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Color Balance and Fusion for

Underwater Image Enhancement

Codruta O. Ancuti , Cosmin Ancuti, Christophe De Vleeschouwer , and Philippe Bekaert

Abstract— We introduce an effective technique to enhance the
images captured underwater and degraded due to the medium
scattering and absorption. Our method is a single image approach
that does not require specialized hardware or knowledge about

the underwater conditions or scene structure. It builds on the
blending of two images that are directly derived from a color-
compensated and white-balanced version of the original degraded
image. The two images to fusion, as well as their associated weight
maps, are defined to promote the transfer of edges and color
contrast to the output image. To avoid that the sharp weight map
transitions create artifacts in the low frequency components of the
reconstructed image, we also adapt a multiscale fusion strategy.
Our extensive qualitative and quantitative evaluation reveals that
our enhanced images and videos are characterized by better
exposedness of the dark regions, improved global contrast, and
edges sharpness. Our validation also proves that our algorithm
is reasonably independent of the camera settings, and improves
the accuracy of several image processing applications, such as
image segmentation and keypoint matching.

Index Terms— Underwater, image fusion, white-balancing.

I. INTRODUCTION AND OVERVIEW

U
NDERWATER environment offers many rare attrac-

tions such as marine animals and fishes, amazing

landscape, and mysterious shipwrecks. Besides underwater

photography, underwater imaging has also been an impor-

tant source of interest in different branches of technology

and scientific research [1], such as inspection of underwater

infrastructures [2] and cables [3], detection of man made

objects [4], control of underwater vehicles [5], marine biology

research [6], and archeology [7].

Different from common images, underwater images suffer

from poor visibility resulting from the attenuation of the prop-

agated light, mainly due to absorption and scattering effects.

The absorption substantially reduces the light energy, while the

scattering causes changes in the light propagation direction.

They result in foggy appearance and contrast degradation,
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Fig. 1. Method overview: two images are derived from a white-balanced
version of the single input, and are merged based on a (standard) multiscale
fusion algorithm. the novelty of our approach lies in the proposed pipeline,
but also in the definition of a white-balancing algorithm that is suited to our
underwater enhancement problem.

making distant objects misty. Practically, in common sea water

images, the objects at a distance of more than 10 meters are

almost unperceivable, and the colors are faded because their

composing wavelengths are cut according to the water depth.

There have been several attempts to restore and enhance the

visibility of such degraded images. Since the deterioration of

underwater scenes results from the combination of multiplica-

tive and additive processes [8] traditional enhancing techniques

such as gamma correction, histogram equalization appear to

be strongly limited for such a task. In the previous works that

are surveyed in Section II.B, the problem has been tackled

by tailored acquisition strategies using multiple images [9],

specialized hardware [10] or polarization filters [11]. Despite

of their valuable achievements, these strategies suffer from a

number of issues that reduce their practical applicability.

In contrast, this paper introduces a novel approach to remove

the haze in underwater images based on a single image

captured with a conventional camera. As illustrated in Fig. 1,

our approach builds on the fusion of multiple inputs, but

derives the two inputs to combine by correcting the contrast

and by sharpening a white-balanced version of a single native

input image. The white balancing stage aims at removing

the color cast induced by underwater light scattering, so as

to produce a natural appearance of the sub-sea images. The

multi-scale implementation of the fusion process results in an

artifact-free blending.

The rest of the paper is structured as follows. The next

section briefly surveys the optical specificities of the under-

water environment, before summarizing the work related to

underwater dehazing. In Section III, we present our novel

white-balancing approach, especially designed for underwater

images. Section IV then describes the main components of our

fusion-based enhancing technique, including inputs and asso-

ciated weight maps definition. Before concluding, we present
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comparative qualitative and quantitative assessments of our

white-balancing and fusion-based underwater dehazing tech-

niques, as well as some results about their relevance to

address common computer vision problems, namely image

segmentation and feature matching.

II. BACKGROUND KNOWLEDGE AND PREVIOUS ART

This section surveys the basic principles underlying light

propagation in water, and reviews the main approaches that

have been considered to restore or enhance the images

captured under water.

A. Light Propagation in Underwater

For an ideal transmission medium the received light is

influenced mainly by the properties of the target objects and

the camera lens characteristics. This is not the case underwater.

First, the amount of light available under water, depends on

several factors. The interaction between the sun light and

the sea surface is affected by the time of the day (which

influences the light incidence angle), and by the shape of

the interface between air and water (rough vs. calm sea).

The diving location also directly impacts the available light,

due to a location-specific color cast: deeper seas and oceans

induce green and blue casts, tropical waters appear cyan,

while protected reefs are characterized by high visibility.

In addition to the variable amount of light available under

water, the density of particles that the light has to go through

is several hundreds of times denser in seawater than in normal

atmosphere. As a consequence, sub-sea water absorbs gradu-

ally different wavelengths of light. Red, which corresponds to

the longest wavelength, is the first to be absorbed (10-15 ft),

followed by orange (20-25 ft), and yellow (35-45 ft). Pictures

taken at 5 ft depth will have a noticeable loss of red. Further-

more, the refractive index of water makes judging distances

difficult. As a result, underwater objects can appear 25% larger

than they really are.

The comprehensive studies of McGlamery [12] and

Jaffe [13] have shown that the total irradiance incident on a

generic point of the image plane has three main components

in underwater mediums: direct component, forward scattering

and back scattering. The direct component is the component

of light reflected directly by the target object onto the image

plane. At each image coordinate x the direct component is

expressed as:

ED(x) = J (x)e−ηd(x) = J (x)t (x) (1)

where J (x) is the radiance of the object, d(x) is the distance

between the observer and the object, and η is the attenuation

coefficient. The exponential term e−ηd(x) is also known as the

transmission t (x) through the underwater medium.

