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Abstract. In this work, we investigate how illuminant estimation tech-
niques can be improved taking into account intrinsic, low level proper-
ties of the images. We show how these properties can be used to drive,
given a set of illuminant estimation algorithms, the selection of the best
algorithm for a given image. The selection is made by a decision forest
composed by several trees that vote for one of the illuminant estimation
algorithm. The most voted algorithm is then applied to the input image.
Experimental results on the widely used Ciurea and Funt dataset demon-
strate the accuracy of our approach in comparison to other algorithms
in the state of the art.

1 Introduction

Computational color constancy aims to estimate the actual color in an acquired
scene disregarding its illuminant. A scene can be modelled as a collection of
Lambertian surfaces illuminated by a single, constant illuminant. The image
values for a Lambertian surface located at the pixel with coordinates (x, y) can
be seen as a function ρ(x, y), mainly dependent on three physical factors: the
illuminant spectral power distribution I(λ), the surface spectral reflectance S(λ)
and the sensor spectral sensitivities C(λ). Using this notation ρ(x, y) can be
expressed as

ρ(x, y) =
∫

ω

I(λ)S(x, y, λ)C(λ)dλ, (1)

where ω is the wavelength range of the visible light spectrum, ρ and C(λ) are
three-component vectors. Since the three sensor spectral sensitivities are usually
respectively more sensitive to the low, medium and high wavelengths, the three-
component vector of sensor responses ρ = (ρ1, ρ2, ρ3) is also referred to as the
sensor or camera RGB = (R, G, B) triplet.

The goal of color constancy is to estimate the color I of the scene illuminant,
i.e. the projection of I(λ) on the sensor spectral sensitivities C(λ):

I =
∫

ω

I(λ)C(λ)dλ. (2)
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Since the only information available are the sensor responses ρ across the image,
color constancy is an under-determined problem [1]; and thus further assump-
tions and/or knowledge are needed to solve it. Typically, some informati3on
about the camera being used is exploited, and/or assumptions about the statis-
tical properties of the expected illuminants and surface reflectances. When these
assumptions are not fulfilled, the illuminant estimation is expected to be very
inaccurate and leads to an erroneous color correction.

We investigated here if it is possible to automatically derive the suitability
of a illuminant estimation algorithm for a given image by analyzing a set of
visual features. To validate this hypothesis we developed a illuminant estimation
framework and evaluated its performance on a public available dataset of images.
Given a set of illuminant estimation algorithms, the framework determines how
the estimation of the illuminant of a given image should be computed. The
prediction of the suitability of each algorithm is carried out by an image classifier
based on an ensemble of decision trees. The trees have been trained to identify
the best algorithm in the set considered, on the basis of the values of a set of
low-level visual features. For the most part these are general purpose features
taken from the pattern recognition and image analysis fields. Some features have
been specifically designed for the illuminant estimation problem. Within this
framework, a illuminant estimation strategy has been evaluated which selects
for each image, a single algorithm on the basis of the responses of the trees.

Several computational color constancy algorithms exist in the literature which
may be included in our framework, each based on different assumptions. Hordley
[2] gives an excellent review of illuminant estimation algorithms. In this work,
we chose five algorithms, but different algorithms can be used, or added to the
set. Recently Van de Weijer et al. [3] have unified a variety of algorithms. These
algorithms correspond to instantiations of the following equation:

(∫∫
|∇nρσ(x, y)|p dx dy

) 1
p

= kI, (3)

where n is the order of the derivative, p is the Minkowski norm, ρσ(x, y) =
ρ(x, y)⊗Gσ(x, y) is the convolution of the image with a Gaussian filter Gσ(x, y)
with scale parameter σ, and k is a constant to chosen such that the illuminant
color I has unit length. In this work, varying the three variables (n, p, σ) we
have generated four algorithm instantiations that correspond to well known and
widely used color constancy algorithms:

1. Gray World (GW) algorithm [4], which is based on the assumption that
the average reflectance in a scene is achromatic. It can be generated setting
(n, p, σ) = (0, 1, 0) in Equation 3.

2. White Point (WP) algorithm [5], also known as Maximum RGB, which is
based on the assumption that the maximum reflectance in a scene is achro-
matic. It can be generated setting (n, p, σ) = (0,∞, 0) in Equation 3.

3. Gray Edge (GE1) algorithm [3], which is based on the assumption that the
p−th Minkowski norm of the first order derivative in a scene is achromatic.
It can be generated setting (n, p, σ) = (1, p, σ) in Equation 3.
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4. Second Order Gray Edge (GE2) algorithm [3], which is based on the assump-
tion that the p−th Minkowski norm of the second order derivative in a scene
is achromatic. It can be generated setting (n, p, σ) = (2, p, σ) in Equation 3.

