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Changing a scene's illuminant causes the chromatic properties of reflected lights to change. This change in
the lights from surfaces provides spectral information about surface reflectances and illuminants. We exam-
ine conditions under which these properties may be recovered by using bilinear models. Necessary conditions
that follow from comparing the number of equations and the number of unknowns in the recovery procedure
are not sufficient for unique recovery. Necessary and sufficient conditions follow from demanding a one-to-
one relationship between quantum catch data and sets of lit surfaces. We present an algorithm for determin-
ing whether spectral descriptions of lights and surfaces can be recovered uniquely from reflected lights.

1. INTRODUCTION

Since the work of Young' and Helmholtz,2 much work in
color vision has been guided by three-dimensional models
of chromatic processing that work in parallel over the vi-
sual field. These models envisage the visual system as a
cascade of chromatic transformations that are applied to
photoreceptoral quantum catches; each such transforma-
tion is represented linearly under appropriate stimulus
conditions. Measurement of the dependence of these
transformations on the visual system's state of adaptation
and on temporal and spatial parameters of stimuli pro-
vides the framework for standard accounts of color de-
tectability and appearance.3

Color researchers have sought to extend the standard
model so that it applies better to normal, everyday view-
ing situations, in which chromatic mechanisms operate
primarily on lights reflected from the surfaces of objects.
Motivated by Land's and earlier work, this research has
focused on color constancy, the stability of surface color
appearance under varying illumination conditions.4 ' A
recent approach to color constancy uses empirically based
linear models of illuminant and surface spectral properties
to link physical variables describing surfaces and illumi-
nation to the operation of photoreceptoral mechanisms."-"
The stability of surface color appearance is equated with
the recovery of surfaces' reflectance functions by the
visual system: these functions describe surface color
properties and do not change when the illuminant is
changed.9-29

In this paper we use empirically based linear models of
illuminants and surfaces to analyze the change in re-
flected lights that is caused by changing the illumination
of a set of surfaces. A trichromatic visual system that is
sensitive to such chromatic change can recover descrip-
tors of surface reflectance functions and so exhibit color
constancy, under natural viewing conditions.

A. Single-View Theory
Previous theoretical work on color constancy dwelt on the
problem of estimating surface and illuminant spectral

properties in the situation in which a set of surfaces is
viewed under a single unknown illuminant. Maloney24

and Maloney and Wandell25 established a general result
for this single-view situation: a trichromatic system that
views surfaces under an unknown illuminant can recover
two reflectance descriptors per surface. It is desirable
to recover three or more descriptors per surface, how-
ever, because neither color percepts 3 0 3 ' nor surface
spectral properties 3 6 are described adequately by two-
dimensional models.

One may recover three reflectance descriptors for each
surface if one assumes that the visual system engages four
or more photoreceptoral types in the task,24 25 supplement-
ing a trichromatic system with rods or anomalous long-
wavelength photoreceptors, for instance.3 2

-
35 There is,

however, no evidence that such additional information is
used independently to represent surface color under nor-
mal photopic viewing conditions.

A prominent assumption on scenes that provides three
descriptors for each surface reflectance is the gray-world
assumption: the space-averaged reflected light bears
the spectral properties of the unknown illumination.2 3 26 36

Under this assumption, a mechanism sensitive to the
space-averaged light reaching the eyes is, in effect, looking
at the illuminant and can determine its chromatic proper-
ties and those of the surfaces. Yet this assumption is not
generally met by surfaces in a scene. Furthermore, there
is no reason to believe that the stability of surface color
appearance in normal viewing suffers when the assump-
tion is not met.37

Highlights on two or more distinctly colored surfaces
also provide information on the illuminant.2 6 '3 8

-
4

1 Yet hu-
man mechanisms of color constancy work in the absence of
highlights, as in Land's demonstrations with Mondrians,
and appear to ignore the information from highlights
about illumination chromatic properties in assigning sur-
face color.42 Other sources of information that can be
used to determine three color descriptors per surface in-
clude chromatic aberration and interreflection 27

-
29 ; their

relevance for human color processing is not yet clear.
Theoretical work with the single-view case shows that
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the computational problem of color constancy is soluble by
a trichromatic system only if one of several unappealing
assumptions is made. In the absence of such assumptions,
the computational problem of determining three or more
reflectance descriptors per surface from a single view is
insoluble.24 25

B. Two or More Views
The starting point of our analysis is the observation that
the stability of surface color appearance is not an issue
unless the chromatic properties of illumination change.
One is thus led to ask whether the lights from a set of sur-
faces, viewed under two or more illuminants in turn, as
in Land's demonstrations with Mondrians,""2 let the vi-
sual system estimate accurately both unknown surface
reflectance properties and unknown illuminant spectral
properties. Indeed, the chromatic change in reflected
lights that is caused by changing the illumination of a set
of surfaces provides abundant information concerning
surface and illuminant properties.

That systematic changes in chromaticity are informa-
tive is most easily seen by analogy to structure from mo-
tion.4 3 50 Suppose that points with fixed positions on a
rigid body, say the eight corners of a cube, are projected
onto a flat display as points of light. A single view of
these points is ambiguous in two ways: (1) the three-
dimensional configuration of these points cannot be deter-
mined from a single view and (2) the visual system
perceives no three-dimensional structure. If one now
makes these points move by, for instance, rotating the
cube, then the three-dimensional configuration of these
points may be determined and an observer perceives
three-dimensional structure.

In the case of a Mondrian display lit by a single illumi-
nant, a trichromatic system can recover, at best, a two-
dimensional description of surface reflectances: this is
the import of the research by Maloney and Wandell.25

If the light is changed to provide further views of the
Mondrian, then a three-dimensional description of each
surface can be determined.1' 52 Land's demonstrations of
color constancy, in which a Mondrian is illuminated se-
quentially by a variety of lights,"",2 suggest that the visual
system interprets such chromatic motion readily.

C. Overview
In this paper we analyze the use of chromatic data, ob-
tained under changing illumination, to determine stable
surface color descriptors. The change in illumination can
occur temporally or spatially or by some combination of
the two. Our aim is to state the conditions on a bilinear
model, which links illuminants, reflectances, and photo-
receptors, so that it recovers uniquely illuminants and
reflectances for any choice of number of photoreceptoral
types, illuminant- and reflectance-model dimensions,
number of views, and number of viewed surfaces.

The recovery procedures examined here are two-stage
linear schemes, which are like those of Maloney and
Wandell 25 and D'Zmura.5 2 The procedure of Maloney and
Wandell, for instance, uses quantum catch data first to
determine a description of an illuminant spectral power
distribution and then uses this information, in the second
stage, to recover descriptions of surface reflectance func-
tions.25 5 3 D'Zmura's5 2 scheme works to recover first the

ref lectances and then the illuminants. For two-stage lin-
ear recovery to be possible, it is necessary that the num-
ber of photoreceptoral types equal or exceed either the
dimension of the illumination model or the dimension of
the reflectance model. Our analysis here focuses on color
constancy problems that meet this restriction.

The simplest criterion for recovery, namely, that the
number of equations in the recovery procedure compare
favorably with the number of unknowns to be recovered,
makes unique recovery feasible but does not guarantee
it. This fact motivates our examination of necessary and
sufficient conditions for unique recovery. We derive from
these a model check algorithm that provides a practical
test of whether a particular bilinear model can be used
to recover uniquely spectral descriptions from chromatic
change. For bilinear models that pass such a test, we can
be certain that the recovery procedure will work f law-
lessly when presented data that fall within the scope of
those models.

In a first companion paper we present particular bi-
linear models that meet the criteria for unique recovery
presented here.5 4 We thus provide results on whether it is
possible for a two-stage linear procedure to recover illumi-
nant and reflectance descriptors for a particular choice of
number of photoreceptors, illuminant- and reflectance-
model dimensions, number of views, and number of
viewed surfaces. In that paper are compiled the results
of checking the function of a variety of bilinear models
for dichromatic, trichromatic, and tetrachromatic visual
systems.

Our starting point here is the construction of bilinear
models that link illuminants, reflectances, and photo-
receptors. 8 5255 Such models have been featured in many
prior treatments of the problem of color constancy.2 0 -2 6

Bilinear models are crucial to our analysis, and in Sec-
tion 2 of this paper we develop them quite generally.

In Section 3 we analyze a two-stage linear algorithm
(cf. Ref. 52) for recovering reflectance and illuminant de-
scriptors from quantum catch data. The algorithm pro-
vides, at best, unique recovery up to an arbitrary positive
scalar. This scalar expresses a well-known ambiguity:
multiplying the intensity of a Mondrian's illuminant by
some positive real number and dividing all surface reflec-
tance functions by the same number has no effect on re-
flected lights. By comparing the number of equations
and the number of unknowns in the recovery algorithm,
we derive a criterion for recovery to be feasible. The fea-
sibility criterion is a necessary condition for recovery. It
generalizes the rule, proposed by Maloney and Wandell,25

that the number of photoreceptors must exceed the num-
ber of descriptors to be recovered per reflectance.

In Section 4 we examine both necessary and sufficient
conditions for recovery to work. An example involving
dichromatic visual systems shows that meeting the feasi-
bility criterion is not enough: an excess of equations over
unknowns in the recovery procedure is no guarantee that
the recovery works to provide reflectance and illuminant
descriptors.

This leads to the heart of the paper (Section 5), in which
we present a practical way to test whether a given bilinear
model provides unique recovery. This model check algo-
rithm provides a test of a wide variety of bilinear models.
In particular, it allows us to test whether a trichromatic
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visual system can recover three descriptors per reflec-
tance from two views.52 The algorithm provides a suffi-
cient test of bilinear model function. If a particular
bilinear model passes the test, then its recovery of reflec-
tance and illuminant descriptors is unique. On the other
hand, if a particular model fails the test, we can draw no
conclusions concerning unique recovery without further
analysis.

