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Abstract. When viewing images on a monitor, we are adapted to
the lighting conditions of our viewing environment as well as the
monitor itself, which can be very different from the lighting conditions
in which the images were taken. As a result, our perception of these
photographs depends directly on the environment in which they are
displayed. For high-dynamic-range images, the disconnect in the
perception of scene and viewing environments is potentially much
larger than in conventional film and photography. To prepare an im-
age for display, luminance compression alone is therefore not suffi-
cient. We propose to augment current tone reproduction operators
with the application of color appearance models as an independent
preprocessing step to preserve chromatic appearance across scene
and display environments. The method is independent of any spe-
cific tone reproduction operator and color appearance model (CAM)
so that for each application the most suitable tone reproduction op-
erator and CAM can be selected. © 2006 SPIE and

IS&T. �DOI: 10.1117/1.2238891�

1 Introduction

The field of high-dynamic-range imaging is rapidly matur-
ing with improved image capture techniques, graphics al-
gorithms’ ability to produce arbitrarily large dynamic
ranges, and emerging standards in high-dynamic-range file
formats.

1,2,30
However, current monitor technology imposes

severe constraints on the range of luminance values that
can be displayed. Although high-dynamic-range �HDR�
monitors

4,5
will be more widely available in the near future,

currently they are still costly. Therefore, to prepare HDR
images for display on conventional display devices, we
must bring the range of values to a displayable range, a
process called tone reproduction or tone mapping.

As most offices and homes remain equipped with low-
dynamic-range display devices, there is an increasing ne-
cessity to prepare HDR images for display, for instance, in
archival applications.

6
Tone reproduction algorithms are

addressing this requirement by compressing the image to fit
to the range of the display device. However, an inherent

problem with dynamic range reduction is that the discon-
nect between the illumination conditions of the photo-
graphed environment and the illumination conditions of the
viewing environment is not accounted for. Ignoring this
disconnect may render tone-mapped images unnatural and
imprecise in terms of their color appearance.

Chromatic adaptation is a mechanism of the human vi-
sual system that enables us to adapt to the dominant colors
of illumination.

7
For example, if we are in an environment

that has blue illumination, such as sky light at noon, we
adapt to this blue color. Therefore, when observing an out-
doors image under fluorescent office lighting, the image
will have a bluish appearance unless chromatic adaptation
effects are considered. However, most chromatic adaptation
models account only for the changes in the color of adapt-
ing illuminants �i.e., sun and fluorescent light�, ignoring
other factors that affect adaptation such as the absolute lu-
minance level of the environment, the level of ambient il-
lumination, and the presence of light sources.

Color appearance models �CAMs� describe the environ-
ment with a small number of key parameters to predict how
colors will appear to the observer. These models consist of
two steps. The first step is a chromatic adaptation trans-
form, which accounts for the state of chromatic adaption of
the observer in a given environment. The second step pre-
dicts relative and absolute color appearance attributes such
as lightness, chroma, hue, brightness, and colorfulness.

7

Reproducing colors for a particular viewing environment
can be achieved by running the full-color appearance model
in reverse, while inserting parameters that describe the
viewing environment. Color appearance models are signifi-
cant improvements over chromatic adaptation models,
since they incorporate a more complete description of the
environment, and thus enable a more precise reproduction
of color.

In this paper, we show how to adapt color appearance
models such that they may act as preprocessors to any cur-
rent tone reproduction operator. The only constraint on tone
reproduction operators is that the ratios between the three
color channels must be preserved. Many current tone repro-
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duction operators satisfy this constraint.
8–12

The color ap-
pearance model then only adjusts the image’s chromatic
channels, while the subsequent tone reproduction operator
will compress the luminance channel. We believe that this
method is attractive because it enables us to mix-and-match
CAMs with tone reproduction operators to suit any specific
task.

Figure 1 depicts a sample result, with and without ap-
pearance modeling prior to tone mapping. The top image is
created without using a CAM and it has a blue color cast.
The blue color cast of the bottom image is correctly re-
moved by applying the CIECAM02 model. The bottom im-
age is prepared to be viewed on an sRGB monitor under
fluorescent lighting.

In the following section, we give an overview of color
appearance phenomena, and argue its importance to HDR
imaging. Section 3, introduces CAMs and discusses their
applicability to our approach. Section 4 provides a brief
overview of tone reproduction techniques. We show how to
prepare HDR data to make it compliant with color appear-
ance modeling in Sec. 5, and the application of the models
in Sec. 6. Section 7 shows results. We conclude our paper
with an overall discussion in Sec. 8.

2 Color Appearance Phenomena

The human visual system �HVS� is a highly sensitive and
adaptable device for registering and interpreting images.
However, it does not operate as a linear light meter, but due
to various chemical, electrical, and physical principles it
has evolved to employ multiple adaptation mechanisms.

