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 2 

 

Abstract  

Integration of genome-wide association study (GWAS) signals with expression quantitative trait 

loci (eQTL) studies enables identification of candidate genes. However, evaluating whether 

nearby signals may share causal variants, termed colocalization, is affected by the presence of 

allelic heterogeneity, different variants at the same locus impacting the same phenotype. We 

previously identified eQTLs in subcutaneous adipose tissue from 770 participants in the 

METSIM study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip 

ratio (WHRadjBMI) from the GIANT consortium. Here, we reevaluated evidence of 

colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and 

show that providing COLOC with approximate conditional summary statistics at multi-signal 

GWAS loci can reconcile disagreements in colocalization classification between the two tests. 

Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to 

identify conditionally distinct, or secondary, eQTL signals. We used the two approaches to test 

for colocalization with WHRadjBMI GWAS signals and evaluated the differences in 

colocalization classification between the two tests. Through these analyses, we identified four 

GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14, and 

FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal 

independently enabled additional candidate genes to be identified.  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/h

m
g
/d

d
z
2
6
3
/5

6
1
3
6
9
1
 b

y
 U

n
iv

e
rs

ity
 o

f E
a
s
te

rn
 F

in
la

n
d
 u

s
e
r o

n
 0

8
 N

o
v
e
m

b
e
r 2

0
1
9



 3 

Introduction 

Genome-wide association studies (GWAS) have discovered thousands of loci associated 

with hundreds of complex diseases and related traits (www.ebi.ac.uk/gwas), yet the underlying 

genes that influence disease susceptibility often remain unknown. One approach to identify 

causal genes is to map expression quantitative trait loci (eQTLs) that contribute to variation in 

gene expression level
1-3

, and then assess evidence of colocalization between overlapping GWAS 

and eQTL signals; that is, we test whether the same variant(s) are likely responsible for the 

signals in both studies. Several studies have interrogated available databases/resources for 

eQTLs, and identifying GWAS-colocalized eQTLs has enabled identification and interpretation 

of likely functional genes and potential biological pathways underlying the disease/trait 

associations
4-10

. Previously, we analyzed subcutaneous adipose tissue gene expression using 

microarrays in 770 participants in the METabolic Syndrome In Men (METSIM) study and 

identified novel eQTLs colocalized with 109 GWAS loci for cardiometabolic diseases and traits, 

suggesting new candidate genes mediating the variant associations with cardiometabolic 

disorders
11

.  

Allelic heterogeneity, in which more than one genetic variant at the same locus influences 

the same phenotype, is a common characteristic of complex traits
12

. Fine-mapping at GWAS loci 

routinely identifies many loci with multiple conditionally distinct association signals (defined as 

signals that remain or become significantly associated with the outcome after modeling the effect 

of other nearby signals) that increase the proportion of phenotypic variance explained by genetic 

variation at the locus
13-16

. Fine-mapping at eQTL loci also has identified eQTLs with multiple 

conditionally distinct signals
7; 17; 18

. Identifying multi-signal loci is becoming more common as 

sample sizes of eQTL studies increase
14; 19

, and testing for colocalization at each signal within a 

locus will help identify additional candidate genes that contribute to a trait. For example, two 

eQTL signals were identified in peripheral blood for the gene FAM117B at the total cholesterol 

locus FAM117B.  After accounting for linkage disequilibrium (LD), only the secondary eQTL 

signal was colocalized with the total cholesterol GWAS signal
18

, emphasizing the utility of 

conditional analysis.  

Body fat distribution is a heritable trait related to cardiometabolic risk
20; 21

. One GWAS 

by the Genetic Investigation of Anthropometric Traits (GIANT) consortium reported 68 

conditionally distinct signals at 49 loci (49 primary signals and 19 additional signals after 
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 4 

accounting for primary signals) associated with waist-to-hip ratio adjusted for body mass index 

(WHRadjBMI), a measure of body fat distribution
10

. Based on available eQTL resources, the 

consortium reported that the lead GWAS variants at 21 of these 49 loci were in strong LD (r
2
 > 

0.8) with variants associated with transcript levels in subcutaneous adipose tissue, omental 

adipose tissue, liver, and/or blood
10

. Using our subcutaneous adipose eQTL data from METSIM, 

we reported 15 WHRadjBMI-eQTL colocalized signals, including seven GWAS-colocalized 

eQTLs at six loci that had not been detected by the GIANT consortium
11

. However, both 

analyses were limited to primary eQTL signals.  

Here, we extended our analysis of initial, primary subcutaneous adipose tissue eQTLs in 

the METSIM study to identify secondary eQTL signals. We evaluate colocalization of primary 

and secondary eQTL signals with primary and secondary GWAS signals for WHRadjBMI
10

. We 

identify colocalization by pairwise LD and conditional analysis on the lead GWAS and lead 

eQTL variants
10; 11

, and compare our findings to those obtained using COLOC, a Bayesian test of 

colocalization
22

. The results demonstrate the value of separating signals at eQTL and GWAS loci 

to identify additional candidate cis-regulated genes that may influence disease etiology. 

 

Results 

 In the METSIM microarray study of subcutaneous adipose tissue, we previously 

identified primary cis-eQTLs that showed association between a genetic variant and expression 

level of at least one gene (FDR < 1%, equivalent to p < 2.4×10
-4

 in genome-scale eQTL 

mapping)
11

. Here, we focused on the lead variants for each of 68 conditionally distinct GWAS 

signals identified previously at 49 WHRadjBMI loci
10

. Of these 68 variants, 40 were associated 

with expression level of at least one gene within 1 Mb (FDR < 1%), while 28 were not associated 

with expression level of any gene.  Some variants were associated with expression level of more 

than one gene; the 40 variants were associated with expression level of a total of 71 genes. For 

each of the 71 genes, we also identified the variant that exhibited the strongest association with 

expression level, which we denote as the lead eSNP. We further define a “signal pair” as a lead 

GWAS variant that is associated with a gene’s expression level, and the lead eSNP for that gene. 