Besides the absorption, the floating particles existing in

the underwater mediums also cause the deviation (scattering)

of the incident rays of light. Forward-scattering results from

a random deviation of a light ray on its way to the camera

lens. It has been determined experimentally that its impact

can be approximated by the convolution between the direct

attenuated component, with a point spread function that

depends on the distance between the image plane and the

object. Back-scattering is due to the artificial light (e.g. flash)

that hits the water particles, and is reflected back to the

camera. Back-scattering acts like a glaring veil superimposed

on the object. The influence of this component may be

reduced significantly by simply changing the position and

angle of the artificial light source so that most of the reflected

particle light do not reach the camera. However, in many

practical cases, back-scattering remains the principal source

of contrast loss and color shifting in underwater images.

Mathematically, it is often expressed as:

EBS(x) = B∞(x)(1 − e−ηd(x)) (2)

where B∞(x) is a color vector known as the back-scattered

light.

Ignoring the forward scattering component, the simplified

underwater optical model thus becomes:

I(x) = J (x)e−ηd(x) + B∞(x)(1 − e−ηd(x)) (3)

This simplified underwater camera model (3) has a similar

form than the model of Koschmieder [14], used to characterize

the propagation of light in the atmosphere. It however does not

reflect the fact that the attenuation coefficient strongly depends

on the light wavelength, and thus the color, in underwater

environments. Therefore, as discussed in the next section

and illustrated in Fig. 11, a straightforward extension of

outdoor dehazing approaches performs poorly at great depth,

in presence of non-uniform artificial illumination and selective

absorption of colors. This is also why our approach does not

resort to an explicit inversion of the light propagation model.

B. Related Work

The existing underwater dehazing techniques can be

grouped in several classes. An important class corresponds

to the methods using specialized hardware [1], [10], [15].

For instance, the divergent-beam underwater Lidar imag-

ing (UWLI) system [10] uses an optical/laser-sensing tech-

nique to capture turbid underwater images. Unfortunately,

these complex acquisition systems are very expensive, and

power consuming.

A second class consists in polarization-based methods.

These approaches use several images of the same scene

captured with different degrees of polarization, as obtained by

rotating a polarizing filter fixed to the camera. For instance,

Schechner and Averbuch [11] exploit the polarization asso-

ciated to back-scattered light to estimate the transmission

map. While being effective in recovering distant regions, the

polarization techniques are not applicable to video acquisition,

and are therefore of limited help when dealing with dynamic

scenes.

A third class of approaches employs multiple

images [9], [16] or a rough approximation of the scene

model [17]. Narasimhan and Nayar [9] exploited changes

in intensities of scene points under different weather

conditions in order to detect depth discontinuities in the

scene. Deep Photo system [17] is able to restore images

by employing the existing georeferenced digital terrain and
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urban 3D models. Since this additional information (images

and depth approximation) is generally not available, these

methods are impractical for common users.

A fourth class of methods exploits the similarities between

light propagation in fog and under water. Recently, several sin-

gle image dehazing techniques have been introduced to restore

images of outdoor foggy scenes [18]–[23]. These dehazing

techniques reconstruct the intrinsic brightness of objects by

inverting the Koschmieder’s visibility model [14]. Despite

this model was initially formulated under strict assumptions

(e.g. homogeneous atmosphere illumination, unique extinction

coefficient whatever the light wavelength, and space-uniform

scattering process) [24], several works have relaxed those strict

constraints, and have shown that it can be used in heteroge-

neous lightning conditions and with heterogeneous extinction

coefficient as long as the model parameters are estimated

locally [20], [21], [25]. However, the underwater imaging is

even more challenging, due to the fact that the extinction

resulting from scattering depends on the light wavelength,

i.e. on the color component.

Recently, several algorithms that specifically restore under-

water images based on Dark Channel Prior (DCP) [19], [26]

have been introduced. The DCP has initially been proposed

for outdoor scenes dehazing. It assumes that the radiance of

an object in a natural scene is small in at least one of the color

component, and consequently defines regions of small trans-

mission as the ones with large minimal value of colors. In the

underwater context, the approach of Chiang and Chen [27]

segments the foreground and the background regions based on

DCP, and uses this information to remove the haze and color

variations based on color compensation. Drews, Jr., et al. [28]

also build on DCP, and assume that the predominant source of

visual information under the water lies in the blue and green

color channels. Their Underwater Dark Channel Prior (UDCP)

has been shown to estimate better the transmission of under-

water scenes than the conventional DCP. Galdran et al. [29]

observe that, under water, the red component reciprocal

increases with the distance to the camera, and introduce the

Red Channel prior to recover colors associated with short

wavelengths in underwater. Emberton et al. [30] designed a

hierarchical rank based method, using a set of features to find

those image regions that are the most haze-opaque, thereby

refining the back-scattered light estimation, which in turns

improves the light transmission model inversion. Lu et al. [31].