13

For a linear-light-measuring device one may expect that
a change in illumination intensity would yield a similar
change in the output of the device. To some extent this is
true for the HVS also, especially if this change is small.
However, for large differences in illumination, the HVS
will also register chromatic changes—even if they are not
present in the input. Several color appearance phenomena
are known to exist, such as simultaneous contrast; crispen-
ing; spreading; the Bezold-Brücke hue shift; and the Abney,
Hunt, Helson-Judd, Stevens, Helmholtz-Kohlrausch, and
Bartleson-Breneman effects. An exhaustive description of
these phenomena is beyond the scope of this paper, but we
note that an excellent overview is given by Fairchild.

7
In

the remainder of this section, we highlight some of them to
illustrate the nature of color appearance. We focus on ef-
fects that are modeled by current CAMs, and are therefore
relevant to our work.

Color appearance phenomena are caused by the specific
ways in which the human visual system operates. For in-
stance, the L, M, and S cones in the retina exhibit a peak
response roughly to the red, green, and blue wavelengths of
spectrum. These responses are converted to opponent sig-
nals by the neurons of the retina before being transmitted to
the brain. According to the opponent colors theory pro-
posed by Hering,

14
light-dark, red-green, and blue-yellow

are opponent pairs. Conversion of colors into their oppo-
nent pairs induces significant perceptual effects in our vi-
sual system.

7

The luminance of the environment surrounding us has
significant impact on the appearance of colors. For in-
stance, a photograph will appear significantly more colorful
and vivid if it is viewed under bright sunlight compared to
viewing the same photograph indoors. This effect, called
the Hunt effect, shows that colorfulness increases with
adapting luminance.

15

The brightness of colors also affects their saturation and
colorfulness. That is, light and dark colors appear less satu-
rated than average colors with the same chromaticity.

16

This can be explained through the nonlinear response of
our photoreceptors to linear changes in light reaching the
retina. In particular, a hyperbolic function is often used to
model photoreceptor output.

17
As this function is S-shaped,

more compression to the signal is applied to small and large
intensities than to intermediate intensities. Moreover, this
hyperbolic function is independently applicable to the L,
M, and S cones. For a series of colors that differ only in
luminance but have the same chromatic content, the com-
bined result of the three different cone types will yield a
less-saturated impression of this color for high and low
luminance levels than for intermediate luminance levels.
This effect will be observable for HDR images where the
luminance levels of the objects in the captured scene can be
arbitrarily high.

With HDR imaging it is possible to photograph very
bright or very dim objects without causing over- or under-
exposed regions in the final HDR image. Therefore, the

Fig. 1 Bottom image is preprocessed using our approach, and is
optimized for viewing under fluorescent light on an sRGB monitor.
Both images had their luminance range reduced with identical pa-
rameters using photographic tone-mapping �color online only�.12
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difference in illumination of the original scene and the
viewing environment can potentially be much larger than in
conventional digital imaging. Hence, the already mentioned
perceptual effects play a more significant role. We, there-
fore, argue that color appearance should be accounted for in
applications that require the display of HDR data on low-
dynamic-range �LDR� devices.

3 Color Appearance Models

To predict the appearance of a colored patch, color appear-
ance models normally require the tristimulus values de-
scribing the color of the patch as well as parameters to
characterize the environment. The latter may, for instance,
consist of the relative background luminance, i.e., the ratio
of the background luminance to the luminance of the white
point, the adapting field luminance, the white point of the
scene, the degree of adaptation, and the ambient illumina-
tion of the surround.

These inputs are then used to compute appearance cor-
relates, as listed in Table 1. These correlates characterize
the perception of the tristimulus values. Hence CAMs pro-
vide a quantitative description of how a given color will
appear in its environment. If the environment is altered, the
same tristimulus values may thus be perceived differently.

CAMs can be grouped into two classes, namely, those
that model spatial interactions between neighboring patches
or pixels and those that do not. The former category is
arguably capable of modeling more complex phenomena of
color vision. Two examples of spatial color appearance
models are the multiscale observer model

18
and iCAM

19
,

which also perform dynamic range reduction. Due to their
spatially variant nature, these models may show haloing
and ringing artifacts,

20
a feature also observed in spatially

variant tone reproduction operators.
21

In this paper, we do
not prefer the use of spatially variant color appearance

models because their interplay with spatially variant tone
reproduction operators is not well understood and consid-
ered an issue for further research.

The class of nonspatial CAMs includes Hunt’s model,
16

RLAB
7
, CIECAM97s

22
, ZLAB

23
, and CIECAM02

24
. Many

of these models are logical extensions and further develop-
ments of each other with CIECAM02 being the most recent
incarnation. This model is relatively simple, invertible, and
nonspatial and is considered

3
an improvement over the

CIECAM97 family of CAMs. For these reasons, we
adopted the CIECAM02 model for our experimentations,
although we also show results obtained with other CAMs.
A summary of this model is provided in the appendix. For
a more detailed description, and implementation related is-
sues we refer to Moroney et al.,

24
Li et al.,

3
Fairchild,

7
and

Hunt.
16

4 Color in Tone Reproduction

Many tone reproduction operators extract and compress lu-
minance values only and leave chromaticities unaffected,
which is achieved by keeping the color ratios between
color channels constant.

