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Abstract

Understanding color polymorphism and associated ecological and morphological

divergence is important to improving out knowledge of diversity and speciation; anoles

are a model clade for addressing these questions. Anolis conspersus (the Grand Cay-

man blue-throated anole) is endemic to a small island and has color variants (green,

blue, and brown morphs) that are spatially arranged despite a lack of wider environ-

mental gradients. I examined aspects of ecological and morphological variation among

and within A. conspersus populations throughout Grand Cayman to evaluate potential

divergence between color morphs. No substantial differences in habitat use or morphol-

ogy were detected. The blue and green morphs were difficult to categorize, suggesting

the A. conspersus color system is more complicated than previously believed.
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1 Introduction

1.1 Color polymorphism

Developing a deeper knowledge of the ecological and evolutionary context of color

polymorphism is an important component to understanding the diversity of life. Color

variants are often associated with other intraspecific differences in morphology, ecology,

and behavior. For example, Midas cichlids (Amphilophus citrinellus species complex)

have gold and dark morphs, with golden individuals having larger body size, stronger

pharyngeal jaws, and different diet than their dark conspecifics (Kusche et al., 2015).

Variation in throat pigmentation among side-blotched lizards (Uta stansburiana) is

connected to substantial differences in social behavior (Sinervo et al., 2001), and white-

throated sparrows (Zonotrichia albicollis) exhibit differences in reproductive strategy

between individuals with white-striped or tan-striped head plumage (Tuttle, 2003).

In situations where a species occupies a variety of habitat types, different colors can

provide more effective crypsis in some areas than others, leading to maintenance of

the polymorphism by selection. This has been observed in a wide variety of animals,

including Northern cricket frogs (Acris crepitans; Caldwell, 1982), grove snails (Cepaea

nemoralis; Cook, 2008), and mottled rock rattlesnakes (Crotalus lepidus ; Farallo and

Forstner, 2012). Ultimately, traits associated with color polymorphism may lead to

reduced gene flow and eventual speciation (Gray and McKinnon, 2007).

Color polymorphism can exist even across very small islands. For example, Asian

spiny-back spiders (Thelacantha brevispina) on Mo’orea (134 km2) exhibit a variety of

color variants, with lighter morphs generally occurring near coastal, low-canopy areas

and darker morphs occurring in the forest (Truong, 2012). The endemic Inaccessible

Island (14 km2) bunting (Neospiza acunhae) has distinct lowland and upland morphs,
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where high elevation birds have more intense yellow coloration (Ryan et al., 1994). The

Skyros (223 km2) wall lizard (Podarcis gaigeae) has orange, yellow, and white throat

color morphs (along with intermediates) that frequently co-occur in the same in the

same population; these are believed to be involved in social signaling (Runemark et al.,

2010). Most examples of color polymorphisms are believed to be maintained across

such a small spatial scale because they are adaptive to different environmental factors

or are under sexual selection.

Anole lizards (Dactyloidae: Anolis) are a model system for studying variation

in habitat use, morphology, and coloration both within and among species (Losos,

1994). The genus contains about 360 species distributed across the West Indies, South

America, and Central America (Losos, 2011). Sympatric populations often partition

structural habitat by perch height or perch diameter. This partitioning is associated

with changes in body size and limb length, with larger lizards preferring larger branches.

These associations are particularly pronounced in the Greater Antillies. Communities

of anole species on each of these large islands have independently evolved similar sets

ecomorphs, each of which is specialized for using a specific structural habitat (Williams,

1972; Losos et al., 1998).

Smaller islands are limited to one or two species, with substantial divergence in

body size on the two-species islands. On several single-anole islands, substantial intra-

specific variation in morphology or habitat use is present. For example, A. oculatus

(native to Dominica) exhibits large amounts of ecological divergence, with associations

between body coloration, morphological characters, geographic patterns, and environ-

mental conditions (Malhotra and Thorpe, 1997). The Guadeloupean leopard anole (A.

marmoratus) displays striking variation in coloration that is associated with elevation

and precipitation gradients (Muñoz et al., 2013). A similar trend exists on Martinique
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with A. roquet (Thorpe and Stenson, 2003). Each of these species inhabits geographi-

cally complex islands with substantial variation in elevation and climate.

1.2 Anolis conspersus

Anolis conspersus (the Grand Cayman blue-throated anole; Garman, 1887) ex-

hibits substantial variation among populations with respect to color and patterning of

adult males despite living on a small, relatively flat island. This anole is endemic to

Grand Cayman and is the only anole native to the island. However, an invasive pop-

ulation of A. sagrei, thought to have originated from Florida (Kolbe et al., 2007), has

been present on the island since at least the early 1980’s (Minton and Minton, 1984).

The invasive species now occurs over much of the island.

Jackman et al. (2002) hypothesized the species arose from colonization of Grand

Cayman by A. grahami, a Jamaican trunk-crown anole, two to three million years ago.