employ color lines, as in [32], to estimate the ambient light,

and implement a variant of the DCP to estimate the transmis-

sion. As additional worthwhile contributions, bilateral filter is

considered to remove highlighted regions before ambient light

estimation, and another locally adaptive filter is considered to

refine the transmission. Very recently, [31] has been extended

to increase the resolution of its descattered and color-corrected

output. This extension is presented in [33] and builds on super-

resolution from transformed self-exemplars [34] to derive two

high-resolution (HR) images, respectively from the output

derived in [31] and from a denoised/descattered version of

this output. A fusion-based strategy is then considered to

blend those two intermediate HR images. This fusion aims

at preserving the edges and detailed structures of the noisy

HR image, while taking advantage of the reduced noise and

scatter in the second HR image. It however does not impact

the rendering of color obtained with [31]. In contrast, our

approach fundamentally aims at improving the colors (white-

balancing component in Fig. 1), and uses the fusion to

reinforce the edges (sharpening block in Fig. 1) and the color

contrast (Gamma correction in Fig. 1). Actually, our solution

provides an alternative to [31], while the HR fusion introduced

in [33] should be considered as an optional complement to our

work, to be applied to the output of our method when high-

resolution is desired. An initial version of our fusion-based

approach had been presented in our IEEE CVPR conference

paper [35]. Compared to this preliminary work, this journal

paper proposes a novel white balancing strategy that is shown

to outperform our initial solution in presence of severe light

attenuation, while supporting accurate transmission estima-

tion in various acquisition settings. Our journal paper also

revises the practical implementation of the fusion approach by

proposing an alternative and simplified definition of the inputs

and associated weight maps. The revised solution appears

to significantly improve [35] in case of severe degradation

of the underwater images (see the comprehensive qualita-

tive and quantitative comparison provided in Section V.B).

Moreover, additional experimental results reveal that our

proposed dehazing strategy also improves the accuracy of

conventional segmentation and point-matching algorithms

(Section V.C), making our dehazing relevant for automatic

underwater image processing systems.

To conclude this survey, it is worth mentioning that a

class of specialized underwater image enhancing techniques

have been introduced [36]–[38], based on the extension

of the traditional enhancing techniques that are found

in commercial tools such as color correction, histogram

equalization/stretching, and linear mapping. Within this class,

Chambah et al. [39] designed an unsupervised color correction

strategy, Arnold-Bos et al. [37] developed a framework to

deal with specific underwater noise, while the technique of

Petit et al. [38] restores the image contrast by inverting a light

attenuation model after applying a color space contraction.

These approaches however appear to be effective only for

relatively well illuminated scenes, and generally introduce

strong halos and color distortions in presence of relatively

poor lightning conditions.

III. UNDERWATER WHITE BALANCE

As depicted in Fig. 1, our image enhancement approach

adopts a two step strategy, combining white balancing and

image fusion, to improve underwater images without resorting

to the explicit inversion of the optical model. In our approach,

white balancing aims at compensating for the color cast caused

by the selective absorption of colors with depth, while image

fusion is considered to enhance the edges and details of the

scene, to mitigate the loss of contrast resulting from back-

scattering. The fusion step is detailed in Section IV. We now

focus on the white-balancing stage.

White-balancing aims at improving the image aspect, pri-

marily by removing the undesired color castings due to various

illumination or medium attenuation properties. In underwater,
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Fig. 2. Underwater white-balancing. Top row from left to right: initial underwater image with highly attenuated red channel, original red channel and red
channel after histogram equalization, original image with the red channel equalized and the image after employing our compensation expressed by Eq.4. The
image compensated is obtained by simply replacing the compensated red channel Eq.4 in the original underwater image. Bottom row from left to right: several
well-known white balancing approaches (Gray Edge [40], Shades of Gray [41], Max RGB [42] and Gray World [43]). Please notice the artifacts (red colored
locations) that appear due to the lack of information on the red channel.

the perception of color is highly correlated with the depth, and

an important problem is the green-bluish appearance that needs

to be rectified. As the light penetrates the water, the atten-

uation process affects selectively the wavelength spectrum,

thus affecting the intensity and the appearance of a colored

surface (see Section II). Since the scattering attenuates more

the long wavelengths than the short ones, the color perception

is affected as we go down in deeper water. In practice, the

attenuation and the loss of color also depends on the total

distance between the observer and the scene.

We have considered the large spectrum of existing white bal-

ancing methods [44], and have identified a number of solutions

that are both effective and suited to our problem (see Fig. 2).

In the following we briefly revise those approaches and explain

how they inspired us in the derivation of our novel approach

proposed for underwater scenes.

Most of those methods make a specific assumption to

estimate the color of the light source, and then achieve color

constancy by dividing each color channel by its corresponding

normalized light source intensity. Among those methods,

the Gray world algorithm [43] assumes that the average

reflectance in the scene is achromatic. Hence, the illuminant

color distribution is simply estimated by averaging each

channel independently. The Max RGB [42] assumes that the

maximum response in each channel is caused by a white

patch [44], and consequently estimates the color of the light

source by employing the maximum response of the different

color channels. In their ‘Shades-of-Grey’ method [41],

Finlayson et al. first observe that Max-RGB and Gray-World

are two instantiations of the Minkowski p-norm applied to

the native pixels, respectively with p = ∞ and p = 1, and

propose to extend the process to arbitrary p values. The best

results are obtained for p = 6. The Grey-Edge hypothesis of

van de Weijer et al. [40] further extends this Minkowski norm

framework. It assumes the average edge difference in a scene

to be achromatic, and computes the scene illumination color

by applying the Minkowski p-norm on the derivative structure

of image channels, and not on the zero-order pixel structure,

as done in Shades of Grey. Despite of its computational

simplicity, this approach has been shown to obtain comparable

results than state-of-the-art color constancy methods, such as

the recent method of [45] that relies on natural image statistics.

When focusing on underwater scenes, we have found

through the comprehensive study presented in Fig. 9

and Table I that the well-known Gray-World [43] algorithm

achieves good visual performance for reasonably distorted

underwater scenes. However, a deeper investigation dealing

with extremely deteriorated underwater scenes (see Fig. 2)

reveals that most traditional methods perform poorly. They

fail to remove the color shift, and generally look bluish.

