: But, notice

that the static Nash equilibrium pricing scheme, pe; is fully sorting and satis¯es (IC-onM) with

T ´ 0. We conclude that under a fully sorting and on-schedule incentive-compatible pricing

scheme, the interim pro¯t (inclusive of wars) available to a type µ ¯rm is at best equal to its

Nash pro¯t. It follows that an optimal SPPE under full sorting is simply the repeated play of

the static Nash equilibrium; further, this holds for any discount factor, since the Nash-pricing

scheme satis¯es all o®-schedule constraints as well.23 Summarizing:

Proposition 3. Among the class of fully sorting pricing schemes, and for any distribution
function F and discount factor ±, an optimal SPPE is the repeated play of the static Nash
equilibrium after all histories.

22In this case, if T (¹µ) > 0; then ¦(¹µ; ¹µ; p) ¡ T (¹µ) < 0; so this scheme does not satisfy our earlier restriction
about pro¯t-at-the-top which was required for Lemma 3. Nevertheless, a no-war scheme with the same market-
share allocation can still be constructed, and it sets ~T (¹µ) = 0 with ~p strictly increasing at the top. Moreover, in
this event the no-war scheme yields a strict improvement. We allow for this possibility in our discussion, arguing

that wars at the top are not optimal.
23Suppose that a solution to the Mechanism Design Program among the class of fully sorting pricing schemes

entails T ´ 0 and the Nash-pricing scheme, pe: In this case, we do not require a high value of ± to establish that
this scheme is optimal within the fully sorting SPPE class. Instead, we observe that repeating the static Nash
pricing scheme in each period delivers a fully sorting SPPE. From here, the logic of Proposition 2 can be applied

to show that pe is the optimal fully sorting SPPE pricing scheme.
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5.2. No Wars on the Equilibrium Path

The analysis in the previous subsection shows in the class of fully sorting pricing functions, after

on-schedule incentive constraints are considered, there is no bene¯t in supporting higher prices

with on-schedule wars. We now extend this argument for any initial market-share allocation.

To illustrate the main ideas, we refer to the three-step pricing schedule depicted in Figure

1. In this scheme, price ½k is used on interval (µk; µk+1] for k = 1; 2; 3; where µ1 = µ and

µ4 = ¹µ: Suppose that the original schedule has a war on, say, the second step. We may then

construct an alternative schedule in which the second-step war is removed, and the second-step

price (½2) is reduced to keep µ3; the highest type on the second step, indi®erent. Given that

¼½µ = 0, it follows that all types on the second step are indi®erent between the original and the

alternative schedules: all types on the same step have the same market share, and thus trade

o® prices and wars at the same rate. The original market-share allocation therefore remains

incentive compatible under the alternative schedule. In this way, we may eliminate wars on a

step-by-step basis, and thereby \re-engineer" a payo®-equivalent no-war schedule.

Formally, consider a particular pricing function p; with the associated market-share allo-

cation function M(µ; p), and suppose that the scheme (p; T ) entails positive wars somewhere.

We now refer to Lemma 3, which guarantees the existence of an alternative scheme (~p; eT ´ 0)
that is incentive compatible, induces the same market-share allocation, and generates the same

pro¯t-at-the-top. We next appeal to Lemma 4, which implies that the alternative no-war sched-

ule (~p; eT ´ 0) gives the same interim pro¯t (inclusive of wars) as did the original schedule (p; T ).
As suggested by the three-step illustration above, the alternative schedule achieves this pro¯t

by exchanging any war in the original schedule for a lower price. Applying this argument,

together with our stationarity result (Proposition 2), we conclude that:24

Proposition 4. Allow for any distribution function F . If (p¤; T ¤) is a solution to the Mecha-
nism Design Program, then there exists as well a solution (ep; eT ) with ep(µ) · p(µ) and eT (µ) ´ 0:
Thus, if ¯rms are su±ciently patient, there then exists an optimal SPPE that is station-
ary: ¯rms use the pricing scheme ep(µ) following every history along the equilbrium path, and
E¦(µ; µ; ~p)=(1¡ ±) = Vs.

We see from Proposition 4 that wars have no value: for any distribution F , if there exists an

optimal SPPE that uses wars, then there exists as well an optimal SPPE that does not.

5.3. Optimal Pricing

We are now prepared to determine the optimal SPPE pricing scheme when ¯rms are patient.

Given the \no-wars" ¯nding from the previous subsection, we seek the price strategy p¤(µ) that
24We include here a restriction on the discount factor, so that the stationarity proposition may be used. Below,

in Proposition 7, we develop the further argument that the o®-schedule constraints are relaxed in moving from

a scheme with wars to a no-war scheme, and we are thus able to remove this restriction.
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solves the program presented in our stationarity proposition. With some additional structure,

this pricing scheme is easily characterized:25

Proposition 5. For ± su±ciently large:
(i) If either (a) F is log-concave, or (b) r ¡ ¹µ is su±ciently large, then the equilibrium path of
the optimal SPPE is characterized by price rigidity (p¤(µ) ´ r) and no wars (T ¤(µ) ´ 0).
(ii) In any optimal SPPE that is stationary, there exists an open interval of cost types where
pricing is rigid, and per-period pro¯ts above the static Nash equilibrium are attained: Vs >
¼NE=(1¡ ±):

For patient ¯rms, if the distribution function is log concave or r is large enough, the optimal

SPPE is described as follows: ¯rms select the price r in each period, whatever their private

cost realizations, so long as all ¯rms have selected the price r in all previous periods.26 Further,

¯rms can always exceed Nash payo®s, if they are su±ciently patient.

The rigid-pricing scheme, p¤(µ) ´ r, has bene¯ts and costs. An important bene¯t of this

scheme is that it satis¯es the on-schedule incentive constraint without recourse to equilibrium-

path wars. Furthermore, the price is as high as possible. However, an evident cost of the

rigid-pricing scheme is that it sacri¯ces e±ciency bene¯ts: it may be that one ¯rm has a low

cost while another ¯rm has a high cost, but under the rigid-pricing scheme each of these ¯rms

sells to 1=nth of the market. The content of the proposition (part (i)) is that the bene¯ts of the

rigid-pricing scheme exceed the costs, provided that the distribution function is log concave, or

the reservation price is high enough.

While a complete proof is o®ered in the Appendix, we may develop the intuition by posing

and answering two simple questions. First, what (incentive-compatible) pricing schedule gives

the greatest pro¯t-at-the-top? Since the single-crossing property implies that p(µ) cannot de-

crease in µ, pro¯t-at-the-top is highest when all ¯rms set the same price, so that the highest

type is never underpriced. The most pro¯table rigid-pricing scheme is the one in which ¯rms

¯x the price at r. Thus, p(µ) ´ r is the pricing scheme that o®ers the highest pro¯t-at-the-top,
given that downward-sloping pricing schemes are not on-schedule incentive compatible.

Second, when is it true that expected pro¯t is maximized over on-schedule incentive-

compatible schemes when pro¯t-at-the-top is maximized? This is where log concavity comes

in: Intuitively, the \contribution" of an increase in a given type's pro¯t to the ¯rm's expected

pro¯t is governed by the fraction of types below it (which enjoy a relaxed incentive constraint

and thus earn higher pro¯ts), conditional on the \probability" that the given type will actually

arise. We may thus think of F (µ)=f(µ) as a measure of the contribution of an increase in type

µ's pro¯t to the ¯rm's expected pro¯t. The log-concavity condition simply ensures that this

25This result also holds in a model with discrete types, except that an additional parameter restriction is
required, one that depends on the gap between r and the highest type. The restriction is satis¯ed when the

distance between types becomes small enough. Details are available from the authors.
26 We have assumed r ¸ ¹µ: If this assumption were relaxed, then the optimal scheme would entail that ¯rms

with cost types greater than r sit out rather than endure negative pro¯ts.
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measure is increasing, so that the type that contributes most to expected pro¯t is the highest

type. In total, under log concavity the optimal collusive scheme maximizes pro¯t-at-the-top,

and under the on-schedule incentive constraints this is achieved with a rigid price at r.27

A formal expression of this intuition can be derived as follows. Using our indirect-utility

formulation (4.2) and setting T (µ) ´ 0, we may write a ¯rm's expected pro¯t as

E[¦(µ; µ; p)] = E[¼(p(µ); µ) ¢M(µ; p) +
µZ
µ

M(~µ; p)d~µ]:

Next, employing a standard trick from the literature on optimal auctions (Myerson (1981),

Bulow and Roberts (1988)), we may integrate by parts and rewrite our objective function as

E[¦(µ; µ; p)] = E[¼(p(µ); µ) ¢M(µ; p) + F
f
(µ) ¢M(µ; p)]: (5.1)

Consistent with the intuitive discussion, the ¯rst term rewards pricing schemes that raise the

pro¯t-at-the-top. Under log-concavity, the second term also rewards such schemes, since the

market shares of higher types then contribute more to expected pro¯t.