25

Preserving chromatic content under luminance compres-
sion can be achieved in several different ways. For in-
stance, the input may be converted to a color space that
features a separate luminance channel. Range compression
may then be applied to this channel only while leaving the
chromatic channels unaffected. For instance the Yxy
color space is suitable and was used by Reinhard et al.

12
A

second approach
26

is to compute luminance L for each
pixel as a linear combination of the red, green, and blue
channels: L=0.2126R+0.7152G+0.0722B. The resulting L
channel is then compressed with some tone reproduction
operator, yielding compressed luminances L�. From these
data, color image can be reconstructed by preserving the
ratio between the red, green, and blue channels �shown here
for the red channel�:

R� =
L�R

L
.

Further, the amount of saturation may be controlled in an
ad hoc manner by including

27
an exponent s:

R� = L��R

L
�s

.

This exponent should be set to 1 if the tone reproduction
operator is to be used in combination with a CAM.

5 Image Preparation

To successfully separate color appearance issues from lu-
minance compression, we propose to adjust for color ap-
pearance prior to tone reproduction. First, the environment
parameters are estimated, then the CAM of choice is ap-
plied, and then the inverse model is invoked with viewing
environment parameters. Because these steps are likely to
alter the dynamic range of the image, we reset the lumi-
nance values prior to tone reproduction. An outline of our
algorithm is given in Fig. 2. The implications of the lumi-
nance reset are discussed in Sec. 8. The result is an image

Table 1 Overview of appearance correlates.

Brightness �Q�
The perceived quantity of light

emanating from a stimulus.

Lightness �J� The brightness of a stimulus relative to
the brightness of a stimulus that

appears white under similar
viewing situations.

Colorfulness �M� The perceived quantity of hue content
�difference from gray� in a stimulus.

Colorfulness increases with luminance.

Chroma �C� The colorfulness of a stimulus
relative to the brightness of a stimulus

that appears white under similar
viewing conditions.

Saturation �s� The colorfulness of a stimulus relative
to its own brightness.

Hue �h and e� The degree to which a stimulus can be
described as similar to or different
from stimuli that are described as

red, green, blue, and yellow.
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with chromatic content commensurate with the display en-
vironment, but with a retained high dynamic range.

CAMs tend to be calibrated in SI units. In particular, the
input must be specified in candela per square meter
�cd/m2�. If a specific image is given in the right units, then

any of the models can be directly applied to this image.
However, in most practical cases, the image is given in

arbitrary units. It is therefore necessary to transform the
input from arbitrary units to SI units. In the following, we
discuss such transforms for both calibrated and uncali-
brated images.

5.1 Calibrated Input Data

A calibrated HDR image can be created from a sequence of
exposures taken with a digital camera by changing the ex-
posure time at each image. In this work, we used raw ex-
posures because they are linear and they are not modified
by the white balancing of the camera; both of which are
desirable properties to obtain an accurate calibration. They
are stored in a camera specific color space, which can be
converted to XYZ tristimulus space by using the metadata
stored with the images.

28
From such a sequence an HDR

image can be created by dividing each image with its ex-
posure time and summing up all images afterward.

29,30

Although these operations result in a linear HDR image,
its values are still in relative units. The luminance of a
uniform patch in the scene must be known to find the scale
factor that will map the HDR image to absolute units. The
scale factor can be calculated by placing a calibrated gray
card in the scene, measuring its luminance with a photom-
eter, and taking the ratio of the measured luminance with
the luminance recorded in the image. By multiplying all
pixels with this scale factor, the HDR image can be con-
verted to absolute units, suitable to serve as input to CAMs.

By measuring the luminance and the chromaticity of the
gray card, one can also acquire the environment parameters
such as the adapting luminance and the reference white.
These parameters are also used in the forward color appear-
ance model.

5.2 Uncalibrated Input Data

Estimation of absolute luminances of an uncalibrated HDR
image is composed of two steps. First the image is con-
verted to XYZ tristimulus space, and second a scaling factor
is found such that when the image pixels are multiplied
with it, they approximate real world luminances. The order-
ing of these steps is not important since HDR images are
linear.* Obviously estimating absolute luminances of an
uncalibrated input data is an underconstrained problem that
cannot be solved without additional information or assump-
tions. However, in many cases it is possible to infer an
approximate range of values in candelas per square meter.

We first convert the linear RGB values of the HDR im-
age to XYZ color space using the sRGB conversion matrix.
Our motivation is that most modern digital cameras use
sRGB output standard. The forward and inverse conversion
matrices are:

MsRGB→XYZ = �
0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505
� ,

MXYZ→sRGB = �
3.2406 − 1.5372 − 0.4986

− 0.9689 1.8758 0.0415

0.0557 − 0.2040 1.0570
� .

If the original color space of the HDR image was not
sRGB, this conversion could introduce bias. However, as
long as the original color space of the image was in RGB
space, this conversion approximates the relative tristimulus
values.