Its range encompasses the entirety of the island, with two recognized subspecies: A.

c. conspersus and A. conspersus lewisi (Grant and Lewis, 1940). The species exhibits

extreme sexual size dimorphism, with males exhibiting larger snout-vent length and

head length than females. Similar, though less extreme, dimorphism has been observed

in other anoles on islands lacking congeneric competitors and is thought to allow for

inter-sexual resource partitioning (Schoener, 1967).

Despite the small size of Grand Cayman, A. conspersus exhibits substantial

variation in male body coloration. Three distinct color morphs are distributed along

the precipitation gradient (Macedonia, 2001). The green morph (corresponding to A. c.

conspersus) is found in the southwestern corner of the island, where precipitation and

development are greatest. While it historically ranged across much of western Grand
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Cayman (Grant and Lewis, 1940), more recent accounts have limited it to small enclaves

in the capital of Georgetown that are completely surrounded by blue morph populations

(Macedonia and Clark, 2001). This morph is lightly spotted, with bright green to

yellowish-green coloration on the dorsum, legs, and tail, the green often transitioning

towards blue near the venter. The green morph is the most visually similar to A.

grahami.

The brown morph (A. c. lewisi) inhabits the eastern quarter of the island, where

precipitation is lowest. It is primarily brown, with a teal tail, hints of blue on the legs,

and a vermiculated pattern.

The blue morph (which corresponds to no described subspecies) occupies most

of the rest of the island, including large areas previously occupied by A. c conspersus;

its range limits are somewhat fuzzy, and it sometimes co-occurs with individuals from

the other two morphs. Its coloration is highly variable, although it is spotted and

consistently possess a blue tail, sides, and legs. Some individuals have a light brown

dorsal coloration, with heads that range from blue to yellow. Despite the breadth of

its current distribution, the blue morph was not described in scientific literature until

1980’s (Macedonia, 2001).

Macedonia and Clark (2001) have suggested the blue morph may be the result

of a reduced-melanin variant of the brown morph that expanded West and hybridized

with green populations. All morphs are capable of rapidly changing to a dark shade

of brown (metachrosis) and have a bright blue dewlap that extends into the ultraviolet

spectrum. Given that dewlap color is a consistently associated with species recognition

across Anolis (Losos, 2011), communication among morphs is likely not restricted,

although there is some variation in headbob displays (Macedonia and Clark, 2001).

The evolutionary cause of the Anolis conspersus color morphs is currently un-
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known. A spectral analysis of the three morphs showed that the primary coloration is at

least somewhat cryptic in ambient lighting conditions, which suggests a possible adap-

tive explanation of this variation (Macedonia, 2001). Male color morphs may also be a

result of differing patterns of sexual selection across the island; however, most evidence

for sexual selection in anoles focuses on dewlap color (Sigmund, 1983) or morphology

(Butler and Losos, 2002). The different morphs may have also arisen from neutral ge-

netic processes. Regardless of their evolutionary origin, other variation among the color

morphs has been mostly unstudied.

1.3 Objectives

The goal of the study reported here was to investigate whether the color morphs

of Anolis conspersus exhibit differences in habitat use or morphology. If this is the case,

I would expect morphological or habitat use traits to predict color pattern better than

a model that considers only spatial location. Consistent differences in habitat use or

morphology might suggest that A. conspersus is beginning to exhibit a similar pattern

to anoles on multi-species islands.
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2 Methods

2.1 Study sites

Grand Cayman is a 196 km2 island which is located 435 km south of Cuba and

438 km west of Jamaica. The Cayman Bluff formation group, which includes most of

the eastern portions of Grand Cayman and the Southern ridge, arose 30 mya and con-

sists mainly of dolostone; the remainder of the island formed in the Pleistocene (Jones,

1994). Although the size of the island would have changed with sea level shifts, there is

no evidence that Grand Cayman was ever fragmented into more than one island. Many

areas are covered in jagged phytokarst. The island has little variation in elevation, with

the highest point being only eighteen meters above sea level. Precipitation varies geo-

graphically across the island, with high rainfall in the southwest corner that decreases

to the north and the east (Burton, 1994). The island has become increasingly developed

during the late twentieth century, with human activity disproportionately affecting the

western side of the island. Vehicular traffic could facilitate anole relocation around the

island.

To adequately survey the population of A. conspersus, I sampled 19 sites across

Grand Cayman between June and August 2014 (Table A.1; Figure B.1). Distances

among sites were substantially greater than typical anole dispersal ranges (Losos, 2011),

although long-distance vehicular-assisted migration among sites near roadways could

reduce the effective distance among sites and increase gene flow.
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2.2 Data collection

I captured 16 adult males at each of the 19 sample sites (Figure 1). At the spot

each lizard was initially sighted, I measured habitat use characteristics. Perch height

(PH; cm) and perch diameter (PD; cm) were measured with a Lufkin Engineers 2m

metric/English folding ruler; perch temperature (PT; ◦C) was recorded with a Miller &

Weber, Inc. Cloacal Thermometer 1 cm above the perch; ambient air temperature (AT;

