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Color by Correlation: A Simple, Unifying
Framework for Color Constancy

Graham D. Finlayson, Steven D. Hordley, and Paul M. Hubel

Abstract—This paper considers the problem of illuminant estimation: how, given an image of a scene, recorded under an unknown
light, we can recover an estimate of that light. Obtaining such an estimate is a central part of solving the color constancy problem—that
is of recovering an illuminant independent representation of the reflectances in a scene. Thus, the work presented here will have
applications in fields such as color-based object recognition and digital photography, where solving the color constancy problem is
important. The work in this paper differs from much previous work in that, rather than attempting to recover a single estimate of the
illuminant as many previous authors have done, we instead set out to recover a measure of the likelihood that each of a set of possible
illuminants was the scene illuminant. We begin by determining which image colors can occur (and how these colors are distributed)
under each of a set of possible lights. We discuss in the paper how, for a given camera, we can obtain this knowledge. We then
correlate this information with the colors in a particular image to obtain a measure of the likelihood that each of the possible lights was
the scene illuminant. Finally, we use this likelihood information to choose a single light as an estimate of the scene illuminant.
Computation is expressed and performed in a generic correlation framework which we develop in this paper. We propose a new
probabilistic instantiation of this correlation framework and we show that it delivers very good color constancy on both synthetic and
real images. We further show that the proposed framework is rich enough to allow many existing algorithms to be expressed within it:
the gray-world and gamut-mapping algorithms are presented in this framework and we also explore the relationship of these algorithms
to other probabilistic and neural network approaches to color constancy.

Index Terms—Color constancy, illuminant estimation, correlation matrix.
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1 INTRODUCTION

AN image of a three-dimensional scene depends on a
number of factors. First, it depends on the physical
properties of the imaged objects, that is on their reflectance
properties. But, it also depends on the shape and orientation
of these objects and on the position, intensity, and color of
the light sources. Finally, it depends on the spectral
sampling properties of the imaging device. Various appli-
cations require that we be able to disambiguate these
different factors to recover the surface reflectance properties
of the imaged objects or the spectral power distribution
(SPD) of the incident illumination. For example, in a
number of applications ranging from machine vision tasks,
such as object recognition, to digital photography, it is
important that the colors recorded by a device are constant
across a change in the scene illumination. As an illustration,
consider using the color of an object as a cue in a
recognition task. Clearly, if such an approach is to be
successful, then this color must be stable across illumination
change [28]. Of course, it is not stable since changing the
color of the illumination changes the color of the light
reflected from an object. Hence, a preliminary step in using
color for object recognition must be to remove the effect of
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illumination color from the object to be recognized.
Accounting for the prevailing illumination is important
in photography, too; it is known [1], [3] that the human
visual system corrects, at least partially, for the prevailing
scene illumination; therefore, if a photograph is to be an
accurate representation of what the photographer saw, the
photograph must be similarly corrected.

Central to solving the color constancy problem is
recovering an estimate of the scene illumination and it is
that problem which is the focus of this paper. Specifically,
we consider how, given an image of a scene taken under an
unknown illuminant, we can recover an estimate of that
light. We present in this paper, a simple new approach to
solving this problem, which requires only that we have
some knowledge about the range and distribution of image
colors which can be recorded by a camera under a set of
possible lights. We discuss later in the paper how such
knowledge can be obtained.

The work presented here builds on a range of computa-
tional theories previously proposed by other authors [21],
[23], [8], [9], [4], [5], [27], [29], [14], [10]. The large number of
such theories illustrates that the problem is difficult to solve.
Part of the difficulty is due to the fact that the problem is
inextricably tied up with other confounding phenomena: We
have to account for changes in image intensity and color
which are due to the shape of the objects, viewing and
illumination geometry, as well as those due to changes in the
spectral power distribution of the illuminant and the
spectral reflectance properties of the imaged objects. Thus,
to simplify the problem, many researchers [21], [23], [14], [8]
have considered a simplified two-dimensional world in
which all objects are flat, matte, Lambertian surfaces,
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uniformly illuminated. In this idealized scenario, image
formation can be described by the following simple
equation:

b= [ BOS ROV 1)

In this equation, S*(\) represents the surface reflectance at a
point x in the scene: It defines what fraction of the incident
light is reflected on a per wavelength basis. E()) is the
spectral power distribution of the incident illuminant which
defines how much power is emitted by the illuminant at
each wavelength. R;()) is the relative spectral response of
the imaging device’s kth sensor, which specifies what
proportion of the light incident at the sensor is absorbed at
each wavelength. These three terms when multiplied
together and the product integrated over the interval w
(the range of wavelengths to which the sensor is sensitive)
gives pj: the response of the imaging device’s kth sensor at
pixel z. It is clear from (1) that changing either the surface
reflectance function or the spectral power distribution of the
illuminant will change the values recorded by the imaging
device. The task for a color constancy algorithm is to
transform the p} so that they become independent of E(\)
and, hence, correlate with S(\). Equivalently, the problem
can be posed as that of recovering an estimate of £(\) since
with this knowledge, it is relatively straightforward [19] to
recover an image which is independent of the prevailing
illumination.

Even with the simplified model of image formation in
(1), the problem remains difficult to solve. To see why,
consider a typical imaging device with three classes of
sensors: k=3 (it is common to refer to the triplet of
sensor responses (p{,ps,p5) as R, G, and B, or simply
RGB—Dbecause typically sensors measure the long (red),
medium (green), and short (blue) wavelengths, respec-
tively. These expressions are used interchangeably through-
out this paper). Now, if there are n different surfaces in an
image, then we have 3n knowns from (1). From these
equations, we must estimate parameters for the n surfaces
and a single illuminant. Surface reflectance functions and
illuminant SPDs, as well as sensor response functions, are
typically specified by their value at a number (m) of discrete
sample points within the visible spectrum. In this case, the
image formation equation (1) can be rewritten as:

i=m

pi =Y BE)ST () Ri(M)AN, (2)
i=1

where the );s are the sample points and A\ is the width
between them. If surfaces and illuminants are each
described by m parameters in this way, then we have a
total of m(n + 1) parameters to solve for. It is clear that the
number of knowns 3n can never be bigger than the number
of unknowns m(n+ 1) regardless of how many distinct
surfaces appear in a scene.