For many images, the shape of the histogram provides a
clue as to its absolute luminance values. We thus estimate
the absolute luminance values of an image by computing its
key. The key of an image indicates whether the scene was
subjectively light, normal, or dark. Since brightness can be
crudely modeled with log-luminance

8,12,31
we view the nor-

malized log-average luminance of an image to be a useful
approximation of its key:

log Lav =
1

N
�
x,y

log�� + L�x,y�	 ,

k =
log Lav − log Lmin

log Lmax − log Lmin

.

Here, N is the number of pixels in the image, L is the
relative luminance for pixel �x ,y�, and � is a small offset to

avoid the singularity occurring for black pixels. In the sec-
ond equation, the log-average luminance is normalized by
the dynamic range of the image to compute its key, and
Lmin and Lmax are the minimum and maximum relative lu-
minances of the image. They are computed after excluding
a fraction of lightest and darkest pixels from consideration
to make the method robust against outliers. In most cases,
excluding 5% of the total number pixels both from the dark
and light ends is sufficient.

In many cases, the key k correlates well with the overall
dark or light appearance of an image. Hence, we can use k
to estimate the overall luminance and compute a scale fac-
tor f by which we multiply each pixel. Because k is com-
puted in the log domain, a reasonable approach is to lin-
early relate f to k:

f = 104k/Lmax.
*A properly created HDR image is linear, since the nonlinearities of the camera are
inverted during HDR recovery using the inverse of the camera response curve.

Fig. 2 High-level visualization depicting the main steps of our
algorithm.
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The constant 104 cd/m2 is based on typical maximum
luminance values found for different types of scenes.

32
By

multiplying the input with f , we approximate the real-world
luminance values of an uncalibrated input image.

6 Algorithm

In this section, we show the application of the CIECAM02
model. Since the input parameters of RLAB and
CIECAM97s are slightly different, the other models may
be used with minor modifications.

The CIECAM02 model requires five parameters, shown
in Table 2 �see also the appendix�. These parameters can be
given as user parameters, or may be estimated from the
data. The background is the immediate surrounding area of
the stimulus. In an image, this corresponds to a neighbor-
hood around each pixel. The adapting field is considered to
be outside of the background in the visual field. The sur-
round is defined to be the entire area outside of the back-
ground. In practice, it can be considered to be the entire
room or the environment in which an image �or scene� is
observed.

We set the adapting field luminance to the 20% of the
luminance of the white point.

7,16,33
This assumes

7
that

scenes integrate to a gray with a reflectance factor of 0.2.
Yb is the ratio of the background luminance to the lumi-
nance of the white point. For a stimulus surrounded by a
uniform background it may be possible to measure Yb di-
rectly. However, in imaging applications the background of
every pixel is composed of surrounding pixels, which are
likely to change from pixel to pixel. This might require
recalculation of the background for every pixel and
is deemed to be impractical.

7
Therefore, in imaging appli-

cations the relative background luminance is typically set to
20% of the luminance of the white point by making a gray
world assumption.

7,33

The relative tristimulus values of the white point may be
computed in various ways. For our calibrated images we
use the XYZ values measured on the gray card. For many
other images we have found that the gray-world assumption
holds, which means, any systematic deviation from neutral
gray is due to the color of the illuminant. Hence, the im-
age’s white point may be estimated from the average X, Y,
and Z values. However, for some images the dominant hue

shift is not due to the illuminant, in which case the gray
world assumption is violated. In such cases, we use Table 3
to estimate an appropriate white point.

For an outside scene or a normally lit office using
an sRGB specified monitor the surround can be set to
average.

33
However if the lights of the room are turned off

so that the illumination is only due to the monitor, the sur-
round can be set to dim or dark.

Based on these settings, the CIECAM02 model specifies
a set of parameters, including F, the factor for degree of a
adaptation �see the appendix�. The degree of adaptation D
is then determined as a function of both F and LA. The
degree of adaptation is crucial because the adaptation level
changes with the luminance level of the surround. Also the
degree of chromatic adaptation is less for self-emitting ob-
jects. To account for this, we set D to 0 for the lightest
pixels and smoothly interpolate it for darker pixels. This
improves the appearance of light sources, which are usually
the lightest pixels in an HDR image. Note that varying D
per pixel does not create a spatial model because D is ad-
justed according to each pixel’s luminance value, not ac-
cording to each pixel’s neighborhood.

We base our estimate for light source detection �and for
objects with high luminance� on the key k of the image. We
compute a threshold LT, above which pixels will be as-
sumed as possible light sources:

Table 2 The input parameters of the CIECAM02 model.

XYZ Absolute tristimulus values
of the stimulus

XwYwZw Relative tristimulus values
of the white point

LA Adapting field luminance in
candelas per square meter

Yb Relative luminance of the background

Surround Relative luminance level of the
surround specified as dim, dark,

or average

Table 3 Relative white points �XYZ� for common scene types and a
selection of CIE illuminants and their associated correlated color
temperatures T; the values in this table are derived from data in Ref.
34.