The fifth algorithm considered is the Do Nothing (DN) algorithm, which gives
for every image the same estimation for the color of the illuminant, I = [1 1 1].

2 Classification and Regression Trees for Algorithm
Selection

To perform algorithm selection we used decision trees built according to the
Classification and Regression Trees (CART) methodology [6]. Briefly, the classi-
fiers are produced by recursively partitioning the feature space, each split being
formed by conditions related to the features values. In tree terminology subsets
are called nodes: the feature space is the root node, terminal subsets are terminal
nodes, and so on. Once a tree has been built, a class is assigned to each of the
terminal nodes, and when a new case is processed by the tree, its predicted class
is the class associated with the terminal node into which the case finally moves
on the basis of its features values. The construction process is based on training
sets of cases of known class.

Tree classifiers provide a clear understanding of the conditions that drive
the classification process. Moreover, they imply no distributional assumptions
for the features. To improve generalization accuracy we decided to perform the
classification by also using what is called a “perturbing and combining” method
[7]. Methods of this kind, which generate in various ways multiple versions of a
base classifier and use these to derive an aggregate classifier, have proved very
successful in improving accuracy. We used bagging (bootstrap aggregating), since
it is particularly effective when the classifiers are unstable, as trees are, that is,
when small perturbations in the training sets, or in the construction process
of the classifiers, may result in significant changes in the resulting prediction.
With bagging the multiple versions of the base classifier are formed by making
bootstrap replicates of the training set and using them as new training sets. The
aggregation is made by majority vote. In any particular bootstrap replicate each
element of the training set may appear repeated times, or not at all, since the
replicates are obtained by resampling with replacement.

Our classifier is trained on a training set of images labeled with the corre-
sponding best algorithm. The straightforward application of the CART train-
ing process to this problem leads to poor results. This is due to the fact that
some properties of the problem are not taken into account in the formulation: i)
some algorithms generally perform better than others; ii) the performance of the
algorithms are correlated so that the consequences of a non-optimal choice may
present a high variability. The first point is addressed by estimating the a-priori
probability for each algorithm that it is the best algorithm. For the second
point, each pair of algorithms is considered and the average difference in perfor-
mance obtained when one of the two algorithms corresponds to the best choice is
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computed. In other words, we computed the expected cost (i.e. degradation in
performance) caused by the choice of an algorithm when another algorithm is the
best choice. These costs are used during training to influence label assignment in
such a way that the tree is optimized to minimize the expected misclassification
cost instead of the number of errors.

3 Image Features

In the literature many features exist to be used in describing the image content
[8,9,10,11]. For our problem, we have limited the choices of the features within
the low level features category, since they do not require prior knowledge of the
image content and are able to describe some aspects of the image in a compact
and efficient way.

RGB color histogram is one of the most widely used image descriptors [12,13]
and represents the color distribution of the image. It possesses several useful
properties that make it a robust visual feature such as compactness, invari-
ance and robustness with respect to the geometric transformation of the original
image like rotation and scale. We quantized the RGB color space by uniformly
dividing each color axis into 3 intervals for a total of 27 histogram bins.

Edge direction histogram can be used to determine the edge structures within
an image and thus allow us to distinguish between different image classes. For
example, strong edges can be found in buildings, roads, and other man-made
structures.On the other hand, pictures of natural scenes usually do not show
strong edges and since the subject has no clear structure they do not show a spe-
cific pattern. Edge direction histogram Edges are computed applying a Derivate
of the Gaussian filter. The orientations are then thresholded and quantized into
18 bins each corresponding to angles of intervals of 10 degrees.

Wavelet statistics provide information at different levels of resolution about
the textures and structures within the image. Wavelet multiresolution analysis
is often used in content-based retrieval for similarity retrieval, target search,
compression, texture analysis, biometrics, etc. . . [14,15,16]. For our purposes
the wavelet statistics features are extracted from the luminance image using
a three-iteration Daubechies wavelet decomposition, producing a total of ten
bands. The energy i.e. the amount of information within each band, expressed
in terms of the mean and variance of the absolute values in each band, provides
a concise description of the image’s content. This feature is thus composed by 20
components.

YCbCr Color Moments are used to describe the color distribution of an
image. The color distribution of an image can, in fact, be considered a prob-
ability distribution and can therefore be characterized uniquely by its central
moments alone, as can any probability distribution [17]. We computed the first
two central moments, mean, and standard deviation of each color channel of
the YCbCr color space for a total of 9 values. The choice of the YCbCr color
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space allows the separation of the luminance component from the chrominance
components in a simple way using a linear transformation.