The assumption that the distribution is log-concave is common in the contracting literature,

and many distributions satisfy the assumption.28 However, we can also consider the optimal

allocation of market share even if F=f is decreasing on some intervals. It is straightforward to

show that, if r is close enough to ¹µ; the optimal pricing rule entails sorting on intervals where

F=f is decreasing, and rigidity elsewhere. Under our assumption that f(µ) > 0, log-concavity

always holds in a neighborhood of µ: Thus, it is always optimal for su±ciently patient ¯rms to

use rigid pricing at the bottom of the pricing function, and from this part (ii) of the proposition

follows: su±ciently patient ¯rms can sustain SPPE payo®s strictly greater than the static Nash

equilibrium (which entails sorting at the bottom). Finally, observe that if r ¡ ¹µ is su±ciently
large, so that pro¯t-at-the-top is great enough, the bene¯ts from pooling market share with

high-cost types outweigh those from allocating market share amongst types with the highest

F=f; and the rigid-pricing scheme is again optimal.

We close this subsection with an instructive example. Suppose that there are two ¯rms and

consider the family of two-step pricing schedules. Such schedules are characterized by a low

price ½1, a high price ½2, and a breakpoint µ2, such that all types below (above) µ2 select the

27The rigid-pricing scheme can be implemented with or without wars, but expected pro¯ts are strictly higher
when there are no wars. The no-wars rigid-pricing arrangement is uniquely optimal, since the associated pro¯ts

cannot be implemented with any other feasible prices and wars, given p · r and T ¸ 0.
28For example, uniform, the class x® where x 2 [0; 1]; normal, log-normal, logistic, chi-squared, exponential,

and Laplace satisfy the restriction, as well as any distribution whose density is log-concave. (Some of these
distributions have unbounded support; but, truncating the distribution does not change its log-concavity, nor
does taking the distribution of the absolute value.) In the typical Principal-Agent procurement problem, log-
concavity ensures that the agent's \virtual cost," µ + F (µ)=f(µ); is increasing, which implies in turn that the
principal's optimal contract is fully sorting (see, e.g., Myerson (1981)). In our model, since the agents' utilities

are maximized, the assumption has the opposite e®ect: it implies that the \contract" entails pooling.
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low (high) price. A rigid-pricing scheme is then an extreme case, in which µ2 = µ or µ2 = µ. For

µ2 2 (µ; µ), the single-crossing property ensures that the on-schedule incentive-compatibility
constraints are satis¯ed if and only if a ¯rm of type µ2 is indi®erent between the bottom and

top steps: ¼(½1; µ2)M(µ; p) = ¼(½2; µ2)M(µ; p); where M(µ; p) = F (µ2)=2 + [1 ¡ F (µ2)] and
M(µ; p) = [1 ¡ F (µ2)]=2: Given ½2 and µ2, incentive compatibility thus determines ½1 and
thereby expected pro¯t. Suppose further that the distribution of costs is uniform over the unit

interval: Direct calculations then yield: E[¦(µ; µ; p)] = [2½2(1¡µ2)+µ2+(µ2)2¡1]=4. Expected
pro¯t is thus maximized when ½2 = r and µ2 is set at a corner. With r ¸ µ; the maximum is

achieved when µ2 = µ: Thus, a rigid-pricing scheme with p(µ) ´ ½2 = r is optimal within the
two-step family. We may also compare the rigid-pricing and Nash-pricing schemes. Expected

pro¯t under the Nash-pricing scheme is 1=6, which is less that the value (2r ¡ 1)=4 that is
generated by the rigid-pricing scheme.

5.4. Related Literature

We now compare our ¯ndings to those established in related papers. We recall ¯rst McAfee

and McMillan's (1992) study of bidding rings. Working with a static model of procurement

auctions, McAfee and McMillan show that bidders in a \weak cartel" (where transfers are not

allowed) collude best if they agree to bid the same price, r. Our Proposition 5 is closely related;

indeed, their model can be mapped into the Mechanism Design Program by setting T ´ 0:

The analysis here extends their results, however, by formally connecting the static results to

the repeated-game context and demonstrating that a rigid-pricing scheme is optimal even when

schemes that sustain sorting using \wasteful" transfers (T>0) are allowed. In the next section,

we further generalize the analysis to consider the possibility of impatient ¯rms.

Our ¯ndings are also related to work on cartel design under private information. As Cramton

and Palfrey (1990) and Kihlstrom and Vives (1992) show, if ¯rms can design a mechanism where

they communicate their cost types and make side-payments to one another, then the ¯rms can

achieve full e±ciency bene¯ts without any pricing distortion (i.e., production is allocated to the

lowest-cost ¯rm, who sets its monopoly price), although the participation constraints may fail

for some cost types.29 In our model, the SPPE restriction prevents ¯rms from using asymmetric

continuation values to mimic side-payments from one ¯rm to another. But it is still possible for

¯rms to achieve full e±ciency bene¯ts, if they use fully sorting pricing schemes. In this case,

however, informational costs, manifested as pricing distortions and/or future price wars, must

be experienced. We have seen that the costs exceed the bene¯ts when F is log-concave.

Interestingly, communication would not have any value for ¯rms in our model. The re-

alization of full e±ciency bene¯ts does not require communication, while the informational

29Their analysis builds on earlier work by Roberts (1985), who shows that a scheme with full e±ciency bene¯ts
may not be incentive compatible, when ¯rms can communicate but are unable to make side-payments. See also

McAfee and McMillan's (1992) analysis of \strong cartels," in which bidders can make transfers to one another.
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costs remain, with or without communication, so long as ¯rms cannot make side-payments. In

other words, the optimal direct revelation mechanism without side-payments is characterized

by Proposition 5, and no communication is required to implement it.30

Our ¯ndings are also related to those presented in the hidden-action collusion literature.

A central feature of the Green-Porter (1984) and APS (1986, 1990) papers is that collusive

conduct involves periodic reversions to price wars. Our model can be placed within their

hidden-action modeling framework, if we think of a ¯rm's strategy, p(µ), as its hidden action

and the resulting price, p = p(µ), as the public signal, where the distribution of this public

signal is then determined by the pricing function itself and the distributional properties of µ.

The main di®erence between the two modeling approaches is that we allow for an endogenous

support of the public signal. Put di®erently, our model may be understood as a hidden-action

model with endogenous imperfect monitoring. To see this, recall that in the Green-Porter

(1984) and APS (1986, 1990) modeling framework, the support of the publicly-observed market

price is independent of the private output selections made by ¯rms. In our model, by contrast,

the support of the signal is itself determined in equilibrium. In particular, if ¯rms employ a

rigid-pricing schedule in which they choose r under all cost realizations, then in equilibrium

the support of the public signal is degenerate, as rival ¯rms expect to observe the price r, no

matter what cost realization the ¯rm experiences. This in turn enables ¯rms to limit wars to

o®-equilibrium-path events.

5.5. Downward-Sloping Demand

The results presented above are derived for the case of inelastic demand. In our working

paper (Athey, Bagwell and Sanchirico (1998)), we consider as well the case of downward-sloping

demand. This case may be treated with the notation developed above, if we re-de¯ne the pro¯t-

if-win function as ¼(½; µ) = (½ ¡ µ)D(½); where the demand function D satis¯es D > 0 > D0

over the relevant range. The monopoly price is then strictly increasing in µ.