◦C) and relative humidity (RH) were recorded 1 m from perch with a shaded Forestry

Suppliers Non-Mercury Pocket Sling Psychrometer; perch texture and shade level were

qualitatively described. Lizards were returned to a controlled environment, where I

measured mass (M; g) with a Pesola Micro-Line 20030 30g capacity Precision Scale)

and snout-vent length (SVL; mm), tail length (TL; mm), and hind limb length (HLL;

mm) with a ruler. Hind limb length was measured as the distance from distal tip of

the claw on metatarsal IV to the insertion of the limb into the body wall (Kolbe and

Losos, 2005). Each lizard was photographed under consistent temperature and lighting

conditions with a Nikon D5200 DSLR camera. The GPS coordinates were recorded for

each capture location with a Garmin eTrex H GPS, and lizards were returned to their

original locations within 24 hours.

2.3 Data processing

Each continuous predictor variable (SVL, TL, HLL, M, PH, PD, AT, and RH)

was normalized to a mean of zero and standard deviation of one. This reduces the

correlation between slopes and the intercept and allows for model coefficients to be

easily comparable, since they now represent the effect of an increase in the predictor by

one standard deviation. Prior to normalization, HLL and TL were corrected for body
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size and TL was corrected for tail loss; this was done by regressing the HLL against

SVL and regressing TL against SVL and an indicator of whether the tail had been

autotomized. The residuals of these regression were retained as the corrected values of

TL and HLL.

Other measurements were categorized as follows: shade (S; None/Partial/Full),

perch texture (TEX; smooth/semi-smooth/rough), perch material (PM; whether the

lizard was perched on a branch, a trunk or an artificial object), perch angle (PA;

whether the lizard’s head was facing down/sideways/up), and perch connectivity (PC;

sparsely or heavily connected). Two-level variables were coded as 0 or 1 and three-level

variables were coded as 2 dummy variables, where the three levels were represented by

(0,0), (1,0), and (0,1). This resulted in a total of 18 predictor variables.

I attempted a variety of methods to quantitatively assess anole dorsal coloration

from the photographs; none of these produced consistent, interpretable results. Even-

tually, I categorized the lizards as spotted or vermiculated as a proxy for color. The

dorsal pattern was essentially binary (no individuals were intermediates) and could be

easily classified by visual inspection.

In order to control for the effect of geography, I calculated pairwise distances

between sites. Because anoles are far more likely to disperse across land than over water,

these distances need to be constrained to the island’s landmass. This was accomplished

with resistance mapping (using the gdistance package in R; van Etten, 2015): I divided

Grand Cayman into a grid of one square-meter cells, assigned land cells a resistance

of 1, and designated water as uncrossable. The least-cost path among sites was then

calculated, and the resulting paths were rescaled so that the smallest distance between

sites was one. To account for site-level precipitation, I extracted and normalized the

average annual rainfall at each site from the WorldClim Bioclim12 interpolated climate
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dataset (Hijmans et al., 2005). All data were processed in R version 3.1.2 (R Core

Team, 2016).

To assess the ability of habitat use or morphology to predict dorsal pattern, I

used hierarchical Bayesian models with pattern (spotted or vermiculated) as the re-

sponse variable and habitat use and morphological variables as the predictors. This

model is essentially a logistic regression that has been modified to account for variation

among sites and control for multiple comparisons. Two variations of this model were

run, one of which accounts for spatial autocorrelation among sites and one which does

not. In the next section, I describe how and why the logistic regression was adjusted to

more accurately model the data collection process. Tables A.2 and A.3 contains a list of

symbols used in these models, and the full model description is available in Appendix C.

I used a second model to robustly estimate how the means of each continuous predictor

varied among sites and whether they were associated site precipitation; symbols used

in this model are listed in Table A.4.

2.4 Model descriptions and justifications

Logistic regression (Figure B.2) assumes that a binary response variable Y is

predicted by a Bernoulli distribution with parameter p, a value between 0 and 1. This

parameter is logit transformed into η (logit(pi) = log pi
1−pi

= ηi), which can take any real

value and represents the natural logarithm of the odds of Yi = 1. Predictor variables

(X) are incorporated as ηi = β0 + βX i, where β0 is the intercept (the baseline log-

odds) and β is a vector of slope coefficients that represent the effects of the predictors.

Because η is on a logistic scale, additive components of ηi have a nonlinear effect on pi;

thus, the influence of a given β coefficient on p depends on the values of the intercept
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and the other slopes.