Scene T �in K� Xw Yw Zw

candle flame 1850 132.614 100.000 11.511

sunrise/sunset 2000 127.432 100.000 14.517

100 W incandescent 2865 109.840 100.000 35.558

tungsten �TV/film� 3200 105.975 100.000 45.347

summer sunlight at noon 5400 97.584 100.000 94.252

summer sun � sky 6504 95.047 100.000 108.883

CIE A
�incandescent�

2854 109.840 100.000 35.558

CIE B
�direct sunlight�

4874 109.215 100.000 75.199

CIE C
�indirect sunlight�

6774 98.071 100.000 118.185

CIE D50
�noon skylight�

5000 96.396 100.000 82.414

CIE D65
�average daylight�

6504 95.047 100.000 108.883

CIE E
�normalized reference�

5500 100.000 100.000 100.000

CIE F2
�office fluorescent�

4150 99.187 100.000 67.395
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LT = Lmin + �0.6 + 0.4�1 − k�	�Lmax − Lmin� .

This approximation serves to detect the objects whose ap-
pearance will be preserved independent of the chromatic
adaptation of the observer. It will typically detect light
sources, as well as strong reflections and other image areas
that are likely to drive an observer’s adaptation.

We use Hermite interpolation to smoothly vary D be-
tween 10% below and 10% above this threshold, which
corresponds to a range of luminance values between
LT±0.1�Lmax−Lmin�. This range is clamped if either bound-

ary exceeds the luminance range of the image:

LT0
= max �Lmin,LT − 0.1�Lmax − Lmin�	 ,

LT1
= min �Lmax,LT + 0.1�Lmax − Lmin�	 .

If the luminance of a pixel is below LT0
we do not

change the D value computed by the color appearance
model. If it is greater than LT1

we set D to 0 for that pixel.

For a pixel with luminance L, where LT0
�L�LT1

, the de-

gree of adaptation D is then computed with the aid of in-
terpolation value s:

s =
L − LT + 0.1�Lmax − Lmin�

LT1
− LT0

,

D� = D�1 − 3s2 + 2s3� .

Note that by using Hermite interpolation, as shown in Fig.
3, we gradually drop the degree of adaptation from D to 0.
Since we detect light sources according to their luminance,
some low-intensity sources will not be detected as light
sources. This is appropriate treatment, as these sources do
not affect human visual adaptation.

The effect of varying D� is demonstrated in Fig. 4. The
left image is created without applying a CAM and therefore
shows a yellow color cast in the background. The middle
image is obtained by using the CIECAM02 model with
chromatic adaptation applied to all pixels. Note that the
color cast in the background is removed but the appearance
of the light source is also changed. Finally, the interpolation

scheme is shown in the right image, which depicts an ap-
propriately corrected background as well as a properly dis-
counted light source.

With the XYZ tristimulus values and all environment
parameters now available, appearance correlates are com-
puted using the CIECAM02 model. These are then trans-
formed back into XYZ tristimulus space by applying the
inverse CIECAM02 model using viewing environment’s
parameters. In our experiments, we used an sRGB monitor
in a room lit by fluorescent light to view the images. In this
type of mixed chromatic adaptation environment �i.e., light
of the monitor, and the fluorescent light�, adaptation shifts
occur from the monitor’s white to the color of the ambient
light. In a series of experiments performed by Brainard et
al.,

35
Choh et al.,

36
and Katoh et al.,

37
the amount of this

shift was found to be as small as 10 to 20% if the observ-
ers’ eyes were fixated at the monitor, and as large as 40 to
50% if the observers were allowed to let their eyes wander
off the monitor. However, even in the latter case when the
eye focuses back on the monitor, it quickly restores its
adaption back to the monitor’s white point.

37
For this

reason, we primarily used the white point of an sRGB
monitor as the reference white of the inverse model, unless
otherwise indicated.

We set the adapting luminance LA=16 cd/m−2, since the
images are prepared to be viewed in a normally lit office.

7

We set Yb to 20 since the background of any pixel is
not uniform.

33
The surround parameter is set to average

since the ratio of the ambient light to the monitor white is
greater than 20% in a normally lit office. However, in cer-
tain conditions such as viewing a monitor at home, the
surround may be considered as dim.

7

The inverse model yields XYZ tristimulus values that
could in principle be converted back to RGB values. Note,
however, that one of the steps in the forward CIECAM02
model involves range compression using a hyperbolic �sig-
moidal� curve. With a different adapting field luminance LA

the range expansion in the reverse model is incomplete.
Hence the dynamic range on output is smaller than on in-
put. Since we aim to separate range compression from color
appearance, we therefore convert the output of the inverse
model to Yxy color space, and reset the Y values for each
pixel to the Y values read on input. This approach affects
only the luminance of each pixel but retains the chromatici-
ties computed by the color appearance model. If luminance
values are not reset to their original values after chromatic
correction, reduction of the dynamic range will be shared
between both the color appearance model and the tone re-

Fig. 4 Discounting the light source �c� correctly preserves its yellow
appearance. Ignoring light source detection �b� overcorrects com-
pared with the uncorrected image �a� �color online only�.