Fortunately, it is often unnecessary to recover the full
spectra of lights and surfaces, rather it is sufficient to
represent a light by the response of a device to a perfect
diffuser viewed under it and, similarly, to represent a
surface by the response it induces under some canonical
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light. Continuing with the case of an imaging device with
three classes of sensor, this implies that lights and surfaces
are described by three parameters each, so that the total
number of parameters to be solved for is 3n+ 3 and the
problem is thus further constrained. Nevertheless, the
problem is still underconstrained; there are three more
unknowns than knowns to solve for.

In this paper, we make one further simplification of the
problem: rather than representing lights and surfaces by a
3-vector of sensor responses, (p1,p2,p3)’, we instead
represent them in terms of their 2D chromaticity vectors,
(c1,¢2)", calculated from the original sensor response by
discarding intensity information. There are many ways in
which we might discard intensity information: One com-
mon way is to divide two of the sensor responses by the
response of the third:

P . P
pi 2 pt

c =
Ignoring intensity information means that changes in surface
color due to geometry or viewing angle, which change only
intensity, will not affect our computation and, in addition, we
have reduced the problem from a 3D one to a 2D one.
Furthermore, we point out that, under the model of image
formation described by (1), illumination can only be
recovered up to a multiplicative constant." However, even
with this simplification, we still have 2(n + 1) unknowns and
2n knownes, so that the problem remains underconstrained.

Many authors [21], [5], [18], [23], [8] have tried to deal with
the underconstrained nature of the color constancy problem
by making additional assumptions about the world. For
example, Land [21] assumes that every image contains a
white patch, hence, there are now only 3n unknowns and
3n equations. Another assumption [5], [18] is that the average
reflectance of all surfaces in a scene is achromatic. In this case,
the average color of the light leaving the surface will be the
color of the incident illumination. Yet, another approach [23],
[8] has been to model lights and surfaces using low-
dimensional linear models and to develop recovery schemes
which exploit the algebraic features of these models. Other
authors have tried to exploit features not present in the
idealized Mondrian world, such as specularities [22], [27],
[29], shadows [11], or mutual illumination [15], to recover
information about the scene illuminant. Unfortunately, the
assumptions made by all these algorithms are quite often
violated in real images so that many of the algorithms work
only inside the lab [15], [22], [29] and, while others can work
on real images, their performance is still short of good
enough color constancy [16].

The fact that the problem is underconstrained implies
that, in general, the combination of surfaces and illuminant
giving rise to a particular image is not unique. So, setting
out to solve for a unique answer (the goal of most
algorithms) is perhaps not the best way to proceed. This

1. Within our model of image formation, the light incident at the imaging
device is the product of illuminant spectral power and surface reflectance;
E(X)S(X). Clearly, the product sE()\)@ will result in the same incident
light for any value of s. Hence, F(\) can only be recovered up to a

multiplicative constant.
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point of view has only been considered in more recent
algorithms. For example, the gamut-mapping algorithms
developed by Forsyth [14] and, later, by Finlayson [10] and
Finlayson and Hordely [12], do not, in the first instance,
attempt to find a unique solution to the problem; rather, the
set of all possible solutions are found and, from this
set, the best solution is chosen. Other authors [4], [26], [9],
recognizing that the problem does not have a unique
solution, have tried to exploit information in the image to
recover the most likely solution. Several authors [4], [9] have
posed the problem in a probabilistic framework and, more
recently, Sapiro [26], [25] has developed an algorithm based
on the Probabilistic Hough Transform. The neural network
approach [17] to color constancy can similarly be seen as a
method of dealing with the inherent uncertainty in the
problem. While these algorithms which model and work
with uncertainty represent an improvement over earlier
attempts at solving the color constancy problem, none of
them can be considered the definitive solution. They are
neither good enough to explain our own color constancy [3],
nor are they good enough to support other visual tasks such
as object recognition [16].

In Section 2, we address the limitations of existing
algorithms by presenting a new illuminant estimation
algorithm [20] within a general correlation framework. In this
framework, illuminant estimation is posed as a correlation
of the colors in an image and our prior knowledge about
which colors can appear under which lights. The light that
is most correlated with the image data is the most likely
illuminant. Intuitively, this idea has merit. If the colors in an
image “look” more yellow than they ought to, then one
might assume that this yellowness correlated with a yellow
illuminant. The correlation framework implements this idea
in a three step process. First, in a preprocessing step, we
code information about the interaction between image
colors and illuminants. Second, we correlate this prior
information with the information present in a particular
image. That is, the colors in an image are used to derive a
measure of the likelihood that each of the possible
illuminants was the scene illuminant. Finally, these like-
lihoods are used to recover an estimate of the scene
illuminant. We develop a particular instantiation of this
framework—a new correlation algorithm—which has a
number of attractive properties. It enforces the physical
realisability of lights and surfaces, it is insensitive to
spurious image colors, it is fast to compute, and it calculates
the most likely answer. Significantly, we can also calculate
the likelihood of all possible illuminants; effectively, we can
return the best answer together with the error bars.

We further show (in Section 3) that the correlation
framework we have developed is general and can be used
to describe many existing algorithms. We will see how
algorithms ranging from Gray-World [5] to Gamut Map-
ping [14], [10] to the Neural Network Approach [17], relate
to different definitions of color, likelihood, and correlation;
yet, in all cases, the same correlation calculation results.
Moreover, by examining these algorithms in the same
framework, we will come to understand how our new
simple algorithm builds on and, more importantly, im-
proves upon other algorithms. Furthermore, we will show

1211

that algorithms such as gamut mapping, previously
criticized for their complexity, are, in fact, no more complex
than the simplest type of color constancy computation.

Finally, in Section 4, we present experimental evidence to
show that our new algorithm formulated in this framework
does provide very good color constancy: It performs better
than the other algorithms we tested.

2 CoLOR BY CORRELATION

We pose the color constancy problem as that of recovering
an estimate of the scene illumination from an image of a
scene taken under an unknown illuminant since, from this
estimate, it is relatively straightforward to transform image
colors to illuminant independent descriptors [19]. Here, we
restrict attention to the case of an imaging system with three
classes of sensor. In such a case, it is not possible to recover
the full spectral power distribution of the illuminant; so,
instead, an illuminant with spectral power distribution E(X)
is characterized by p”: The response of the imaging device
to an achromatic surface viewed under E()). An estimate of
the illuminant will accordingly be a 3-vector sensor
response, »F. However, as pointed out earlier, since we
cannot recover the overall intensity of the illuminant, but
only its chromaticity, we instead represent an illuminant by
its 2D chromaticity vector cP, derived from the 3-vector of
sensor responses by discarding intensity information (for
example, using (3)). We represent surfaces in a similar
fashion—specifically, we define surface color by the
chromaticity of the response which the surface induces in
a device when viewed under some canonical illuminant.