In Section 6 we examine the applicability of the model
check algorithm. Although it has a wide scope and is nu-
merically tractable, there are cases of interest that escape
its net (e.g., that in which a tetrachromatic visual system
attempts to recover four descriptors per illuminant and
three descriptors per reflectance5 3 ). Many of these we
deal with by hand, on a case-by-case basis, in the compan-
ion paper.5 4

2. BILINEAR MODELS

Throughout this series of papers we assume that an accu-
rate bilinear model is known to the visual system. In this
section we review the construction of such a model from
its illuminant, reflectance, and photoreceptor constituents
and introduce notation.

A bilinear model is built of three elements (see Fig. 1):
A, a linear, finite-dimensional model for the spectral
power distributions of illuminants met in a particular en-
vironment; B, a linear, finite-dimensional model for the
spectral reflectance functions of surfaces met in that en-
vironment; and C, the spectral sensitivities of the visual
system's photoreceptors. The models for illumination and
for reflectance comprise finite sets of basis functions that
are combined linearly to form approximations to particu-
lar illuminant spectral power distributions or surface-
reflectance functions, respectively. The coefficients in
such an expansion are a finite set of descriptors for the
particular function of wavelength. A bilinear model,
which arises from given photoreceptoral spectral sensitivi-
ties and a choice of models for illumination and reflec-
tance, describes completely all quantum catches that arise
from the environment: the bilinear model maps illumi-
nant and reflectance descriptors to observed quantum-
catch data. In the following specification of a bilinear
model we introduce a number of symbols; these and others
are listed in Table 1. Throughout, we use boldface sym-
bols for vectors and matrices.

A. Illuminants
An m-dimensional linear model for describing illuminants
comprises m orthogonal basis functions {A (A),...,
Ai(A),... ,Am(A)} that are combined linearly to approximate
any particular illuminant spectral power distribution A(A).
In Fig. A are illustrated the three CIE-standard daylight
basis functions of Judd et al.'4 that are used to approxi-
mate the various phases of daylight; these have been
transformed linearly to provide three functions, sampled
at 10-nm intervals, that are orthonormal on the interval
400 nm-700 nm of visible wavelengths. These three
functions, obtained from a principal components analysis
of a set of 622 daylight samples, provide excellent approxi-
mations to actual daylight illumination spectral power
distributions. 3"4

The accuracy of an illumination model is determined by

how well the model approximates the spectral properties
of lights met in a particular environment. The approxi-
mation A(A) to illuminant A(A) is determined by projecting
the illuminant A(A) onto the subspace of illuminants
spanned by the model's basis functions:

m
A(A) -A(A) = aiAi(,

i-1

where

ai = A()Ai(A)dA for i = 1,...,m.

(1)

(2)

The m coefficients ai are the model's descriptors of illumi-
nant A(A). The accuracy of their description depends on
the difference between illuminant A(A) and the model's ap-
proximation A(A). Elsewhere we consider departures of
illuminants (and reflectance functions) from their finite-
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Fig. 1. Linear components of a bilinear model: an example.
A, Model for illumination represented by three basis functions
that describes well the phases of daylight' 4; B, three-dimensional
model for surface reflectance that describes well Munsell chips 3

C, linear model for human trichromatic photoreception. 56 See
text for discussion.
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Table 1. List of Symbols

Bilinear model parameters
p Number of photoreceptor types
m Illuminant model dimension
n Reflectance model dimension
v Number of views
s Number of surfaces
d,, Defect in views m - v
ds, Defect in surfaces n - s
dm Defect in illumination p - m
dn Defect in reflectance p - n

Functions of wavelength
A(A) Illuminant spectral power distribution
Aj(A) ith illuminant model basis function, i = 1. m
L(A) Reflected light
Qk(A) kth photoreceptor spectral sensitivity,

k = ,...,p
R(A) Reflectance function
Rj(A) jth reflectance model basis function,

= .n

Descriptors, vectors, and matrices
ai, a., a,

A, z, Z
B.
Cj

rij

d,, D
eij, e, E

F
Gij

I
r, rt, rtj, R

pjt,pj,p
Wl-j,k ,Wl-

Miscellany
E, U

Q, D

Illuminant descriptors
Bilinear model matrices
Block-diagonal bilinear model matrices

diag[Bj ... By]
Gamma matrices Bi-'B
Quantum catch data
Variables relating two sets of reflectances
Recovery matrix
Block-diagonal gamma matrices diag[rij . . Fr]
Identity matrix
Reflectance descriptors
Inverse of the matrix of reflectance descriptors
Differences of linear combinations of gamma

matrices

Number of equations and number of monomial
unknowns, respectively, provided by the
model check algorithm

Number svp of quantum catch data and num-
ber sn + vm of unknown descriptors to be
recovered

A reflectance function R(A) that falls within the sub-
space spanned by the model's basis functions is given by
the following linear combination:

R(A) = rRj(k),
j=1

where

rj = R(A)Rj(A)dA forj = ,...,n.

(4)

(5)

The n numbers rj are the descriptors of the surface
reflectance function R(A). Because these descriptors
depend only on surface reflectance properties, they
do not change when the illuminant changes: surface-
reflectance descriptors are color constant.

C. Quantum Catch Data
A light L(A) that is reflected from a surface with reflec-
tance R(A), viewed under illuminant A(A), is the product of
the two functions and has the following expansion:

m n

L(A) = A(A)R(A) =2 E arjA(A)Rj(A).
i=1 j=1

(6)

A p-chromatic visual system comprising photorecep-
tors with p linearly independent spectral sensitivities
{Q(k),... , Qk(k),... ,Qp(A)} responds to the reflected light
L(A) by producingp quantum catches qk, k = 1, ... ,p. An
exemplary set of photoreceptoral spectral sensitivity func-
tions for p = 3, those of Smith and Pokorny,56 is shown in
Fig. C. Quantum catches qk are given by the integral of
the product of the kth photoreceptoral mechanism's spec-
tral sensitivity Qk(A) and the light L(A); using Eq. (6), one
obtains the following expressions for the kth quantum
catch:

qk = fQk(A)L(k)dk

= I Q 1(A){2 EaiiiAz(A)Rj(A)} dA.
i-l j-1 

(7)

dimensional models5 7 ; here we assume that illuminants fall
within the subspace spanned by the model basis functions.
The model's approximation to A(A) is then exact, so that

m
A(A) = E aiAi(A).

i=1

(3)

B. Reflectances

An n-dimensional linear model for describing surface
reflectance functions comprises n orthogonal basis func-
tions {Rj(A),...,Rj(A),...,Rn(A)} that are combined
linearly to approximate a particular surface reflectance
function R(A). The functions shown in Fig. B are the
first three surface reflectance basis functions determined
by Cohen 3 ; the original functions have been orthonormal-
ized. These three functions account for 99.18% of the
variance among a set of 433 Munsell-chip reflectance
functions.13

To bring the m illuminant descriptors ai and the n re-
flectance descriptors rj outside the integral in Eq. (7), we
find it convenient to define the bilinear model matrices
Bj, with entries

(Bj)ki = f Q(A)Ai(A)Rj(A)dA, j = 1,...,n. (8)

The rows of Bj are indexed by k, which runs over the
p photoreceptoral spectral sensitivities, and its columns
are indexed by i, which runs over the m illuminant-model
basis functions. The n matrices Bj, one for each reflec-
tance basis function, are thus of matrix dimension p m.

Using Eqs. (7) and (8), we express the dependence of
quantum catches on reflectance and illuminant descrip-
tors in terms of the components of the matrices Bj:

n 

qk = E E rj(Bj)kiai. (9)
j= ii
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Holding the illuminant descriptors ai constant in Eq. (9),
we can see that the quantum catches vary linearly with
the reflectance descriptors rj. Likewise, the quantum
catches vary linearly with the illuminant descriptors
when the reflectance descriptors are held constant. This
bilinearity continues to hold when we express the quan-
tum catches that arise from many surfaces, such as those
in a Mondrian display, that are viewed under two or more
illuminants.

D. Multiple Views of Multiple Surfaces
We now extend bilinear models to treat multiple views of
multiple surfaces. Suppose that a Mondrian comprising
s surfaces with distinct (i.e., linearly independent) reflec-
tance functions is lit, in turn, by v illuminants. Each sur-
face provides p quantum catches, so that the total number
of quantum-catch data from v views of s surfaces is sup.
Let us introduce indices t and w, which run over the num-
ber s of surfaces and number v of views, respectively.
Then the quantum catch qtWk of the kth photoreceptoral
type produced by the tth surface viewed under the wth
light is related to the n reflectance descriptors rj, for
j = 1,...,n, and the m illuminant descriptors awi, for
i = 1, ... , m, in the following generalization of Eq. (9):

n 

qtwk = 2 rtj(BJ)kjawj. (10)
j-1 i-i

Note that, by identifying the quantum catches according to
their surface of origin, we have assumed correspondence,
namely, the ability of the visual system to keep track of
surfaces as they are seen under different illuminants.

It proves useful to recast Eq. (10) in matrix form. We
introduce p-dimensional data vectors dtw = [qtwi ... qt,] T

(T denotes tranpose), and m-dimensional vectors of illumi-
nant descriptors a, = [a.,... awm]T; Eq. (10) becomes

n

dt= E rtjBa, (11)
j-1

for t = 1,...,s and w = 1,...,v. A variant of Eq. (11) is
encountered below in the discussion of recovery. If we
define the pv-dimensional vectors d, = [dtjT... dT] T, the
mv-dimensional vector a = [aT. . .avT]T, and thepv X mv
block-diagonal matrices

Cj = diag[Bj,..., Bj], (12)

in which each of the v blocks along the diagonal is Bj,

Eq. (11) takes on the form (cf. Ref. 52)

dt =2 rtjCja t =1...,s . (13)
j-l

E. Feasibility Condition
The number of quantum catches is sup, and this must
equal or exceed the number of unknown descriptors to be
recovered [Eq. (10)]. There are sn total descriptors for
the surface ref lectances and vm descriptors for the illumi-
nants. Taking into account the inevitable ambiguity of
scale, we see that unless

sup 2 sn + vm-1, (14)

unique linear recovery of reflectance and illumination de-
scriptors is impossible. In Section 3 we show that

this feasibility condition simplifies considerably for two-
stage linear recovery procedures.