Fig. 3 The degree of adaptation as the value of s changes.
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production operator, potentially causing uncontrollable re-
sults. The luminance reset is the final step before tone re-
production can be applied.

In our algorithm, we ensure that chromatic effects and
range compression are cleanly separated into different al-
gorithms. The CIECAM02 model is now responsible for
applying chromatic adaptation and color appearance related
effects, whereas any subsequent tone reproduction operator
will be responsible for reducing the dynamic range of the
image and preserve all luminance-related appearance
effects.

7 Results

We performed our experiments on one calibrated HDR im-
age and several uncalibrated HDR images. The calibrated
image was created from a sequence of raw exposures cap-
tured by a Nikon Coolpix 5400 camera �Fig. 5�. An 18%
gray card and a SpectraScan PR650 spectrometer were used
to measure the adapting luminance, white point, and the
color temperature of the photographed scene �Table 4�.

Our results for the calibrated HDR image are shown in
Fig. 6. The image in the upper-left corner is tone-mapped
by the photographic tone mapping operator

12
without appli-

cation of our algorithm. We applied our algorithm to the
other three images with the same scene but different display
parameters prior to tone mapping. The scene and display
parameters are listed in Tables 4 and 5, respectively. For the
image in the upper-right corner we set the display white
point to D65 and the surround to average, thus assuming an
sRGB monitor under neutral lighting. The display white for
the image in the lower-left corner was set to a weighted
average of D65 �60%� and fluorescent light F2 �40%� to
represent a mixed state of adaptation between the monitor
white and fluorescent office lighting. The surround was set
to average. The lower-right image is similar, except now
incandescent illumination is assumed. Therefore its white
point was set to 60% D65 and 40% incandescent A. The
surround parameter was set to average.

In comparison the blue color cast in the upper-left image
does not exist in the other three images. Also as the display
environment changes from neutral to fluorescent and incan-
descent, the colors in the image shift toward the color of the
white point. With a simple white balance applied on the

Fig. 5 Separate exposures used to create the calibrated HDR im-
age. Each exposure is 1 f-stop apart, ranging from 1/4000 to 1/8 s.
Although these images are converted to sRGB space for display
purposes, their raw originals are used to recover the HDR image.

Table 4 Environment parameters of the calibrated HDR image as
measured by a SpectraScan PR650 spectrometer aimed at a 18%
gray card; although color temperature is not directly used by
CIECAM02 it is given for illustration.

LA 240 cd/m−2

XwYwZw 95.45, 100.00, 129.22

Surround average

T �K� 7969 K

Fig. 6 �a� Image is only tone-mapped with the photographic tone
mapping operator.12 We applied our algorithm on the other images
prior to tone mapping with different display white points. The display
white point of �b� was set to D65, and the display white points of the
lower images were set to a weighted average of D65 and F2 �c� and
D65 and A �d�. The surround for all three images was set to average.

Table 5 The viewing environment parameters used for producing
images in Fig. 6.

Upper Right Lower Left Lower Right

LA 16 cd/m−2 16 cd/m−2 16 cd/m−2

XwYwZw 95.05,
100.00,
108.88

96.71,
100.00,
92.29

100.97,
100.00,
79.55

Surround average average average
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camera this effect cannot be achieved. White balancing
models the chromatic adaptation that takes place in the
original scene of the image, but it does not consider the
adaptation of the observer in the display environment. Also
white balancing in the camera does not distinguish between
light sources and reflective objects to adjust the degree of
chromatic adaptation accordingly.

The effect of choosing different values for the surround
parameter is demonstrated in Fig. 7. The display white for
all the images was set to D65, and the surround is set to
average, dim, and dark from left to right. The contrast and
the colorfulness of the images are increased by the color
appearance model with the darkening surround. This is ex-
plained by the Hunt effect and Bartleson-Breneman equa-
tions, which suggest that colorfulness and image contrast
decrease with a decrease in illumination level. CIECAM02
model counters this change by increasing colorfulness and
contrast.

7

In Fig. 8, we demonstrate the accuracy of our light
source detection heuristic. The image on the left is just a
tone-mapped version of the HDR image. The light sources
detected by our algorithm are marked as white pixels on the
right image. Although the sky is correctly detected, some
small highlights are also detected as light sources. If de-
sired, these highlights can easily be excluded by using a
minimum area threshold.

The overall effect of our approach to separate range
compression from color appearance issues for uncalibrated
high dynamic range images is illustrated in Fig. 9.

In this figure we compare our results with the results of
the iCAM �second image� and multiscale observer model
�third image�, which aim to accomplish tone reproduction
and color appearance preservation simultaneously. To cre-
ate our result �rightmost image� we chose CIECAM02 as
the color appearance model and photographic tone-

mapping as the tone reproduction operator.
12

Our result
is prepared for viewing under fluorescent light. We esti-
mated the desk lamp in this figure to be close to a CIE A
incandescent light source, and therefore chose the corre-
sponding white point �Table 3� as one of the CIECAM02
forward model surround parameters.