The chromaticity coordinates define a two-dimensional
space of infinite extent. However, to help us formulate our
solution to the illuminant estimation problem, we make two
further assumptions. First, we assume that a given device
will produce responses only within a finite region of this
space—for a device such as a digital camera giving 8-bit
data, this is clearly valid since sensor responses will be
integers in the range 0 to 255 and, using (3), calculable
chromaticity coordinates will be in the range 1/255 to 1.
Second, we assume that we can partition this space into
N x N uniform regions. This assumption is justified on two
grounds. First, all devices have some measurement error,
which implies that all chromaticities within a region
defined by this error must be considered equal. Second,
for many applications, lights and surfaces with chromati-
cities within a certain distance of one another can effectively
be considered to have the same color. Exactly how finely we
need to partition this space—how big N should be—will
depend on the application. We consider this issue later in
the paper.

Partitioning the chromaticity space in this way implies
that there are at most N? distinct illuminants and N?
distinct surfaces—so that there can be at most N? distinct
chromaticities in an image. In practice, the range of
illuminants which we encounter in the world is much more
restricted than this, so that the number (N;;) of possible
illuminants will be much smaller than N2. For convenience,
we define an Nj; x 2 matrix C;; whose ith row is the
chromaticity of the ith illuminant. And, we use the notation
Cin, to represent the N, x 2 matrix of image chromaticities.
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Fig. 1. Three steps in building a correlation matrix. (a) We first characterize which image colors (chromaticities) are possible under each of our
reference illuminants. (b) We use this information to build a probability distribution for each light. (c) Finally, we encode these distributions in the

columns of our matrix.

We now solve for color constancy in three stages. First, we
build a correlation matrix to correlate possible image colors
with each of the set of N;; possible scene illuminants (see
Fig. 1). For each illuminant, we characterize the range of
possible image colors (chromaticities) that can be observed
under thatlight (Fig. 1a). More details on how this canbe done
are given later in the paper. This information is used tobuild a
probability distribution (Fig. 1b) which tells us the likelihood
of observing an image color under a given light. The
probability distributions for each light form the columns of
a correlation matrix A (Fig. 1c) (each row of the matrix
corresponds to one of the N x N discrete cells of the
partitioned chromaticity space). Given a correlation matrix
and an image whose illuminant we wish to estimate, we
perform the following two steps (illustrated in Fig. 2). First,
we determine which image colors are present in the image
(Fig. 2a). This information is coded in a vector v of ones and
zeros corresponding to whether or not a given chromaticity
is present in the image. To this end, we define two
operations chist() and thresh(). The operation chist() returns
an N? x 1 vector h:

h(z; * y;) = count;/ Npiz

Nyia 1if Cin(y) =
count; = Z] -1 G 9= { 0 othe;r;lvise.

(zi,yi)  (4)

that is, the ith element of h holds the number of times a
chromaticity corresponding to (z;,y;) occurs in the image,
normalized by N,;,, the total number of pixels in the image.
For example, if chromaticity (z;, yl)f occurs 10 times in the
image, then h(z;*y;) =10/N,;,. The second operation,
thresh(h), ensures that each image chromaticity is counted
only once, regardless of the number of times it occurs in the
image. Formally,

1, if >0
thresh(z) = {0, otherwise. (5a)
thresh([hy, ha, -, hy]") =
(R R,
[thresh(hy),thresh(hy), - -, thresh(hy)]'.
With these definitions, v can be expressed:
= thresh(chist(Cin)). (6)

Then, we determine a measure of the correlation between
this image data v and each of the possible illuminants. The
usual expression of a correlation is as a vector dot-product.
For example, if a and b are vectors, then they are strongly
correlated if a.b is large. We use a similar dot-product
definition of correlation here. Each column of the correla-
tion matrix M corresponds to a possible illuminant so that
the elements of the vector returned by the product v' M are a



FINLAYSON ET AL.: COLOR BY CORRELATION: A SIMPLE, UNIFYING FRAMEWORK FOR COLOR CONSTANCY

1213

y
o ol xl,yn| 06 03 03 09 02 06 0.l 0.0\ )
(e (| RS ™ Matrix M
—— o X2,¥2| 04 03 01 07 02 05 02 00
o T
.,
X
L]
y i1 ill2 ill3 4 ill5 illée ill7 ill 8
— | 1.2 0.5 1.3 1.5 0.9 1.2 08 L6 n vl M
/\_/
(@) (b)

Fig. 2. Solving for color constancy in three stages. (a) Histogram the chromaticities in the image. (b) Correlate this image vector v with each column
of the correlation matrix. (c) This information is used to find an estimate of the unknown illuminant, for example, the illuminant which is most

correlated with the image data.

measure of how strongly the image data correlates with
each of the possible illuminants. Fig. 2 is a graphical
representation of this process. The highlighted rows of the
correlation matrix correspond to chromaticities present in
the image (entries of v which are one). To obtain a
correlation measure for an illuminant, we simply sum the
highlighted elements of the corresponding column. The
result of this is a vector, [ (Fig. 2b), whose elements express
the degree of correlation of each illuminant—the bigger an
element of this vector, the greater the correlation between
the image data and the corresponding illuminant:

I = oM = thresh(chist(Cyy))' M. (7

The final stage in solving for color constancy is to recover an
estimate of the scene illuminant based on the correlation
information (Fig. 2c). For example, we could choose the
illuminant which is most highly correlated with the image
data:

ef = thresh2(thresh(chist(Ciy,)) M)Ciy, (8)

where thresh2() returns a vector with entries correspond-
ing to:

1, if by = max(h)
thresh2(h) = I h; = {O, otherwise. 9)
Equation (8) represents our framework for solving color
constancy. To completely specify the solution, however, we
must define the entries of the correlation matrix M. Given a
set of image data Cj,, we would like to recover
Pr(E|Cy,)—the probability that E was the scene illuminant
given Cjy,. If we know the probability of observing a certain
chromaticity ¢, under illuminant E: Pr(c|E), then Bayes’

rule [7] tells us how to calculate the corresponding

probability Pr(E|c): the probability that the illuminant
was I, given that we observe chromaticity c:

Pr(c|E)Pr(E)
Pr(c)

Here, Pr(FE) is the probability that the scene illuminant is E,
and Pr(c) is the probability of observing the chromaticity ¢,
and the set of possible illuminants is defined by the
Niy x 2 matrix Cy and the range of possible chromaticities
is defined by the N x N partitions of the chromaticity space.
From (10), it follows that the probability that the illuminant
was E, given the image data Cj,,, is given by:

Pr(Elc) = (10)

Pr(Cin|E)Pr(E)

PT(E|CZm) = P’I“(CZ )

(11)
Now, noting that for a given image Pr(Cj,,) is constant and
if we assume that image chromaticities are independent,
then we can rewrite (11) as:

Pr(E|Cim) = | [ Pr(cBE)|Pr(E). (12)

VeeCip

Furthermore, if we assume that all illuminants are equally
likely, then we have:

Pr(E|Cin) =k [] PriclE),

VeeCin

(13)

where k is some constant. Of course, in general, it is not
clear that all illuminants will occur with the same
frequency; however, in the absence of information about
the frequency of occurrence of individual lights, it makes
sense to assume that all are equally likely. For some
applications, it may be possible to provide such prior
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information and, in this case, with a slight modification to
the framework, such information can be incorporated into
the algorithm. For now, we simply assume that all lights are
equally likely, but we also remind the reader that we are not
considering all possible chromaticities as the set of potential
illuminants, but, rather, we use a restricted set correspond-
ing to “reasonable” lights.
Now, we define a likelihood function:

UE|Cim) = ) log(Pr(c|E))

VeeCin

(14)

and note that the illuminant which maximizes I(E|C;,,) will
also maximize Pr(E|Cj,,). The log-probabilities measure the
correlation between a particular chromaticity and a parti-
cular illumination. We can then define a correlation matrix
MBayes whose ijth entry is:

log(Pr(image chromaticity 4|illuminant j)).

It follows that the correlation vector [ defined in (7) becomes
the log-likelihood I(E|Cipn):

(E|Cy) = thresh(chist(Cim)) Mpayes (15)

and our estimate of the scene illuminant can be written:

of = thresh?(thresh(chist(C’m))t]tifgayes)C’m. (16)

Equation (16) defines a well-founded maximumd-likelihood
solution to the illuminant estimation problem. It is
important to note that, since we have computed likelihoods
for all illuminants, we can augment the illuminant
calculated in (16) with error bars. We could do this by
returning the maximume-likelihood answer defined in (16)
together with the likelihoods for each possible illuminant,
defined in (15). These likelihoods tell us how much
confidence we should have in the maximum-likelihood
answer. Alternatively, rather than just returning the most-
likely answer, we could return this answer together with
other illuminants which had similar likelihoods. That is, we
could return a set of plausible illuminants Cjqysiie Which
we define:

Chtausivie = diag(thresh3(thresh(chist(Cip))' Mpayes))Cin,
(17)
where we replace the thresholding function thresh2() used

in (16) with a new function thresh3(), such that:

if x>m,
otherwise

thresh3(x) =1,

thresh3(z) =0, (18)

and m is chosen in an adaptive fashion such that
m < mazx(h). The function diag(a) returns a diagonal matrix
whose nonzero entries are the elements of a so that Cpgusitie
is an N;; x 2 matrix whose nonzero rows correspond to
possible lights. This enables us to inform the user that the
illuminant was, for example, either yellow Tungsten or cool
white fluorescent, but that it was definitely not blue sky
daylight. Once more, we can return Cpusine together with
the likelihoods of all the illuminants. We believe that this is
a major strength inherent in our method and will be of
significant value in other computer vision applications. For
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example, face tracking based on color can fail if the color of
the skin (defined in terms of image colors) varies too much.
In the context of the current paper, this is not a problem so
long as the variation is explained by the color constancy
computation.

3 OTHER ALGORITHMS IN THE FRAMEWORK

Equation (8) encapsulates our solution to the illuminant
estimation problem. At the heart of this framework is a
correlation matrix which encodes our knowledge about the
interaction between lights and image colors. We show in
this section that many existing algorithms can be reformu-
lated in this same framework simply by changing the
entries of the correlation matrix so as to reflect the
assumptions about the interactions between lights and
image colors made (implicitly) by these algorithms.

3.1 Gray-World

We begin with the so-called Gray-World algorithm which as
well as being one of the oldest and simplest is still widely
used. This algorithm has been proposed in a variety of
forms by a number of different authors [5], [18], [21] and is
based on the assumption that the spatial average of surface
reflectances in a scene is achromatic. Since the light
reflected from an achromatic surface is changed equally at
all wavelengths, it follows that the spatial average of the
light leaving the scene will be the color of the incident
illumination. Buchsbaum [5] who was one of the first to
explicitly make the gray-world assumption, used it,
together with a description of lights and surfaces as low-
dimensional linear models [6], to derive an algorithm to
recover the spectral power distribution of the scene
illuminant £()) and the surface reflectance functions S(A).
To recover an estimate of the scene illuminant in the form
we require, that is, in terms of the sensor response of a
device to the illuminant, is trivial, we simply need to take
the average of all sensor responses in the image. That is:

QE = mean(RGBi,,). (19)
Equation (19) can equivalently be written as:
p¥ = hist(RGB;,)'TRG By, (20)

where RGB;; and RG B, respectively, characterize the set
of all possible illuminants and the set of image pixels in
camera RGB space (they are the 3D correlates of Cj; and Cjy,
defined earlier). The operation hist() is chist() modified to
work on RGBs rather than chromaticities and the matrix Z is
the identity matrix. In this formulation, 7 replaces the
correlation matrix Mpq,.s and, as before, can be interpreted
as representing our knowledge about the interaction
between image colors and surfaces. In this interpretation,
the columns and rows of Z represent possible illuminants
and possible image colors, respectively. Hence, 7 tells us
that given a sensor response p in an image, the only
illuminant consistent with it is the illuminant characterized
by the same sensor response. Correspondingly, the vector

1 = hist(RGB,,)'T (21)
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whose elements contain the number of image colors
consistent with each illuminant, can be interpreted as a
measure of the likelihood that each illuminant (each distinct
RGB present in the image) is the scene illuminant. Based on
these likelihoods, we calculate an estimate of the scene
illuminant by taking the weighted average of all illumi-
nants. For example, if (200, 10,200)" appears in an image,
then (200, 10,200)" could be the illuminant color. Equally, if
(100,50, 20)" appears in the image, it too is a candidate
illuminant. If both image colors appear in the image, then
according to Z they are both possible candidates for the
illuminant. The mean estimate of the two provides a well-
founded statistical estimate of the illuminant relative to the
priors we have used (the diagonal matrix 7). In fact, this
example highlights one of the problems with using these
priors since, according to our model of image formation
((1)), if either of these RGBs is considered the RGB of the
illuminant, then the other cannot possibly be so.