3. TWO-STAGE LINEAR RECOVERY
PROCEDURES

The following analysis of recovery rests on a geometric
intuition similar to that introduced by Maloney24 and
Maloney and Wandell.25 These authors represent the re-
sponse of a trichromatic visual system to the light from a
single surface by a three-dimensional vector that resides
in a three-dimensional space of quantum catches. Lights
from two (or more) surfaces provide two (or more) vectors,
and if the surfaces have distinct reflectances that are
described by a two-dimensional model of reflectance,
these vectors lie in a plane through the origin: a two-
dimensional subspace. Maloney and Wandell showed that
the orientation of this plane in the space of quantum
catches is determined by the chromatic properties of the
illuminant and that the (two-dimensional) position within
the plane of each surface's vector of quantum catches is
determined by its reflectance properties.

Suppose now that three surfaces are lit first by one light
and then by another to provide two views. The quantum
catches from a single surface form a six-dimensional vec-
tor that resides in a six-dimensional space of quantum
catch pairs. Lights from three (or more) surfaces provide
three (or more) of these six-dimensional data vectors. If
the surfaces have distinct ref lectances that are described
by a three-dimensional model of reflectance, then these
vectors define a three-dimensional subspace within the
space of quantum catch pairs. The orientation of this
subspace is determined by the chromatic properties of the
pair of illuminants, each of which is constrained to vary in
three dimensions, and the (three-dimensional) position of
each surface's vector of quantum catches within the sub-
space is determined by its (three-dimensional) reflectance
properties.5 2

We use Eq. (13) to develop this and similar arguments
more formally. For expository purposes, we treat first the
problem of recovering descriptors in cases where p = m
and s = n (Subsection 3.A). The recovery is unique, at
best, up to an arbitrary positive scalar. We continue by
determining the dependence of the number of equations
and the number of unknowns on bilinear model parame-
ters (Subsection 3.B). A necessary condition follows from
the requirement that the number of equations equal or ex-
ceed the number of unknowns in the recovery procedure.
This condition generalizes to multiple views Maloney and
Wandell's25 rule that the number of photoreceptoral types
must exceed the dimension of the reflectance model. We
then augment the recovery procedure to handle rectangu-
lar bilinear models met in problems where p > m, thus
extending its scope to problems where p 2 m (Subsec-
tion 3.C). Finally, in Subsection 3.D we discuss trans-
position: interchanging the roles of surfaces and
illuminants appropriately in a working recovery procedure
leads to another working procedure.

A. Two-Stage Linear Recovery with Square Bilinear
Model Matrices
Problems of the form (p m n v s) = (pp n v n) provide a
convenient starting point for our analysis. These include
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two of special interest, namely, that where (pm n us) =

(3 3 212) studied by Maloney 24 and Maloney and Wandell2 5

and the problem (3 3 3 2 3) examined by D'Zmura.5 2 In
both cases, the p m bilinear model matrices Bj,
j = 1,.. ., n, are square, so that the multiple-view model
matrices Cj of Eq. (12) are also square, as is the matrix R
formed by the reflectance descriptors rtj.

Assume that in Eq. (13) the data vectors dt from the s
surfaces, where s = n, span an n-dimensional subspace in
RP'. For each fixed vector of illuminant descriptors a, the
n vectors Cja, j = 1,... , n, provide a basis for that sub-
space. The reflectance descriptors rtj thus express the
data vectors in terms of that basis. These reflectance de-
scriptors can be obtained by assuming that (1) the n X n
square matrix R of reflectance descriptors (with entries
rtj) has an inverse P (with entries pje) and (2) that each of
thepu X pv square matrices Cj, forj 1,. . , n, is nonsin-
gular. Equation (13) then may be rewritten in the follow-
ing form52:

n
2 pjtC-ldt = a forj = 1,...,n. (15)
t=1

We combine each surface's quantum-catch data to form
the pv X n data matrix

D = [di ........ .......... dn], . (16)

and define the n inverse reflectance column vectors

P = [Pjl* *p.jn]; (17)

then system (15) entails

Unique recovery of the descriptors p, which lie in the
kernel of F, will obtain from a singular value decomposi-
tion of F 58 if and only if the kernel of F is one dimensional:

dim[ker(F)] = 1. (25)

The first stage of the recovery procedure thus uses a
singular value decomposition of F to return the descrip-
tors pj and, by matrix inversion, the reflectance descrip-
tors rtj. The procedure's second stage returns the vector
a containing the illuminant descriptors by application of
any one of the identities of Eq. (20).

B. Condition pv > n
When a problem's parameters are chosen so that p = m
and n = s, as above, the general feasibility condition
[inequality (14)] becomes

(26a)pnv 2 n2 + p 1

or, equivalently,

pv(n - 1) > - 1. (26b)

Note that the left-hand side is the number of rows of the
recovery matrix F [Eq. (23)], while the right-hand side is
the number of columns, minus one: for F to have a kernel
of dimension one, it is necessary that the number of its
rows equal or exceed the number of its columns, minus
one. Canceling the positive common factor n - 1 from
both sides of inequality (26b), we find that

pu n + 1 (27a)

or, more simply,

C-'Dp, = a for j = 1,...,n.

In terms of the p X n matrices

Fj = Cf-'D for = 1,...,n, (19)

one has

Fip = ... = Fpn = a, (20)

and by taking differences in Eq. (20), one finds that

Fip-F 2p 2 = ... = Fp,-Fnp = 0. (21)

These n - matrix equations can be combined to form a
homogeneous system as follows:

F,
F1

F1

-F 2 0 ... 0 Pi

0 -F 3 0 P2

0 -Fj

which can be written more compactly as

Fp= 0, (23)

where F is the partitioned (n - 1)pv X n2 matrix appear-
ing in Eq. (22) and the n2-dimensional column vector p is
given by

P = [PiT* --Pn'] * (24)

When the number v of views is taken to be one, inequality
(27b) becomes p > n, which is precisely the rule intro-
duced by Maloney and Wandell 25 in their analysis of one-
view problems.

The condition pu > n for unique recovery has a
simple geometric significance: if the pv-dimensional
vectors Cja, j = 1,... , n, are to provide a basis for an
n-dimensional subspace of DRPV that is fixed uniquely by
a, it must occur that the subspace is proper, i.e., pu > n.

This is an appropriate place to caution the reader again
that, while inequalities (14) and (27b) provide necessary
conditions for unique recovery of descriptors, they are far
from being sufficient: their purpose is to distinguish
problems (p m n us) in which unique recovery is feasible
from those problems in which it is not.

C. Rectangular Bilinear Model Matrices (p > m)
The two-stage algorithm developed under the restriction
p = m can be extended to handle problems in which the
number p of photoreceptoral types exceeds the dimension
m of the illuminant model. If p > m, then the p m bi-
linear model matrices Bj are rectangular and so do not
possess inverses. One can circumvent this problem by
supplementing the matrices Bj with additional entries to
make them square, invertible matrices Bj*.

Assuming that the m columns of the rectangular matri-
ces Bi are linearly independent, one can find dm = p - m
further columns for each matrix that span the unique sub-

(18) p > n. (27b)
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space orthogonal to that spanned by the existing columns.
The parameter dm is the defect in illumination that speci-
fies the number of columns b* that are adjoined to each
matrix Bj to transform it from ap m matrix to a square,
invertible p X p matrix Bj*:

Bj* = [Bjbjl*...bid.*] (28)

If the rectangular matrices Bj are replaced by the
square matrices Bj*, the two-stage recovery procedure of
Subsection 3.A works to make recovery possible when
p > m. The vectors of illuminant descriptors that are re-
covered have zeros in the entries that correspond to the
last p - m illuminant dimensions.

D. Bilinear Model Transposition
The foregoing analysis of p-chromatic systems that use m-
and n-dimensional models for illuminants and reflec-
tances, respectively, to recover descriptors from v views of
s surfaces applies equally well to a Achromatic system
that uses n- and m-dimensional models for illuminants
and ref lectances, respectively, to recover descriptors from
s views of u surfaces. Each surface provides a view of the
illuminant(s). This transposition is well suited to the
analysis of the recovery of spectral descriptions from chro-
matic change in the case of many views of few surfaces.

We define the transposed bilinear model matrices Br',
for i = 1,..., m, with entries

(Bi')kj JQk(A)Ai(A)Rj(A)dA (29)

[cf. Eq. (8)] and use these to express the dependence of
quantum catches on illuminant and reflectance descrip-
tors [cf. Eq. (10)]:

m n
qwtk = 2 ai(Bi )jj* (30)

i-i j-1

This system of equations is of precisely the same form
as that of Eq. (10), except that the roles of surfaces and
illuminants have been interchanged: the dimensions n
and m reverse their roles, as do the number of surfaces s
and the number of views v. The two-stage recovery pro-
cedure can be applied to this system under the conditions
that (1) the illuminant descriptors awi form a square in-
vertible matrix (v so m) and (2) the (possibly augmented)
transposed model matrices are invertible (p 2 n).

Feasibility condition (14) is invariant under the simulta-
neous interchange of v and s, and m and n. When p 2 n
and v = m, one obtains the analog to inequality (27b):

ps > m. (31)

The condition p 2 n arises from the fact that the trans-
posed bilinear model matrices must be invertible for the
two-stage recovery procedure to function. We call the pa-
rameter d = p - n the defect in reflectance.