For some scenes, dominant hue shift may not be due to
the color of the illuminant. In such cases, we estimate the
white point using Table 3. For the sunrise image shown in
Fig. 10 �right�, we estimated the correlated color tempera-
ture to be around 3300 K—higher than the table would in-
dicate because half the image contains blue sky, which in-
creases the color temperature. The result looks more
plausible than the result produced under the gray world
assumption, shown in Fig. 10 �left�.

Figure 11 shows results created with and without our
approach to color appearance for different tone reproduc-
tion operators. In each case, the luminance compression
was achieved by applying an operator that does not alter the

Fig. 8 Image in �b� depicts the detected light sources in �a� as white
pixels.

Fig. 9 �a� Tone-mapped image, and �b� output of iCAM model,19 �c�
the multi-scale observer model,18 and �d� tone-mapped image with
appearance preserving preprocessing �our approach�.

Fig. 10 Comparison of different estimated image white points. The
viewing environment is assumed to be lit by fluorescent light.

Fig. 7 Effect of changing the surround of the display environment.
The surround is set to �a� average, �b� dim, and �c� dark. We can
observe that as the relative luminance of the surround decreases,
the contrast and the colorfulness of the images are increased by the
color appearance model. This is performed to counter the actual
decrease in contrast and colorfulness.
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ratios between the red, green, and blue channels, such that
there is no unwanted interaction between the color appear-
ance model and luminance compression algorithms.

To demonstrate that our algorithm is not bound to a
specific color appearance model and tone reproduction op-
erator, we display further results created with different
color appearance models and tone reproduction operators in
Fig. 12.

Using the CIECAM02 model and the photographic-
based tone-mapping in Reinhard et al.

12
we show the effec-

tiveness of our approach on a further selection of images in
Fig. 13.

8 Discussion

After the application of the forward and backward CAM
we reset the luminances of the HDR image to their original
values. This step is performed to undo any luminance com-
pression that may be performed by CAMs. For instance, in
the forward CIECAM02 model, there is a nonlinear re-
sponse compression step that is not fully inverted in the
backward model unless the same adapting luminance as the
forward model is used. Thus, without resetting luminances
to their originals, luminance compression will be shared
between the CAM and the tone reproduction algorithm,
which might yield uncontrollable results. Resetting lumi-
nances prior to tone mapping prevents this interaction.

Chromatic adaptation models, on the other hand, take
into account both the scene and display white points. By
using these models, one can compute corresponding colors
across two environments that differ only in white point.
Simple von Kries type chromatic adaption models are in-
dependent of luminance, which make them unusable to pre-
dict color appearance in case of luminance differences.

7

Some chromatic adaptation models extend von Kries type
of adaptation to include additional factors such as adapting
luminance and background. Nayatani et al. and Fairchild’s
model are examples of this type.

7

In HDR imaging, the differences between scene and dis-
play environments can potentially be much larger than in
conventional digital imaging applications, since there is no
limit on the luminance values that can be captured. We
therefore argue that using CAMs is essential to preserve
appearance of HDR scenes.

In this paper, we show how to preserve color appearance
in HDR imaging by combining CAMs with tone reproduc-
tion operators. The strengths and weaknesses of our algo-
rithm are the same as its constituent components.

We note that any spatially invariant CAM can be used,
as long as it is able to process HDR data. For instance the
ZLAB model

23
is restricted to intermediate values of adapt-

ing luminance, and is therefore not suitable for HDR data.
Research in tone reproduction is currently very active.

New tone reproduction operators become available on a
regular basis. We believe that no single operator will be
suitable for all possible tasks such as film, photography,
computer graphics, and scientific and medical visualization.
A more likely scenario is that some operators will be more
applicable for certain specific tasks, whereas other opera-
tors will be more suitable for other tasks.

These developments make it impractical to target one
specific tone reproduction operator for enhancement with
techniques borrowed from the field of color appearance.

Fig. 12 �a� Tone-mapped image with the photographic tone repro-
duction operator,12 �b� the CIECAM97s model applied to HDR data
and tone-mapped with the same operator, �c� the tone-mapped im-
age with Tumblin and Rushmeier’s operator,8 and �d� the RLAB
model applied to the high dynamic range data and tone-mapped
with the same operator.

Fig. 11 Parking garage without �a� and with our preprocessing �b� is
compressed with photographic tone reproduction.12 Ashikhmin’s
operator,38 bilateral filtering,10 and histogram adjustment,9 from top
to bottom. The right column is best viewed under fluorescent light.
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Our technique decouples color appearance issues from tone
reproduction. Therefore, a key advantage of our technique
is that it operates as a preprocess to any subsequent tone
reproduction operator as long as the operator compresses
the luminance channel only. We believe this method is par-
ticularly attractive because HDR imaging will benefit from
improvements in both color appearance modeling and tone
reproduction.