Details on the 71 signal pairs are in Supplementary Material, Table S1. 
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 5 

We then used two strategies to determine whether the GWAS signals were colocalized 

with the primary eQTL signals for those genes. First, we assessed colocalization through two 

criteria of LD and conditional analysis
11

, requiring both high pairwise LD (r
2
 > 0.8) between the 

lead GWAS variant and the lead eSNP, as well as attenuation of the eQTL signal in conditional 

analysis (conditional p > 2.4 × 10
-4

, see Methods). Then, we assessed colocalization using the 

Bayesian test COLOC, defining colocalization based on a high posterior probability that a single 

shared variant is responsible for both signals (PP4 > .8)
22

.  

 

Colocalization of primary eQTL signals with WHRadjBMI GWAS signals 

Among the 71 pairs of GWAS and primary eQTL signals, 20 were classified as 

colocalized by LD and conditional analysis (Table 1). Only fifteen of the twenty signal pairs 

were reported in our previous study
11

, due to differences in software to identify eQTLs. 

Similarly, based on LD and subcutaneous adipose tissue eQTL data from other studies
10

, the 

GIANT consortium had described nine of the twenty signal pairs as colocalized. New 

colocalized GWAS-eQTL signals identified here include a GWAS signal near VEGFA 

colocalized with an eQTL for VEGFA, a GWAS signal at HOXC4-HOXC6 colocalized with an 

eQTL for HOXC4, and a GWAS signal near PBRM1 colocalized with eQTLs for both GNL3 and 

NEK4 (Table 1). 

Of the 20 GWAS-eQTL signal pairs classified as colocalized by LD and conditional 

analysis, 15 were also classified as colocalized by COLOC (PP4  0.8), but five were not (PP4: 

0-0.76, Table 1). COLOC did not identify any additional colocalizations that LD and conditional 

analysis did not also classify as colocalizations. Two of the five signals COLOC did not classify 

as colocalized had marginal PP4 values (0.76 at the NKX3 GWAS locus for an STC1 eQTL and 

0.66 for a secondary GWAS signal at the NT5DC locus for a C3orf78 eQTL). Since prior 

probabilities can play an important role in the posterior expectations in COLOC
23

 and our priors 

were conservative, we carried out sensitivity analysis to address whether altering the priors could 

lead to different posterior probabilities. When we increased the prior probability that a shared 

causal variant influences both WHRadjBMI and gene expression level from 1 × 10
-6

 to 5 × 10
-6

, 

the PP4 posterior probabilities increased from 0.66 to 0.91 for C3orf78 and from 0.76 to 0.94 for 

STC1, respectively (Supplementary Material, Table S2). As expected, the 15 colocalized 
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 6 

signals discovered with the conservative priors showed stronger Bayesian evidence of 

colocalization as the priors became less stringent. 

Three remaining putative colocalizations (based on LD and conditional analysis) had low 

PP4 values (PP4<0.8), even with more lenient priors. These colocalizations were found at two 

GWAS loci that each consist of more than one distinct GWAS signal, CCDC92–ZNF664 and 

NFE2L3–SNX10 (Supplementary Material, Table S3)
10; 24

.Since the presence of more than one 

causal signal within a GWAS locus is expected to limit COLOC’s power to detect 

colocalizations
23

, we used GCTA conditional analysis to estimate residual GWAS association 

statistics for each signal, conditioning on the effect of the other nearby signals (see Methods)
24

.  

We then provided COLOC the GCTA residual summary statistics, which should mitigate the 

impact of multiple significant signals in the region. Using GCTA’s approximate conditional 

summary statistics of the GWAS data at these three loci, COLOC identified the same three 

colocalizations with eQTL signals detected by conditional analysis (Table 2). At the CCDC92–

ZNF664 locus, the secondary (rs863750) GWAS signal was colocalized with the primary eQTL 

for ZNF664 (PP4 = 0.98, Table 2, Figure 1). At the NFE2L3–SNX10 locus, the secondary 

(rs1534696) GWAS signal was colocalized with the primary eQTL for both SNX10 (PP4 = 0.99) 

and CBX3 (PP4 = 0.99, Table 2). Overall, COLOC and conditional analysis had high agreement 

in colocalization classification, with some differences that could be due to the assigned priors in 

the Bayesian test and/or thresholds to define colocalization.  

Given that METSIM study participants are all men, we examined whether six 

colocalizations between METSIM eQTL signals and WHRadjBMI GWAS signals that had 

exhibited sex heterogeneity can be detected in other eQTL data from men-only and women-only 

analyses. We compared evidence of colocalization of the six signals with the lead adipose eQTL 

signals from men and women in the deCODE study and the female-only TwinsUK MuTHER 

study
10; 25

.  As shown in Supplementary Material, Table S4, four of the signal pairs colocalized 

with the eQTL in women-only data (the lead eSNPs for all four are in strong LD [r
2
 ≥ 0.91] with 

the lead GWAS variants), showing that the primary eQTL signals for TNFAIP8, ADAMTS9, 

SNX10, and CBX3 are not sex specific. Our results are consistent with existing literature: 

previously, WHRadjBMI signals have shown largely similar evidence of colocalization with 

adipose eQTL signals from men and women, even for GWAS loci with significant evidence of 

sex heterogeneity
10

. 
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 7 

 

Colocalization of secondary eQTL signals with WHRadjBMI GWAS signals 

 We next tested for secondary eQTL signals at the 71 genes that were associated with 

WHRadjBMI GWAS signals. We performed association analyses with gene expression level 

while including the lead eSNP as a covariate in the regression model, and defined the new 

variant that exhibited the strongest association in the conditional analysis as the secondary eSNP. 