While it is often used for color constancy, the Gray-
World algorithm has a number of limitations. First,
Gershon et al. [18] have pointed out that the spatial average
computed in (19) is biased towards surfaces of large spatial
extent. They proposed a modified algorithm which alle-
viates this problem by segmenting the image into patches of
uniform color prior to estimating the illuminant. The sensor
response from each segmented surface is then counted only
once in the spatial average, so that surfaces of different size
are given equal weight in the illuminant estimation stage. It
is trivial to add this feature in our framework; we simply
need to apply the thresholding operation thresh(), defined
in (5), to the output from hist():

p¥ = thresh(hist(RGB;,)" ) I RGBy. (22)

A second limitation of the Gray-World algorithm is high-
lighted by (20)—the identity matrix 7 does not accurately
represent our knowledge about the interaction of lights and
surfaces. Improving color constancy then, amounts to
finding matrices such as Mgy, defined above which more
accurately encode that knowledge.

3.2 3D Gamut Mapping

The matrix Z tells us that a reddish RGB observed in an image
is only consistent with an illuminant of that color. In fact, such
an RGB is consistent with both a red surface under a white
light and a white surface under a red light, and with many
other combinations of surface and illuminant. Forsyth [14]
developed an algorithm, called CRULE to exploit this fact.
CRULE is founded on the idea of color gamuts: The set of all
possible sensor responses observable under different illumi-
nants. Forsyth showed that color gamuts are closed, convex,
bounded, and that, most importantly, each is a strict subset of
the set of possible image colors. The gamut of possible image
colors for a light can be determined by imaging all possible
surfaces (or a representative subset thereof) under that light.
We can similarly determine gamuts for each of our possible
illuminants, i.e., foreachrow of RGB;;,and can codethemina
correlation matrix. That is, we define a matrix Mp,,, such that
if image color ¢ can be observed under illuminant j, then we
put a one in the ijth entry of Mp,,, otherwise, we put a zero.
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The matrix My, more accurately represents our knowledge
about the world and can be used to replace 7 in (20).

From the colors present in an image, CRULE determined
a set of feasible illuminants. An illuminant is feasible if all
image colors fall within the gamut defined by that
illuminant. In our framework, the number of image colors
consistent with each illuminant can be calculated:

1 = thresh(hist(RGBin)") Mo, (23)

where thresh() and hist, as defined previously and used
together, ensure that each distinct image color is counted
only once. If there are N, distinct surfaces in an image,
then any illuminant corresponding to entries of [ which are
equal to N, s are consistent with all image colors and are
therefore feasible illuminants.

Once the set of feasible illuminants has been determined,
the final step in CRULE is to select a single illuminant from
this set as an estimate of the unknown illuminant. Previous
work has shown [2] that the best way to do this is to take the
mean of the feasible illuminants. In our framework, this can

be achieved by:

p¥ = thresh2(thresh(hist(RGBin))' Mpor)RG By, (24)

where thresh2() is defined as before. Equation (24), though
equivalent to CRULE (with mean selection), is a much
simpler implementation of it. In Forsyth’s CRULE, the
notion of which image colors can appear under which lights
was modeled analytically as closed continuous convex
regions of RGB space. Also, the illuminants themselves
were not represented explicitly. Rather, an illuminant p° is
defined by the mapping (actually a 3 x 3 diagonal matrix)
that takes responses observed under p° to reference or
canonical lighting conditions p¢. In CRULE, computation
involves calculating mapping sets for each image color and
then intersecting these sets to arrive at the overall plausible
set (which contains those mappings that take all image
colors to canonical counterparts).

Computation aside, our new formulation has another
significant advantage over CRULE. Since rather than saying
thatan illuminantis possible if and only if it is consistent with
all image colors, we can instead look for illuminants that are
consistent with most image colors. This subtle change cannot
be incorporated easily into the CRULE algorithm, yet it is
important that it is since, in CRULE, if no illuminant is
globally consistent, there is no solution to color constancy. To
implement majority consistency in our framework is
straightforward. We simply replace thresh2() with the
thresholding function thresh3() defined in (18). Thus, the
improved CRULE algorithm, can be written as:

@E = thresh3 (thresh(hist(RGBim))T’]MFW)RGBM. (25)

3.3 Color In Perspective (2D Gamut Mapping)

While the formulation of Forsyth’s CRULE algorithm given
above addresses some of its limitations there are other
problems with CRULE which this formulation doesn’t
resolve. First, Finlayson [10] recognized that features such
as shape and shading affect the magnitude of the recovered
light, but with any significance, not its color. To avoid
calculating the intensity of the illuminant (which cannot be
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recovered [23]), Finlayson carried out computation in a
2D chromaticity space. Once again, if we characterize image
colors and illuminants by their chromaticities, we can
define a new matrix, Mp;, whose ijth element will be set to
one when chromaticity ¢ can be seen under illuminant j and
to zero, otherwise. We can then substitute Mp;, in (8):

Cp = threshZ(thresh(chist(cim))tMFm)Cm. (26)

Assuming the thresholding operations thresh() and
thresh2() are chosen as for Forsyth’s algorithm (we could,
of course, use thresh3() instead of thresh2() if we wanted to
implement majority consistency), then the illuminant
estimate ¢ is the averaged chromaticity of all illuminants
consistent with all image colors. Previous work [12] has
shown however, that the mean chromaticity is not the best
estimate of the illuminant and that the chromaticity trans-
form should be reversed before the averaging operation is
performed. This can be achieved here by defining a matrix
RGBY), whose ith row is the ith row of RGBy; normalized
to unit length. The illuminant estimate is now calculated:

pP = thresh2(thresh(chist(Ciy))' My, ) RGBY,.