4. THE FEASIBILITY CONDITION DOES
NOT GUARANTEE RECOVERY
That a favorable comparison of number of data to number
of unknowns [inequality (14)] proves necessary but not

sufficient for recovery to be unique should come as no sur-
prise. Inequalities (14), (27b), and (31) involve merely the
dimensional parameters (p m n us) of a recovery problem.
They speak neither to the structure of a model's matrices
Bj (or Cj) nor to the structure of recovery matrices F, both
of which are critical to actual recovery.

In this section we work toward formulating necessary
and sufficient conditions that guarantee the unique recov-
ery of spectral descriptors for feasible problems with pa-
rameters (p m n us) that fulfill s = n (or dually v = ).

The general formulation is nonlinear and is the subject of
Section 5. Here we content ourselves with special cases
that point the way to those more general considerations.

In Subsection 4.A we develop necessary and sufficient
conditions for the problem (p m n v s) = (3 3 3 3 3) of recov-
ering descriptors from three views of three surfaces.
This provides an example of a special class of problems,
namely, those for which p = m = v and s = n; and, as
shown in Subsections 4.A and 4.B, linear methods suffice.
In Subsection 4.C, we apply these methods to the problem
(p m n v s) = (2 2 2 2 2), in which a dichromatic visual
system is presented two views of two surfaces and seeks
to recover two descriptors per reflectance and per illumi-
nant. We show that this dichromatic problem leads to
catastrophic failure, despite the fact that the necessary
condition expressed by inequalities (14), (27b), and (31)
is fulfilled. This dichromatic example shows in dramatic
fashion that the necessary conditions deduced by compar-
ing equations and unknowns in a recovery procedure
are not sufficient to guarantee recovery. In Subsec-
tion 4.D we discuss the variety of ways in which a bilinear
model may fail.

A. Toward Necessary and Sufficient Conditions
If different sets of lit surfaces give rise to identical
quantum catch data, there is no hope of recovering unique
spectral descriptions of lights and surfaces from quantum-
catch data. A bilinear model must provide a one-to-one
relationship between sets of lit surfaces and quantum-
catch data if recovery is to be unique.

Consider the quantum catch data from two sets of three
surfaces, in which each set is represented by three linearly
independent vectors of reflectance descriptors (see Fig. 2).

R1uminants
al, a2, a3

Surfaces /

r r2 |r3

Data

ZI, Z2 Z3

Si S2 ]S3 

dld 2 ,d3 = X, X2 , X3

Fig. 2. Formulation of necessary and sufficient conditions for
the unique recovery of illuminant and reflectance descriptors
from quantum catch data, up to an arbitrary positive scalar: an
example provided by the case (pm n vs) = (33333). The data
d, from the three surfaces rt, t = 1, 2,3, when viewed sequentially
under the three illuminants a., w = 1, 2,3, must be equal to the
data x, from the surfaces s, viewed under the illuminants z, if
and only if the illuminants are identical up to a single scalar
[zw = Aa. for w = 1, 2,3] and the reflectances are identical up to
the reciprocal scalar [st = (1/A)rt for t = 1,2,3]. See text for
discussion.
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Suppose that the first set is lit by three distinct illumi-
nants a,, a2, and a3, in turn, and that the second set is lit
by three distinct illuminants zl, Z2, and Z3. The subspace
spanned by the data vectors dt, t = 1,2,3, from the first
set of surfaces either is identical to the subspace spanned
by the data vectors xt, t = 1,2,3, from the second set, or
it differs. Let us suppose that these subspaces are, in
fact, identical three-dimensional subspaces of the nine-
dimensional space of quantum catch data vectors. The
only way that these subspaces can be identical, if the bi-
linear model used in the recovery procedure is to provide
unique descriptors up to an arbitrary positive scalar, is
for zl, Z2, and Z3 to be related to a,, a2 , and a3, respec-
tively, by a single scale factor: triples of illuminants must
be in one-to-one correspondence with data subspaces.

The positions within the subspace of the data vectors
from the surfaces with vectors of reflectance descriptors
rl, r2 , and r3 , lit by a, are either identical to the surfaces
lit by z with reflectance vectors si, s2, and S3 or not. If
the data vectors are identical, then the linear algorithms
of Section 3 provide unique reflectance descriptors, up to
an arbitrary positive scalar, only if the position of a sur-
face's data vector within a particular subspace is deter-
mined by the surface's reflectance descriptors.

Stacking the illuminant vectors zl, Z2, and Z3 to form a
nine-dimensional vector z and stacking the vectors a,, a 2

and a3 to form a vector a, we find that the illuminant
triple a generates a data subspace spanned by the three
data vectors d, from the surfaces rt,

d = rCjCa, (32)
j=1

and that the illuminant triple z generates a subspace
spanned by the three data vectors xt from the surfaces st,

3

Xt = stCz (33)
j=1

for t = 1,2,3 [see Eq. (13) and Fig. 2].
Suppose now that the triples of data vectors are identi-

cal, so that

3 3

dt = xt = jstiCiz =2 rtjCja for t = 1,2,3. (34)
i=l j=1

If the matrix S of reflectance descriptors s is invertible,
Eq. (34) yields

3

CiZ =l eijCja for i = 1,2,n = 3, (35)
j=1

where

3

eij = I -itrtj for i1,2, n = 3,
t-1

in terms of the elements cri composing the matrix S-1.
The 3 3 matrix with entries ej must be a multiple of
the identity matrix if reflectance descriptors are to
correspond uniquely to data vector positions within the
illumination-defined subspace.

We conclude that the recovery procedure of Section 3
will work, given data from three views of three surfaces

(36)

with linearly independent vectors of reflectance descrip-
tors, if and only if Eq. (35) has just the trivial scaling
solutions

ell = e22 = e33 , e2 = e2 l = e3 = e3l = e2 3 = e3 2 = 0-

(37)

To check the function of a bilinear model, namely, to
determine whether the only solution to Eq. (35) is the scal-
ing solution [Eqs. (37)], define Gij = Ci-'Cj (the bilinear
model matrices Bj must be invertible), so that

3 3 3

z = Y eyGija = E e2jG 2 ja = 5 e3jG3ja.
j=l j=l j=l

(38)

The three blocks along the diagonals of the Gij are identi-
cal, so that Eq. (38), relating vectors in R9, may be recast
to relate 3 x 3 matrices A = [a, a2 a3 ] and Z =
[Zl Z2 Z3 ] through the 3 x 3 submatrices rij of the Gij:

3 3 3

Z = E>eljFjA = Ee 2 jr 2jA= e3jr3jA.
j=l j=l j=1 (39)

The gamma matrices figure prominently in the following
analyses. They are defined by

rij = Bi-'Bj

and have the properties

rij = ji-l,

Fii = I,

(40)

(41)

(42)

the identity matrix.
Assuming that the three illuminants are distinct,

namely, that they are described by linearly independent
vectors of descriptors, then we can multiply the matrices
of the system [Eq. (39)] on the right-hand side by the in-
verse A-' of the matrix A:

3 3 3

ZA'1 = ej j = Y e2 jF2j = E e3jr3j.
j=l j=l j=1

(43)

If the scaling solution [Eqs. (37)] is the only solution to
this system of equations for a particular choice of bilinear
model, then the leftmost matrix in Eq. (43) can only be a
multiple of the identity: a particular three-dimensional
data subspace determines the corresponding illuminants
up to an arbitrary positive scalar.

To investigate the space of solutions to the equations
[Eq. (43)] for a particular bilinear model, form the two
differences

3 3

> e y - 7 e2jr 2 j = 0,
j=l j=l

3 3

E ef -E e3jf3j = 0.
j=l j=l

(44)

Continue by forming, of each matrix rij, a nine-
dimensional column vector yij that lists the columns of
Fij in order, and use these vectors to construct the 9 3
matrices

Li = [i, Yi2 Yi3] for i = 1,2,3. (45)

M. D'Zmura and G. Iverson
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Define the nine-dimensional column vector

e = [elT e2T e3 ]T, ei = [eii ei2 ei3T]_

Finally, define the partitioned 18 9 model check me
L as follows:

Li -L2 0]

Li1 0 -L3 1

by an easy generalization of the constructions that led
from Eq. (44) to Eq. (48). In Eq. (51), the vector e=

(46) [e11 e12 ... enn ,T is n2 dimensional, and the (n - 1)p2
X n 2

matrix L has the form
Arix

L1 -L2 0 ... 0

L= L, 0 -L3 0

L1 0 -Ln

(47)

where Li, L2 , and L3 are the 9 X 3 matrices given in
Eq. (45).

The system of equations (47) can then be written com-
pactly as

Le = 0. (48)

If the system [Eq. (48)] has just a one-parameter family of
solutions, those solutions are the scaling solutions. The
necessary and sufficient condition for none but scaling so-
lutions is that the rank of the matrix L be exactly eight or,
equivalently, that the null space of L be one dimensional.

To review, the necessary and sufficient conditions for
a bilinear model to work in the case where (p m n us) =
(3 3 3 3 3) are that (1) the 3 X 3 bilinear model matrices Bj,
for j = 1,2,3, are nonsingular and that (2) rank (L) = 8;
the trivial scaling solution [Eqs. (37)] will lie within the
one-dimensional kernel of the model check matrix L. Re-
covery of three descriptors each for three ref lectances and
three illuminants is unique by a bilinear model that passes
this model check, as long as the three vectors of descrip-
tors for the ref lectances and those for the illuminants are
linearly independent.

B. Necessary and Sufficient Conditions When
p = m = v, n = s
The preceding analysis generalizes readily to a necessary
and sufficient test of a bilinear model in cases in which (1)
the number p of photoreceptoral types, the dimension m of
the illuminant model, and the number v of views are equal
and (2) the number s of surfaces with linearly indepen-
dent vectors of reflectance descriptors is equal to the
dimension n of the reflectance model.