We restricted the analysis to secondary signals, rather than testing for further signals (that is, 

tertiary and beyond), due to limited power to detect these smaller effects. 

 After adjusting for the lead eSNP, lead variants for 37 conditionally distinct GWAS 

signals were associated with expression level of 51 genes (FDR < 1%, p < 2.4×10
-4

) 

(Supplementary Material, Table S5). Conditional analysis classified four GWAS signals as 

colocalized with a secondary eQTL signal, but not the primary eQTL signal, for four genes: the 

FAM13A GWAS signal was colocalized with the secondary eQTL for FAM13A (r
2
 = 1.00, 

conditional p-values  0.37), the GRB14–COBLL1 GWAS signal was colocalized with the 

secondary eQTL for GRB14 (r
2
 = 0.93, conditional p-values  0.39), the LEKR1 GWAS signal 

was colocalized with the secondary eQTL for SSR3 (r
2
 = 0.94, conditional p-values  0.43), and 

the GORAB GWAS signal was colocalized with the secondary eQTL for FMO1 (r
2
 = 1.00, 

conditional p-values = 1.00) (Table 3). As with colocalization of primary eQTL signals, COLOC 

did not identify additional signals as colocalized that were not also discovered by LD and 

conditional analysis. COLOC did classify the first three GWAS signals as colocalized with the 

secondary eQTL (PP4  0.92); at the GORAB locus, the PP4 value very narrowly missed the 

colocalization classification threshold (PP4 = 0.79). We next describe these four loci in further 

detail. 

At the FAM13A WHRadjBMI locus, the lead GWAS variant rs9991328 was associated 

with the expression level of FAM13A (p = 1.0×10
-32

 in primary eQTL analysis, Table 3 and 

Figure 2). While COLOC found suggestive evidence for colocalization between the lead GWAS 

variant and the lead eSNP, rs10024506 (PP4 = 0.73), the two variants were in very weak LD (r
2
 

= 0.02). After controlling for the effect of the FAM13A lead eSNP (rs10024506), we identified a 

secondary eQTL signal represented by rs2290782 (eQTL puncond = 1.0×10
-32

, pcond = 2.6×10
-29

 

when adjusting for lead eSNP rs10024506). In contrast to the primary eSNP, the secondary eSNP 

was in strong LD with the lead GWAS variant (r
2
 = 1.00), and both COLOC and conditional 
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 8 

analysis provided strong evidence of colocalization (COLOC PP4 = 1.00, both conditional p-

values >0.37). Our findings suggest that FAM13A might be a functional gene mediating the 

genetic influence of this GWAS locus on body fat distribution. This conclusion is bolstered by 

recent studies that linked the FAM13A and Fam13a genes to adipose morphology and adipose 

tissue function in human and mice
26

. 

At the GRB14–COBLL1 WHRadjBMI locus, the lead GWAS variant rs10195252 was 

associated with the expression level of GRB14 (p = 3.8×10
-6

 in primary eQTL analysis), but 

neither LD or COLOC supported colocalization with the primary eQTL signal rs1474249 (PP4 = 

0.25, LD r
2
 = 0.00) (Table 1, Supplementary Material, Fig. S1). After controlling for the effect 

of the primary eSNP, we observed a secondary eQTL signal for GRB14 at rs1128249 (pcond = 

4.7×10
-6

, Table 3). The secondary eSNP was in high LD with the lead GWAS variant (r
2
 = 

0.93), and both COLOC and conditional analysis provided strong evidence of colocalization 

(COLOC PP4 = 0.92, conditional p-value =0.72). To further explore the relationship between 

GRB14 and WHRadjBMI, we tested for the association between cardiometabolic traits and gene 

expression level in METSIM. While higher expression level of GRB14 was not significantly 

associated with WHRadjBMI (p = 0.07), it was significantly associated with several related 

traits, including higher fasting plasma insulin (p = 5.9×10
-6

), higher HOMA-β (p = 1.1×10
-5

), 

lower Matsuda index (p = 1.4×10
-4

), and higher fasting plasma proinsulin (p = 1.5×10
-4

) 

(Supplementary Material, Table S6). These findings are consistent with previous observations 

of improved glucose homeostasis and enhanced insulin signaling in Grb14-deficient mice
27

, and 

prioritize GRB14 as a candidate gene potentially mediating the WHRadjBMI association at this 

locus.  

The third and fourth examples of WHRadjBMI GWAS signals that colocalized with 

secondary eQTL signals identified different genes than those that colocalized with primary eQTL 

signals. The GWAS signal at LEKR1 (lead variant rs17451107) colocalized with the primary 

eQTL signal for TIPARP (Table 1, Supplementary Material, Fig. S2), as well as the secondary 

eQTL signal for SSR3, located ~500 kb away (PP4 = 0.94, LD r
2
 = 0.98, Table 3, 

Supplementary Material, Fig. S2). Similarly, the GWAS signal at GORAB (lead variant 

rs10919388) colocalized with a primary eQTL at PRRX1 (Table 1, Supplementary Material, 

Fig. S3) and with the secondary eQTL for FMO1 (PP4 = 0.79, LD r
2
 = 1.00, Table 3, 
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 9 

Supplementary Material, Fig. S3). These results suggest that these GWAS loci may be 

mediated through altered expression levels of either or both genes.   