With these adjustments, Propositions 1 and 2 hold as stated, and Proposition 3 takes an

even stronger form: the repeated play of the static Nash equilibrium is the optimal SPPE

within the fully sorting class. We show, too, that our main ¯nding (Proposition 5) extends in

the natural way: if ¯rms are su±ciently patient, F is log-concave and demand is su±ciently

inelastic, then an optimal SPPE must be characterized by a rigid price for all cost types and

no wars.

For general demand functions, however, the revenue equivalence theorem (Lemma 4) no

longer applies, and we cannot rule out that an optimal SPPE allows for a war when intermediate

30Communication can be valuable without side-payments in other oligopoly models. In the Bertrand model,
prices allocate all market share to the low-price ¯rm; by contrast, in a Cournot model, if e±ciency bene¯ts are
sought, the ¯rms would do better to reveal the cost types in advance and avoid unnecessary (and price-reducing)
production. Even in the Bertrand model, as Athey and Bagwell (forthcoming) show, communication can be

valuable if ¯rms are able to implement \side-payments," by moving between asymmetric continuation values.
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cost realizations occur. But for any demand functionD and distribution function F , we establish

that an optimal SPPE among su±ciently patient ¯rms must generate greater-than-Nash pro¯ts

and include an interval of lowest-cost types, [µ; x) where x > µ; on which no wars are used and

the pricing function is rigid.

6. Optimal Collusion Among Impatient Firms

We now consider collusion among impatient ¯rms. We proceed in two general steps. First,

we determine the critical patience level above which the rigid-pricing scheme can be enforced.

Second, we consider less patient ¯rms, who are unable to enforce the rigid-pricing scheme, and

explore how they best collude. Impatience creates an additional motivation for the avoidance

of price wars. In addition, impatient ¯rms may use pricing schemes that entail an \escape

clause," whereby a ¯rm is allowed to depart from the rigid price and set a lower price when

it experiences a favorable cost shock. In an extended model, we ¯nd that such a departure is

especially likely when demand is temporarily high. We also o®er further characterizations of

the optimal collusive pricing schemes for impatient ¯rms.

6.1. Enforcing Rigidity O® Schedule

We begin with the determination of the critical discount factor. The rigid-pricing scheme

satis¯es o®-schedule constraints, if a ¯rm always regards the current-period bene¯t from under-

cutting the rigid price as small in comparison to the discounted value of future cooperation. In

turn, future cooperation is more valuable when ¯rms are more patient and the punishment that

would follow a deviation is more severe. The critical discount factor is therefore determined as

the lowest discount factor at which ¯rms can enforce the rigid-pricing scheme, when a deviation

leads to the most severe punishment, Vs.
Formally, let us suppose that the ¯rms attempt to maintain a rigid price ½ ¸ µ in all periods

for all cost realizations. If a ¯rm of type µ were to cheat and undercut (by ²) this price, then

the ¯rm would win the entire market, as opposed to just 1=nth of the market, and so the ¯rm's

incentive to cheat is n¡1
n ¼(½; µ). Importantly, this incentive is greatest for a ¯rm with the

lowest cost level, µ; since the pro¯t-if-win is then highest and the gain in market share is thus

most valuable. If a ¯rm were to cheat, however, it would forfeit the discounted value of future

cooperation. This value is measured in relation to the cost that a ¯rm expects in the future, Eµ.

For example, if a deviation is punished by an in¯nite reversion to the static Nash equilibrium,

then the proposed rigid-pricing scheme is o®-schedule incentive compatible if and only if

n¡ 1
n

¼(½; µ) · (±=(1¡ ±))[ 1
n
¼(½;Eµ)¡ ¼NE]: (6.1)

If the proposed scheme yields greater-than-Nash pro¯t, (6.1) holds when ± is su±ciently large.
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We note as well that both the incentive to cheat and the future value of cooperation increase

with the rigid price, ½. As long as ± > n¡1
n , however, the latter e®ect dominates, so that the

rigid price that is easiest to support has p(µ) ´ r in each period. Using (6.1), we ¯nd that the
critical discount factor ±¤ above which ¯rms can use the Nash punishment threat to enforce the
rigid-pricing scheme is

±¤ ´ (n¡ 1)¼(r; µ)
(n¡ 1)¼(r; µ) + ¼(r; Eµ)¡ n¼NE : (6.2)

It is straightforward to verify that ±¤ 2 (n¡1n ; 1), if 1n¼(r; Eµ) > ¼NE : We may now state:

Proposition 6. (i). If F is log-concave, then for all discount factors ±, Vs = ¼NE=(1¡ ±).
(ii). If F is log-concave and ± < ±¤; then there does not exist an SPPE with rigid pricing.
(iii). If F is log-concave or r ¡ ¹µ is large enough, then ±¤ 2 (n¡1n ; 1) and for all ± > ±¤ any
optimal SPPE is characterized by rigid pricing at r in every period.

Thus, when F is log-concave, Nash reversion is in fact the worst punishment, and the rigid-

pricing scheme can be enforced if and only if ± > ±¤; where ±¤ 2 (n¡1n ; 1): To see an example,
suppose there are two ¯rms, costs are uniformly distributed over [0; 1] and r = 1. Then,

¼NE=1=6, and an SPPE with rigid pricing exists and is optimal if and only if ± ¸ ±¤=6=7:
It is striking that the lowest SPPE continuation value, Vs, corresponds to Nash play when

F is log-concave. This is true despite the fact that SPPE may exist in which some ¯rm types

price below cost. For example, there may exist non-stationary SPPE, in which higher-cost types

price below cost in the ¯rst period, sustained by the promise of a better future equilibrium. Of

course, SPPE continuation values cannot be driven too low: the scheme must o®er the highest-

cost type overall expected payo®s greater than ±Vs (or else the ¯rm will deviate o®-schedule)

and lower-cost types cannot be deprived of the available e±ciency rents. In searching for the

lowest SPPE continuation value, we thus consider pricing schemes that minimize e±ciency

rents. Following the logic of Section 5.3, the minimum e±ciency rent is attained using a strictly

increasing pricing scheme when F is log-concave, and with this we can establish that it is not

possible to sustain punishments worse than Nash. As we con¯rm in Lemma 5 in the Appendix,

however, when the log-concavity assumption is relaxed, on-schedule incentive constraints are

compatible with below-Nash e±ciency rents. If ¯rms are su±ciently patient, non-stationary

SPPE with below-cost pricing can then be constructed that yield below-Nash payo®s.31

Recall that when ¯rms have access to a public randomization device, the set of equilibrium

values is convex. In that case, Proposition 6 provides a complete characterization of the SPPE

set when F is log-concave and ± > ±¤.
31The scheme used to generate below-Nash payo®s requires some ¯rms to price below cost, and such a ¯rm

must be dissuaded from deviating to a higher price. Indeed, a ¯rm would undertake just such a deviation, if the
market-clearing price were public but individual prices were otherwise not. In this case, the worst SPPE involves
the repeated play of the static Nash equilibrium (for any F and ±). When individual prices are public, however,

a ¯rm can be induced to price below cost, and when F is not log-concave this may describe the worst SPPE.
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An interesting implication of Proposition 6 is that intertemporal °uctuations in costs di-

minish the ability of ¯rms to collude. Intuitively, when costs °uctuate through time, collusion

requires greater patience, as the scheme must withstand the incentive imbalance that occurs

when a ¯rm draws a low current cost level (µ), and thus faces a great incentive to cheat, while

assessing the long-term value of cooperation with reference to an average cost level (Eµ). For-

mally, ±¤ > n¡1
n ; where

n¡1
n is the critical discount factor for the standard Bertrand supergame,

in which ¯rms' costs are time-invariant. This implication is broadly consistent with the com-

mon assessment (see, e.g., Scherer (1980, p. 205)) that collusion is more di±cult when costs

are variable across ¯rms.