Appendix CIECAM02

This review of the CIECAM02 color appearance model is
based on the technical report

39
by CIE. The model requires

as input the stimulus, and the parameters of the viewing
environment as shown in Table 2.

The stimulus is a uniform patch subtending 2 deg of
visual angle and its color is represented by the tristimulus
values XYZ. The background is the area adjacent to the
stimulus and subtends 10 deg of visual angle. Its relative
luminance Yb is input to the model. The surround is the
remainder of the visual field and is normally described as
average, dim, or dark. Based on the viewing condition de-
termined by the surround parameter, three parameters may
be set according to Table 6. These parameters are c, impact
of surround; Nc, chromatic induction factor; and F, factor
for degree of adaptation. The input parameter D determines
the degree of chromatic adaptation and it is calculated by
the following equation:

D = F
1 −
1

3.6
exp �− LA − 42

92
��

The model then proceeds by calculating a number of inter-
mediary parameters that, in turn, will be used for the cal-
culation of appearance correlates.

First, sharpened cone responses RGB are computed from
the tristimulus values XYZ through the chromatic adapta-
tion transform �CAT02�. This is a linear transformation that
achieves von Kries normalization. The computation, the
matrix and its inverse are given by:

�
R

G

B
� = MCAT02�

X

Y

Z
� ,

MCAT02 = �
0.7328 0.4286 − 0.1624

− 0.7036 1.6975 0.0061

0.0030 0.0136 0.9834
� ,

MCAT02
−1 = �

1.0961 − 0.2789 0.1827

0.4544 0.4735 0.0721

− 0.0096 − 0.0057 1.0153
� .

The sharpened cone responses are then used in the ad-
aptation transform to produce post adaptation cone re-
sponses:

Rc = �YW�D/Rw� + �1 − D�	R ,

Gc = �YW�D/Gw� + �1 − D�	G ,

Bc = �YW�D/Bw� + �1 − D�	B .

A further set of five intermediate parameters are required
for the computation of appearance correlates. These param-
eters are

FL = luminance level adaption factor,

n = background induction factor,

Nbb = brightness background factor,

Ncb = chromatic background factor,

Table 6 Parameters associated with the viewing condition of the
surround.

Viewing Condition c Nc F

Average surround 0.69 1.0 1.0

Dim surround 0.59 0.9 0.9

Dark surround 0.525 0.8 0.8

Fig. 13 Further results with and without appearance preserving pre-
processing �for viewing under fluorescent light� �color online only�.
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z = base exponential nonlinearity.

Their computation is given by the following equations:

k = 1/�5LA + 1� ,

FL = 0.2k4�5LA� + 0.1�1 − k4�2�5LA�1/3,

n = Yb/YW,

Nbb = 0.725�1/n�0.2,

Ncb = Nbb,

z = 1.48 + n1/2.

The next step is the postadaptation nonlinear response com-
pression. It is performed in Hunt-Pointer-Estevez space:

40

MH = �
0.3897 0.6890 − 0.0787

− 0.2298 1.1834 0.0464

0.0000 0.0000 1.0000
� ,

MH
−1 = �

1.9102 − 1.1121 0.2019

0.3710 0.6291 0.0000

0.0000 − 0.0000 1.0000
� .

The computation of compressed cone responses Ra�Ga�Ba�

is given by

Ra� =
400�FLR�/100�0.42

�FLR�/100�0.42 + 27.13
+ 0.1,

Ga� =
400�FLG�/100�0.42

�FLG�/100�0.42 + 27.13
+ 0.1,

Ba� =
400�FLB�/100�0.42

�FLB�/100�0.42 + 27.13
+ 0.1.

The compressed cone responses are then used to compute
opponent responses:

A = �2Ra� + Ga� + �1/20�Ba� − 0.305	Nbb,

a = Ra� − 12Ga�/11 + Ba�/11,

b = �Ra� + Ga� − 2Ba��/9.

This gives us all the intermediary parameters necessary to
compute the appearance correlates. The equations that fol-
low then compute the appearance correlates that character-
ize the XYZ tristimulus values given the specified viewing
conditions.

The hue h ,e as well as lightness J, brightness Q, chroma
C, colorfulness M, and saturation s of the stimulus can be
computed by

h = tan−1 �b/a� ,

e = 0.25
cos � h�

180
+ 2� + 3.8� ,

J = 100�A/AW�cz,

Q = �4/c��J/100�0.5�AW + 4�FL
0.25,

t =
�50,000/13�NcNcbe�a2 + b2�0.5

Ra� + Ga� + �21/20�Ba�
,

C = t0.9�J/100�0.5�1.64 − 0 . 29n�0.73,

M = CFL
0.25,

s = 100�M/Q�1/2.

For the prediction of color matches across different viewing
conditions, lightness-chroma matches are not identical to
brightness-colorfulness matches.

41
In practice, lightness

and chroma are the appearance correlates of choice. This
model can be analytically inverted to compute the XYZ val-
ues that would induce the same appearance correlates in a
different environment. The details of the inverse model can
be found in Hunt

16
and Fairchild.

7
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