(27)

Another problem with gamut mapping is that not all
chromaticities correspond to plausible illuminants (for
example, purple lights do not occur in practice). This
observation is also simple to implement since we can
simply restrict the columns of Mp;, to those corresponding
to plausible lights.

3.4 llluminant Color by Voting

Sapiro [26], [25] has recently proposed an algorithm for
estimating the scene illuminant which is based on the
Probabilistic Hough Transform. In this work, Sapiro
represents lights and surfaces as low-dimensional linear
models and defines, according to this model, a probability
distribution from which surfaces are drawn. Given a sensor
response from an image, a surface is selected according to
the defined distribution. This surface, together with the
sensor response, is used to recover an illuminant. If the
recovered illuminant is a feasible illuminant (in Sapiro’s
case an illuminant on the daylight locus), a vote is cast for
that illuminant. For each sensor response, many surfaces
are selected and so many votes are cast. To get an estimate
of the illuminant, the cumulative votes for each illuminant
are calculated by summing the votes from all sensor
responses in the image. The illuminant with maximum
votes is selected as the scene illuminant.

The votes for all illuminants for a single sensor response
p represent an approximation to the probability distribu-
tion: Pr(E|p)—the conditional probability of the illuminant
given the observed sensor response. Sapiro chooses the
illuminant which maximizes the function:

Z Pr(E|p).

PERG Bip,

(28)

Since we know the range of possible image colors, rather
than compute the probability distributions Pr(E|p) on a
per image basis, we could instead, using Bayes rule,
compute them once for all combinations of sensor
responses and illuminants. We can then define a matrix
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Msqpiro Whose ijth entry is Pr(illuminant j|image color 3),
which, by Bayes rule, is proportional to the probability of
observing image color ¢ under illuminant j. It then follows
that Sapiro’s estimate of the illuminant can be found in our
framework by:

p¥ = thresh3(hist(RG Bin)' Msapiro) RG Buy, (29)

where the matrix Mg, is equal to ke'#%¢*. We note that in
(29) the image histogram is not thresholded so that Sapiro’s
algorithm, as Gray-World, will be sensitive to large areas of
uniform color.

3.5 Probabilistic Algorithms

Brainard and Freeman [4] have recently given a Bayesian
formulation of the color constancy problem. Their approach
is again founded on a linear models representation of lights
and surfaces. That is, each light and surface is represented
by a weighted sum of a small number of basis functions so
that these weights are sufficient to define a light or surface.
Principal component analyses of collections of surfaces and
illuminants were used to determine suitable basis functions
and the corresponding weights for each light and surface.
The authors then defined probability distributions for these
weights and used Bayesian decision theory to recover
estimates of the weights for the surfaces and illuminant in
an image. So, if = represents the combined vector of weights
for all the surfaces and the light in an image, the problem is
to estimate z.

If there are Ny, s surfaces in the image, then the vector to
be recovered is (3N, + 3)-dimensional. Estimating z is
therefore computationally extremely complex. The authors
have implemented the algorithm as a numerical search
problem and shown results for the case Ny, = 8. However,
since typical images contain many more surfaces than eight,
as a practical solution for color constancy, this approach is
far too complex. A precise formulation of their algorithm is
not possible within our framework; however, we can use
their prior distributions on surfaces and illuminants when
constructing our correlation matrix. If we then restrict the
problem to that of recovering an estimate of the unknown
illuminant, then our approach should produce similar
results.

An approach which is much closer to the algorithm we
have presented was proposed by D’Zmura and Iverson [9].
They also adopted a linear models representation of
surfaces, but they used these models to derive a likelihood
distribution Pr((z,y)|E())). That is the probability of
observing a given CIE-zy chromaticity [31] coordinate,
under an illuminant E(A). This is done by first defining
distribution functions for the weights of their linear model
of surfaces. Then, they generated a large number of surfaces
by selecting weights according to these distributions and
calculated the corresponding chromaticity coordinates for
these surfaces. By selecting a large number of surfaces, a
good approximation to Pr((z,y)|E())) can be found. If we
put likelihoods corresponding to these probabilities in a
correlation matrix, then this algorithm can be formulated in
the framework we have developed. We point out that this
algorithm, like Gray-World, takes no account of the relative
frequency of individual chromaticities: The function
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thresh() is not used. As such, the algorithm is again highly
sensitive to large image areas of uniform color and, so, can
suffer serious failures.

3.6 Neural Networks

The final algorithm we consider is the Neural Network
approach of Funt et al. [17]. Computation proceeds in three
stages and is summarized below:

output, = thresh4(thresh(hist(Cin)")Mpun)

outputy = thresh4(output|, Mp,u1) (30)

OUtPUtiS = OUtPUthFunt,Qv

where thresh4 is similar to thresh3 but its exact definition
has not been specified [17]. In the parlance of Neural
Networks, output, is the first stage in a three layer
perceptron calculation. The second, hidden layer computa-
tion, is modeled by the second equation and the final output
of the Neural Net is outputs. The correlation matrix, Mpyns 1,
typically has many fewer columns than Mp,,;. Moreover,
Mpuynt2 only has two columns and, so, the whole network
only outputs two numbers. These two numbers are trained
to be the chromaticity of the actual scene illuminant. As
such, we can replace Mpyn2 by Cy; (though it is important
to realize that here Cj; is discovered as a result of training
and does not bear a one to one correspondence with actual
illuminants).

In the context of this paper, output; is very similar to (8)
albeit with a different correlation matrix and slightly
different threshold functions. The other two stages address
the question of how a range of possible illuminants is
translated into a single illuminant chromaticity estimate. As
one might imagine, the Neural Net approach, which
basically fits a parametric equation to model image data,
has been shown to deliver reasonably good estimates.
However, unlike the approach advocated here, it is not
possible to give certainty measures with the estimate nor is
it possible to really understand the nature of the computa-
tion that is taking place.

4 REeSULTS

We conducted two experiments to assess the performance
of our new correlation algorithm and to compare it to
existing algorithms. First, to get some idea of the algor-
ithm’s performance over a large data set, we tested it on
synthetically generated images. In a second experiment, we
tested the algorithm on a number of real images captured
with a digital camera. We show exemplar results of these
tests for a small number of images.