2.4.1 Accounting for site-level variation

The base model assumes that there is no variation in the intercept or slopes

among sites, which is unrealistic for this sampling approach. I could address this

by modeling each site separately; however, this would assume that each population

is entirely independent and shared no underlying association. This approach would

also severely reduce sample sizes, magnifying uncertainty and increasing the chance

for spurious results. A better approach is to use a hierarchical model that partially

pools information across sites (Figure B.3). The simplest way to do this is to model

βj,k (the coefficient for predictor k in site j) as normally distributed around a grand

coefficient µk with standard deviation σk. This standard deviation represents the degree

to which the effect of predictor k varies among sites; βj,k converges to µk (a single-slope

model) as σk approaches 0, and each βj,k becomes independent of the others as σk

approaches ∞. Each σk was modeled with a folded Cauchy distribution that shared a

common scale parameter τσ (Gelman, 2006). The folded (or half) Cauchy distribution

(equivalent to a folded Student-t distribution with 1 degree of freedom) is similar to a

normal distribution limited to non-negative values but with more probability density

in the tail; essentially, it prefers small values but allows for large ones. Because the half

Cauchy’s scale parameter is also its median, the hyperparameter τσ models the median

variation in β-coefficients among sites. τσ was given a half Cauchy prior distribution

with a scale of 1, so that it could vary among a variety of reasonable options but would

prefer smaller values.

Modeling βj,k with a normal distribution assumes that there is no relationship

between the value of the different β coefficients at each site (McElreath, 2016). Each
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site’s coefficients (βj) were modeled with a multivariate normal distribution with mean

vector µ and a covariance matrix Σ, which can be decomposed into the variance of

each coefficient (σ2) and a correlation matrix Ω. The correlation matrix is given a

prior distribution developed by Lewandowski, Kurowicka, and Joe (LKJ; 2009) that

has a single parameter, ϕ. This LKJ prior can be best understood as a combination of

beta distributions (one for each pairwise combination of predictors) that are rescaled

from (0, 1) to (1, 1), where both parameters are equal to ϕ. Thus, the probability of an

identity matrix (i.e., no correlation) increases as ϕ grows larger than 1, the probability

of a highly correlated matrix increases as ϕ approaches 0, and the probability is uniform

across all valid correlation matrices when ϕ = 1. I fixed the LKJ parameter at ϕ = 2,

which provides light regularization towards uncorrelated coefficients without preventing

tight covariance.

2.4.2 Controlling for multiple comparisons

Spurious associations (i.e., false positives) are a serious concern when modeling

the effects of 18 predictors across 19 sample sites with limited data. Regularization

methods, such as lasso (Tibshirani, 1996) and elastic net (Zou and Hastie, 2005), are

common regression techniques when it is assumed that most of the predictors have

small effects, but a few may be large (Figure B.4). These techniques will shrink coef-

ficients to zero or near-zero unless the coefficient’s predictor provides a strong signal

in the data. Thus, they act as a form of automatic Bayesian model selection and av-

eraging. Hierarchical shrinkage priors (which include HSν , HS+

ν , and horseshoe priors)

are a particularly efficient class of regularization methods that use both a global scale

parameter (τλ), which ensures that most coefficients are shrunk to near zero, and local

scale parameters (λk), which allows specific coefficients to counteract this shrinkage
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(Carvalho et al., 2010). The grand coefficients (µk) were modeled with HS+

3 priors

(Bhadra et al., 2015): µk was drawn from a normal distribution with a mean of 0 and a

standard deviation of λk; each λk is the product of two parameters (λk,1 and λk,2) which

have independent half student-t distribution with 3 degrees of freedom and a shared

standard deviation of
√
τλ. τλ has a half Cauchy distribution scaled by the reciprocal

of the number of predictors.

2.4.3 Incorporating the precipitation gradient

Because the distribution of Anolis conspersus color morphs is associated with

Grand Cayman’s precipitation gradient (Figure 1), the site-level intercepts (βj,0) are

almost certainly affected by rainfall. This can be incorporated into the model by desig-

nating a new intercept vector (β∗
j,0), where β∗

j,0 = βj,0+γZj, where Zj is the normalized

average annual precipitation for site j, and γ is the regression coefficient for Z. γ was

modeled as normally distributed around 0 with a standard deviation of ξ; ξ was mod-

eled as a half-Cauchy with a scale of 2.5. With this modification, β0,j now represents

the baseline site-level variation that is not associated with rainfall (Figure B.5).

2.4.4 Accounting for spatial autocorrelation

The previously described model assumes that variation among sites is not af-

fected by geographic distance. While much of the geographic distribution is likely as-

sociated with precipitation, this would not capture other spatial patterns. A spatially

structured model assumes that sites are more similar to nearby sites than to distant

ones (Plant, 2012); this could be relevant, given that interactions among sites would

be limited by dispersal. I expanded the non-spatial model by assuming the matrix of

β coefficients are distributed by a matrix-normal distribution; this distribution gener-
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alizes the multivariate normal by adding a second covariance matrix (Ψ) that accounts

for among-site variation, where Ψj,j′ = exp(
−D2

j,j′

ℓ2
) (Figure B.6). This covariance ma-

trix follows a Gaussian (or squared exponential) kernel, which is a smooth function of

the pairwise distance between the sites (Dj,j′) and a length scale parameter (ℓ) that

accounts for the maximum distance that spatial autocorrelation is relevant. As ℓ ap-

proaches zero, Ψ becomes an identity matrix (that is, uncorrelated). I modeled ℓ with

a half Cauchy prior (scale = 1). This assumes that spatial correlation probably decays

rapidly but still maintains a relatively high probability of long-distance autocorrelation.