 

Discussion  

We show examples of how colocalization between GWAS and eQTL signals can be 

influenced by the presence of multiple GWAS signals at a locus or multiple eQTL signals for the 

same gene. In our study of 49 GWAS loci for WHRadjBMI, and primary eQTLs from 

subcutaneous adipose tissue from the METSIM study, we describe 20 colocalized signal pairs. 

At two loci with multiple GWAS signals, COLOC initially was unable to identify signal pairs as 

colocalized, despite complete LD between the secondary lead GWAS variant and lead eSNP (r
2 

=1.00). Because the presence of multiple signals violates COLOC’s assumptions and likely 

reduces power to detect a true colocalization, we provided the program with estimated residual 

GWAS association summary statistics, conditioning on the neighboring signal. Using 

approximate conditional summary statistics of the GWAS data, COLOC identified the signal 

pairs as colocalized. In addition, analyses of secondary eQTL signals in the METSIM study 

identified four colocalized eQTLs that were not detected in analyses of primary eQTL signals. At 

loci with multiple eQTL and/or GWAS signals, comparing the signals separately after 

conditional analysis led to more robust evidence of colocalization. Dissecting the allelic 

heterogeneity provided insight into how GWAS loci might influence WHRadjBMI through gene 

expression. 

At least three of the genes detected using secondary eQTL signals, FAM13A, GRB14, and 

FMO1, have other evidence suggesting that they may influence WHRadjBMI. FAM13A 

expression level increases during adipocyte differentiation and is associated with adipocyte 

hyperplasia, consistent with alleles associated with both higher WHRadjBMI and higher 

FAM13A
26

. Grb14-deficient mice showed improved glucose homeostasis and enhanced insulin 

signaling
27

, and Fmo1-deficient mice were leaner and stored fewer triglycerides in white adipose 

tissue than wild-type mice
28

, both consistent with our observations that alleles associated with 

higher expression level are associated with higher WHRadjBMI (Table 3). The secondary eQTL 

signal for FMO1 is colocalized with the same GWAS signal as a primary eQTL signal for 

PRRX1, which has been shown to inhibit adipogenesis
29

, suggesting that the GWAS signal may 

act through both genes to influence WHRadjBMI. The allele associated with higher 
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 10 

WHRadjBMI was associated with lower PRRX1, corresponding to more adipogenesis, and 

higher FMO1, corresponding to more storage of triglyceride in adipose
28,29

. The fourth gene 

detected using a secondary eQTL signal, SSR3, contributes to the formation of a vascular 

network in murine placenta
30

, and may reflect the blood component of adipose tissue; this 

GWAS signal colocalized with a primary eQTL for TIPARP, which positively regulates liver X 

receptor, which can impair adipose expansion
31

. While colocalized GWAS and eQTL signals do 

not provide causal mechanisms, they can suggest candidate genes for further investigation.      

Although the results of COLOC and the LD and conditional analysis approach were 

largely concordant, conditional analysis did identify five GWAS/eQTL pairs as colocalized that 

COLOC initially did not (Table 1). Two GWAS/eQTL variant pairs that were classified as 

colocalized only by conditional analysis had marginal COLOC PP4 probabilities (PP4 0.66 for 

C3orf78 and 0.76 for STC1). However, we expect that the priors we selected for COLOC will be 

conservative; when we increased the prior probability that a variant is causal to both GWAS and 

eQTL to COLOC’s default, PP4 posterior probabilities increased sufficiently for COLOC to also 

classify the pairs as colocalized (PP4 0.95 and 0.97 respectively). The remaining three pairs of 

GWAS/eQTL signals with inconsistent results between COLOC and conditional analysis were 

secondary GWAS signals at multi-signal loci. Since COLOC assumes that the trait is associated 

with at most one causal variant per locus
22; 23

, the presence of multiple association signals could 

lead to missed colocalized signals. After accounting for multiple signals by using GCTA, 

COLOC also classified the three GWAS/eQTL variant pairs as colocalized. While COLOC’s 

conclusions in this study ultimately align with LD and conditional analysis, our findings do 

highlight the care needed to properly implement COLOC such that important colocalizations are 

not missed. Overall, COLOC and conditional analysis had high agreement in colocalization 

classification; differences can be attributed to unaccounted for multiple signals per locus or can 

be reconciled through changes to assigned priors. 

Our ability to colocalize signals might have been affected by the limitations of this study. 

First, the GWAS loci were identified by GIANT based on HapMap-imputed genotypes
10

. If the 

METSIM lead eSNP or its LD proxies imputed from the higher density Haplotype Reference 

Consortium reference panel better represented an underlying signal, we might fail to capture the 

colocalized signals. Compared to the HapMap Project, more recent studies have expanded the 

coverage of human genetic variation
32

 and enhanced the ability of GWAS to fine-map complex 
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 11 

traits
33

. Second, we expect to have missed some colocalized signals due to the statistical power 

of our eQTL analysis. Although the METSIM eQTL study (n=770) had a reasonable sample size 

to identify initial eQTL signals
11

, larger studies will better differentiate between variants in 

moderate LD with each other
34

 and better detect allelic heterogeneity at eQTLs. With the 

increasing availability of eQTL studies, the integration of GWAS data with eQTL results from 

larger studies or meta-analyses of multiple eQTL datasets
35; 36

 will increase the opportunity to 

detect additional GWAS-relevant eQTLs. Third, we were unable to assess potential sexual 

dimorphism on gene expression level and could have missed some colocalizations because all 