In the experiments on synthetic images, we tested five
algorithms: Gray-World, Modified Gray-World, 2D Gamut
Mapping (with mean selection), Sapiro’s algorithm, and the
new Color by Correlation algorithm described in this paper.
Gray-World simply uses the average of all the sensor
responses in the image as an estimate of the unknown
illuminant. Modified Gray-World is similar, except that
each distinct sensor response is counted only once when
forming the average, regardless of how many times it
occurs in the image. More sophisticated segmentation
algorithms could be used, as Gershon et al. [18] suggest;
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however, the question of how best to segment is still open
and, so, we adopt the simplest approach here. Two-
dimensional Gamut Mapping is Finlayson’s Color In the
Perspective algorithm, formulated in the correlation frame-
work and Sapiro’s algorithm is also reformulated in this
same framework.

Before running the correlation-based algorithms, we must
make the correlation matrices themselves. In the case of the
2D Gamut Mapping (matrix Mr;,), we want to determine the
range of image chromaticities that are possible under each of
the illuminants between which we wish to distinguish. One
way to obtain this information would be to take the camera
and capture a wide range of surface reflectances under each of
the lights between which we wish to distinguish. In this way,
we can define the gamut of colors which the camera records
under each light. However, this approach is somewhat
cumbersome especially if the number of possible lights is
large. Fortunately, given some knowledge about our camera,
we can instead generate these gamuts using synthetic data.
Specifically, if we know the spectral response characteristics
of the camera, then we need only measure the surface
reflectances of a range of objects and the spectral power
distribution of each illuminant between which we wish to
distinguish. We can then use (2) to generate the set of possible
sensor responses under each illuminant and, from these, we
can calculate the corresponding chromaticities. We then take
the convex hull of these chromaticities and consider that any
chromaticity within the hull is part of the gamut (it’s
corresponding entry in the correlation matrix is one) and
that all other chromaticities are outside it (their correspond-
ing entries are zero [14]).

We point out that, in using (2) to generate the sensor
responses, we are assuming that the camera has a linear
response, whereas, in practice, this is often not the case. In
such cases, we must account for any nonlinearity in the
camera’s response when calculating the responses—that is,
we must characterize the nature of the camera’s nonlinear-
ity and modify (2) to take account of it. Alternatively, we
could calculate the matrices using the assumption of linear
data and then linearize the data recorded by the camera
before applying the illuminant estimation algorithm.

The entries of the matrix Mpgs can also be found using
synthetic responses generated using (2). However, now,
rather than recording only whether a chromaticity is
possible or not, we want to record the relative frequency
with which it occurs. To do this, we can use the same set of
surface reflectances to calculate chromaticity coordinates as
before, then, to estimate the probability of a given image
color, we simply count the number of surfaces falling in
each bin of the discretized chromaticity space. The entries of
Mpayes are the log of these raw counts normalized by the
total number of chromaticities. The matrix Mgqyr, is created
in the same way except that we put actual probabilities
rather than log probabilities in the matrix.

When calculating the correlation matrices, we must decide
how to partition the chromaticity space. This partitioning will
depend both on the characteristics of the camera’s sensors
and also on which chromaticity space is being used. There are
many chromaticity spaces which could potentially be
employed; for the experiments reported here we used the
coordinates:
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since this leads to chromaticities which are reasonably
uniformly distributed. This has the advantage that a simple
uniform discretization of the space can be employed. The
method is quite insensitive to the level of discretization of the
space—we have achieved good results using discretizations
ranging from 16 x 16 to 64 x 64. The results reported here are
based on a 24 x 24 discretization of the space which we have
found to work well for a range of cameras.

We tested the algorithms’ performance using images
synthesized using (2). For sensor response curves, we used
monochromator measurements of a HP Photosmart
C500 digital camera. These curves were then used to generate
the correlation matrices. Key to the success of the method is
the choice of lights and surfaces used to build the correlation
matrices. For the experiments reported here, we wanted to
generate a matrix which would give good results for a wide
range of illuminants, so we chose a set of 37 lights,
representing a range of commonly occurring indoor and
outdoor illumination. The set includes daylights with
correlated color temperatures ranging from D75 to D40,
Planckian blackbody radiators, ranging from 3,500K to
2,400K, and a variety of fluorescent sources. The set of surface
reflectances we use is most important when we test the
algorithm on real images since how well the distribution of
these surfaces matches the distribution of reflectances in the
real world will have a large effect on the success of the
algorithm. For the synthetic experiments, it is enough to
choose a wide range of reflectance functions. We used two
sets: a set of 462 Munsell chips [31] and a collection of object
surface reflectances measured by Vrhel et al. [30].

To create the synthetic images in which we tested the
algorithms, we randomly selected between 2 and 64 surfaces
from a set of surface reflectances and a single illuminant,
drawn from the set of 37. To make the test more realistic we
used reflectances from a set of natural surface reflectances
measured by Parkkinen et al. [24] rather than using the
same reflectances on which the correlation matrices were
built. We calculated the sensor response for a surface and
then weighted each surface by a random factor chosen to
ensure that the number of pixels in each image was
512 x 512. Since many real images consist of large areas of
uniform color (for example, outdoor scenes often contain
large regions of blue sky), to make the images more
realistic, the factors were chosen such that one surface
always occupied at least 40 percent of the image.

To determine an algorithm’s estimate of the illuminant,
we simply calculate an image histogram, and then the
likelihood for each illuminant according to (7). These
likelihoods are then used to select a single illuminant from
the set as an estimate of the scene illuminant. For the
2D Gamut Mapping algorithm, we used the mean selection
method [12]; whereas, for Sapiro’s algorithm and the new
Color by Correlation approach, we chose the illuminant
with maximum likelihood.