2.4.5 Hierarchical trait means model

I developed a separate hierarchical model to examine trait variation among sites.

In this model, a continuous trait (Xi) was modeled with a t7 distribution around site

mean αj|i with a dispersion of εj|i. The t distribution has heavier tails than a normal

distribution, making the estimate more robust to outliers; these heavy tails also mean

that εj is not a true standard deviation parameter, although it serves the same function.

The ε parameters were modeled as half-Cauchy distributions with a common scale

term (τε); this allows sites to have different variances while still partially pooling some

information. The site level mean αj is normally distributed around an expected value

of θj with a standard deviation of τα. θj is the sum of the grand mean (ω), and

the effect of precipitation (δZi). I assigned δ a normal prior with a mean of 0 and a

standard deviation of τδ. It is typical to give top-level hyperparameters such as ω a prior

distribution centered on 0; however, even a cursory glance at the data reveals this to be

a very poor choice. Instead, I used a weakly informative normal distribution for ω, with

a mean of cx = median(X) and standard deviation of qx = range(X)∗0.25; this provides

an appropriate location and scale for the data. Likewise, the scale hyperparameters (τα,
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τϵ, and τδ) received half-Cauchy priors with a scale of qx.

This model was run on the non-normalized values of each of the continuous traits

measured (SVL, TL, HLL, M, PH, PD, AT, and RH). Only individuals with complete

tails were included in the TL model.

2.4.6 Model implementation

All models were implemented in Stan (Gelman et al., 2015), a probabilistic

programing language for Bayesian inference with Hamiltonian Monte Carlo (HMC), a

Markov chain Monte Carlo (MCMC) variant that uses simulated Hamiltonian dynamics

to estimate the posterior distribution of the parameters (Betancourt and Girolami,

2015). The models were coded with non-centered parameterizations (Papaspiliopoulos

et al., 2007) for increased efficiency. Each model was run with 6 independent chains

for 2500 steps each, with the first 1500 iterations used for adaptive warmup and the

last 1000 iterations retained. Because HMC is substantially more efficient at producing

uncorrelated samples than other MCMC methods, fewer iterations were necessary for an

adequate effective sample size (Hoffman and Gelman, 2011). Convergence was checked

with the Rubin-Gelman diagnostic statistic (R̂; Gelman et al., 2013) and by graphically

checking trace plots. The models were also assessed with posterior predictive checks.

Prior sensitivity was assessed by re-running the models when varying the magnitude

of the τ , ϕ, and qx hyperparameters and by replacing the Gaussian spatial covariance

function with an exponential kernel (Ψj,j′ = exp(
−Dj,j′

ℓ
)); the parameter estimates of

these re-runs were compared against the original output for consistency.
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3 Results

The intercepts (Figure B.7) varied substantially among sites in both the spa-

tial (SP) and non-spatial (NSP) pattern models, which both exhibited an east-west

pattern that matches the known distribution of colors. There was a strong negative

effect of precipitation (γ) on site-level intercepts, with lower precipitation predicting

vermiculated individuals. This was more pronounced in the NSP model.

The pattern models slopes all contained 0 within the posterior distribution’s

50% high density interval (HDI; Figures B.8-9). Additionally, the intercepts had sub-

stantially larger magnitudes than the slopes at most sites. Because of the non-linearity

of the logit-scale parameters, this means that none of the normalized predictors have

a meaningful effect on pi over their range of possible values. Therefore, none of the

measured traits were useful in predicting pattern. There was little variation in slope

estimates among sites. This is likely because many of the sites tended to consist entirely

of one pattern, which would not provide enough information estimate different slopes,

resulting in the site-level coefficient shrinking to the overall slope.

Site-level trait means had little to no association with precipitation (Figure

B.10). AT had a slight negative association with precipitation, and RH had a positive

association; however, the 95% high-density intervals (HDI) of their δ both contained 0,

so the association is uncertain. Both the 95% and 50% HDIs of the δ coefficients for the

other 6 traits included 0, indicating a low probability of association with precipitation.

Site-level means varied among sites for SVL (Figure B.11), TL (Figure B.12), M (Figure

B.13), HLL (Figure B.14), AT (Figure B.15), and RH (Figure B.16). PH (Figure B.17)

and PD (Figure B.18).
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4 Discussion

The association between pattern and precipitation follows the well-documented

spatial distribution of color morphs across the island. I detected no connection be-

tween the dorsal patterning of adult male Anolis conspersus and their habitat use or

morphology. In particular, perch height and diameter exhibited an essentially uniform

distribution that did not vary with location, precipitation, or pattern (Figures B.17-18).