samples analyzed in METSIM were from men. While the GIANT data demonstrated that 19 of 

the 49 WHRadjBMI loci had stronger genetic effects in women, 5 of these 19 loci showed 

evidence of colocalized eQTLs in men in METSIM, and none of the remaining loci exhibited 

evidence of cis-eQTLs in the MuTHER eQTL study of women
36

, suggesting that these loci do 

not display strong sex-specific effects on gene expression levels. The credibility of the 

colocalizations reported at these 5 GWAS loci is bolstered by the observation that many variants 

which exhibit sex heterogeneity in WHRadjBMI, including effects observed exclusively in 

women, have a similar effect on body fat percentage in men as well as women
37

. Fourth, the 

effect of an eQTL can vary across tissue and time
35; 38

. Identification of colocalizing signals may 

be dependent on measuring expression at the appropriate time and in a trait-relevant tissue. Fifth, 

signal colocalization is dependent on haplotype structure. Haplotypes can differ by ancestry, 

even between individuals of broad European descent and specifically from Finland, and may 

result in false negative and false positive colocalizations.  

Identifying additional signals in eQTL data has the potential to reveal previously 

undiscovered colocalizations with GWAS loci. However, as we demonstrated, care must be 

taken when either the GWAS or the eQTL study have multiple signals within a locus. 

Conditional analyses appear to separate multi-signal loci well, although additional assessments 

using simulated data are warranted. Other analytic methods, such as COLOC, might fail to detect 

a colocalization when more than one signal is present in the region. However, providing COLOC 

with residual statistics that account for the effects of other signals within a locus might be a 

solution. As eQTL studies grow in size, the ability to detect allelic heterogeneity will increase, 

thus complicating tests of colocalization. Testing for colocalization at every distinct signal, and 
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 12 

selection of colocalization analytic pipelines that are robust to the presence of multiple signals, 

can reveal colocalizations we otherwise would miss. 

 

Materials and Methods 

GIANT consortium data for WHRadjBMI 

We obtained GIANT consortium 2015 GWAS results for WHRadjBMI
10

 from 

www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files. The 

downloaded files included dbSNP name, effect/non-effect alleles (effect allele is the 

WHRadjBMI-increasing allele in the sex-combined analysis), effect allele frequency, beta, 

standard error, p-value, and sample size for each variant. At the 29 loci with no evidence of 

sexual dimorphism, we used GIANT association statistics from the sex-combined meta-analysis. 

For the locus GDF5, which showed a male-specific effect on WHRadjBMI, we used the male-

only GWAS results. At the WHRadjBMI loci (PLXND1, NMU, FAM13A, MAP3K1, HMGA1, 

NKX2-6, SFXN2, MACROD1-VEGFB, CMIP, BCL2, SNX10, LYPLAL1, GRB14-COBLL1, 

PPARG, ADAMTS9, TNFAIP8, VEGFA, and RSPO3) with significantly larger genetic estimated 

effects on trait variation in women than men, we used the association results from the female-

only meta-analysis. We used the results from the European-ancestry meta-analysis for all loci 

except the locus SNX10, for which the all-ancestry meta-analysis data were used because SNX10 

achieved genome-wide significance only in the all-ancestry analysis, with no evidence of 

heterogeneity across ancestries
10

.    

 

METSIM subcutaneous adipose eQTL data 

In Civelek et al. (2017), we described in detail the subcutaneous adipose eQTL data from 

the METabolic Syndrome in Men (METSIM) study
11

. Briefly, METSIM is a population-based 

study of 10,197 men, aged from 45 to 73 years at time of enrollment, randomly selected from the 

population register of Kuopio, Eastern Finland, and examined in 2005 – 2010
39

. The University 

of Kuopio and Kuopio University Hospital ethics committee approved the study, and all study 

participants provided informed consent. We used the Illumina HumanOmniExpress BeadChip 

and the Illumina HumanCoreExome array to obtain genotypes, and imputed based on haplotypes 

from the Haplotype Reference Consortium (HRC version 1) (www.haplotype-reference-

consortium.org/)
40

 by using Minimac3 on the Michigan Imputation Server 
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(imputationserver.sph.umich.edu/index.html). A total of 7.8 million imputed variants passed the 

eQTL mapping inclusion criteria of MAF ≥ 0.01 and imputation quality R2
 > 0.3.  

As previously described, we isolated total RNA from subcutaneous adipose tissue from 

770 METSIM participants, and used a Robust Multi-Array Average (RMA) approach to 

normalize expression data measured using the Affymetrix Human Genome U219 Array for 

43,145 probesets corresponding to 18,250 unique genes
11

. We applied probabilistic estimation of 

expression residuals (PEER)
41

 to account for complex non-genetic factors influencing gene 

expression levels. Based on METSIM adipose eQTL PEER factor observations described 

previously
11

, and to better match the previous results, we adjusted for 35 PEER-inferred 

confounding factors. We then inverse normal transformed the PEER-processed residuals.  

We define a cis-eQTL as an eQTL located within 1 Mb of a gene transcript. Association 

tests for cis-eQTLs were carried out for variant – probeset pairs with a distance between the 

variant and the closer boundary of the gene < 1 Mb using EPACTS-multi, in which EMMAX 

accounted for family relatedness (genome.sph.umich.edu/wiki/EPACTS)
42

. We selected an FDR 

< 0.01 (equivalent p < 2.4 × 10
-4

) as the significance threshold for a cis-eQTL and defined the 

lead eSNP as the variant for which the association with gene expression level resulted in the 

smallest p-value for that gene. 