To assess the relative performance of the algorithms, we
chose a root mean square error (RMSE) measure—specifi-
cally, the chromaticity error between the image under
D65 illumination and an estimate (calculated using each
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algorithm’s estimate of the illumination) of the image under
D65. RMSE is commonly used in the computational color
constancy literature [2], [17] and, while it is not the most
intuitive error measure (it is not easy to interpret what a
given RMS error means in terms of visual difference
between images), it at least allows the relative performance
of the algorithms to be assessed. To help give some idea of
what a certain RMS error corresponds to in terms of visual
difference, in the second experiment, on real images, we
give RMS errors for a number of corrected images, together
with a print of those images. RMS error is calculated as
follows: Each of the algorithms was used to generate an
estimate of the unknown scene illuminant in terms of a
2D chromaticity coordinate. We used this estimate to
rerender the image as it would have appeared under
standard daylight D65 illumination. Rerendering was
performed by finding the diagonal mapping which takes
the algorithm’s estimate of the scene illuminant to the
chromaticity of D65 illumination. We then applied this
mapping to all RGBs in the image to obtain an estimate of
the scene as it would have appeared under D65 illumina-
tion. We also performed a similar correction using a
mapping from the chromaticity of the actual scene
illuminant to D65 illumination. We then calculated the root
mean square error in chromaticity space between these two
images. Since algorithm performance is measured in a
2D chromaticity space and since the Gray-World algorithms
work in 3D sensor space, it might be thought that the
algorithms which set out to recover a 2D estimate would
have an unfair advantage over the 3D algorithms. We tested
this theory by modifying the Gray-World algorithms to
work in 2D chromaticity space and found that this, in fact,
led to worse performance than in the 3D case. For this
reason, only the 3D results are reported here.

Fig. 3 shows the relative performance of the five
algorithms in terms of the average RMS chromaticity error
against the number of surfaces in the image. Results were
calculated for images with 2, 4, 8, 16, 32, and 64 surfaces
and, in each case, the average was taken over 500 images.
We can draw a number of conclusions from these results.
First, accurately encoding information about the world
leads to improved color constancy performance; the gamut-
mapping algorithm and the two algorithms exploiting
probability information all perform considerably better
than the gray-world algorithms. Further, we can see that
adding information about the probabilities of image colors
under different illuminants further improves performance.
It is important though, that this information is encoded
correctly. Our new algorithm, which correctly employs
Bayes'’s rule, gives a lower average RMSE than the second
best algorithm. However, Sapiro’s algorithm which does
not correctly encode probability information performs
slightly worse than the 2D gamut-mapping algorithm.

Previous work [12] has demonstrated that 2D gamut
mapping produces better results than most other algo-
rithms [13], [12]. So, it is significant that our new approach
delivers much better constancy. Moreover, the Neural Net
approach (for which there insufficient information for us to
implement) has also been shown [17] to perform similarly
to 2D gamut mapping. Thus, on the basis of the results
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Fig. 3. Average RMSE chromaticity error for: gray world (dotted line with *), Modified Gray World (dotted line), Sapiro’s algorithm (dash-dot line),

2D gamut mapping (dashed line), and Color by Correlation (solid line).

presented here, it is fair to say that, to our knowledge, the
new algorithm outperforms all other algorithms. The
second experiment we ran was to test the performance of
the algorithm on real images. We used images from two
different digital cameras: a HP-Photosmart C500 and a
prototype digital still camera based on a Sony ICX085 CCD.
Both cameras were modified so that they gave raw sensor
data and were calibrated to ensure that this data was
linearly related to incident light. Thus, (2) is an accurate
model of image formation. We measured the spectral

sensitivity curves of both devices using a monochromator
and used these measurements when building the correla-
tion matrices for the various algorithms.

The raw data from the camera was averaged down by a
factor of five (in width and height) and this averaged image
was used as input to the illuminant estimation algorithms.
Using each algorithm’s estimate of the scene illuminant, we
rerendered the full-size captured image to D65 illumina-
tion, following the procedure described above. Figs. 4 and
5, and Table 1 show typical examples of the algorithm’s

Fig. 4. Left to right: raw camera image, correction based on; measured illuminant, Gray-World, and Color by Correlation. Images were taken under

daylight D50 (top) and simulated D65 (bottom).
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Fig. 5. Left to right: raw camera image, correction based on; measured illuminant, 2D Gamut Mapping, and Color by Correlation. Images were taken

under illuminant A (top) and cool white fluorescent (bottom).

performance for the two cameras. Fig. 4 shows results for
two scenes captured with the first camera. For each scene,
we show four images; the raw data as captured by the
camera, the image rerendered to D65 illumination using a
spectral measurement of the scene illuminant (obtained by
placing a white tile in the scene and measuring the
spectrum of the reflected light), the image rerendered using
the illuminant estimate recovered by our new algorithm,
and the image rerendered using the Gray-World estimate. It
is clear that the image rerendered using the new algor-
ithm’s estimate of the illuminant is a very close match to
that obtained using the measured illuminant. In contrast,
the performance of Gray-World is worse and while, in
terms of RMSE (see Table 1), as it is better than doing no
correction the images are visually a very poor match to the
properly corrected image. Fig. 5 shows results for the
second camera. Here, rather than comparing performance
with the Gray-World algorithm, we show how well the 2D
Gamut Mapping algorithm performs (the second best
algorithm in the experiments with synthetic images). The
2D Gamut Mapping algorithm does perform better than the
Gray-World approach; however, performance is still some
way behind that which can be obtained using the new
algorithm. Table 1 summarizes the algorithm performance
for the four images in terms of the RMS error measurement

TABLE 1
Average Root Mean Square Error between Images Corrected to
the D65 lllumination Using an Estimate of the Scene Light and
Images Corrected Using a Measurement of the Scene Light

No CC | G-W | C by C | 2-d G-M

Average 0.580 | 0.49 0.11 0.21

used in the synthetic experiments. Again, using this
measurement, the new algorithm performs very well and
better than the other algorithms tested. Four images do not
represent an exhaustive test of the algorithm’s performance
and the results presented here are intended only to give an
idea of the kind of the performance that can be obtained
with the various algorithms. Though the results are typical
of the performance we have achieved with the new
algorithm, we are currently in the process of compiling a
database of images on which to more thoroughly test
performance.

5 CONCLUSIONS

In this paper, we have considered the color constancy
problem; that is how we can find an estimate of the
unknown illuminant in a captured scene. We have seen that
existing constancy algorithms are inadequate for a variety
of reasons. For example, many of them make unrealistic
assumptions about images or their computational complex-
ity is such that they are unsuitable as practical solutions to
the problem. Here, we have presented a correlation frame-
work in which to solve for color constancy. The simplicity,
flexibility, and robustness of this framework makes solving
for color constancy easy (in a complexity sense). Moreover,
we have shown how a particular Bayesian instantiation of
the framework leads to excellent color constancy (better
than other algorithms tested). A number of other previously
proposed algorithms were also placed within the correla-
tion framework, and others which, while they cannot be
precisely formulated within the framework, were shown to
be closely related to it.
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