It therefore appears that adult male A. conspersus use whatever structural habitat is

available. The potential associations of relative humidity and ambient air temperature

(Figures B.15-16) with precipitation levels are also plausible, given that both variables

are affected by rainfall. Although some spatial variation was apparent for the mor-

phological traits traits (Figures B.11-14), these did not exhibit any consistent spatial

patterns, and could represent either natural inter-population variation or the effect of

an unmeasured covariate such as food abundance or human impacts. It is possible that

greater variation may exist within female anoles, which tend to have smaller body sizes

and lower perches than males. Females and juveniles were excluded from this study be-

cause females do not exhibit the same pattern of color morph variation, and males only

begin to express their coloration as older juveniles; both groups are harder to detect and

collect than adult males, which would have resulted in an unusable sample size. There

are also other traits that I did not measure which could exhibit substantial variation.

Alternatively, Grand Cayman may be too small and flat to support this variation.

Precipitation levels, vegetation type, and body coloration all vary spatially across

the island. It is therefore challenging to control for spatial autocorrelation in an analysis

without possibly erasing the effects of interest. The confounding of space and precipi-

tation is a plausible explanation for why the SP model’s γ 95% HDI included 0 while
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the NSP model’s did not; some of the variation accounted for by precipitation in the

NSP model was explained by spatial autocorrelation in the SP model. Preexisting GIS

climate layers (such as WorldClim) are suboptimal for problems of this scale because

a) they are created from datasets that only contain one or two points within the area

of interest (Hijmans et al., 2005), and b) the climate data may substantially pre-date

the time period during which the study’s data were collected. The precipitation data I

used was therefore heavily influenced by the assumptions of interpolation model. While

I am confident enough in the sign of the estimated γ coefficients, I am hesitant to trust

the magnitude. More granular precipitation data collected from numerous rain gauges

across the island would be necessary to properly estimate γ and δ. Such data were col-

lected (summarized by Burton, 1994), but the records have apparently been destroyed

(F.J. Burton, pers. com.).

Grand Cayman has undergone substantial human alteration over the past decades,

including species introductions (such as Anolis sagrei, Iguana iguana, and numerous

domestic and agricultural animals; for reptiles, see Echternacht et al., 2011) and habitat

alteration associated with development. In particular, distant portions of the island are

now much more connected, with large numbers of construction and waste management

vehicles traveling all across the island. Anoles could easily be transported to distant

portions of the island, allowing for population intermixing and the reduction of any

local variation. This could be a possible explanation the results at site K, where the

odds of an individual being spotted or vermiculated were even. This particular area

was associated with a conservation group that had frequent vehicle transportation to

and from the Eastern side of the island, which could allow hitchhiking anoles to disrupt

the expected patterns.

It is possible that habitat use variation may have been present among color
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morphs, but has disappeared since the invasion of Grand Cayman by Anolis sagrei.

There is some evidence that A. conspersus of both sexes shift to higher perches in the

presence of A. sagrei (Losos et al., 1993), which could have subsequent effects on other

morphological and habitat use traits. Because A. sagrei were not of primary research

concern, I do not have any reliable estimate of their abundance at each site; however, I

did not observe substantial numbers of A. sagrei in any but the most disturbed areas

(e.g., near sites D, F, and L).

Many of the individuals sampled did not fit nicely into the three A. conspersus

color morphs that have been discussed in the literature. Since simple categorization

by color was not possible, I initially attempted to quantify the lizard color from white-

balanced photographs. Because the lizards were alive during photography and too much

restraint would have induced stress-related color shifts, there was no way to maintain

consistency in anole angles and positions between the photographs. As a result, the data

directly extracted from the images contained too much noise to be useful. I ultimately

chose dorsal patterning as the response because it could consistently distinguish the

brown morph from the blues and greens.

Individuals of the “brown” morph were most easily distinguished by the presence

of vermiculations instead of spots; actual dorsal coloration was generally a light gray or

tan, sometimes with powder blue on the sides and tail. “Blue” and “green” individuals

were much harder to distinguish, with a number of lizards having patches of both colors.

Head coloration in the western anoles was also highly variable, with some individuals

having large yellow patches that extended down to the neck and were occasionally

flecked with blue or green. I have also received credible reports of individual anoles

changing between blue and green over time (F.J. Burton, pers. com.). Grant and Lewis

(1940) described the dorsal coloration of A. c. lewisi as “brownish to olive-colored;” I
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saw no evidence of olive coloration in any lizards.

The relationship of the blue morph to the described subspecies (the green A. c.

conspersus and the brown A. c. lewisi) remains uncertain. Macedonia (2001) suggested

that the blue morph is derived from the brown morph, which lost is vermiculations

and acquired new coloration as it expanded westward. The difficulty of distinguishing

between the blue and green morphs suggests that the the two may in fact be a single

color morph with a wide degree of individual variation. Alternatively, these ambiguities

could be an indication of interbreeding between previously distinct color morphs. Anolis

c. conspersus and A. c. lewisi may even have originated from introductions from

separate A. grahami subpopulations. The descriptions of the morphs themselves have

changed over time (e.g., Garman 1887; Grant and Lewis 1940; Schoener 1967; Losos

et al. 1993; Macedonia 2001); this is particularly notable for the blue morph, which

did not appear at all in early descriptions and yet became the most widely distributed

color some time between the 1940’s and 1980’s. A consistent, long-term survey of color

morph variation and distribution could be very helpful in understanding if and how the

morphs are changing.