The methods that best remove the bluish tone is the Grey

World, but we observe that this method suffers from severe

red artifacts. Those artifacts are due to a very small mean

value for the red channel, leading to an overcompensation of

this channel in locations where red is present (because Gray

world devides each channel by its mean value). To circumvent

this issue, following the conclusions of previous underwater

works [28], [29], we therefore primarily aim to compensate

for the loss of the red channel. In a second step, the Gray

World algorithm will be adopted to compute the white

balanced image.

To compensate for the loss of red channel, we build on the

four following observations/principles:
1. The green channel is relatively well preserved under

water, compared to the red and blue ones. Light with

a long wavelength, i.e. the red light, is indeed lost first

when traveling in clear water;

2. The green channel is the one that contains opponent

color information compared to the red channel, and

it is thus especially important to compensate for the

stronger attenuation induced on red, compared to green.

Therefore, we compensate the red attenuation by adding
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Fig. 3. Compensating the red channel in Equation (4). Since for underwater
scenes the blue channel contains most of the details, using this information
will reduce the ability to recover certain colors such as yellow and orange and
also it tends to transform the blue areas to violet shades. Compensating the red
channel by masking only the green channel (Equation (4)) these limitations
are reduced significantly. This is confirmed visually but also by computing
the CIE2000 measure using as a reference the color checker (displayed with
white ink on the resulted images).

a fraction of the green channel to red. We had initially

tried to add both a fraction of green and blue to the

red but, as can be observed in Fig. 3, using only the

information of the green channel allows to better recover

the entire color spectrum while maintaining a natural

appearance of the background (water regions);

3. The compensation should be proportional to the dif-

ference between the mean green and the mean red

values because, under the Gray world assumption (all

channels have the same mean value before attenuation),

this difference reflects the disparity/unbalance between

red and green attenuation;

4. To avoid saturation of the red channel during the Gray

World step that follows the red loss compensation, the

enhancement of red should primarily affect the pixels

with small red channel values, and should not change

pixels that already include a significant red component.

In other words, the green channel information should

not be transferred in regions where the information

of the red channel is still significant. Thereby, we

want to avoid the reddish appearance introduced by

the Gray-World algorithm in the over-exposed regions

(see Fig. 3). Basically, the compensation of the red

channel has to be performed only in those regions

that are highly attenuated (see Fig. 2). This argument

follows the statement in [29], telling that if a pixel has

a significant value for the three channels, this is because

it lies in a location near the observer, or in an artificially

illuminated area, and does not need to be restored.

Mathematically, to account for the above observations, we

propose to express the compensated red channel Irc at every

pixel location (x) as follows:

Irc(x) = Ir (x) + α.( Īg − Īr ).(1 − Ir (x)).Ig(x), (4)

where Ir , Ig represent the red and green color channels of

image I, each channel being in the interval [0, 1], after

normalization by the upper limit of their dynamic range;

Fig. 4. Comparison to our previous white balancing approach [35].

while Īr and Īg denote the mean value of Ir and Ig . In Equa-

tion 4, each factor in the second term directly results from one

of the above observations, and α denotes a constant parameter.

In practice, our tests have revealed that a value of α = 1 is

appropriate for various illumination conditions and acquisition

settings.

To complete our discussion about the severe and color-

dependent attenuation of light under water, it is worth noting

the works in [31] and [46]–[48], which reveal and exploit the

fact that, in turbid waters or in places with high concentration

of plankton, the blue channel may be significantly attenuated

due to absorption by organic matter. To address those cases,

when blue is strongly attenuated and the compensation of the

red channel appears to be insufficient, we propose to also

compensate for the blue channel attenuation, i.e. we compute

the compensated blue channel Ibc as:

Ibc(x) = Ib(x) + α.( Īg − Īb).(1 − Ib(x)).Ig(x), (5)

where Ib, Ig represent the blue and green color channels of

image I, and α is also set to one. In the rest of the paper, the

blue compensation is only considered in Figure 14. All other

results are derived based on the sole red compensation.

After the red (and optionally the blue) channel attenua-

tion has been compensated, we resort to the conventional

Gray-World assumption to estimate and compensate the illu-

minant color cast.

As shown in Fig. 2, our white-balancing approach reduces

the quantization artifacts introduced by domain stretching (the

red regions in the different outputs). The reddish appearance

of high intensity regions is also well corrected since the red

channel is better balanced. As will be extensively discussed

in Section V-A, our approach shows the highest robustness

compared to the other well-known white-balancing techniques.

In particular, whilst being conceptually simplest, we observe

in Fig. 4 that, in cases for which the red channel of the

underwater image is highly attenuated, it outperforms the

white balancing strategy introduced in our conference version

of our fusion-based underwater dehazing method [35].
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Fig. 5. Underwater transmission estimation. Columns 2 to 6, the transmission map is estimated based on DCP [26] applied to the initial underwater images but
also from versions obtained with several well-known white balancing approaches (Gray Edge [40], Shades of Gray [41], Max RGB [42] and Gray World [43])
yield poor estimates. In contrast, applying DCP on our white balanced image version (last column), results in comparable and even better estimates compared
with the specialized underwater techniques corresponding to UDCP [49], MDCP [50], BP [51] and Lu et al. [31].

Additionally, Fig. 5 shows that using our white balancing

strategy yields significant improvement in estimating transmis-

sion based on the well-known DCP [26]. As can be seen in

the first seven columns of Fig. 5, estimating the transmission

maps based on DCP, using the initial underwater images but

also the processed versions with several well-known white

balancing approaches (Gray Edge [40], Shades of Gray [41],

Max RGB [42] and Gray World [43]) yields poor estimates.

