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Abstract. This paper introduces a novel convex kernel based method
for color constancy computation with explicit illuminant parameter esti-
mation. A simple linear render model is adopted and the illuminants in
a new scene that contains some of the color surfaces seen in the training
image are sequentially estimated in a global optimization framework.
The proposed method is fully data-driven and initialization invariant.
Nonlinear color constancy can also be approximately solved in this ker-
nel optimization framework with piecewise linear assumption. Extensive
experiments on real-scene images validate the practical performance of
our method.

1 Introduction

Color is an important feature for many machine vision tasks such as segmen-
tation [8], object recognition [13] and surveillance [4]. However, light sources,
shadows, transducer non-linearities, and camera processing (such as auto-gain-
control and color balancing) can all affect the apparent color of a surface. Color
constancy algorithms attempt to estimate these photic parameters and com-
pensate for their contribution to image appearance. There are a large body of
works in color constancy literature. A common approach is to use linear mod-
els of reflectance and illuminant spectra [9]. Gray world algorithm [1] assumes
the average reflectance of all the surfaces in a scene is gray. White world algo-
rithm [5] assumes the brightest pixel corresponds to a scene point with maximal
reflectance. Another widely used technique is to estimate the relative illuminant
or mapping of colors under an unknown illuminant to a canonical one. Color
gamut mapping [3] uses the convex hull of all achievable RGB values to repre-
sent an illuminant. The intersection of the mapping for each pixel in an image is
used to choose a “best” mapping. In [14], a back-propagation multi-layer neural
network is trained to estimate the parameters of a linear color mapping. In [6],
a Bayesian estimation scheme is introduced to integrate prior knowledge, e.g.
lighting and object classes, into a bilinear likelihood model motivated from the
physics of image formulation and sensor error. Linear subspace learning is used
in [12] to develop the color eigenflows method to model joint illuminant change.
This linear model uses no prior knowledge of lighting condition and surface
reflectance and does not need to be re-estimated for new objects or scenes. How-
ever, the demanding for large training set and rigorous pixel-wise correspondence
between training and test images limits the application of this method.
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In this work, we build our color constancy study on linear transformation para-
meter estimation. Recently, [8] presented a diagonal rendering model for outdoor
color classification problem. Only one image containing the color samples under
a certain “canonical” illuminant is needed for training Gaussian classifiers. The
trained colors seen under different illuminations can be robustly recognized via
MAP estimation. Due to the advantage of fewer training data requirements, we
adopt this diagonal render model as the base model for our study . The main
difference between our solution and that of [8] lies in the definition of objec-
tive function and the associated optimization method. In [8], image likelihood
and model priors are integrated into a MAP formulation and locally optimized
with EM algorithm. This algorithm works well when all the render matrices
are properly initialized. However, such initializations are not always available
and accurate in practice. In this paper, we propose a novel convex kernel based
criteria function to measure the color compensation accuracy in a new scene.
A sequential global mode-seeking framework is then developed for parameter
estimation. The optimization procedure includes following three key steps:

– A two-step iterative algorithm derived by Half-Quadratic optimization is
used to find the local maximum.

– A multi-bandwidth method is then used to locate the global maximum by
gradually decreasing the bandwidth from an estimated uni-mode promising
bandwidth.

– A well designed adaptive re-sampling mechanism is adopted and the above
multi-bandwidth method is repeated till the desired number of peak modes
are found.

The peak modes obtained in this procedure may be naturally viewed as transfor-
mation vectors for apparent illuminants in the scene. Our convex kernel based
method is fully data-driven and initialization invariant. Such good numerical
properties also leads to our solution for nonlinear color constancy problem based
on current linear model. To do this, we make piecewise linear assumption to ap-
proximate the general nonlinear cases. Our method can automatically find the
transformation vectors for each linear piece. Local optimization methods, such
as EM based method in [8], can hardly achieve this goal in practice because of
initialization dependency. Some results achieved by our method will be reported.

The reminder of this paper is organized as follows: In Section 2, we model color
constancy as linear mapping and estimate the parameters via multi-bandwidth
kernel optimization in a fully data-driven way. In Section 3 we show the experi-
mental results that validate the numerical superior of our method to that in [8].
We conclude this paper in Section 4.

2 Problem Formulation

For the benefit of fewer training samples requirement, we adopt the linear render
model stated in [8] as the base model for our color constancy study. The key
assumptions of are:
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– One hand-labeled image is available for training the class-conditional color
distributions under the “canonical” illuminant.