6.2. No Wars on the Equilibrium Path

How do ¯rms best collude when they are unable to enforce the rigid-pricing scheme? In this

subsection, we take a ¯rst step toward answering this question. Allowing for impatient ¯rms,

we establish that the scope for symmetric collusion cannot be improved (and may be strictly

harmed) by the inclusion of equilibrium-path wars

The central idea is simple. Let us start with an original SPPE collusive scheme. Relying

on Proposition 4, if there is a positive probability of an equilibrium-path war associated with

some cost type, then we can re-engineer an alternative collusive scheme { by eliminating the

war and reducing the price for that type a corresponding amount { that yields for this type

the same expected payo®. The alternative scheme satis¯es the on-schedule constraint (given

that the original did) and thus constitutes a payo®-equivalent SPPE for patient ¯rms. When

¯rms are impatient, however, the o®-schedule constraint is also a concern, and it is here that

the alternative schedule o®ers an actual advantage: by shifting pro¯t from the current period

(price is reduced) to the future (wars are eliminated), the incentive to cheat is reduced while

the future value of cooperation is enhanced. The o®-schedule constraint is therefore now easier

to satisfy than under the original scheme.

As the following proposition con¯rms, this argument is quite general:

Proposition 7. Allow for any distribution function F and any discount factor ±. If an SPPE
exists with the optimal payo® Vs; then there exists a stationary SPPE, where the same pricing
strategy is used following every equilibrium-path history, with the optimal payo® Vs:

More generally, any scheme that uses price wars is (weakly) dominated by a scheme without

price wars. Thus, \revenue equivalence" does not extend to impatient ¯rms.

6.3. Partial Rigidity and Collusion Among Impatient Firms

The propositions developed above suggest that our search for collusive schemes among impatient

¯rms should emphasize two ingredients: the absence of rigid pricing and no equilibrium-path

wars. But exactly how do impatient ¯rms price in an optimal SPPE? In this subsection, we
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¯rst present su±cient conditions under which a two-step pricing scheme can be enforced and

is optimal for impatient ¯rms. Second, we consider an extended model that includes publicly

observed °uctuations in industry demand. Finally, we argue that optimal SPPE for impatient

¯rms is characterized by a pricing schedule that is a step function (partial rigidity), if the

collusive scheme is to o®er better-than-Nash pro¯ts.

6.3.1. Introducing A Second Step: An \Escape Clause"

Recall that the rigid-price scheme fails to be enforceable when ± < ±¤, because a ¯rm that draws
the lowest-cost type is too tempted to undercut the rigid price r and increase its market share.

A natural conjecture is that this problem may be overcome when a two-step pricing scheme

is employed, with prices ½1 and ½2; where ½1 < ½2; and a break-point µ2. In this case, the

lowest-cost ¯rm has less incentive to cheat. Firstly, this ¯rm now expects greater than a 1
n
th

share of the market, and so the gain in market share that accompanies a price cut is diminished.

Secondly, any given gain in market share is now less pro¯table, since the lower-cost ¯rm has a

lower price, and thus the pro¯t-if-win it experiences on the market share it enjoys is now lower.

This, however, is not the whole story. Balanced against this diminished incentive to cheat is

a reduction in expected long-term pro¯t: if the distribution function is log concave, a two-step

scheme yields lower expected pro¯t than does a rigid scheme, and so the ¯rm also now has

less to lose in the future if it cheats today. Complicating matters further, the net resolution of

these con°icting e®ects for the o®-schedule incentive constraint may hinge upon the nature of

the distribution function. A two-step scheme will satisfy the o®-schedule incentive constraint

if it lowers the incentive that the lowest-cost ¯rm has to cheat without substantially altering

the expected pro¯t that ¯rms anticipate in the future. Intuitively, this will be the case if the

density is small for lower-cost types, so that these types occur infrequently in the future.

Proposition 8. If F is log-concave and

f(µ) <
1
n¼(r; Eµ)¡ ¼NE
(n¡ 1)¼(r; µ)¼NE (6.3)

then there exists ±o < ±¤, such that, for every ± 2 (±o; ±¤), there exists an optimal SPPE that
is stationary and uses a two-step pricing scheme, with p2 = r > p1 and µ2 2 (µ; µ).

When F is log-concave, the two-price scheme is optimal for ± just below ±¤, since then the
two-price scheme departs from the desired rigid-pricing scheme only at the lowest-cost types.

Proposition 8 describes a situation in which the realization of an unlikely and low cost type

results in a marked reduction in the ¯rm's price, suggesting that rare but pronounced price

cuts may occur under symmetric collusion schemes when ¯rms are impatient.32 In other words,

32The proof constructs a two-step pricing equilibrium for µ2 close to µ. In this equilibrium, the low-step price
is approximately [r + µ(n¡ 1)]=n indicating a discrete reduction of amount (r ¡ µ)(n¡ 1)=n from the high-step
price of r. Notice that the two-step pricing scheme calls for a greater price reduction when markets are less

concentrated.
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symmetric collusion among impatient ¯rms may call for an \escape clause" provision, under

which a ¯rm is allowed to select a lower price in the event that a very favorable cost type

is realized. The price reduction must be substantial, in order to ensure that the low price is

attractive only when a ¯rm's cost type is low.

This behavior is reminiscent of the ¯ndings of Rotemberg and Saloner (1986), but there

are important di®erences: in their case, collusive prices adjust across all ¯rms in response to

a public demand shock. This result also may be useful when interpreting an apparent episode

of \cheating" in a collusive industry. Imagine, for example, a situation in which a single ¯rm

charges a low price and yet faces no retaliation. It is di±cult to reconcile such an observation

with standard collusion models. In our private-information setting, however, optimal collusion

among impatient ¯rms may allow for \rare exceptions" to rigidity, in which a ¯rm substantially

cuts its price and faces no retaliation.

The \small-density condition" (6.3) plays an intuitive role, but the assumption is restrictive.

Obviously, it is satis¯ed if f(µ) is close enough to zero. To see a more subtle example, consider

the (log-concave) distribution function family, F (µ) = µ®, with µ = 0 < 1 = µ. The small-

density condition is satis¯ed for any ® > 1, but it fails when ® < 1. The condition also fails

when ® = 1 (corresponding to the uniform distribution):When (6.3) is violated, it may be that,

for all ± < ±¤, no two-step pricing schedule satis¯es on- and o®-schedule constraints; this is the
case for the uniform distribution (see Athey, Bagwell and Sanchirico (1998)).

A second example highlights an interesting prediction: if the support of the distribution

increases, the optimal collusive scheme may switch from a rigid-pricing to a two-step pricing

scheme. Consider a distribution F (µ;¹; z); where the mean is constant at ¹; but the support

is parameterized by z; so that µ = ¹ ¡ z and µ = ¹ + z: Suppose F (µ;¹; z) is log-concave

and satis¯es the small-density condition. An example is the \triangle" distribution, where

the density f(µ; z) is symmetric about ¹; and f(µ; z) = 1
z2
(µ ¡ (¹ ¡ z)) on [¹ ¡ z; z]:33 We

make two observations. First, while increasing z leaves the per-period pro¯ts from rigid pricing

unchanged, it introduces lower-cost types that are especially tempted to cheat and thereby

increases the critical discount factor for rigid pricing, ±¤: Second, consider increasing z while
holding the discount factor ¯xed at 1 > ± > n¡1

n . When z is small, information is appoximately

complete and rigid pricing can be supported. At a critical z, however, the rigid-pricing scheme

breaks down, and Proposition 8 implies that a two-price scheme is then optimal. Thus, increased

\spread" in the cost distribution leads to increased price variability. In an application of this

framework, Simon (1999) argues that in°ation can lead to an increase in the spread of costs,

and establishes that prices are more variable when in°ation is high.