In contrast, by simply applying DCP on our white balanced

image version we obtain comparable and even better estimates

than the specialized underwater techniques of UDCP [49],

MDCP [50] and BP [51].

Despite white balancing is crucial to recover the color, using

this correction step is not sufficient to solve the dehazing

problem since the edges and details of the scene have been

affected by the scattering. In the next section, we therefore

propose an effective fusion based approach, relying on gamma

correction and sharpening to deal with the hazy nature of the

white balanced image.

IV. MULTI-SCALE FUSION

In this work we built on the multi-scale fusion principles to

propose a single image underwater dehazing solution. Image

fusion has shown utility in several applications such as image

compositing [52], multispectral video enhancement [53],

defogging [23], [54] and HDR imaging [55]. Here, we aim

for a simple and fast approach that is able to increase the

scene visibility in a wide range of underwater videos and

images. Similar to [23] and [54], our framework builds on a

set of inputs and weight maps derived from a single original

image. In contrast to [23] and [54] however, those ones

are specifically chosen in order to take the best out of the

white-balancing method introduced in the previous section.

In particular, as depicted in Fig.1, a pair of inputs is

introduced to respectively enhance the color contrast and the

edge sharpness of the white-balanced image, and the weight

maps are defined to preserve the qualities and reject the

defaults of those inputs, i.e. to overcome the artifacts induced

by the light propagation limitation in underwater medium.

This multi-scale fusion significantly differs from our pre-

vious fusion-based underwater dehazing approach published

at IEEE CVPR [35]. To derive the inputs from the original

image, our initial CVPR algorithm did assume that the back-

scattering component (due to the artificial light that hits the

water particles and is then reflected back to the camera) has

a reduced influence. This assumption is generally valid for

underwater scenes decently illuminated by natural light, but

fails in more challenging illumination scenarios , as revealed

by Fig. 11 in the results section. In contrast, this paper does not

rely on the optical model and proposes an alternative definition

of inputs and weights to deal with severely degradaded scenes.

As depicted in Fig. 8 and detailed below, our underwater

dehazing technique consists in three main steps: inputs deriva-

tion from the white balanced underwater image, weight maps

definition, and multi-scale fusion of the inputs and weight

maps.

A. Inputs of the Fusion Process

Since the color correction is critical in underwater, we

first apply our white balancing technique to the original

image. This step aims at enhancing the image appearance by

discarding unwanted color casts caused by various illuminants.

In water deeper than 30 ft, white balancing suffers from

noticeable effects since the absorbed colors are difficult to be

recovered. As a result, to obtain our first input we perform

a gamma correction of the white balanced image version.

Gamma correction aims at correcting the global contrast

and is relevant since, in general, white balanced underwater

images tend to appear too bright. This correction increases the

difference between darker/lighter regions at the cost of a loss

of details in the under-/over-exposed regions.

To compensate for this loss, we derive a second input that

corresponds to a sharpened version of the white balanced

image. Therefore, we follow the unsharp masking principle,
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Fig. 6. The two inputs derived from our white balanced image version, the three corresponding normalized weight maps for each of them, the corresponding
normalized weight maps and our final result.

Fig. 7. Comparison between traditional unsharp masking and normalized
unsharp masking applied on the white balanced image.

in the sense that we blend a blurred or unsharp (here Gaussian

filtered) version of the image with the image to sharpen. The

typical formula for unsharp masking defines the sharpened

image S as S = I + β(I − G ∗ I ), where I is the image to

sharpen (in our case the white balanced image), G ∗ I denotes

the Gaussian filtered version of I , and β is a parameter.

In practice, the selection of β is not trivial. A small β fails to

sharpen I , but a too large β results in over-saturated regions,

with brighter highlights and darker shadows. To circumvent

this problem, we define the sharpened image S as follows:

S = (I + N {I − G ∗ I }) /2, (6)

with N {.} denoting the linear normalization operator, also

named histogram stretching in the literature. This operator

shifts and scales all the color pixel intensities of an image with

a unique shifting and scaling factor defined so that the set of

transformed pixel values cover the entire available dynamic

range.

The sharpening method defined in (6) is referred to as

normalized unsharp masking process in the following. It has

the advantage to not require any parameter tuning, and appears

to be effective in terms of sharpening (see examples in Fig. 7).

This second input primarily helps in reducing the degra-

dation caused by scattering. Since the difference between

white balanced image and its Gaussian filtered version is a

highpass signal that approximates the opposite of Laplacian,

this operation has the inconvenient to magnify the high-

frequency noise, thereby generating undesired artifacts in the

second input [56]. The multi-scale fusion strategy described in

the next section will be in charge of minimizing the transfer

of those artifacts to the final blended image.

B. Weights of the Fusion Process

The weight maps are used during blending in such a way

that pixels with a high weight value are more represented in

the final image (see Fig. 6). They are thus defined based on a

number of local image quality or saliency metrics.

Laplacian contrast weight (WL ) estimates the global con-

trast by computing the absolute value of a Laplacian filter

applied on each input luminance channel. This straightforward

indicator was used in different applications such as tone

mapping [55] and extending depth of field [57] since it assigns

high values to edges and texture. For the underwater dehazing

task, however, this weight is not sufficient to recover the

contrast, mainly because it can not distinguish much between

a ramp and flat regions. To handle this problem, we introduce

an additional and complementary contrast assessment metric.

Saliency weight (WS) aims at emphasizing the salient

objects that lose their prominence in the underwater scene.

To measure the saliency level, we have employed the saliency

estimator of Achantay et al. [58]. This computationally effi-

cient algorithm has been inspired by the biological concept of

center-surround contrast. However, the saliency map tends to

favor highlighted areas (regions with high luminance values).