 

Conditional analyses on GWAS and eQTL data 

For METSIM adipose eQTL data, we carried out conditional analyses by including the 

lead eSNP in the linear regression model then testing for evidence that other variants are 

associated with that gene’s expression level.  

For GIANT WHRadjBMI loci identified as containing more than one association signal 

by the GCTA joint model
10; 24

, we used GCTA to run approximate conditional analyses on the 

GIANT GWAS summary statistics, using LD data from HapMap-imputed METSIM genotype 

data on 10,070 Finnish men
24; 43

. This method estimates residual association statistics after 

conditioning on the lead GWAS variant in the region, allowing for identification and effect size 

estimation of secondary signals. Approximate analysis based on summary statistics was required 

because individual-level data were not available. 

 

Colocalization of GWAS and eQTL signals 
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First, we assessed the relationship between gene expression level and the lead GWAS 

variants associated with WHRadjBMI provided by the GIANT consortium
10

. Next, for GWAS 

variants that were associated with gene expression level (at FDR < 1%, p < 2.4 × 10
-4

), we tested 

whether the GWAS variant was colocalized with the lead eSNP. To do so, we extracted the 

summary statistics for variants located within 1 Mb of the lead GWAS variants from the GIANT 

2015 GWAS results for WHRadjBMI and the METSIM subcutaneous adipose eQTL dataset.  

We first tested for colocalization using a conditional analysis approach similar to that 

implemented in Civelek et al.
11

 Specifically, we calculated pairwise LD r
2
 between the lead 

GWAS and the lead eSNP that had the strongest evidence of association with the corresponding 

probesets. LD estimates were calculated from the HRC-imputed genotypes of the 770 METSIM 

individuals. For variant pairs with LD r
2
 > 0.8, we examined the changes of the eQTL 

association for the lead eSNP when conditioned on the lead GWAS variant . Following Civelek 

et al.
11

, we applied two criteria and defined GWAS-colocalized eQTLs by requiring lead variant 

pairwise r
2
 > 0.8 and change in the eSNP p -value to be no longer significant after conditional 

analysis (p > 2.4 × 10
-4

 corresponding to FDR>.01) for the lead eSNP. Of note, the LD criterion 

helps prevent signals from being erroneously defined as colocalized based on small variation 

around the threshold. 

We compared results to those obtained using a Bayesian test for colocalization, 

COLOC
22; 23

. We applied COLOC using the Approximate Bayes Factor computations (ABF) on 

the intersection of variants available in both the GIANT WHRadjBMI and METSIM eQTL 

datasets. We used default priors that a random variant in the region is associated with either 

GWAS or eQTL individually (prior probabilities = 1 × 10
-4

), and set the prior probability that the 

random variant is causal to both GWAS and eQTL (prior probability = 1 × 10
-6

). We selected a 

more conservative prior probability than COLOC’s default for this last scenario (default prior = 1 

× 10
-5

) because we treat COLOC as a confirmatory test of results discovered by conditional 

analysis. However, in sensitivity analyses we raised the prior probability that a random variant is 

causal to both GWAS and eQTL from 1 × 10
-6

 to 5 × 10
-6

 and 1 × 10
-5

. As recommended by the 

authors of the method, we defined the variants as colocalized when the posterior probability of a 

colocalized signal (PP4) was >0.8. Bayesian colocalization analyses were conducted by using the 

R package “coloc” (cran.r-project.org/web/packages/coloc)
22

. 
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Association of expression level with cardiometabolic traits 

We conducted regression analyses to evaluate the association for gene expression level 

with 16 cardiometabolic traits:  waist-hip ratio, Matsuda index, insulin, BMI, HOMA-, 

proinsulin, triglycerides, total fatty acids, waist circumference, fat-free mass, free fatty acids, 

total cholesterol, glucose, LDL-C, HDL-C, and adiponectin in up to 770 METSIM participants. 

Of the 770 participants, 27 had type 2 diabetes at their baseline visit; diabetics were included in 

all regression analyses. The RMA-normalized expression levels were inverse normal 

transformed after accounting for 35 PEER-inferred factors. All cardiometabolic-related traits 

were adjusted for age and BMI before inverse normal transformation except BMI, which was 

only adjusted for age. Traits were adjusted for BMI to be comparable to recent GWAS analyses 

of cardiometabolic traits
10; 44-46

. 
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Figure 1. Colocalization of the ZNF664 eQTL with the 2
nd

 signal (rs863750) of the two 

independent GWAS signals at CCDC92 – ZNF664. (A) Initial variant association with 

WHRadjBMI in GIANT. Color indicates linkage disequilibrium (r
2
) with GWAS variant of 1st 

signal (rs4765219). (B) Residual association with WHRadjBMI after accounting for the effect of 

the 1
st
 GWAS signal in GIANT; the GWAS variant rs863750 (representing the 2

nd
 signal) was 

plotted as the lead variant. (C) Variant association with ZNF664 expression levels in METSIM. 