– The class-conditional color surface likelihood under the canonical illuminant
is a Gaussian density, with mean µj and covariance Σj

– The illuminant-induced color transformation from test image to training
image can be modeled as F (Ci) = Cid, where d = (d1, d2, d3)

T is the color
render vector to be estimated. Ci = diag(ri, gi, bi) is a diagonal matrix that
stores the observed RGB colors for pixel i in the test image.

Suppose we have trained S color surfaces with distributions yj ∼ N (µj , Σj),j =
1, ..., S. Also, assume given a test image with N pixels Ci, i = 1, ..., N , which
contains L illuminants linearly parameterized by vectors dl, l = 1, ..., L. Our
goal is to estimate the optimal dl from image data and then get the assign-
ments of surface class labels j(i) and illuminant type labels l(i) for each pixel i

according to:
(j(i), l(i)) = arg min

j,l
(dist(Cidl, yj)) (1)

dist(·) is some properly selected distance measurement metric (e.g. Mahalanobis
distance in this work).

2.1 Kernel Based Objective Function

To estimate the optimal transformation vectors dl, we propose do find the L

peak modes of following kernel sum function:

f̂k(d) =
N

∑

i=1

S
∑

j=1

wijk(M2(Cid, µj , η
2Σj)) (2)

where k(·) is the kernel profile function [2]( see sect.2.2 for detailed description),
M2(Cid, µj , η

2Σj) = (Cid−µj)
T (η2Σj)

−1(Cid−µj) is the Mahalanobis distance
from compensated color Cid to training color surface mean yj . wij is the prior
weight for pixel i belonging to color surface j. The larger function (2) is, the
better test image is compensated by vector d.

In the following subsections 2.2 to 2.4, we will focus on the optimization issues
and develop a highly efficient sequential mechanism to find the desired L peak
modes of (2) as the optimal dl.

2.2 Half Quadratic Optimization

In this section, we will use half quadratic technique [10] to optimize objective
function (2). The results follow directly from standard material in convex analysis
(e.g. [10]) and we will omit the technical proofs for page limit. All the conditions
we impose on kernel profile k(·) are summarized as below:

1. k(x) is a continuous monotonously decreasing and strictly convex function
2. limx→0+ k(x) = β > 0, limx→+∞ k(x) = 0
3. limx→0+ k

′

(x) = −γ < 0, limx→+∞ k
′

(x) = 0, limx→+∞(−xk
′

(x)) = α < β
4. k′(x) is continuous with finite discontinuous points.
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The following theorem 1 founds the base for optimizing function (2) in a half
quadratic way.

Theorem 1. Let k(.) be a profile satisfying all above conditions, then there ex-

ists a strictly monotonously increasing concave function ϕ : (0, γ) �→ (α, β), such

that

k(M2(Cid, µj , η
2Σj)) = sup

p
(−pM2(Cid, µj , η

2Σj) + ϕ(p))

and for a fixed d, the supmum is reached at p = −k
′

(M2(Cid, µj , η
2Σj).

To further study criteria (2), we introduce a new objective function F : R
3 ×

(0, γ)N �→ (0, +∞)

F̂η(d,p) =

N
∑

i=1

S
∑

j=1

wij(−pijM
2(Cid, µj , η

2Σj) + ϕ(pij)) (3)

where p = (p11, pN1, ..., pNS). According to theorem 1, we get

f̂k(d) = sup
p

(F̂η(d,p))

It is straight forward to see that

max
d

f̂k(d) = max
d

sup
p

(F̂η(d,p)) (4)

From (4) we tell that maximizing f̂k(d) is equivalent to maximizing F̂η(d,p)),
which is quadratic w.r.t. d when p is fixed. We propose to use a strategy based
on alternate maximization over d and p as follows (superscript l denotes the
time stamp):

pl
ij = −k

′

(M2(Cid
l−1, µj , η

2Σj)) (5)

dl =

⎡

⎣

N
∑

i=1

S
∑

j=1

wijp
l
ijC

T
i Σ−1

j Ci

⎤

⎦

−1 ⎡

⎣

N
∑

i=1

S
∑

j=1

wijp
l
ijC

T
i Σ−1

j µj

⎤

⎦ (6)