To overcome this limitation, we introduce an additional weight

map based on the observation that saturation decreases in the

highlighted regions.

Saturation weight (WSat ) enables the fusion algorithm to

adapt to chromatic information by advantaging highly satu-

rated regions. This weight map is simply computed (for each

input Ik ) as the deviation (for every pixel location) between

the Rk ,Gk and Bk color channels and the luminance Lk of the

kth input:

WSat =

√

1/3
[

(Rk −Lk)2+(Gk −Lk)2+(Bk −Lk)2
]

(7)

In practice, for each input, the three weight maps are merged

in a single weight map as follows. For each input k, an

aggregated weight map Wk is first obtained by summing up

the three WL , WS , and WSat weight maps. The K aggregated

maps are then normalized on a pixel-per-pixel basis, by

dividing the weight of each pixel in each map by the sum

of the weights of the same pixel over all maps. Formally, the

normalized weight maps W̄k are computed for each input as

W̄k = (Wk + δ)/(
∑K

k=1 Wk + K .δ), with δ denoting a small

regularization term that ensures that each input contributes

to the output. δ is set to 0.1 in the rest of the paper. The

normalized weights of corresponding weights are shown at

the bottom of Fig. 6.

Note that, in comparison with our previous work [35], we

limit ourselves to these three weight maps only, and we do not

compute the exposedness weight map anymore. In addition

to reducing the overall complexity of the fusion process, we

have observed that, when using the two inputs proposed in
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Fig. 8. Overview of our dehazing scheme. Two images, denoted Input 1 and Input 2, are derived from the (too pale) white balanced image, using Gamma
correction and edge sharpening, respectively. Those two images are then used as inputs of the fusion process, which derives normalized weight maps and
blends the inputs based on a multi-scale process. The multi-scale fusion approach is here exemplified with only three levels of the Laplacian and Gaussian
pyramids.

this paper, the exposedness weight map tends to amplify some

artifacts, such as ramp edges of our second input, and to

reduce the benefit derived from the gamma corrected image

in terms of image contrast. We explain this observation as

follows. Originally, in an exposure fusion context [55], the

exposedness weight map had been introduced to reduce the

weight of pixels that are under- or over-exposed. Hence, this

weight map assigns large (small) weight to input pixels that

are close to (far from) the middle of the image dynamic range.

In our case, since the gamma corrected input tends to exploit

the whole dynamic range, the use of the exposedness weight

map tends to penalize it in favor of the sharpened image,

thereby inducing some sharpening artifacts and missing some

contrast enhancements.

C. Naive Fusion Process

Given the normalized weight maps, the reconstructed

image R(x) could typically be obtained by fusing the defined

inputs with the weight measures at every pixel location (x):

R(x) =

K
∑

k=1

W̄k(x)Ik(x) (8)

where Ik denotes the input (k is the index of the inputs -

K = 2 in our case) that is weighted by the normalized

weight maps W̄k . In practice, the naive approach introduces

undesirable halos [35]. A common solution to overcome

this limitation is to employ multi-scale linear [57], [59] or

non-linear filters [60], [61].

D. Multi-Scale Fusion Process

The multi-scale decomposition is based on Laplacian pyra-

mid originally described in Burt and Adelson [57]. The

pyramid representation decomposes an image into a sum of

bandpass images. In practice, each level of the pyramid does

filter the input image using a low-pass Gaussian kernel G, and

decimates the filtered image by a factor of 2 in both directions.

It then subtracts from the input an up-sampled version of the

low-pass image, thereby approximating the (inverse of the)

Laplacian, and uses the decimated low-pass image as the input

for the subsequent level of the pyramid. Formally, using Gl

to denote a sequence of l low-pass filtering and decimation,

followed by l up-sampling operations, we define the N levels

Ll of the pyramid as follows:

I (x) = I (x)−G1 {I (x)}+G1 {I (x)} � L1 {I (x)}+G1 {I (x)}

= L1 {I (x)}+G1 {I (x)}−G2 {I (x)}+G2 {I (x)}

= L1 {I (x)}+L2 {I (x)}+G2 {I (x)}

= . . .

=

N
∑

l=1

Ll {I (x)} (9)

In this equation, Ll and Gl represent the l th level of the

Laplacian and Gaussian pyramid, respectively. To write the

equation, all those images have been up-sampled to the orig-

inal image dimension. However, in an efficient implementa-

tion, each level l of the pyramid is manipulated at native

subsampled resolution. Following the traditional multi-scale

fusion strategy [55], each source input Ik is decomposed

into a Laplacian pyramid [57] while the normalized weight

maps W̄k are decomposed using a Gaussian pyramid. Both

pyramids have the same number of levels, and the mixing of

the Laplacian inputs with the Gaussian normalized weights is

performed independently at each level l:

Rl (x) =

K
∑

k=1

Gl

{

W̄k(x)
}

Ll {Ik(x)} (10)

where l denotes the pyramid levels and k refers to the number

of input images. In practice, the number of levels N depends
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Fig. 9. Comparative results of different white balancing techniques. From left to right: 1. Original underwater images taken with different cameras; 2. Gray
Edge [40]; 3. Shades of Gray [41]; 4. Max RGB [42]; 5. Gray World [43]; 6. Our previous white balancing technique [35]; 7. Our new white balancing
technique. The cameras used to take the pictures are Canon D10, FujiFilm Z33, Olympus Tough 6000, Olympus Tough 8000, Pentax W60, Pentax W80,
Panasonic TS1. The quantitative evaluation associated to these images is provided in Table I.