33Note that f(µ) and f(¹µ) are equal to 0, which strictly speaking violates our maintained assumption; but it

is straightforward to show that all of our results extend as long as f 0(µ) > 0 and f 0(¹µ) < 0.
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6.3.2. Observable Fluctuations in Demand

The intuition underlying Proposition 8 suggests that any exogenous variation in the economic

environment that heightens the short-term incentive to cheat and/or reduces the long-term

value of cooperation may result in lower and more variable prices. A variation of particular

empirical relevance occurs when industry demand °uctuates over time. Following Rotemberg

and Saloner (1986), we now extend our model to an environment in which industry demand

°uctuates in an i.i.d. fashion between low and high states, Á 2 fÁL; ÁHg where ÁH > ÁL. Pro¯t
is proportional to the demand state, which is publicly observed at the beginning of each period,

before cost shocks are realized.

In this model, the long-term value of cooperation is proportional to the demand that is

expected in future periods, EÁ, which is independent of the current demand state. By contrast,

the incentive to cheat is greatest when current demand is high. The o®-schedule constraint

therefore binds ¯rst for the high-demand state. Formally, we may modify (6.1) to calculate for

the rigid-pricing scheme a critical discount factor,

±¤H ´
(n¡ 1)¼(r; µ)ÁH

(n¡ 1)¼(r; µ)ÁH + [¼(r;Eµ)¡ n¼NE]EÁ;

where ±¤H > ±
¤; at which the o®-schedule constraint binds when current demand is high. Sim-

ilarly, we may de¯ne ±¤L < ±
¤ as the critical discount factor for the rigid-pricing scheme in the

low-demand state. When the discount factor falls slightly below ±¤H , it is no longer possible to
enforce a rigid price for all cost levels in the high-demand state; however, it remains possible

to do so when the demand state is low. Assuming that ÁHEÁ is not too large, so that 1 > ±
¤
H ; a

modi¯cation of Proposition 8 implies the following:

Proposition 9. For two ¯rms, when the market size is i.i.d. with Á 2 fÁL; ÁHg; if F is log-
concave and (6.3) holds, then there exists ±o 2 [±¤L; ±¤H), such that, for every ± 2 (±o; ±¤H); there
exists an optimal SPPE that is stationary and satis¯es:
(i) in the low demand state (Á = ÁL), ¯rms use the rigid-pricing scheme of Proposition 6;
(ii) in the high demand state (Á = ÁH), ¯rms use the two-price scheme of Proposition 8.

This proposition extends a theme of the previous subsection: symmetric collusion between

impatient ¯rms may be marked by occasional (and perhaps substantial) price reductions by

individual ¯rms. We learn here that these departures are most likely to occur when one ¯rm

receives a favorable cost shock and current demand is high. Using the functional forms of the

last subsection, it is straightforward to ¯nd parameters where the result applies.34

One implication of the model is that the countercyclical-pricing ¯nding of Rotemberg and

Saloner (1986) is robust to the presence of private cost °uctuations. This model can be gener-

alized in a number of directions. For example, following Bagwell and Staiger (1997), we may

34For example, with the triangle distribution when n = 2; r = 3; ¹ = 1 and z = :5; we compute ¼NE = 7=60;
±¤ = :74: Thus, if ÁL = 1; ÁH = 1:25; and ± = :92; the optimal equilibrium speci¯es a rigid price in the

low-demand state and a two-step scheme in a high-demand state.
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consider an alternative stochastic process, in which the demand growth rate follows a Markov

process, so that recessions are characterized by slow growth and booms are characterized by

fast growth. In such a model, recessions are the time when collusion is most di±cult. Thus,

given the tradeo®s we outlined above, we would expect rigid prices in booms and variable prices

in recessions. This is a striking and testable prediction. Indeed, Reynolds and Wilson (1998)

use this stochastic process in their empirical work, and they ¯nd that in 14 out of 15 industries,

prices are more variable in recessions than in booms.

6.3.3. Optimal Pricing for Impatient Firms

Next, we consider the general features of optimal SPPE pricing schemes for impatient ¯rms.

This problem is subtle, because, as we have seen, a ¯rm's incentive to deviate from the col-

lusive agreement depends on its own cost type, its own price and the expected payo®s of the

entire collusive agreement. The o®-schedule constraint is thus analogous to a \participation

constraint" in a static mechanism design model, except that the constraint depends on the type

and the outside option is endogenous.

Our analysis is simpli¯ed by two observations. First, as established in Proposition 7, we

may restrict attention to stationary pricing schemes. Second, we observe that all o®-schedule

incentive constraints are satis¯ed if they hold for the lowest-cost type on any step (i.e., for type

µk on any step k de¯ned by endpoints (µk,µk+1) over which the pricing schedule is °at). Clearly,

this constraint is more di±cult to satisfy for a given step as the step gets larger, since then the

market-share gain from an o®-schedule price cut is larger.

To understand the main tradeo®s, suppose that the distribution function is log-concave (at

least in the relevant region) and consider whether a decrease in µk; and thus an increase in the

length of step k, might be optimal. There are three e®ects. First, the o®-schedule constraint

for step k is exacerbated, since a deviation results in a larger increase in market share. Second,

expected collusive pro¯ts increase, and this relaxes the o®-schedule constraints. As in our two-

step analysis, which of these two e®ects dominates depends on the shape of the distribution

function. Finally, a multi-step scheme introduces a third e®ect as well: when an intermediate

step is lengthened, the on-schedule constraints may require adjustments in prices on other steps,

and these adjustments may in turn tighten the o®-schedule constraints at these steps.

The resolution of these tradeo®s depends on the shape of F . In our discussion paper (Athey,

Bagwell and Sanchirico (1998)), we specify an optimization program which can be solved, either

numerically or analytically, given speci¯c functional forms and parameters. Here, we consider

a more qualitative question: Are the o®-schedule incentive constraints ever so severe that the

¯rms are induced to use an interval of strictly increasing prices, even when the distribution is

log-concave? The following proposition summarizes our ¯ndings:

Proposition 10. Suppose ± > n¡1
n .

(i) If r > ¹µ; then Vs > ¼NE=(1¡ ±) and p(¹µ) = r.
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(ii) If Vs > ¼NE=(1 ¡ ±); and both F and 1 ¡ F are strictly log-concave, then in an optimal
stationary SPPE there exists no open interval of types, (µ

0
; µ

00
); where the pricing function is

strictly increasing.

Proposition 10(i) establishes that, when ± > n¡1
n and r > ¹µ, ¯rms can achieve above-Nash

payo®s and therefore enjoy at least partial collusion.35 Intuitively, when r > ¹µ, the introduction

of a small interval of pooling for the highest cost types at the price p(¹µ) = r improves expected

future pro¯ts; furthermore, when ± > n¡1
n ; this improvement overwhelms the higher incentive

to cheat that higher types then face. In part (ii), we assume directly that some collusion is

attainable. We then show that, if both F and 1¡ F are strictly log-concave, then ¯rms would
do better to introduce tiny regions of pooling rather than strictly separate types throughout

an open interval. The introduction of a small region of pooling has a ¯rst-order bene¯t for

expected future pro¯ts when F is log-concave, and for a small step the gain in market share from

undercutting the collusive price is small. There remains, however, the third e®ect mentioned

above, associated with cross-step externalities and o®-schedule constraints. For any particular

type µ; an o®-schedule constraint might bind above or below µ; and our assumption that both

F and 1 ¡ F are strictly log-concave ensures that pooling is optimal, whether the cross-step

externality extends to the fraction F of lower types or the fraction 1¡ F of higher types.36
Under the conditions of Proposition 10, then, the optimal collusive scheme is stationary,

and there is no open interval of cost types where e±ciency bene¯ts are attained. Therefore,

an optimal SPPE pricing scheme exhibits rigidity over regions of costs, and the observed dis-

tribution of prices will have mass points. Such an observation may o®er some guidance in

interpreting allegations of collusion. For example, in the NASDAQ stock exchange (see, for

example, Christie and Schultz (1999)), dealers systematically restricted their price quotes to

multiples of $.25, and such behavior was associated with higher average bid-ask spreads (and

thus, presumably, higher pro¯ts).