The GWAS variant rs863750 representing the secondary signal was plotted as the lead variant. 
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Figure 2. Colocalization of GWAS locus FAM13A with the secondary but not the primary eQTL 

signal for FAM13A gene. (A) Regional variant association with WHRadjBMI in GIANT, lead 

GWAS variant rs9991328; (B) Initial association with expression level of FAM13A, and (C) 

residual eQTL association after accounting for the lead eSNP rs10024506 in METSIM. The 

GWAS variant rs9991328 was plotted as the lead variant for all plots. 
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Table 1. Colocalization of primary adipose eQTL signals with WHRadjBMI GWAS signals 

GWAS 

locus eQTL gene 

GWAS variant association with expression level 

 

Primary eQTL signal 

  GWAS 

variant A1/Aa EAF βb pb 
 

Lead eSNP A1/A2a EAF β c p c 
 

LD 

r2 d 

Conditional 

p-valuee 

COLOC 

(PP4) f 

Evidence of GWAS and lead eQTL signal colocalization in conditional analysis and COLOC (PP4 > 0.8)  

CMIP CMIP rs2925979 T/C 0.32 0.44 1.7E-16 
 

rs2925979 T/C 0.32 0.44 1.7E-16 
 

1.0* 1.00 1.00 

VEGFA VEGFA rs998584 A/C 0.51 -0.29 2.6E-09 
 

rs998584 A/C 0.51 -0.3 2.6E-09 
 

1.0* 1.00 1.00 

HOXC4-6 HOXC4 rs2071449 A/C 0.43 0.54 3.4E-28 
 

rs2071449 A/C 0.43 0.54 3.4E-28 
 

1.0* 1.00 0.99 

JUND JUND rs12608504 A/G 0.35 -0.25 2.2E-06 
 

rs12608504 A/G 0.35 -0.3 2.2E-06 
 

1.0* 1.00 0.96 

WARS2 TBX15 rs2645294 T/C 0.72 0.30 1.1E-07 
 

rs2645294 T/C 0.72 0.30 1.1E-07 
 

1.0* 1.00 0.92 

CPEB4 CPEB4 rs7705502 A/G 0.48 1.2 3.1E-167 
 

rs6861681 A/G 0.48 1.2 3.1E-167 
 

1.00 0.71 0.91 

PBRM1 GNL3 rs13083798 A/G 0.53 0.42 1.1E-16 
 

rs2590838 G/A 0.53 0.42 8.6E-17 
 

1.00 0.47 0.92 

TNFAIP8 TNFAIP8 rs1045241 C/T 0.67 -0.48 6.2E-20  rs7703744 C/G 0.67 -0.5 5.7E-20  1.00 0.43 0.97 

PBRM1 NEK4 rs13083798 A/G 0.53 0.34 1.3E-11 
 

rs2590838 G/A 0.53 0.35 8.4E-12 
 

1.00 0.15 0.91 

ADAMTS9 ADAMTS9 rs2371767 G/C 0.78 -0.49 1.1E-15 
 

rs4616635 C/G 0.78 -0.5 6.3E-16 
 

0.99 0.32 0.96 

MSC EYA1 rs12679556 G/T 0.27 0.46 1.1E-16 
 

rs4738141 G/A 0.27 0.47 3.4E-17 
 

0.98 0.10 0.92 

ZNRF3 ZNRF3 rs2294239 A/G 0.59 -0.36 2.0E-12 
 

rs12321 G/C 0.59 -0.4 3.2E-13 
 

0.98 0.03 0.83 

NT5DC2 NT5DC2 rs12489828 T/G 0.54 -0.50 4.0E-24 
 

rs6778735 C/T 0.55 -0.5 1.8E-24 
 

0.97 0.19 0.86 

GORAB PRRX1 rs10919388 C/A 0.75 -0.45 4.5E-14 
 

rs6427242 G/C 0.74 -0.5 3.7E-14 
 

0.93 0.25 0.93 

LEKR1 TIPARP rs17451107 T/C 0.70 -0.40 5.4E-13 
 

rs10049090 G/A 0.68 -0.4 7.1E-14 
 

0.92 0.05 0.82 

Evidence of GWAS and lead eQTL signal colocalization in conditional analysis but not COLOC (PP4 < 0.8) 

ZNF664  ZNF664 rs863750 T/C 0.55 -0.63 5.5E-37 
 

rs10773049 T/C 0.55 -0.63 5.5E-37 
 

1.00 0.75 0.22 

SNX10 SNX10 rs1534696 C/A 0.46 -1.1 3.4E-150 
 

rs1534696 C/A 0.46 -1.1 3.4E-150 
 

1.00 1.00 0.00 

SNX10 CBX3 rs1534696 C/A 0.46 -0.39 1.1E-13 
 

rs1534696 C/A 0.46 -0.39 1.1E-13 
 

1.00 1.00 0.00 

NT5DC2 C3orf78 rs12489828 T/G 0.54 -0.44 4.4E-19 
 

rs9853056 C/T 0.55 -0.47 1.2E-20 
 

0.96 0.003 0.66 

NKX3 STC1 rs7830933 A/G 0.78 0.35 1.7E-08   rs6983481 G/T 0.80 0.38 3.1E-09   0.94 0.08 0.76 

 
GWAS and primary eQTL signals that show significant evidence of colocalization between pairs based on conditional analysis (LD r

2
 > 0.8 between the lead GWAS 

variant, conditional p > 2.4×10
-4

 and strength of evidence of colocalization from COLOC (PP4). 

 
a
 A1/A2: the effect/non-effect alleles; the allele associated with increasing WHRadjBMI level was labeled as the effect allele (A1) 
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b
 The effect size and p-value of the association between the lead GWAS variant and the gene expression level 

c
 The effect size and p-value of the association between the lead eSNP and the gene expression level 

d
 The pairwise LD r

2
 between the lead GWAS variant and the lead eSNP, calculated from the 770 METSIM individuals included in eQTL analysis 

e 
 The conditional p-value of the association for the lead eSNP after accounting for the lead GWAS variant 

f
 The posterior probabilities computed from COLOC; PP4 > 0.8 suggests that one shared variant is responsible for the GWAS and eQTL signals 

* 
The lead GWAS variant and the lead eSNP are the same variant 
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Table 2. Adipose eQTL colocalization at loci with multiple GWAS signals 
 