In cases wherep = m = v, the system of equations given
in Eq. (39) generalizes to the system

n \
[Z 1 ... ZU] = (E eilii)[a ... av] =

j-1

1n
= ( enjrnj [a ... av]. (49)

The matrices Z = [z 1 ... zJ andA = [a,... a] are square,
invertible p X p matrices, as are the gamma matrices.
Multiplying Eq. (49) on the right-hand side by A` and
taking differences between linear combinations of gamma
matrices as before [cf. Eq. (44)], we find that

nn \
( elhrlh - >ejirJh) = 0 forj = 2,...,n. (50)
h- h-l

This system provides (n - 1) blocks of pm linear equa-
tions in the n2 variables eij. It can be written in the
compact form

(52)

where each block Lj, j =1 n, is p2 X n.
For a bilinear model with p = m = v and n = s to be

capable of recovering reflectance and illuminant descrip-
tors uniquely from quantum catch data, it is necessary
and sufficient that the kernel of the matrix L be one
dimensional. In this case, the kernel contains only the
scaling solutions

e1- ejj = 0 forj = 2,..., n,

eij = O for i j. (53)

C. Failureof(pmnvs) = (22222)

We now analyze the system of Eq. (50) for the dichromatic
case (p m n v s) = (2 2 2 2 2). Although this case provides
a reflectance-recovery procedure with a first stage involv-
ing four equations in three unknowns [cf. inequal-
ity (26b)], it is readily shown that recovery is never
possible. This example shows that satisfying the feasibil-
ity condition, which follows from comparing numbers of
equations and unknowns in the recovery procedure, is not
sufficient for recovery to work.

Taking as our starting point the system of Eq. (50), we
show the failure of (2 2 2 2 2) by applying the Cayley-
Hamilton theorem, which states that a matrix satisfies its
own characteristic equation.59 The system of Eq. (50),
specialized to the case at hand, has the form

ei1F1 i + el2Fl2 - e2 lr21 - e22r22 = 0- (54)

The gamma matrices are 2 X 2 invertible matrices.
Noting that rll = F22 = I, the 2 2 identity matrix
[Eq. (42)], and that F2 1 = r 12-' [Eq. (41)], one has

(el, - e22)I + e12F1 2 - e2lf1F2 1 = 0. (55)

Multiplying this equation through by 
1
12 and reordering

produces

-e 2 lI + (ell - e22 )F12 + el2Fl 2
2 = 0. (56)

If Al and A2 are the nonzero but not necessarily distinct
eigenvalues of the 2 x 2 invertible matrix F12, then, by the
Cayley-Hamilton theorem,

(l2 - AI)( 12 - A2I) = 0,

which leads to

AiA21 - (Al + A2)Fl2 + 1F122 = 0.

(57)

(58)

Comparing Eqs. (56) and (58) term by term shows that the
dichromatic system possesses the following infinite set of
solutions:

e12 = c,

-e2l = clA2 =c det(r12),

e22 - ell = c(Ai + A2) = c trace(F12), (59)

(51) where c is an arbitrary constant.
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The original system of Eq. (54) expresses the conditions
under which the eight quantum catch data provided by
two views of two surfaces to a dichromatic system can be
generated by distinct combinations of reflectances and
illuminants. Were the scaling solution ell - e22 = e 2 =

e2l = 0 the only solution to Eq. (54) [obtained by setting
c = 0 in Eq. (59)], then we would be assured that, except
for an arbitrary scale, only one combination of two illumi-
nants and two surfaces could produce a particular set of
data. The existence of other solutions [c =$ 0 in Eq. (59)],
however, shows that there are infinitely many distinct
combinations of two illuminants and two surfaces, not
related by scaling, that can give rise to any received set of
eight quantum catch data. No recovery procedure can
ever work for the problem (p m n v s) = (2 2 2 2 2).

In the companion paper we present the other half of a
surprising result: although dichromats cannot recover
two descriptors per reflectance when presented two views
of two surfaces, a dichromat can recover three descriptors
per reflectance when presented two views of three sur-
faces.54 This suggests that the natural dimension for
dichromatic surface color representation may be three.

D. Varieties of Failure
The failure of the dichromatic case (p m n v s) = (2 2 2 2 2)
is total: no matter which illuminants and reflectances
provide a set of quantum catch data, they will never be
recovered uniquely if bilinear models with parameters
(2 2 2 2 2) are used. It is also possible, in principle, for the
failure of recovery to be partial: the color constancy al-
gorithm works most of the time to provide the correct de-
scriptors but fails to provide a unique solution (up to an
arbitrary positive scalar) under special classes of lights.
Thus recovery would function properly for most illumi-
nants but would occasionally break down. An instance of
partial failure would not necessarily be picked up in simu-
lations of recovery involving a less than exhaustive set of
test cases (e.g., those of D'Zmura5 2 ). In the companion
paper we report several such cases of partial failure that
satisfy the pv > n rule.5 4 Our chief concern here is with
identifying models that never fail.

5. SUFFICIENT TESTS OF UNIQUE
RECOVERY

Our aim is to distinguish color constancy algorithms that
(1) recover perfectly reflectance and illuminant descrip-
tors when provided adequate data, from algorithms that
(2) work imperfectly, suffering partial failure, and to
distinguish these from algorithms that (3) fail totally.
Because the comparison of the number of data and the
number of unknowns [inequality (14)] does not provide a
sufficient condition for recovery to work, we must conduct
further analysis along the lines of the previous section.

Our special concern lies with the case in which a tri-
chromatic visual system is provided two views of three
surfaces and attempts to recover three descriptors per
surface and per illuminant,52 and in Subsection 5.A we
commence with an analysis of this case. The conditions
that a bilinear model with parameters (pm n s) =
(3 3 3 2 3) must meet, if it is to provide for the unique recov-
ery of reflectance and illuminant descriptors, are similar
to those in the three-view case of Subsection 4.A but are

more intricate. These conditions lead to a numerically
tractable, sufficient test of whether a given bilinear model
permits the unique recovery of three descriptors per re-
flectance and illuminant from two views of three or
more surfaces.

The sufficient conditions on a bilinear model in the case
where (p m n v s) = (3 3 3 2 3) are but one instance of a
more general set of results. Our first step is to generalize
the conditions for unique recovery for (3 3 3 2 3) to cases in
which bilinear model matrices are square and nonsingular
(p = m; Subsection 5.B.1). We present a general algo-
rithm for checking whether a particular bilinear model
represented by square matrices permits the unique recov-
ery of illuminant and reflectance descriptors. Our second
step is to generalize the conditions to cases in which the
bilinear model matrices are rectangular (p Ž m; Sub-
section 5.B.2) and to sketch the model check algorithm for
these cases, leaving details of its derivation to Appendix A.

A. TwoViewsofThreeSurfaces: (pmnvs) = (33323)
Two is the minimum number of views required for a tri-
chromatic visual system to recover three-dimensional
descriptions of illuminants and reflectances from three
surfaces.2 5 52 The conditions on a bilinear model for
unique recovery from two views follow from an argument
generalizing that developed above in the three-view case.
It leads to a set of 45 equations in 36 unknowns that can
guarantee unique recovery by the model if the set of equa-
tions provides exactly 36 independent equations.

Suppose that a first set of three distinct surfaces is lit
by illuminants a, and a2 and that a second set is lit by z1
and Z2 - If the subspaces spanned by the quantum catch
data from the two sets are identical, then the two pairs of
illuminants must be identical, up to scaling, for a particu-
lar bilinear model to work. The basic equations [Eq. (39)]
now involve matrices of illuminant descriptors that are
not invertible:

3 3

[Z1 Z2 0] = >eujryj[a, a2 0] = Ze2gj2j[al
j=1

3

= >.e3jf3j[al a 2 0]-
j=1

j=1

a2 0]

(60)

We cannot rid ourselves of the matrix of illuminants A =
[a, a 2 0] by inversion, as in the three-view case. Yet if
we form the two differences

3 3

- e j Fj -Z Ee2jF2j [a,
j=

1
j=1

/3 3
E e's - Z e3jr3j [a,
j=l j=l

a2 0] = 0,

a 2 0] = 0, (61)

sufficient conditions on the bilinear model, expressed
through the gamma matrices, become apparent. By
Eqs. (61), each row of the two difference matrices W 2 and
W1 3, where

3 3 \

W1-2 = ( evij - E e2jF2j>
j=l j=l

3 3

W1-3 = eFJ - E e3j3j (62)
jl j=1
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must be orthogonal to the subspace spanned by illumi-
nants a, and a2 :

W1 2[al a2 0] = WV3 [a a2 0] = 0

or

Wl_2,1

W1-2,2

W1_2,3 [a,
W1_3,1

W1i 3,2

WI-3,3

a2 ] = ,

where Wlij k is the kth row of the difference matrix Wl-j.

This means that the six row vectors of Eq. (63) are
collinear. This condition can be expressed by stating that
each pairwise cross product between these six three-
dimensional vectors must vanish:

Wi-jk Wigh = 0 forj,g = 2,3, and k,h = 1,2,3.
(64)

There are 15 independent cross products, each of which
provides three scalar equations (three 2 X 2 determi-
nants), namely,

WI-jk2W1-gh3 - W1i-jk3W1-gh2 = 0,

W1-j,k3W1-g,hl - Wl-jiklWl-gh3 = 0,

W1-jklW1-gh2 - W1-j k2W1-g hl = 0, (65)

forj, g = 2,3 and k, h = 1,2,3, for a total of 45 equations.
These equations are quadratic in the variables eij of
Eqs. (62).