The number of distinct colors is related to the color range of the image.
Since several illuminant estimation algorithms are based on the Gray World
assumption, the color range is an indication of whether this assumption holds
true for the given image or not. To remove small variations in the color appear-
ance and thus limit the influence of noise in the computation of the feature, the
RGB color channels are quantized by considering only the six most significant
bits.

The percentage of clipped color components takes into account the extent
of highly saturated color pixels i.e. pixels having the maximum value that can be
represented on the device. We discriminate between pixels with zero, one, two
or all three color components clipped (8 different cases). The values are accu-
mulated in a histogram normalized with respect to the total number of pixels in
the image, so that the histogram represents a probability density distribution.

The cast index is aimed at identifying the presence of a relevant cast within
the image. This is important since a strong cast may be an indication that a
particular illuminant is present. This feature is inspired by the work done in
[18], where the cast is detected and classified into several classes according to its
relevance. In this work, we do not consider the class of the cast but instead its
distribution statistics (2 components) computed as in [18]. We modify the orig-
inal formulation by changing the color space representation from the CIELAB
to YCbCr which does not require the knowledge of the white point of the scene.

Edge Strengths is an important feature since many color illuminant estimation
algorithms rely on statistics about the edges in the images. These estimations
are reliable if computed on strong edges otherwise they are less accurate. We
compute a histogram of edge magnitudes in order to capture the strength of the
edges. The edges are detected as in the case of the edge direction histogram and
the magnitudes are quantized into 5 intervals.

All the features have been chosen uniquely for their ability to describe the
content of an image. The aim of the classifier is to choose the features as well
as which specific components in a feature are more relevant to discriminate
between the classes selected for the problem under analysis. Moreover, while
all the features must be computed for the images in the training sets, only the
features actually chosen and used by the classifier need to be computed for
the images in the test sets and for new images to be processed. This approach
is made possible by the use of CART trees as classifiers. Other classification
methodologies (such as support vector machines and neural networks) would
have required a complex feature selection (and normalization) step.

4 Experimental Results

To evaluate our approach we measured its performance on a subset of the dataset
of images presented by Ciurea and Funt [19] which is commonly used in the
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evaluation of color constancy algorithms as it is labeled with the ground truth
illuminants. In this dataset 15 digital video clips were recorded (at 15 frames per
second) in different settings such as indoor, outdoor, desert, markets, cityscape,
etc. . . for a total of two hours of videos. From each clip, a set of images was
extracted, resulting in a dataset of more than 11000 images. A gray sphere
appears in the bottom right corner of the images and was used to estimate the
true color of the scene illuminant. Since the dataset sources were video clips,
the images extracted show high correlation. To remove this correlation, only a
subset of images should be used from each set. Taking into account that the
image sets came from video clips, we applied a two stage video-based analysis to
select the image to be included in the final illuminant dataset. For more details
about the dataset extraction see [20]. The final dataset so extracted consisted
of 1135 images. These have been randomly subdivided into a training set of 340
images (about 30% of the dataset) and a test of 795 images. The training set
has been used to:

– find the best parameters of the illuminant estimation algorithms;
– make an estimate of the a-priori related to the algorithms (i.e. the probability

that an algorithm is the best one);
– estimate the matrix of misclassification costs.

A cross validation on the test set has been adopted to train and evaluate the
decision forest and to assess the overall performance of the strategy.

4.1 Performance Evaluation

In order to evaluate the performance of the algorithms considered, we have to
define an error measure. Since in estimating the scene illuminant it is more
important to estimate its color than its overall intensity, the error measure has
to be intensity-independent. As suggested by Hordley and Finlayson [21], we use
as error measure the angle between the RGB triplets of the illuminant color (ρw)
and the algorithm’s estimate of it (ρ̂w):

eANG = arccos
(

ρT
wρ̂w

‖ρw‖‖ρ̂w‖
)

. (4)

Hordely and Finlayson [21] showed that a good descriptor for the angular error
distribution is the median error. To verify if the performances of different algo-
rithms are statistically different, a test which is able to compare the whole error
distribution of different algorithms is needed. Since standard probability models
cannot represent underlying errors well, we need a test that does not make any
a-priori assumptions about the underlying error distributions. To compare the
performance of two color constancy algorithms in addition to the median angular
error, we have used the Wilcoxon Sign Test (WST) [22].

4.2 Tuning of the Color Constancy Algorithms

Two of the color constancy algorithms considered, (GE1 and GE2), needed a
training phase to opportunely tune the parameters (n, p, σ). As a training set,
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we used the same 300 images used in [20] in order to make the results easily com-
parable. Starting from the 340 training images, 40 have been discarded in order
to balance the frequency of indoor and outdoor images. The performances of the
algorithms are evaluated using the median angular error. Since the median error
is a nonlinear statistic, we needed a multidimensional nonlinear optimization al-
gorithm: our choice was to use a Pattern Search Method (PSM). PSMs are a class
of direct search methods for nonlinear optimization [23,24]. PSMs are simple to
implement and do not require any explicit estimate of derivatives. Furthermore,
global convergence can be established under certain regularity assumptions of
the function to minimize [25].