6.4. Downward-Sloping Demand

In our discussion paper (Athey, Bagwell and Sanchirico (1998)), we discuss the generalization

of our ¯ndings when demand is downward-sloping. Here, we simply make two points. First,

the results derived in this section (Propositions 6-10) all generalize to case in which demand is

su±ciently inelastic that rigid pricing is optimal for patient ¯rms.37 Second, while our no-wars

¯nding (Proposition 7) holds even for impatient ¯rms when demand is su±ciently inelastic, we

35Notice that this result complements Proposition 5(ii) by o®ering a speci¯c lower bound for ±, under the

further assumption that r > ¹µ:
36More precisely, for µ > µj ; the on-schedule constraint implies ¦(µ; µ; p)=¦(µj ; µj ; p) ¡

R µ
µj
M(~µ; p)d~µ; from

which we may derive E[¦(µ; µ; p)jµ > µj ]=¦(µj ; µj ; p) ¡ E[ 1¡F (µ)f(µ) M(µ; p)jµ > µj ]: If 1¡F is strictly log-concave,
so that ¡1¡F (µ)

f(µ) is strictly increasing, the expected pro¯t for µ > µj is maximized when these types are pooled.
37Showing that repeated play of the static Nash equilibrium yields the worst punishment when F is log-concave

and demand is su±ciently inelastic entails additional work. Details are available from the authors.
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can not rule out the possibility of a war in an optimal SPPE for impatient ¯rms and general

demand functions.

7. Conclusion

We propose a model of collusion in which ¯rms are privately informed as to their current cost

positions. Our ¯ve main ¯ndings are:

1. Firms fare poorly under fully sorting symmetric collusive schemes, since the e±ciency bene¯ts

that such schemes a®ord are small relative to the informational costs.

2. Optimal symmetric collusion can be achieved without equilibrium-path price wars.

3. If ¯rms are su±ciently patient and the distribution of costs is log-concave, optimal symmetric

collusion is characterized by price rigidity and the absence of price wars on the equilibrium path.

4. If ¯rms are less patient, optimal symmetric collusion may be characterized by price rigidity

over intervals of costs (a step function), where the price of a lower-cost ¯rms is distorted

downward to diminish the incentive that such a ¯rm has to cheat.

5. If ¯rms are less patient and the model is modi¯ed to include i.i.d. public demand shocks,

under optimal symmetric collusion, the downward pricing distortion that accompanies a ¯rm's

lower-cost realization may occur only when current demand is high.

We note that the ¯rst ¯nding underscores the basic tradeo® present in our repeated-adverse-

selection model of collusion; the second ¯nding contrasts with the Green-Porter (1984) collusion

literature on repeated moral hazard; the third ¯nding o®ers an equilibrium interpretation of the

empirical association between rigid pricing and industry concentration, as well as the commonly

observed collusive practices of identical bidding, price ¯xing with stable market shares, and ¯xed

markup rules (above a publicly observed wholesale price); and the fourth and ¯fth ¯ndings are

reminiscent of the logic developed by Rotemberg and Saloner (1986) for collusion in markets

with publicly observed demand shocks, but associate low collusive prices with individual ¯rm

behavior in high-public-demand and low-private-cost states.

Our analysis also contributes at a methodological level. In particular, we develop the precise

connections between static and dynamic analyses, making clear the similarities and di®erences,

and laying the groundwork for treating other repeated-game problems within the mechanism

design modeling framework. Our work also motivates some new questions for static mechanism

design, and takes some initial steps towards addressing them. For example, we examine how

restrictions on transfers a®ect optimal mechanisms. Further, when ¯rms are impatient, we

observe that the participation constraints vary according to the ¯rm's cost type and price as

well as the collusive pricing agreement itself. Thus, the participation constraints are type-

dependent and endogenous.

Important extensions remain. We mention two. First, we assume throughout that each

¯rm receives an i.i.d. cost shock in each period. We anticipate that our price-rigidity result
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is robust when cost shocks are positively correlated across ¯rms, since a rigid-pricing schedule

then sacri¯ces a smaller e±ciency bene¯t (the ¯rms often have similar costs, anyway). The

possibility of private cost shocks that exhibit intertemporal persistence is much more complex,

since a ¯rm's past prices may then provide information about its current cost position. Sec-

ond, in some applications, players interact repeatedly but only a single player observes private

information in each period (for example, a government in a \policy game"). The question then

arises as to whether the informed player should follow a \rule" (i.e., adopt behavior that is

never responsive to private information) or be granted \discretion" (i.e., adopt behavior that is

sometimes responsive to private information). In the latter case, incentive compatibility may

require that the informed player is sometimes punished. Our analysis of SPPE above provides

a foundation for such applications, since in each case all informed players bear a symmetric

punishment.

8. Appendix

Proof of Lemma 3: We prove the result for step functions; strictly increasing functions are analogous.

Let pk and Mk denote the price and market share for step k, and let the step cover (µk; µk+1]: First,

notice that for each µ; ¼ is strictly increasing in ½ for ½ < r: Thus, we can de¯ne Á(¼; µ) ´ ¼¡1(x; µ):
Now observe that ¦(¹µ; ¹µ; p)¡T (¹µ) · ¼(r; ¹µ)M(¹µ; p): Then, recall our restriction that the lowest type on
the highest step makes non-negative pro¯t: ¦(µK ; µK ; p) ¡T (µK) ¸ 0: This implies p(µK) ´ p(¹µ) ¸ µK :
It follows that ¦(¹µ; ¹µ; p)¡ T (¹µ) ´ ¼(p(¹µ); ¹µ)M(¹µ; p)¡ T (¹µ)

= [(µK ¡ ¹µ) + (p(¹µ)¡ µK)]M(¹µ;p)¡ T (¹µ)

= ¼(µK ; ¹µ)M(¹µ; p) + ¦(µK ; µK ; p) ¡T (µK)
¸ ¼(µK ; ¹µ)M(¹µ; p): Thus, we may ¯nd ~p(¹µ) 2 [µK ; r] such that ¦(¹µ; ¹µ; p) ¡ T (¹µ) = ¼(~p(¹µ); ¹µ)M(¹µ; p).

From there, no-war prices are determined according to (IC-onM), which speci¯es that

¼(½k; µk)Mk = ¼(½k¡1; µk)Mk¡1:

Each price is then determined as

½k¡1 = Á(¼(½k; µk) ¢ Mk

Mk¡1
; µk):

Since Mk

Mk¡1
< 1 and ¼(½k; µk) · ¼(r; µk); and since ¼(~p(¹µ); µK) ¸ 0; this algorithm generates prices ~p(µ)

that lie between cost and r at each step.

Finally, notice that if the pricing function is strictly increasing at the top, the no-war schedule

will have to give ~p(¹µ) = ¹µ; whence ¦(µ; µ; ~p) = 0: To show that the lemma holds for this case, we

con¯rm that ¦(µ; µ; p)¡ T (µ) = 0. This follows since when p is strictly increasing at the top, we have
that M(µ; p) = 0 and thus ¦(µ; µ; p) = 0: Our assumption that ¦(µ; µ; p) ¡ T (µ) ¸ 0 along with the

requirement that T (µ) ¸ 0 then con¯rms the desired equality.
Proof of Proposition 5: Equation (5.1) gives the pointwise objective of the ¯rms, incorporating

(IC-onM). It can be expressed as the sum of two terms, the pro¯t-at-the-top and the e±ciency rent,
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and maximized pointwise subject to the constraint that p(µ) is nondecreasing. Consider any collusive

scheme that satis¯es (IC-onM). If the scheme is a candidate for the optimal SPPE, then the allocation

that it achieves can be realized without recourse to an equilibrium-path war. Since the market-share

allocation function M(µ; p) is non-increasing, the pro¯t-at-the-top is maximized when M(µ; p) = 1=n:

This allocation is delivered by a rigid-pricing scheme. Now consider the e±ciency rent term. From (5.1),

it follows that when F (µ)=f(µ) is increasing, it always pays to take market share away from lower types

and give it to higher types. Thus, the rigid-price scheme maximizes both of the two terms. However,

even if F=f is not increasing everywhere, if r ¡ ¹µ is large enough, the pro¯t-at-the-top term dominates,

and the pointwise objective is maximized by giving as much market-share as possible to high types.