2.3 Global Mode-Seeking

Since the above two-step iterations (5) and (6) are essentially a gradient as-
cending method, it will surely converge to local maximum. In this section, we
first derive in the following proposition 1 indicating that if bandwidth parame-
ter η is large enough, then the criterion function (2) is strictly concave, hence
is uni-mode. Then we develop a global peak mode seeking method based on
this proposition to find the transformation vector d that best compensates the
illuminant in the test image.
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Proposition 1. One sufficient condition for F̂η(d,p) to be uni-mode is

η > Const ∗

(

2 sup
v

(

−
k′′(v)

k
′(v)

))
1
2

(7)

where Const = max{
√

M2(x, µj , Σj)|x ∈ [0, 255]3, j = 1, ...S}.

The proof is just built on trivial derivative calculation. We give below an example
profile to further clarify proposition 1.

Example 1. (Gaussian profile): k(x) = e−x/2. Then k
′

(x)=− 1
2e−x/2, k

′′

(x) =
1
4e−x/2. supx

(

−k′′(x)

k′ (x)

)

= 1
2 . By proposition 1, the uni-mode-promising band-

width can be selected according to η > Const. In addition, the dual variable
function is ϕ(p) = 2p − 2p ln 2p in theorem 1.

From proposition 1 we can tell that if η is large enough , then from any ini-
tial estimation, the two-step iteration algorithm presented in (5) and (6) will
converge to a unique maximizer of the over-smoothed density function. When
the uni-maximizer is reached, we may decrease the value of η and run the same
iterations again, taking the previous maximizers as initializations. This proce-
dure is repeated until a certain termination condition is met (e.g., convergence
error is small enough). The final obtained maximizer is very likely to be the
global peak mode of the criteria function, since such a numerical procedure is
actually deterministic annealing [7]. See algorithm 1 for a formal description of
this optimization procedure. We have noticed that this global peak mode-seeking
mechanism is similar to what called annealed mean shift in [11], which aims to
find the global kernel density mode. The key improvement lies in that we give
an up-bound of uni-mode promising bandwidth, hence make the algorithm more
operable in practice.

Algorithm 1. Global Transformation Vector Seeking

1: m ← 0, Initialize ηm satisfying the condition presented in proposition 1
2: Randomly initialize d
3: while Terminate condition is not met do
4: Run the iteration (5) and(6) till converge.
5: m ← m + 1
6: ηm ← (ηm−1 ∗ ρ).
7: Initialize d and p with the maximizers obtained in 4.
8: end while

In the following subsections, we denote d∗ and p∗ be the convergent points
reached in algorithm1, and η∗ be the corresponding bandwidth. We also call
the global maximizer d∗ reached in algorithm 1 to be the global transformation

vector (GTV) (associated with current prior weights w).
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2.4 Multiple Mode-Seeking

In this section, as an extension of algorithm 1, we develop an adaptive and
sequential method, namely Ada-GTV, for multiple transformation vector mode-
seeking. The core idea of this method is to find the GTVs one after another
by adaptively changing the prior weight vector w and finding the corresponding
GTV d∗ via algorithm 1. Suppose that current GTV is estimated , we then search

for a local maximizer d∗′

around it for the criterion function (2) estimated under
equal prior weights (this is because our purpose is to find the peak modes of (2)
estimated on original training and test data). Dual variable p is calculated as

pij = −k
′

(M2(Cid
∗′

, µj , η
∗2Σj), i = 1, ..., N, j = 1, ..., S. We then reweight all

the terms in (2), giving higher weight to the cases that are “worse” compensated
(with lower pij) and repeat the GTV seeking procedure by algorithm 1. This
leads to a sequential global mode-seeking algorithm. The formal description of
Ada-GTV is given in algorithm 2. The founded GTVs can be naturally viewed as
transformation parameters for different illuminations in the scene. Compensation
and color classification can be easily done according to (1), as stated in [8]. The
running time of Ada-GTV is obviously O(L ∗ NS) (L, S ≪ N), hence it is a
linear complexity algorithm w.r.t pixel number N .

Algorithm 2. Ada-GTV

1: Initialization: Start with weights w0
ij = 1/NS, i = 1, ..., N, j = 1, ..., S

2: for l = 0 to L − 1 do
3: GTV Estimation: Find GTV d∗ by algorithm 1 with current prior weight wl.
4: Mode Refinement : Starting from d∗, find the local maximum d∗

′

for f̂k(d)
estimated under η∗ and w0.