4.3 Training and Evaluation of the Classifier

We used cross validation to evaluate the performance of the classifier. The an-
gular error of the illuminant estimation algorithms on the whole dataset is com-
puted. This allows the estimation of the a-priori probability for each algorithm
that is the best choice, and of the matrix of misclassification costs. These values,
estimated on the 340 images of the training set, are reported in Table 1 and in
Table 2.

At this point, a ten-fold cross validation is used to train and to evaluate the
algorithm selection strategy. Table 3 shows the confusion matrix obtained on
the test set. Each row corresponds to an algorithm and reports the distribu-
tion of the output of the classifier estimated on the subset of the test set for
which that algorithm is the best choice. Most of the images for which the DN

Table 1. A-priori probabilities, corresponding to the five illuminant estimation algo-
rithms, estimated on the images of the training set

Algorithm Probability

DN 0.33
GW 0.34
WP 0.04
GE1 0.12
GE2 0.17

Table 2. Matrix of the estimated misclassification costs estimated on the images of
the training set

Predicted Algorithm
Best Algorithm DN GW WP GE1 GE2

DN 0.00 10.90 1.98 6.41 4.10
GW 8.43 0.00 5.67 4.13 6.28
WP 0.50 10.19 0.00 4.93 2.68
GE1 2.80 5.48 2.29 0.00 0.77
GE2 2.86 6.18 1.89 0.67 0.00
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Table 3. Confusion matrix of the classifier used for algorithm selection, estimated on
the images of the test set

Predicted Algorithm
Best Algorithm DN GW WP GE1 GE2

DN 0.85 0.06 0.01 0.04 0.04
GW 0.24 0.61 0.01 0.10 0.05
WP 0.37 0.00 0.11 0.37 0.15
GE1 0.39 0.29 0.04 0.17 0.11
GE2 0.45 0.15 0.02 0.13 0.26

algorithm is the best choice are correctly classified (85% of accuracy). For the
other algorithms the correct classification rate ranges from 61% (GW) to 11%
(WP). However, considering the a-priori distribution of the five algorithms, the
best algorithm is chosen 55% of the time, the second best algorithm is chosen
11% of the time; and the frequency of the selection of the third, the fourth, and
the worse algorithm are 16%, 12%, and 5%, respectively. It should be considered
that the classifier has not been trained with the aim of finding the best algo-
rithm, but with the aim of finding the algorithm with the lowest expected error,
taking into account the errors determined by misclassifications. This means that
the performance of the classifier should not be evaluated in terms of classifica-
tion accuracy, but in terms of the angular error of the selected algorithms. In
fact, in more than 70% of test cases the loss of performance due to the choice of
a suboptimal algorithm is below one degree of angular error with respect to the
best algorithm.

The average angular error of our algorithm selection strategy is about 4.76
degrees, while the median angular error is about 3.21 degrees. These results
are compared in Table 4 with those obtained by the five single algorithms and
by three combining algorithms: AVG, which simply averages the results of the

Table 4. Summary of the results obtained on the test set by our algorithm selection
strategy (AS), compared with the performance of the five simple algorithms. The best
score for each column are reported in bold.

Algorithm Median Mean WSTs

DN 6.05 8.07 0
GW 5.95 7.27 0
WP 5.48 7.45 2
GE1 4.47 5.84 4
GE2 4.65 6.23 3

AVG 4.66 5.99 3
N2M 4.79 5.82 3
LMS 4.12 5.29 7
AS 3.21 4.76 8
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estimations given by the five algorithms considered [26]; LMS which consists in
a weighted average of the outputs of the individual algorithms [26]; N2M which
averages the outputs of the three individual algorithms which gave the closest
illuminant estimations, automatically excluding the two that gave the furthest
estimations [27]. The performance of our approach is clearly superior to that of
single and combined algorithms, at least on the dataset we considered.

5 Conclusions

In this work we have presented a framework for automatic illuminant estimation
based on the selection of simple algorithms. To improve illuminant estimation
accuracy, a decision forest is trained to identify the best algorithm within a set,
for a given image. The choice of the best algorithm is based on a set of low-level
features representing the pictorial content of the images.

Experimental results, performed on subset of uncorrelated images extracted
from the widely used Funt and Ciurea dataset, demonstrate that our approach
is able to improve the results compared with some state of the art algorithms.
From our experiments the approach proposed reduced the median angular error
by 22.1% with respect to the best illuminant estimation algorithm considered
(LMS).
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