TABLE I

WHITE BALANCING QUANTITATIVE EVALUATION BASED ON CIEDE2000 AND Qu [63] MEASURES

on the image size, and has a direct impact on the visual quality

of the blended image. The dehazed output is obtained by

summing the fused contribution of all levels, after appropriate

upsampling.

By independently employing a fusion process at every scale

level, the potential artifacts due to the sharp transitions of the

weight maps are minimized. Multi-scale fusion is motivated

by the human visual system, which is very sensitive to

sharp transitions appearing in smooth image patterns, while

being much less sensitive to variations/artifacts occurring

on edges and textures (masking phenomenon). Interestingly,

a recent work has shown that the multiscale process

can be approximated by a computationally efficient and

visually pleasant single-scale procedure [62]. This single-

scale approximation should definitely be encouraged when

complexity is an issue, since it also turns the multiresolution

process into a spatially localized procedure.

V. RESULTS AND DISCUSSION

In this section, we first perform a comprehensive validation

of our white-balancing approach introduced in Section IV.

Then, we compare our dehazing technique with the existing

specialized underwater restoration/enhancement techniques.

Finally, we prove the utility of our approach for applications

such as segmentation and keypoint matching.

A. Underwater White Balancing Evaluation

Since in general the color is captured differently by var-

ious cameras, we first demonstrate that our white balancing
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Fig. 10. Comparison to different outdoor (He et al. [19] and Ancuti and Ancuti [23]) and underwater dehazing approaches (Drews, Jr., et al. [28],
Galdran et al. [29], Emberton et al. [30] and our initial underwater approach [35]). The quantitative evaluation associated to these images is provided
in Table II.

approach described in Section III is robust to the camera

settings. Therefore, we have processed a set of underwater

images that contain the standard Macbeth Color Checker taken

by seven different professional cameras (see Fig. 9), namely

Canon D10, FujiFilm Z33, Olympus Tough 6000, Olympus

Tough 8000, Pentax W60, Pentax W80, Panasonic TS1. All

the images have been taken approximately one meter away

from the subject. The cameras have been set to their widest

zoom setting, except for the Pentax W60, which was set to

approximately 35mm. Due to the illumination conditions, flash

was used on all cameras. On this set of images, we applied

the following methods: the classical white-patch max RGB

algorithm [42], the Gray-World [43], but also the more recent

Shades-of-Grey [41] and Gray-Edge [40]. We compare those

methods with our proposed white-balancing strategy in Fig. 9.

To analyze the robustness of white balancing, we measure the

dissimilarity in terms of color difference between the reference

ground truth Macbeth Color Checker and the corresponding

color patch, manually located in each image.

Color differences are better represented in the perceptual

C I E L∗a∗b∗ color space, where L∗ is the luminance, a∗ is the

color on a green-red scale and b∗ is the color on a blue-yellow

scale. Relative perceptual differences between any two colors

in C I E L∗a∗b∗ can be approximated by employing measures

such as CIE76 and CIE94 that basically compute the Euclidean

distance between them. A more complex, yet more accurate,

color difference measure, which solves the perceptual unifor-

mity issue of CIE76 and CIE94, is CIEDE2000 [68], [69].

CIEDE2000 yields values in the range [0,100], with smaller

values indicating small color difference, and values less

than 1 corresponding to visually imperceptible differences.

Additionally, our assessment considers the index Qu [63]

that combines the benefits of SSIM index [70] and Euclidean

color distance.
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TABLE II

UNDERWATER DEHAZING EVALUATION BASED ON PCQI [64], UCIQE [65] AND UIQM [66] METRICS. THE LARGER THE

METRIC THE BETTER. THE CORRESPONDING IMAGES (SAME ORDER) ARE PRESENTED IN FIG.10

Fig. 11. Underwater dehazing of extreme scenes characterized by non-uniform illumination conditions. Our method performs better than earlier approaches
of Treibitz and Schechner [67], He et al. [19], Emberton et al. [30] and Ancuti et al. [35].

Fig. 12. Underwater video dehazing. Several video frames processed by
our approach. The comparative videos can be visualized on:https://www.
youtube.com/watch?v=qspdHSTsCuQfeature=youtu.be

Table I shows the quantitative results obtained with the

CIEDE2000 metric and index Qu . As can be seen, these

professional underwater cameras introduce various color casts,

and max RGB and Grey-Edge methods are not able to remove

entirely these casts. The Gray-World and the Shades-of-Grey

strategy show better results, but our proposed white balance

strategy shows the highest robustness in preserving the color

appearance for different cameras.

B. Underwater Dehazing Evaluation

The proposed strategy was tested for real underwater

image and videos taken from different available amateur

and professional photographer collections, captured using

various cameras and setups. Note that we process only 8-bit

data format, making our validation relevant for common

low-end cameras. For videos, the reader is referred to Fig. 12.

Interestingly, our fusion-based algorithm has the advantage

to employ only a reduced set of parameters that can be

automatically set. Specifically, the white balancing process

relies on the single parameter α, which is set to 1 in all

our experiments. For the multi-scale fusion, the number of

decomposition levels depends on the image size, and is

defined so that the size of the smallest resolution reaches a

few tenth of pixels (e.g. 7 levels for an 600×800 image size).

Fig. 10 presents the results obtained on ten underwater

images, by several recent (underwater) dehazing approaches.

Table II provides the associated quantitative evaluation, using

three recent metrics: PCQI [64], UCIQE [65], and UIQM [66].

While PCQI is a general-purpose image contrast metric, the

UCIQE and UIQM metrics are dedicated to underwater image

assessment. UCIQE metric was designed specifically to quan-

tify the nonuniform color cast, blurring, and low-contrast that

characterize underwater images, while UIQM addresses three

important underwater image quality criterions: colorfulness,

sharpness and contrast.