For unique recovery, we desire that there be no way that
the rows of the differences [Eq. (63)] can be mutually
perpendicular to any two linearly independent vectors of
illuminant descriptors. Accordingly, we derive a set of
homogeneous equations in the quadratic combinations
of the variables eij that must have no nontrivial solution if
the bilinear model is to function. Yet we do not examine
solutions to the quadratic equations in terms of the vari-
ables eij, although to do so would provide necessary and
sufficient conditions for unique recovery. Rather, by tak-
ing each of the quadratic unknowns as a distinct variable,
we examine solutions to the linear equations that arise.
While such linearization provides a test that is sufficient
but not necessary, the test is eminently feasible. If, for a
particular bilinear model, the only solution to the lin-
earized equations is 0, then the illuminants a, and a2 are
related to z 2 and Z2 , respectively, by a single scale factor,
and the reflectances ri, r2, and r3 are related to sj, s2 ,
and S3 by the reciprocal of that scale factor.

To find the coefficients determined by the bilinear
model, expressed through the matrices rij with entries
(ij)kl, on the quadratic combinations of the variables eij,

set (x, y) = (2,3), (3,1), or (1, 2) to cycle through the deter-
minants of Eqs. (65) and use the definition of the differ-
ence matrices [Eqs. (62)] to produce

3

2 {[elq rq)kx - ejq(rjq)kX][ei,(r,)hy - egr(rgr)hy]

q, r-1

- [elq(]Fq)ky - ejq(Fjq)ky][elr(Flr)hx - egr(rgr)hx]} = 0,
(66)

for j, g =2,3 and k, h = 1,2,3. Each of these equations
involves quadratic combinations of the variables eij. The
number of quadratic unknowns in the complete set of 45
equations is the number of distinct quadratic combinations
of the variables eij. Note, however, that the variables ell,
e22, and e33 are coefficients on the identity matrices I71,
r22, and F33 [Eq. (42)]. When one takes the differences
between equations [Eqs. (61)], the variable ell only ever
appears in combination with e22 and e33: the three vari-
ables ell, e22, and e33 form only two independent factors
(ell - e22) and (ell - e33) in the present set of equations.
The number of distinct quadratic unknowns in the 45
equations is thus the number of distinct quadratic combi-
nations of (ell - e2 2), (ell - e33), e12, e2l, e13 , e3l, e23, and
e3 2. That number one finds by allocating two indistin-
guishable balls among eight cells, and the number of dis-
tinct ways to do this," is given by the binomial coefficient

(8 + 21) (9) = 36.

Sufficient conditions for a trichromatic bilinear model
to provide unique recovery of three-dimensional illumi-
nants and reflectances from two views of three surfaces
are (1) that the bilinear model matrices Bj be nonsingu-
lar and (2) that the 45 homogeneous equations [Eq. (66)]
in the 36 distinct quadratic combinations of the eight vari-
ables (ell - e22), (ell - e33), e12, e2l, e13, e3l, e23, and e32 pro-
vide a model check matrix with full rank of 36. Note that
this collection of 36 monomial unknowns includes, in par-
ticular, (ell - e2 2 )

2
, (ell - e33 )

2
, e12 2 , e132, e2 2 , e232, e312, and

e32
2. Thus, in finding that the 36 quadratic unknowns are

zero in the above set of equations, one finds that
ell -e22 = ell - e3 3 = 0 and ei2 = e2l = e13 = e3l =

e23= e32 = 0. Going back to the original equations
[Eq. (60)], this means that the two-stage linear color
constancy algorithm works perfectly to recover descrip-
tors when provided adequate data.

B. General Model Check Algorithm
The foregoing check of a particular bilinear model in the
case wherep = m = 3, n = s = 3 and v = 2 leads directly
to a general method for checking the efficacy of bilinear
models in cases where p = m = v + d, and n = s. We
call the nonnegative number d, the defect in views, which
tells us how many fewer views than illuminant model
dimensions are provided: d = m - v. In the case
where (pm nvs) = (33333) of Section 4, in which the
defect in views d, = 0, the check of a bilinear model in-
volves equations linear in the eij. In the case where
(pm nvs) = (33323), in which the defect dv = 1, the
check involves equations quadratic in the eij. In general,
the degree of the polynomials in the eij is equal to dv + 1.
In Subsection 5.B.1 we determine the equations and mono-
mial unknowns involved in a linear, sufficient check of a
particular bilinear model in the case of square bilinear
model matrices, where p = m = v + dv and n = s. We
generalize this derivation for square bilinear model matri-
ces (p = m) to the case in which the bilinear model matri-
ces are rectangular (p Ž m) in Subsection 5.B.2.

1. Square Bilinear Model Matrices (p = m)
The strategy behind the check, as in Subsection 5.A, is to
generate a set of homogeneous equations in the distinct
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combinations of the variables (ell - e22),..., (ell - e)
and eij, for i # j, of degree d, + 1, that depend solely on
the bilinear model matrix entries. If these linear equa-
tions provide a model check matrix that has full rank,
then the bilinear model provides unique recovery of illu-
minant and reflectance descriptors from quantum
catch data.

If the number of photoreceptors p equals the dimension
m of the illuminant model, then the bilinear model matri-
ces Bj are p X p square matrices, as are the gamma ma-
trices ri = Bi-'Bj. If the number of surfaces s equals
the dimension n of the reflectance model, then Eq. (60)
assumes the more general form

[Zl ... Z' 0 ... 0 = eyri a ..a, do

eJi Fja a a, I ... °

(67)

As in the preceding section, we define the difference
matrices

n 

Wl_j = E elqFlq - ejqljq forj = 2,..., n, (68)
q=l q=1

in terms of which we have

Wl-ja, ... av ... .0 =0
dvI

forj = 2,...,n. (69)

This implies that the rows Wlj k of the n - 1 matrices
Wl-j all lie in the d-dimensional subspace orthogonal to
that spanned by the v linearly independent vectors of illu-
minant descriptors:

Wl-2,1

W1-2,p..... ......
...........
Wl-n,l

W1-np

a, ... a 0... 0 = 0.
d,

To determine the conditions, expressed in terms of the
variables eij and the entries of the gamma matrices, under
which the rows all lie in a d,-dimensional subspace, we
form all possible determinants of order d + 1 within the
(n - l)p X p matrix of rows and set each of these to zero.
Each such determinant provides a single equation in mo-
nomial unknowns of degree d + 1 in the variables e.

The total number of equations E is the number of dis-
tinct determinants of order d + 1 that may be formed
within the (n - )p p matrix of rows and is given in
terms of products of binomial coefficients:

Number of Equations =
(p=m-v+dv, n=s)

E = (n - )p p

\d + /d + 1J

- np - m M' + 1
\m-v+1 /m-v +1/

To determine the total number of monomial unknowns,
note again that the variable e only ever appears in the
form (ell - ej), so that the total number of linear variables
is n2

- 1. The total number U of monomial unknowns of
degree d, + 1 is then found by allocating d, + 1 balls
among n2 - 1 cells:

Number of Unknowns = U
(p=m=v+dv, n=s)

((n2 - 1) + (d, + 1)

(n2 dv + 1

{n2 + m _--1

M m- V+ 1

1)

(72)

As in the preceding section, we form a homogeneous set
of E linear equations in the U monomial unknowns of
degree d, + 1 in the variables (e11 - ejj), for j = 2, . . ., n,
and eij, for i j. If the model check matrix expressing
these equations for a particular bilinear model has a rank
equal to the number of unknowns, then its kernel has
dimension zero, which implies that the only solution to the
system of Eq. (67) is the scaling solution

e -ej= 0 forj = 2,...,n,

eij = 0 for i j. (73)

In this event, the descriptors can be recovered uniquely,
up to an arbitrary positive scalar.

These conditions on a particular bilinear model are ex-
pressed for the case in which p = m = v + d, and n = s.
A bilinear model with p photoreceptoral types that passes
this check must also work if it is provided further photo-
receptoral types [one can simply ignore the data from the
additional photoreceptoral types(s)]. Likewise, a visual
system provided v views with a bilinear model that fulfills
this check must also pass the check if it is provided fur-
ther views [one can ignore the data from the additional
view(s)]. Finally, a bilinear model with an n-dimensional
reflectance model component that fulfills this check must
also work in the case where n < s [one can ignore the data
from the additional, linearly dependent surface(s)]. To
summarize these entailments,

(pm nvs) => (p + l mnvs),

(pmnus) = (pmnv + s),

(pmnvs) (mnvs + 1).

(74)

(75)

(76)

2. Rectangular Bilinear Model Matrices (p > m)
The algorithm for checking square bilinear models dis-
cussed above fails to cover cases in which the number p of
photoreceptoral types exceeds the dimension m of the illu-
minant model. The bilinear model matrices are not in-
vertible in the latter case, so that the direct formulation of
conditions on a model in terms of linear combinations of
gamma matrices fails. However, we are still able to ad-
here to the strategy of showing that a bilinear model must
admit of only the scaling solution [Eqs. (73)] if two sets of
surfaces under two respective sets of illuminant(s) pro-
vide the same quantum catch data. As suggested by the
recovery procedure in cases wherep > m (Subsection 3.C),
the technique is to supplement the singular bilinear model
matrices Bj with additional entries to make them square,
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invertible matrices Bj*. We find that the necessary and
sufficient conditions on the original bilinear model involve
a check of whether a set of homogeneous equations of de-
gree d + 1 in the underlying variables eij has only the

trivial solution. We then linearize these equations by in-
vestigating the system's solutions in the space of the
monomial unknowns, thus providing a practical sufficient
test. We present the derivation of the model check
algorithm for rectangular bilinear model matrices in
Appendix A.

The sufficient test of unique recovery provided by the
model check algorithm is expressed for problems with pa-
rameters that satisfy p 2 m 2 v and n = s. If a bilinear
model with such parameters passes this test, the en-
tailments of relations (74)-(76) follow, as does the further
entailment

(77)

Clearly, a recovery procedure that can produce m descrip-
tors per illuminant can recover m - 1 descriptors per
illuminant (ignore one of the descriptors). One more en-
tailment embodies transposition. If the model check al-
gorithm shows that a particular bilinear model provides
unique recovery in the case (p m n Us), then model trans-
position shows that the transposed model will provide
unique recovery for the problem (p n m s v):

(pmnvs) => (pnmsv). (78)

monomial unknowns of degree d, + 1 in the underlying
variables, need not be consistent with the equations that
express the monomial unknowns' form in terms of the
underlying variables.