Finally, our assumption that f(µ) > 0 (or, more generally, if f 0(µ) > 0) implies that F=f is increasing
at µ: Thus, there exists a pricing function that is rigid at the bottom and yields per-period pro¯ts strictly

greater than the static Nash equilibrium (which requires p strictly increasing). Then, when ¯rms are

su±ciently patient, this pricing scheme can be sustained in a stationary equilibrium, using the threat of

reversion to the static Nash equilibrium to satisfy the o®-schedule constraints.

Lemma 5. Suppose that there exists an x · ¹µ such that F is log-concave on [µ; x) and log-convex on
[x; ¹µ]. De¯ne the minimum e±ciency rent the ¯rms may receive when the on-schedule constraints are
satis¯ed by: R̂ = minpE[

F
f (µ)M(µ; p)]. Then:

(i) If r > ¹µ, ± > n¡1
n and x < ¹µ; R̂=(1¡ ±) · Vs < ¼NE=(1¡ ±):

(ii) If ¯rms are su±ciently patient, Vs = R̂=(1¡ ±) 2 Vs:
(iii) If F is log-concave (x = ¹µ), then for all discount factors ±; Vs = ¼NE=(1¡ ±) = R̂=(1¡ ±):

Proof. We begin with part (ii). Suppose that (p; v) implements Vs. The o®-schedule constraint for ¹µ
requires that ¡(¹µ ¡ p(¹µ))M(¹µ; p) + ±¹v(p(¹µ); p) ¸ ±Vs: Using (5.1), the on-schedule incentive constraints
imply that

¡(¹µ ¡ p(¹µ))M(¹µ; p) + ±¹v(p(¹µ); p) +E[F
f
(µ)M(µ)] = Vs: (8.1)

Substituting yields

E[
F

f
(µ)M(µ; p)] · (1¡ ±)Vs: (8.2)

Thus, no scheme can yield a lower per-period continuation value than R̂:

Consider the following scheme. In the ¯rst period, ¯rms use the pricing scheme pL(µ); where

pL(¹µ) = 1
n
¹µ+ n¡1

n x and the pricing scheme is rigid on [x; ¹µ] and strictly increasing elsewhere. Under our

assumption about the distribution function, the pricing scheme pL minimizes expected informational

rents. The continuation value function vL speci¯es vL(p(µ)) = Vs if µj < x for any ¯rm j (i.e. if

the market price is below pL(¹µ)), while vL(p(µ)) = vr otherwise (i.e. if the market price is pL(¹µ)).

O®-schedule deviations are punished by returning to Vs: We choose vr to satisfy with equality the o®-
schedule constraint for ¹µ, so that pro¯t-at-the-top is ±Vs: The on-schedule constraints then imply that
the payo® from this collusive scheme is ±Vs+ R̂: Now, we know from (8.2) that ±Vs + R̂ · Vs. Further,
if this collusive scheme is an SPPE scheme, then the de¯nition of Vs implies that ±Vs + R̂ ¸ Vs: Hence,
if this collusive scheme satis¯es all other o®-schedule incentive constraints, and if ¯rms are su±ciently

patient that vr 2 Vs; then Vs = R̂=(1¡ ±) 2 Vs:
To see that the proposed scheme indeed satis¯es all other constraints, notice that since pL(¹µ) > x;

on-schedule incentive compatibility determines pL for µ < x; and in particular it requires that pL(µ) > µ

for all µ. Since the pricing function is strictly increasing on this interval, there are no additional o®-

schedule constraints. Further, as may be con¯rmed, at the price pL(¹µ) = 1
n
¹µ + n¡1

n x, the o®-schedule
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constraint for x (who is tempted to under-cut) is satis¯ed exactly when it is for ¹µ (who is tempted to

raise price).38

Part (iii) follows from part (ii), together with the fact that repeated play of the static Nash equi-

librium is always an SPPE. For part (i), observe that ¯rms can use a °at scheme on an interval [y; ¹µ]:

If y is su±ciently close to ¹µ; the incentive to deviate o®-schedule can be made arbitrarily small; and

Proposition 10 establishes that some future reward greater than ¼NE=(1¡ ±) is available when ± > n¡1
n

and r > ¹µ:

Proof of Proposition 6: Part (i) follows directly from Lemma 5. Parts (ii) and (iii) follow from

(i) and the analysis provided in the text.

Proof of Proposition 7: Let (p; v) be the factorization of an original scheme that constitutes an

optimal SPPE. As before, let T (µ) = ±[Vs ¡ ¹v(p(µ); p)] and note that (p; T ) must satisfy the constraints
of the Mechanism Design Program. Using Lemma 3, and exploiting the inelastic-demand assumption,

we can ¯nd an alternative scheme, (~p; ~T ´ 0); such that ¦(µ; µ; p) ¡ T (µ) = ¼(~p(µ); µ)M(µ; p) for all

µ: Clearly, this implies that ep(µ) = p(µ) for any µ such that T (µ) = 0 while T (µ) > 0 implies thatep(µ) < p(µ). The factorization associated with the alternative scheme is (~p; ev ´ Vs):
Now, we compare the o®-schedule incentive constraints across the two schemes. To do so, let w 2 Vs

be the punishment used following an o®-schedule deviation in the original scheme. When the on-schedule

incentive constraint is met, the o®-schedule incentive constraint is satis¯ed if the lowest type on any

interval of costs over which prices are rigid does not prefer to charge a slightly lower price.39 As the

original schedule satis¯es the o®-schedule incentive constraints, it follows that the lowest-cost type µk

on any step k will not choose to slightly undercut the step-k price, p(µk):

¼(p(µk); µk)[(1¡ F (µk))n¡1 ¡M(µk; p)] · ±fVs ¡ T (µ)=± ¡wg (8.3)

Now consider the analogous o®-schedule incentive constraint for the alternative schedule:

¼(ep(µk); µk)[(1¡ F (µk))n¡1 ¡M(µk; p)] · ±fVs ¡wg: (8.4)

In (8.3) and (8.4), the LHS's represent the current-period incentive to cheat. This incentive is either the

same under the two schedules (when T (µk) = 0) or strictly lower under the alternative schedule (when

T (µk) > 0, since then ep(µk) < p(µk)). The RHS's represent the expected discounted values of cooperation
in the next and all future periods. The RHS is also either the same (when T (µk) = 0) or strictly higher

38We note that the price described requires the least patience for implementation. If we were to raise pL(¹µ);
this would increase the incentive of type x to undercut the collusive price, which would tighten the o®-schedule
constraint for type x and thereby require a greater future reward vr. Thus, overall ¯rm pro¯ts go up. Lowering
pL(¹µ) relaxes the o®-schedule constraint for type x; but it tightens the o®-schedule constraint for type ¹µ; again
requiring a greater future reward vr. However, the required increase in the reward is exactly equal to the reduction
in ¯rm pro¯ts, so that the overall scheme implements the same value. Yet, a reward of greater magnitude is

required, and for ¯rms of moderate patience, a greater reward may not always be available.
39This statement follows from four observations. First, over a segment for which price is strictly increasing,

the lowest type clearly has nothing to gain from a small price cut. Second, over a segment for which price is °at,
the on-schedule incentive constraint requires that either the lowest type on this segment is µ

¡
or that the price

schedule jumps discontinuously down for lower types. Third, over a segment for which price is °at, the incentive
to undercut is greatest for the lowest-cost type. Together, these observations imply that the collusive scheme is
robust against o®-schedule price-cutting deviations, so long as the lowest type on a °at segment does not choose to
cut price slightly. Fourth, o®-schedule price-increasing deviations are unattractive under the alternative schedule
(given that this is true for the original schedule and given that on-schedule constaints are satis¯ed). Details

associated with this ¯nal observation are in our working paper.
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under the alternative schedule (when T (µk) > 0). Thus, eliminating the war in this way simultaneously

raises the expected discounted value of cooperation and lowers the current incentive to cheat; as a

consequence, if there is no incentive to undercut in the original collusive arrangement, then there will

certainly be no such incentive under the alternative arrangement. We then conclude that (~p; ~v ´ Vs)
satis¯es all of the constraints of the Interim Program. This in turn implies that Vs = ¦(µ; µ; ~p)=(1¡ ±);
corresponding to an optimal, stationary SPPE where ~p is used in every period.