GWAS 

locus 

eQTL 

gene 

GWAS variant association with expression level   Primary eQTL signal   

  

COLOC (PP4) 

2nd signal lead 

GWAS variant 

A1/ 

A2a EAF βb pb   Lead eSNP 

A1/ 

A2a EAF βc pc   

 

 

LD 

r2 d 

Conditional 

p-valuee 

Original 

GWAS 

summary 

statisticsf 

GCTA 

residual 

summary 

statisticsg 

CCDC92

-ZNF664 
ZNF664 rs863750 T/C 0.55 -0.63 5.5E-37  rs10773049 T/C 0.55 -0.63 5.5E-37  1.00 0.75 0.22 0.98 

NFE2L3-

SNX10 
SNX10 rs1534696 C/A 0.46 -1.12 3.4E-150  rs1534696 C/A 0.46 -1.12 3.4E-150  1.0* 1.00 0.00 0.99 

NFE2L3-

SNX10 
CBX3 rs1534696 C/A 0.46 -1.12 3.4E-150  rs1534696 C/A 0.46 -0.39 1.1E-13  1.0* 1.00 0.00 0.99 

 

Discrepancies in colocalization classification between COLOC and conditional analysis are resolved at loci with multiple GWAS signals when COLOC is provided residual 

summary statistics to account for the effect of nearby signals 

 
a
 A1/A2: the effect/non-effect alleles; the allele associated with increasing WHRadjBMI level was used as the effect allele (A1) 

b
 The effect size and p-value of the association between the GWAS variant and the gene expression level 

c
 The effect size and p-value of the association between the lead eSNP and the gene expression level 

d
 The pairwise LD r

2
 between the lead GWAS variant and the lead eSNP, which was calculated from the 770 METSIM individuals included in eQTL analysis 

e
 The conditional p-value of the association between the lead GWAS variant and gene expression level after accounting for the lead eSNP 

e 
 The conditional p-value of the association for the lead eSNP after accounting for the lead GWAS variant 

f
 The posterior probabilities computed from COLOC, using the original GWAS summary statistics from GIANT; PP4 > 0.8 suggests that one shared variant is responsible for 

the GWAS and eQTL signals 
g
 The posterior probabilities computed from COLOC using the GCTA residual approximate conditional summary statistics of GIANT data; PP4 > 0.8 suggests that one shared 

variant is responsible for the GWAS and eQTL signals 
* 

The lead GWAS variant and the lead eSNP are the same variant 
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Table 3. Colocalization of secondary adipose eQTLs with WHRadjBMI GWAS loci  

 

 

 

GWAS 

locus 

 

 

 

eQTL 

gene 

GWAS variant association with expression 

level 
  Primary and secondary eQTL signals   

 

  

GWAS 

variant 

A1/ 

A2a 
EAF βb pb   Lead eSNP 

A1/ 

A2a 
EAF βc pc β cond

d p cond
d   

LD 

r2 e 

Conditional 

p-valuef  

COLOC 

(PP4)g 

FAM13A FAM13A rs9991328 T/C 0.53 0.57 1.00E-32 

 

rs10024506 

(1st) 

G/C 0.64 0.62 3.1E-34 ---- ----  0.02 3.2E-31 0.73 

 

rs2290782 

(2nd) 

C/T 0.53 0.57 1.0E-32 0.50 2.6E-29  1.00 0.37 0.95 

GRB14 - 

COBLL1 
GRB14 rs10195252 T/C 0.68 0.26 3.80E-06 

 

rs1474249 

(1st) 

C/T 0.73 0.31 4.1E-08 ---- ----  0.00 1.4E-07 0.25 

 

rs1128249 

(2nd) 

G/T 0.70 0.26 5.5E-06 0.25 4.7E-06  0.93 0.72 0.92 

LEKR1 SSR3 rs17451107 T/C 0.70 
-

0.36 
3.90E-11 

 

rs10936027 

(1st) 

G/T 0.14 -0.65 3.4E-18 ---- ----  0.02 5.2E-16 0 

 

rs900400 

(2nd) 

T/C 0.30 -0.37 2.9E-11 -0.31 4.2E-09  0.98 0.43 0.94 

GORAB FMO1 rs10919388 C/A 0.75 0.29 1.40E-06 

 

rs16864302 

(1st) 

A/G 0.88 0.50 4.9E-11 ---- ----  0.02 1.3E-09 0 

 

rs4471313 

(2nd) 

T/G 0.75 0.29 1.4E-06 0.24 4.0E-05   1.00 1 0.79 

 
Additional eQTL associations for genes identified by secondary eQTL analysis of GIANT WHRadjBMI loci. GWAS and secondary eQTL signals that show 

significant evidence of colocalization.  
a
 A1/A2: the effect/non-effect alleles; the allele associated with increasing WHRadjBMI level was used as the effect allele (A1) 

b
 The effect size and p-value of the association between the GWAS variant and the gene expression level 

c
 The effect size and p-value of the association between the lead eSNP (1

st
 or 2

nd
 eQTL signal) and the gene expression level 

d
 The effect size and p-value of the residual association between the secondary eQTL signal and gene expression level when conditional on the primary eQTL signal 

(lead eSNP) 
e
 The pairwise LD r

2
 between the lead GWAS variant and the eSNP representing the 1

st
 or 2

nd
 eQTL signal, which was calculated from the 770 METSIM individuals 

included in eQTL analysis 
f
 The conditional p-value of the association for the lead eSNP after accounting for the lead GWAS variant 

g
 The posterior probabilities computed from COLOC; PP4 > 0.8 suggests that one shared variant is responsible for the GWAS and eQTL signals 
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