A. Trichromacy
The diagrams of Fig. 3 summarize the applicability of the
model check algorithm to the testing of two-stage linear
algorithms for recovering spectral descriptions from chro-
matic change in the case of trichromacy. Their horizon-
tal axes mark the dimension n of the reflectance model,
taken equal to the number s of surfaces, while their verti-
cal axes mark the number v of views.

A p=3
m=3(n=3)

0 0 0 0 S 0 0

9/6 4136 82/120 13/24 66 45 911154/4 63/O6 

[12/101 118/151- [24/221 [30/311 [36/421 [42/551 [4801
.............. ...............

1/10 28/120 84/680 220/00 455/770818/19600 1330/43680
[6/7] [9/12] [12/191 [1528] [18/39] [21/521 [24/67

.1 -

4-

3-

V (S)
2-

1 -

0 1 2 3 4 5 6 7 8

n=s (m=v)

6. APPLICABILITY OF THE MODEL CHECK
ALGORITHM

We have described above a model check algorithm, which
provides a sufficient test of whether a particular bilinear
model, with parameters that satisfy p - m ' v and n = s,
always allows the recovery of illuminant and reflectance
descriptors from quantum catch data. The sufficient
test checks (1) whether the bilinear model matrices are
invertible and (2) whether a suitably constructed model
check matrix of dimension E X U that is determined by
the bilinear model matrix entries has full rank. A model
passing the check is distinguished by the fact that
quantum catch data are related uniquely to sets of lit
surfaces (Fig. 2).

For color constancy problems such as (pm n us)
(3 3 3 3 3), where the defect in views d, = m - v. = 0 and
the monomial unknowns (of degree 1) are identical to the
underlying variables (ell - ej) forj = 2, .. ., n, and ei,, for
i $A j, it is both necessary and sufficient for a particular
bilinear model to produce a model check matrix of full
rank. For problems such as (p m n u s) = (3 3 3 2 3), where
d, > 0, it is certainly sufficient for unique recovery that a
particular bilinear model provide a model check matrix of
full rank, but it is not, in general, necessary. Without
further analysis, we deduce nothing from the fact that a
particular bilinear model, with parameters satisfying
d, > 0, produces a model check matrix with a nontrivial
kernel. The reason for this is that the vectors in the
kernel of a model check matrix that fails to have full rank,
each of which describes linear combinations of

(n2 + mu + 1)

M m- V+ 1

B p= 3

V (S)

3-

2-

1-

m=2(n=2)
* * 0 * 6

8/3 14/8 20/15 26/24 32/35
[12/81 [18/131 [241201 130/291 [36/40]

* 1i 6 0 * *
6/ l 21/36 45/120 78/300 120/630
[6/6J1 [9/111 [12/181 (15/27] [18/381

.. -.-- 6

n=s (m=v)
Fig. 3. Conditions for recovering spectral descriptions from
chromatic change: trichromacy. A, Square problems wherep 
m = 3 or, by transposition, p = n = 3; B, rectangular problems
where p = 3, m = 2 or, by transposition, p = 3, n = 2. In both
diagrams, the horizontal axis marks the dimension n of the re-
flectance model, taken equal to the number s of surfaces, while
the vertical axis marks the number v of views. The solid lines in
both diagrams that start at the lower left and work toward the
upper right separate problems that satisfy the necessary condi-
tion svp Ž sn + vm - 1 [inequality (14)] from those that do not.
The number of quantum catch data and the number of descrip-
tors to be recovered are indicated for each case by the bracketed
pair [Q/D] beneath the appropriate lattice point. Points that lie
beneath and to the right of the solid lines, where Q < D - 1, fail
the feasibility condition sup - sn + um - 1 and so represent
problems for which unique recovery is impossible. The dotted
lines divide problems that satisfy the necessary condition for the
test provided by the model check algorithm to be performed,
namely, that E - U [Eqs. (AlO) below and (72)]. The pair E/U is
shown directly beneath each point. In cases where m > v, such
tests are sufficient; in problems where m = v, they are necessary
and sufficient. By transposition, each problem (pm n us) also
represents the transposed problem (p n m s u), and the transposed
parameters are indicated in parentheses at the tops of the dia-
grams and along their axes. See text for further discussion.

-
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The solid lines in both diagrams (A: p = 3, m = 3
and B: p = 3, m = 2), which start at the lower left and
work toward the upper right, divide feasible problems that
satisfy the necessary condition sup 2 sn + m - 1
[inequality (14)] from those problems for which recovery is
impossible. The number sup of quantum-catch data and
the number sn + m of unknown descriptors are indicated
for each problem by the bracketed pair [Q/D] beneath the
appropriate lattice point. Points that lie beneath and to
the right of the solid lines represent problems with pa-
rameters that fail to satisfy pu > n [inequality (27b)], for
which perfect recovery is impossible.

Problems for which the reflectance dimension n is
one (first column) are omitted; such surfaces are homo-
chromatic. Likewise, problems for which the illumina-
tion dimension m is one are omitted; such lights are
homochromatic.

The dotted lines divide problems with parameters that
satisfy the condition for the sufficient test provided by the
model check algorithm to be performed, namely, that
E U [Eqs. (71) and (72)]. The pair E/U is shown di-
rectly beneath each point. Points that lie above and to
the left of the dotted lines represent bilinear models with
parameters (pm n us) for which the model check algo-
rithm provides a sufficient test. Points that lie below and
to the right represent problems where U > E, for which
the model check algorithm does not apply.

The bracketed parameters that label both panels of
Fig. 3 refer to the parameters that are obtained by model
transposition. All results that one finds concerning re-
covery for a problem with parameters (p m n us) obtain
also for the problem with transposed parameters
(p n m s ). In particular, the bracketed pair [Q/D] is un-
altered by model transposition, and the solid lines continue
to divide problems that lead to feasible recoveries from
those that do not. Likewise, the pair E/U refers in the
transposed case to model check numbers of equations and
unknowns, and the dotted lines divide problems to which
the algorithm may usefully be applied from those to which
it cannot.

Note that problems where u > m are not considered (top
rows of the panels in Fig. 3); views in excess of m distinct
views provide no further information and reduce to cases
where m = . Likewise, problems where s > n are not
considered; surfaces in excess of n distinct ones required
for forming an invertible matrix of reflectance descriptors
are redundant.

All told, the necessary condition p > n [inequal-
ity (27b)] suggests that, when the dimension of the illumi-
nation model is three, a trichromatic visual system can
recover from one view two, from two views five, and from
three or more views eight descriptors per reflectance.
Likewise, when the dimension of the illumination model is
two, the necessary condition suggests that a trichromatic
visual system can recover from one view two and from
two or more views five descriptors per reflectance. Yet
the sufficient test provided by the model check algorithm
has a narrower scope. It speaks neither to the problem
where (p m n us) = (3 3 2 12), considered by Maloney 24

and Maloney and Wandell25 in their work on single-view
theory, nor to the problems in which a trichromatic system
attempts to recover from two views either four or five de-
scriptors per reflectance.

B. Dichromacy and Tetrachromacy
In Figs. 4 and 5 are presented similar diagrams for
the recovery of spectral descriptions from chromatic
change for dichromatic (Fig. 4) and tetrachromatic (Fig. 5)
systems.

For dichromatic visual systems, the two problems
(p m n u s) = (2 2 2 2 2) and (2 2 3 2 3) satisfy the necessary
condition for recovery (solid lines). Furthermore, par-
ticular bilinear models with either of these parameter sets
can be tested with the model-check algorithm (dotted
lines). The diagram suggests that a dichromatic visual
system might be able to recover perfectly three descrip-
tors per reflectance from two views when the dimension
of the illumination model is two, and this result is shown
in the companion paper.54 The problem (2 2 3 2 3) and its
transpose (2 3 2 3 2) exhaust the two-stage linear recovery
possibilities for dichromacy.

Figure 5 provides a partial listing of tetrachromatic
cases; the diagrams are limited to problems for which the
surface-related parameters n and s are less than or equal
to eight. For problems in which p = m = 4 (Fig. 5A),
where the defect in illumination is zero, an examination of
necessary conditions suggests the feasibility of recovering
three, seven, and more than eight reflectance descriptors
per surface from one, two, and three or four views, respec-
tively. The model check algorithm, however, provides no
test of the one-view problems and operates only on prob-
lems concerning two views with up to four reflectance de-
scriptors. The mismatch between the problems that meet
the necessary condition and the problems testable by the
model check algorithm diminishes when the dimension m
of the illumination model is set to three (Fig. B) and
includes the problems for one view (4 3 313) and for two
views (4 3 7 2 7).

C. Limits through 6-Chromacy
In Fig. 6 are shown limits on the applicability of the
model check algorithm and on the recovery of surface
reflectance descriptors provided by the necessary condi-
tion pu > n for dichromatic through 6-chromatic systems.
At each point is shown in the format NS/Nn (1) the maxi-
mum number N, of reflectance descriptors per surface
that may be recovered by a bilinear model that can be
tested with the model check algorithm and (2) the maxi-
mum number Nn of reflectance descriptors that may be re-
covered by a bilinear model that satisfies pu > n. These
values are shown for the ranges of the permissible values v
of the number of views that are indicated in the legends at
the right. The number s of surfaces is taken equal to the
dimension n of the reflectance model.

The dashes for the problems (p m n v s) = (2 2 n n) in-
dicate that for no value of n can the model check algo-
rithm be performed and for no value is the necessary
condition met. The single dashes for the problems
(p p n 1 n), for p = 3, 4, 5,6, indicate that for no value of n
can the model-check algorithm be performed.