390 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 13. Comparative results with the recent techniques of Lu et al. [31], Fattal [32] and Gisbson et al. [50].

Fig. 14. In turbid water, the blue component is strongly attenuated [31].
Underwater images appear yellowish, and their enhancement requires both
red and blue channel compensation, as defined in Equations (4) and (5),
respectively.

As can be observed, the outdoor dehazing approaches of

He et al. [19] and Ancuti and Ancuti [23] perform poorly for

the underwater scenes. As discussed previously, even though

there are clear similarities between light propagation in hazy

outdoor and in underwater scenes, the underwater dehazing

problem is much more challenging.

On the other hand, recent specialized underwater dehazing

approaches of Emberton et al. [30] and Galdran et al. [29]

show higher robustness than outdoor methods in recovering

the visibility of the considered scenes. However, as attested

by the last column in Fig. 10, our fusion-based approach

outperforms [29], [30], having similar and in general higher

values of the PCQI, UCIQE and UIQM metrics.

Compared with our initial multiscale approach presented

in [35], the method introduced in this journal paper is char-

acterized by higher robustness for extreme underwater cases,

with turbid sea water and non-uniform artificial illumination.

This is demonstrated by the results shown in Fig. 11 that

depict two challenging underwater scenes. As can be seen, the

proposed approach is able to perform better than our previous

approach both in terms of contrast and color enhancement.

Moreover, Fig. 11 presents the results yielded by the polar-

ization technique of Treibitz and Schechner [67], which uses

two frames taken with wide-field polarized illumination. Even

though it processes only one image, our technique is able to

produce an enhanced image with more details.

To complete our visual assessment, Fig. 13 compares our

work with the three recent techniques of Lu et al. [31],

Fig. 15. Image segmentation. Processing underwater images with our method
helps in segmenting properly. The segmentation result is more consistent
while the filtered boundaries are perceptually more accurate. Here we employ
the G AC + + [71] segmentation that represents a seminal geodesic active
contours method.

Fattal [32], and Gisbson et al. [50]. The PCQI and UCIQE

metrics are provided for each picture, and are generally better

for our approach.

Fig. 14 considers the extreme cases observed in turbid water,

where the images appear yellowish due to a strong attenuation

of the blue channel. For such images, compensating the red

attenuation appears to be insufficient. However, interestingly,

we observe that extending the color compensation to the blue

component, as defined in Equation (5), significantly improves

the enhanced images.

Overall, we conclude that our approach generally results

in good perceptual quality, with significant enhancement of

the global contrast, the color, and the image structure details.

The main limitations are related to the fact that: (i) color

can not always be fully restored, and (ii) some haze is

maintained, especially in the scene regions that are far from

the camera. Those limitations are however limited, especially

when compared to previous works. The good performance
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Fig. 16. Local feature points matching. To prove the usefulness of our approach for an image matching task we investigate how the well-known SIFT
operator [72] behaves on a pair of original and dehazed underwater images. Applying standard SIFT on our enhanced versions (bottom) improves considerably
the point matching process compared to processing the initial image (top), and even compared with our initial conference version of our proposed fusion-based
dehazing method [35] (middle). For the left-side pair, the SIFT operator defines 3 good matches and one mismatch when appied on the original image. In
contrast, it extracts 43 valid matches (without any mismatch) when applied to our previous conference version [35], and 90 valid matches (with 2 mismatches)
when applied on the pair of images derived from this journal paper. For the right-side pair, SIFT finds 4 valid matches between the original images, to be
compared with 14 valid matches for images enhanced with our initial approach [35], and 34 valid matches for the images derived from this paper.

of our approach is confirmed by the few more examples

presented in Fig. 16 and 15. Through this visual assessment,

we also observe that, despite the gray-world assumption might

obviously not always be strictly valid, the enhanced images

derived from our white-balanced image are constantly visually

pleasant. It is our belief that the gamma correction involved in

the multiscale fusion (see Fig. 1) helps in mitigating the color

cast induced by an erroneous gray-world hypothesis. This is

for example illustrated in Fig. 6, where input 1- obtained

after gamma correction- appears more colorful than second

input 2, which corresponds to a sharpened version of the white

balanced image.

C. Applications

We found our technique to be suitable for computer vision

applications, as briefly described in the following section.

Segmentation aims at dividing images into disjoint and

homogeneous regions with respect to some characteristics

(e.g. texture, color). In this work, we employ the G AC + +

segmentation algorithm [71], which corresponds to a seminal

geodesic active contours method (variational PDE). Fig. 15

shows that the segmentation result is more consistent when

segmentation is applied to images that have been processed

by our approach.

Local feature points matching is a fundamental task of

many computer vision applications. We employ the SIFT [72]

operator to compute keypoints, and compare the keypoint

computation and matching processes for a pair of underwater

images, with the one computed for the corresponding pair of

images enhanced by our method (see Fig. 16). We use the

original implementation of SIFT applied exactly in the same

way in both cases. The promising achievements presented in

Fig. 16 demonstrate that, by enhancing the global contrast and

the local features in underwater images, our method signifi-

cantly increases the number of matched pairs of keypoints.

VI. CONCLUSIONS

We have presented an alternative approach to enhance

underwater videos and images. Our strategy builds on the

fusion principle and does not require additional information

than the single original image. We have shown in our exper-

iments that our approach is able to enhance a wide range

of underwater images (e.g. different cameras, depths, light

conditions) with high accuracy, being able to recover important

faded features and edges. Moreover, for the first time, we

demonstrate the utility and relevance of the proposed image

enhancement technique for several challenging underwater

computer vision applications.
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