Proof of Proposition 8: Consider a candidate two-price scheme, denoted p̧(µ; µ2); with a top-step

price ½2 2 (µ; r] and a breakpoint µ2 2 (µ; µ). Given ½2 and µ2, the on-schedule incentive constraint
determines the low-step price, ½1, as the ½1 that solves

¼(½1; µ2)¹(µ; µ2) = ¼(½2; µ2)¹(µ2; ¹µ); (8.5)

where ¹(µk; µk+1) is the market share for cost types on a step on [µk; µk+1]: If the lowest step is small

enough, the gain in market share from undercutting ½1 is small, and the binding o®-schedule constraint

is the constraint for µ2; the lowest type on the top step. The o®-schedule constraint is written:

(½2 ¡ µ2)[¹(µ2; ¹µ)¡ (1¡ F (µ2))n¡1] + ±

1¡ ± [E¦(µ; µ; p̧(¢; µ2))¡ ¼
NE] ¸ 0: (8.6)

At µ2 = µ, ½2 = r and ± = ±¤; (8.6) holds with equality. Notice that increasing µ2 a®ects both the
incentive to cheat as well as the future value of cooperation. Since introducing a small lower step results

in a low price for only a correspondingly small region of types, E¦(µ; µ; p̧(¢; µ2)) decreases smoothly in
µ2, and thus (8.6) is di®erentiable in µ2 at µ2 = µ: Taking the derivative of the left-hand side of (8.6)

with respect to µ2; evaluated at µ2 = µ and ½2 = r, and using (8.5) yields

n¡ 1
n

·
f(µ)(n¡ 1)(r ¡ µ) + 1¡ ±

1¡ ± (r ¡Eµ)f(µ)
¸
:

This expression is non-negative at ± = ±¤ if and only (6.3) holds. Thus, we conclude that increasing µ2
at µ2 = µ relaxes the o®-schedule incentive constraint.

When the distribution function is log-concave, rigid pricing at r is optimal so long as ± = ±¤: This
implies that E¦(µ; µ; p̧(¢; µ2)) is maximized at µ2 = µ and/or µ2 = ¹µ: Consider ¯rst µ2 = ¹µ ¡ " for "
small: When introducing a small step at or near ¹µ; the low-step price must be set to satisfy (8.5). As

¹(µ2; ¹µ)!0 when "!0, (8.5) implies that ½1 ! ¹µ when "!0: Since this low price is used by all types
on [µ; µ2), expected per-period pro¯ts are approximately ¼(¹µ;Eµ)=n for a small step. Consider second

µ2 = µ ¡ " for " small: We may then set ½2 = r, with ½1 then determined by (8.5). Since the high price
is used by all types on (µ2; ¹µ]; expected per-period pro¯ts are approximately ¼(r;Eµ)=n, as in the rigid-

pricing scheme, for a small step. Recalling that r ¸ ¹µ; we conclude that E¦(µ; µ; p̧(¢; µ2)) is maximized
at µ2 = µ:

Finally, we must show that when ± is close to ±¤; the optimal two-step scheme dominates any other
scheme with other market-share allocation schemes. Consider an alternative scheme that has more than

one point of strict increase; for simplicity, suppose that this pricing scheme is a step function. Consider

the bottom two steps of such a scheme. If we condition on types on the bottom two steps of this scheme,

Proposition 5 can be applied without further modi¯cations. When the distribution is log-concave, it is

always better two combine the two bottom steps into one (thus reallocating market share to types with a

higher F (µ)=f(µ)); or to turn a region of strict increase into one of pooling. Proceeding in this manner,

a multi-step scheme is successively dominated by schemes with fewer steps. Thus, the best two-step
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scheme, if it clears the o®-schedule constraints, is better than any other scheme with a larger number of

steps. Since a two-step scheme with a small lower step is better than any other two-step scheme, and

(6.3) and ± close to ±¤ imply that this scheme can be supported, it must also dominate any schemes with
a larger number of steps.

Proof of Proposition 10: We treat part (ii) ¯rst. Recall the notation developed above for pricing

functions that can be represented by a ¯nite number of subintervals. Let Mk ´ ¹(µk; µk+1) be the

market share for cost types on a step on [µk; µk+1]: Consider a candidate solution which speci¯es strictly

increasing pricing on interval (µj¡1; µj ]: Consider introducing a tiny step on the interval (µj ¡ "; µj ]:
If there is some gain to future cooperation, then for " small enough, introducing a tiny step does not

introduce a new o®-schedule incentive constraint, at least not one which is binding. Suppose it were

indeed optimal for (µj¡1; µj ] to be a region of separation of types. Then, if we chose " to maximize the
objective when (µj¡1; µj¡"] is a region of separation and pooling takes place on (µj¡"; µj ]; the solution
" = 0 should be a local maximum:

Note that ½k ¡ µk = ¦(µk; µk; p)=Mk. Rearranging, we thus observe that the o®-schedule constraint

for type µk; at the left endpoint of step k; can be written as:

±

1¡ ± (E[¦(µ; µ; p)]¡ Vs)¡¦(µk; µk; p)
(1¡ F (µk))n¡1 ¡Mk

Mk
¸ 0: (8.7)

We can then express the o®-schedule constraint for step k < j as a function of ": Tedious calculations

(using in particular the fact that ¹1(µj ; µj) =
1
2
@
@µj
(1¡F (µj))n¡1; and ¹11(µj ; µj) = 1

3
@2

@µ2j
(1¡F (µj))n¡1¡

1
6f

0(µj)(n¡ 1)(1¡ F (µj))n¡2) establish that the ¯rst and second derivatives of (8.7) with respect to "
are equal to 0 when " = 0; while the third derivative is given by:

±

1¡ ±
£
f(µj)

2 ¡ F (µj)f 0(µj)
¤
+ f 0(µj)

(1¡ F (µk))n¡1 ¡Mk

Mk
: (8.8)

If (8.8) is positive, " = 0 is a local minimum; in that case as " increases, the o®-schedule constraint

is relaxed, so that the strictly increasing scheme is dominated. If the density is non-decreasing, (8.8)

is positive by log-concavity of the distribution. Suppose now that f 0(µj) < 0: When ± > n¡1
n ; since

(1¡F (µk))n¡1¡Mk

Mk
< n¡ 1; (8.8) is positive if f(µj)2 ¡ F (µj)f 0(µj) ¸ ¡f 0(µj): But this is true whenever

1¡ F is log-concave.
Now return to part (i). Using a similar logic, we consider starting from a strictly increasing pricing

schedule (i.e. the static Nash equilibrium) and introducing a small step on [¹µ¡"; ¹µ] at p(¹µ) = r: This will
improve per-period pro¯ts if r > ¹µ:We must then verify that it improves per-period pro¯ts faster than it

tightens the o®-schedule constraint for this upper step. Tedious calculations show that the ¯rst (n¡ 2)
derivatives of the o®-schedule constraint with respect to " are zero, while the (n¡1)th derivative is equal
to n¡1

n ( ±
1¡± ¡ (n¡1))(r¡ ¹µ)f(¹µ)2 > 0: Thus, " = 0 is a local minimum. Since the o®-schedule constraint

is satis¯ed at " = 0; introducing a small step relaxes it. Finally, for a given market-share allocation

that has a step at the top (of arbitrary size), consider the optimal p(¹µ): Recalling (4.2), increasing p(¹µ)

increases E[¦(µ; µ; p)] at the same rate that it increases ¦(µk; µk;p). Since
(1¡F (µk))n¡1¡Mk

Mk
< n ¡ 1;

inspection of (8.7) implies that increasing p(¹µ) increases the future value of cooperation, ±
1¡±E¦(µ; µ; p);

faster than the incentive to deviate o®-schedule whenever ± > n¡1
n :
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