D. Positive Entailments
The scope of the model check algorithm is broadened
considerably by the five entailments given in rela-
tions (74)-(78), all of which are of the following form: if
the model check algorithm shows that a particular bi-
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m =2 (n =2)
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1/6 61386 161120

(4/6] 111]l 18/181

either partially or totally. We shall use the model check
algorithm to show that particular color constancy prob-
lems permit perfect recovery procedures by checking suc-
cessfully the function of particular bilinear models.0 4

B. Necessary and Sufficient Test for Problems with a

Defect in Views?
The model check algorithm fails to handle a small number
of problems, some of which are of great interest (see

i 234

n=s (m=v)

Fig. 4. Conditions for recovering spectral descriptions from
chromatic change: dichromacy. Problems are shown where
p= m=2orp =n=2. TheXmarkstheproblem(pmnvs)=
(2 2 2 2 2) where recovery fails totally (see Subsection 4.C). See
the caption for Fig. 3 and text for further discussion.
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4-

linear model with parameters (p m n us) provides a perfect
color constancy algorithm, then there exists a bilinear
model that provides a perfect algorithm with suitably
altered parameters. We provide a complete list of en-
tailments in the companion paper.5 4

The scope is broadened further by the following fact: a
particular bilinear model that provides a perfect color
constancy algorithm will continue to provide perfect re-
covery when its bilinear model matrices are subject to an
invertible bilinear transformation Bj - XBjY, forj =

1,... , n, where X and Y are nonsingular linear transfor-
mations. In other words, equivalent models are generated
from a given one by the application of both an invertible
linear transformation to the photoreceptoral sensitivities
and a possibly distinct invertible linear transformation
to the basis functions for illumination. The same is true
for the mapping Bi' > XBi'Y (now Y transforms
reflectances).
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1-7. DISCUSSION

In the companion paper 4 we report the results of applying
the model check algorithm to the color constancy problems
listed in Figs. 3-5 of the current paper. Our aim there is
to distinguish two-stage linear recovery procedures for
color constancy that (1) recover perfectly reflectance and
illuminant descriptors when provided adequate data from
procedures that (2) work imperfectly, suffering partial
failure, and to distinguish these from procedures that (3)
fail totally.

A. Distinguishing Problems and Models
The task has two parts. Problems identified by their

parameters (p m n v s) must be distinguished from one an-

other. Furthermore, bilinear models with the parame-

ters of a particular problem must be distinguished from

one another. One could inadvertently choose a bad bi-

linear model with parameters that match those of a prob-

lem in which perfect recovery is possible. The simplest

example of a poor choice is a bilinear model with matrices
that are not invertible.2 4 The model check algorithm dis-

tinguishes bilinear models that provide perfect recovery

procedures from models that provide procedures that fail,
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Fig. 5. Conditions for recovering spectral descriptions from
chromatic change: tetrachromacy. A, Square problems where
p = m = 4 or p = n = 4; B, rectangular problems where p = 4,
m = 3 or p = 4, n = 3; C, rectangular problems where p = 4,
m = 2 or p = 4, n = 2. See the caption for Fig. 3 and text for
further discussion.
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Fig. 6. Limits on the recovery of spectral descriptions from
chromatic change. The horizontal axis marks the number p of
photoreceptoral types, and the vertical axis marks the dimension
m of the linear model for illumination. At each point is marked
(1) the maximum number N, of surface reflectance descriptors
that may be recovered by a bilinear model that can be tested with
the model check algorithm and (2) the maximum number N of
reflectance descriptors that may be recovered by a bilinear model
that satisfies the necessary conditionpv > n. These two quanti-
ties are shown in the format N/Nn for values of the number v of
views indicated in the legends at the right. See text for further
discussion.

C. Scope
The restrictions p 2 m 2 v and s 2 n on problem pa-
rameters rule out problems that have structures incom-
patible with two-stage linear recovery procedures, such as
the procedures of Maloney and Wandell25 and D'Zmura.5 2

Through the transposition entailment [relation (78)], one
sees that two-stage linear recovery is possible only when
the number of photoreceptoral types equals or exceeds one
or both of the dimensions for reflectance and illumination.

Yet we shall find that almost all color constancy prob-
lems that are relevant to biological, human, and machine
vision can be treated by the methods described here. The
reason is that relatively many views of a set of surfaces are
needed for recovery of n descriptors for each surface and
m descriptors for each light in situations where n, m > p.
Almost all problems that involve either unchanging illumi-
nation (one view) or a single change in illumination (two
views) are captured by the present analysis.

Finally, the restriction s 2 n is lifted, partially, through
use of entailments. In general, however, problems that
possess both a defect in views and a defect in surfaces
escape the net.

APPENDIX A: MODEL CHECK ALGORITHM
FOR RECTANGULAR BILINEAR MODEL
MATRICES

The equations that express the equivalence of quantum
catch data in the case where p 2 m 2 v and n = s are

Bi z ... z V0 ... = ( EeijBj) [a, ... a, .

for i = 1,...,zn. (Al)

Section 6). In these problems the defect in views is
nonzero (m > v), and one is led to ask more generally
whether the sufficient test provided by the model check
algorithm in cases where m > v can be transformed into a
necessary and sufficient test of a particular bilinear
model that may be applied to all problems.

The set of homogeneous polynomial equations provided
by the model check algorithm is of degree d + 1 in
n- - 1 underlying variables, and the check linearizes this
system by investigating solutions among the monomial un-
knowns rather than among the variables themselves. A
necessary and sufficient test for all feasible problems with
a defect in views involves determining solutions to the set
of polynomial equations expressed directly in terms of the
underlying variables. This is made possible by an elimi-
nation procedure that converts a set of homogeneous poly-
nomial equations into a sequence of resultants, which
provide criteria that let one determine in principle
whether the bilinear model can be used to recover descrip-
tors uniquely.6 1

-
63 However, cursory examination shows

that this algorithm is unlikely to provide a practical test of
our problems: the algorithm is numerically intractable
in all cases of interest to us. Our model check algorithm
thus appears to be the best available practical method for
checking whether a particular bilinear model can be used
to recover spectral descriptions from chromatic change
uniquely.

The bilinear model matrices are p X m in these n equa-
tions, while the matrices Z and A that compose the illumi-
nant descriptors and the d columns of zeros are of size
m X m. Assuming that the columns of the bilinear model
matrices are linearly independent, we can find d =
p - m further columns for each matrix that span the
unique subspace that is orthogonal to the existing
columns. The difference d is the defect in illumination
that specifies the number of columns b* that must be ad-
joined to each bilinear model matrix to transform it from
ap X m matrix B to a square, invertiblep p matrix B*
(see Subsection 3.C):

Bj* = [Bjbjl*.. bjdm*]-

We also expand the matrices Z and A with
make themp p:

dm

Z '0...0
Z* ~ : .

- ... 0...01 
. F*- dm

0... 0...0

where

Z= [Z ... Z .. 0
L J~~~d

(A2)

zero entries to

(A3)

6

5

m 4

3

2

0 
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[Eq. (71)]:

( E=np -m( M
Number of Equations = E = + )d +1)

(p2m-v+d,, n-s) d/ + 1 +

(m v + 1)

(A10)

where

The generalization of Eq. (67) to the case
bilinear-model matrices thus stands:

of rectangular

n \n \

Z* = e*)A* = ... = ( enjrnj*)A*,
1 1

where

Two sorts of equations of degree d, + 1 = m - v + 1 in

the eij arise from Eq. (A5). The first sort is found, again
by forming n - 1 difference matrices,

n n

Wl_j* = E elq]Flq* - E eq]Fq*
q-1 q-1

forj = 2,...,n,

(A7)

whence

WI-j*A* = 0. (A8)

The first m entries of the first m rows of each of these
n - 1 differences provide m m-dimensional vectors that
all lie in the d,-dimensional subspace orthogonal to that
spanned by the v linearly independent vectors of illumi-
nant descriptors. There are a total of (n - 1) x m of
these m-dimensional rows. The second sort is found by
considering the equations

Z* = ( eiijt* A* for i =1.,n. (A9)

Noting the zero entries in the last p - m rows of Z*, one
finds that the first m entries of the last p - m rows of

each sum of starred gamma matrices provide vectors per-
pendicular to the v column vectors a, ... a, of A*. There

are n X (p - m) of these m-dimensional rows. The total
number of m-dimensional rows from the difference system
[Eq. (A8)] and the sum system [Eq. (A9)] is (n - 1)m +
n(p - m), namely, np - m.

Each row lies in the same d,-dimensional subspace or-

thogonal to the illuminants a, ... a,, so that all possible

determinants of order d, + 1 of the np - m matrix of

rows are zero. Each such determinant provides a single

equation in monomial unknowns of degree d, + 1 in the
underlying variables ej. The total number E of equations
is the number of distinct determinants of order do + 1

that may be formed within the (np - m) X m matrix

of rows and subsumes the result for the square case

For a particular bilinear model to provide a perfect color
constancy algorithm, it is necessary and sufficient
for these E equations in the variables (ell - ej) for j =
2,..., n, and eu for i $ j, with coefficients determined

by the model matrix entries, to possess only the scaling
solution.

We again linearize the model check procedure by inves-
tigating solutions in the space of the monomial unknowns.
We find the number U of monomial unknowns by allocat-
ing d, + 1 items among a list of n2

- 1 items (ell - ej) for
j = 2, .. ., n, and eij for i # j, and it is given by the expres-

sion for U in Eq. (72). As in Subsection 5.B.1, we form a
homogeneous set of linear equations in the unknowns of
degree d, + 1 in the variables (ell - ej) for j = 2, ... , n,

and eij for i # j. If the model check matrix representing
these equations for a particular bilinear model has a rank
equal to the number U of monomial unknowns, then its
kernel has dimension zero, which implies that the only so-
lution to Eq. (A5) is the scaling solution.
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