Examining the population genetics of Anolis conspersus will be an important

next step in understanding the variation within this species. I took tissue samples

from each individual sampled and will be working with collaborators to examine the

genetic structure of A. conspersus, allowing for comparisons among populations that

could determine wether or not genetic patterns are concordant with the geographical

patterns of morphology, color, color patterns, or habitat. The results of this future

work will hopefully provide a concrete explanation for how Grand Cayman is able to

support this variation within Anolis conspersus.
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Table A.1: Study Locations

Site Latitude Longitude

A 19°22’35" N 81°25’00" W

B 19°16’51" N 81°23’32" W

C 19°17’26" N 81°22’48" W

D 19°21’23" N 81°22’46" W

E 19°18’57" N 81°22’43" W

F 19°23’23" N 81°22’14" W

G 19°17’33" N 81°21’52" W

H 19°16’38" N 81°20’26" W

I 19°16’39" N 81°17’11" W

J 19°21’21" N 81°16’29" W

K 19°16’44" N 81°15’06" W

L 19°17’12" N 81°14’21" W

M 19°20’20" N 81°11’38" W

N 19°18’53" N 81°11’29" W

O 19°19’05" N 81°10’04" W

P 19°20’57" N 81°07’56" W

Q 19°18’05" N 81°06’36" W

R 19°19’40" N 81°06’11" W

S 19°21’03" N 81°05’55" W
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Table A.2: Data and Indices in Model

Symbol Value(s) Description

n 303 Number of observations.

m 19 Number of sites.

d 18 Number of predictors (not including the intercept).

i {1, 2, ..., n} An individual observation (i.e., one lizard and its traits).

j {1, 2, ...,m} A sample site; each lizard belongs to one and only site.

k {0, 1, ..., d} A predictor in the model; when k = 0, this is the intercept.

X Varies n by d+ 1 matrix of predictors, where the first column is a
vector of 1.

Y {0, 1} n-length vector of binary responses.

Z Varies m-length vector of site-level precipitation values.
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Table A.3: Parameters in Pattern Model

Symbol Support Description

pi (0, 1) Probability that Yi = 1.

ηi (−∞,∞) Linear predictor for observation i.

βj,k (−∞,∞) Coefficient for predictor k in site j. When k = 0, this is the
intercept.

βj (−∞,∞) Vector of all β coefficients for site j.

µk (−∞,∞) Grand coefficient for predictor k.

σk (0,∞) Standard deviation for dispersion of βj,k around µk.

τσ (0,∞) Global scale parameter for σk.

λk (0,∞) Standard deviation of µk.

τλ (0,∞) Global scale parameter for λk.

Σ (−∞,∞) Covariance matrix for βj, for correlation among a site’s
coefficients.

Ω (−1, 1) Correlation structure of Σ; Σ = σdiagΩσdiag, where

σdiag = diag(σ).

ϕ (0,∞) Parameter for LKJ distribution.

β∗
j (−∞,∞) βj, modified to account for the effect of γZj on βj,0.

γ (−∞,∞) Coefficient for effect of Zj on β∗
j,0.

ξ (0,∞) Standard deviation of γ.

Ψ (0, 1) Spatial correlation matrix among sites.

Dj,j′ (0,∞) Spatial distance between sites j and j′.

ℓ (0,∞) Rate of spatial autocorrelation decay.
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Table A.4: Parameters in Hierarchical Means Model

Symbol Support Description

αj (−∞,∞) Mean of trait Xk at site j.

θj (−∞,∞) Expected value of αj.

ω (−∞,∞) Grand mean of Xk.

τα (0,∞) Scale for dispersion of αj around θj.

δ (−∞,∞) Coefficient for the effect of Zj on αj.

τδ (0,∞) Scale parameter for δ.

εi (0,∞) Scale of dispersion of Xk around α at site j.

τε (0,∞) Global scale parameter for εj.

qx Fixed One-quarter of the sample range of Xk.

cx Fixed Sample median of Xk.
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Figure B.1: Map of study sites on Grand Cayman, with average annual precipitation
(WORLDCLIM climate layers; Hijmans et al., 2005)
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Figure B.2: Logistic regression model.
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Figure B.3: Hierarchical logistic regression model with coefficient variation among sites.
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Figure B.4: Hierarchical logistic regression model with shrinkage priors for regularization and model selection.



38

β0 β1 β2 β3 β18+ + ++ ... ++

SVL TL HLL Shade

Pattern ~

β0,A

β0,B

β0,C

...

β0,S β1,A

β1,B

β1,C

...

β1,S β2,A

β2,B

β2,C

...

β2,S β3,A

β3,B

β3,C

...

β3,S β18,A

β18,B

β18,C

...

β18,S

λ

Figure B.5: Hierarchical logistic regression model with regularization and a site-level covariate (precipitation).
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Figure B.6: Hierarchical logistic regression model with regularization, site-level effects, and spatial autocorrelation among
sites.
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Figure B.7: Intercepts for the spatial (right) and non-spatial (left) pattern models at each
site (A-S), indicating the log-odds of being spotted (negative) or vermiculated (positive). γ is
the coefficient for the effect of precipitation on these intercepts. Each coefficient is represented
by the 95% (light gray bar) and 50% (dark gray bar) high-density interval (HDI) and median
(vertical bar) of the parameter’s posterior distribution.
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Figure B.8: Slopes of the non-spatial pattern model for each predictor (columns) at each site (rows), indicating the log-odds
of being spotted (negative) or vermiculated (positive). Each coefficient is represented by the 95% (light gray bar) and 50%
(dark gray bar) high-density interval (HDI) and median (vertical bar) of the parameter’s posterior distribution.
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Figure B.9: Slopes of the spatial pattern model for each predictor (columns) at each site (rows), indicating the log-odds of
being spotted (negative) or vermiculated (positive). Each coefficient is represented by the 95% (light gray bar) and 50% (dark
gray bar) high-density interval (HDI) and median (vertical bar) of the parameter’s posterior distribution.
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Figure B.10: The effect of precipitation on the site-level means of each continuous trait. Each
coefficient is represented by the 95% (light gray bar) and 50% (dark gray bar) high-density
interval (HDI) and median (vertical bar) of the parameter’s posterior distribution.
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Figure B.11: Snout-vent length at each site, with nonparametric kernel density estimates and site means (light gray: 95%
HDI; dark gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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Figure B.12: Tail length at each site, with nonparametric kernel density estimates and site means (light gray: 95% HDI;
dark gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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Figure B.13: Mass at each site, with nonparametric kernel density estimates and site means (light gray: 95% HDI; dark
gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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Figure B.14: Hind limb length at each site, with nonparametric kernel density estimates and site means (light gray: 95%
HDI; dark gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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Figure B.15: Ambient air temperature at each site, with nonparametric kernel density estimates and site means (light gray:
95% HDI; dark gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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Figure B.16: Relative humidity at each site, with nonparametric kernel density estimates and site means (light gray: 95%
HDI; dark gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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Figure B.17: Perch height at each site, with nonparametric kernel density estimates and site means (light gray: 95% HDI;
dark gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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Figure B.18: Perch diameter at each site, with nonparametric kernel density estimates and site means (light gray: 95% HDI;
dark gray: 50% HDI; black: median). Sites are ordered from greatest (G) to least (S) annual precipitation.
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C Model Specifications
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Non-Spatial Pattern Model

Yi ∼ Bernoulli(pi)

pi = logit−1(ηi)

ηi = β∗
j|iXi

β∗
j,k =















βj,k + γZj k = 0

βj,k k > 0

βj ∼ MVN(µ,Σ)

Σ = diag(σ)Ωdiag(σ)

Ω ∼ LKJ(2)

σk ∼ Cauchy+(0, τσ)

τσ ∼ Cauchy+(0, 1)

µk ∼ Normal(0, λk)

λk = λk,1λk,2

λk,{1,2} ∼ t+3 (0,
√
τλ)

τλ ∼ Cauchy+(0, d−1)

γ ∼ Normal(0, ξ)

ξ ∼ Cauchy+(0, 2.5)

Spatial Pattern Model

Yi ∼ Bernoulli(pi)

pi = logit−1(ηi)

ηi = β∗
j|iXi

β∗
j,k =















βj,k + γZj k = 0

βj,k k > 0

β ∼ MN (µ,Ψ,Σ)

Σ = diag(σ)Ωdiag(σ)

Ω ∼ LKJ(2)

σk ∼ Cauchy+(0, τσ)

τσ ∼ Cauchy+(0, 1)

Ψj,j′ = exp

(

−
D2

j,j′

ℓ2

)

ℓ ∼ Cauchy+(0, 1)

µk ∼ Normal(0, λk)

λk = λk,1λk,2

λk,{1,2} ∼ t+3 (0,
√
τλ)

τλ ∼ Cauchy+(0, d−1)

γ ∼ Normal(0, ξ)

ξ ∼ Cauchy+(0, 2.5)
= indicates a deterministic relationship

∼ indicates a stochastic relationship
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Hierarchical Trait Means Model

Xi ∼ t7(αj|i, εj|i)

αj ∼ Normal(θj, τα)

θj = ω + δZj

ω ∼ Normal(cx, qx)

τα ∼ Cauchy+(0, qx)

δ ∼ Normal(0, τδ)

τδ ∼ Cauchy+(0, qx)

εj ∼ Cauchy+(0, τε)

τε ∼ Cauchy+(0, qx)

qx = Range(X)/4

cx = Median(X)

= indicates a deterministic relationship

∼ indicates a stochastic relationship
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