5: Dual Variables: Get pij = −k
′

(M2(Cid
∗

′

, µj , η
∗2Σj)).

6: Sample Re-weight: Set wl+1

ij ← wl
ij/(1 + pij). Normalize wl+1

ij ←

wl+1

ij /
∑

ij
wl+1

ij

7: end for
8: Color and Illuminant Classification: Each pixel’s illuminant and color label is

determined as (j(i), l(i)) = arg minj,l(M
2(Cidl, µj , Σj)).

3 Experiments

We present several groups of experiments on color compensation and classifica-
tion of real scenes to show the performance of the our method.

The first experiment is done to show the global optimization property of our
algorithm. For comparison purpose, we adopt one set of image data used in [8].
The training image under “canonical” light (with the manually selected sample
colors) and the test image are shown in fig.1(a) and 1(b). Compensation and
color classification results by [8] are shown in fig.1(c) ∼ 1(f). It is obviously to
see that result R1 from starting point P1 (fig. 1(c) and 1(d)) is much more sat-
isfying than R2 from starting point P2 (fig. 1(e) and 1(f)), hence the algorithm
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Fig. 1. A comparison example with EM based method [8]. (a): training image (with
selected color) under “canonical” light (b) test image. (c) ∼ (f): compensation and
color classification results by [8]. (c) and (d): R1 from starting point P1; (e) and (f): R2

from starting point P2. (g) ∼ (i): the compensation, color classification and illuminant
classification results by Ada-GTV from the starting point either P1 or P2.

Table 1. Numerical results, Ada-GTV vs. EM

d1 d2

Starting point P1 (1.0,1.0,1.0) (2.0,2.0,2.0)

Result R1 by EM [8] (0.693,0.773,0.914) (2.005, 1.636,1.456)

Result by Ada-GTV (0.916,0.990,1.053) (2.123,1.614,1.402)

Starting point P2 (0.5,0.5,0.5) (1.0,2.0,1.0)

Result R2 by EM [8] (0.493,0.748,0.502) (1.873, 1.557,1.487)

Result by Ada-GTV (0.916,0.990,1.053) (2.123,1.614,1.402)

is highly initialization relevant. The compensation, color classification and illu-
minant classification results by our Ada-GTV algorithm initialized with either
P1 or P2 is shown in fig. 1(g) ∼ 1(h). Detailed numerical results can be seen
in table 1, which clearly indicates the initialization invariant property of our
method.

The second experiment will show the ability of our method to handle non-
linear illuminant changes based on current linear render model. To do this, we
make piecewise linear assumption to approximate the general nonlinear cases.
Our method can automatically find the transformation vectors for each linear
piece. We give here one experiment on a pair of “map” images to validate this
interesting property. We used Canon A550 DC with automatic exposure, tak-
ing care to compensate for the camera’s gamma setting. The training image
fig.2(a) and test image fig.2(b) are shot under two very different camera settings.
The selected 6 sample colors from the training image and their ground truth
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Piecewise linear color constancy. (a) Training image; (b) Test image; (c) left: 6
selected sample colors and their ground truth counterparts in the test image; right: the
ground truth transformation vectors for the 6 sample colors; (e)∼(g) color compensa-
tion, color classification and piecewise linear illuminant classification results. The black
part in (e) and (f) represents unseen colors in the test image. (h): color compensation
result by render vector d1 only.

Table 2. Initializations and iteration results for render matrices

d1 d2

Initializations (1,1,1) (1,1,1)
Iteration results (0.649,0.845,1.661) (0.788,1.008,3.014)
Initializations (0.5,0.5,0.5) (0.5,0.5,0.5)

Iteration results (0.648,0.843,1.661) (0.788,1.008,3.014)
Initializations (5,5,5) (5,5,5)

Iteration results (0.655,0.852,1.661) (0.788,1.008,3.014)

counterparts in the test image are shown in fig.2(c)(left part). To test whether
the illuminant change in the test image is linear or not, we calculate the ground
truth transformation vectors for the samples and plot them in fig.2(c)(right part).
Obviously two clusters (bounded by dotted ellipses) appear from these vectors,
thus the illuminant change is highly nonlinear. One reasonable assumption is
that such a change is piecewise linear and we may just feed the image data into
Ada-GTV to let it find the transformation vector modes sequentially for each
piece, from arbitrary initializations. EM based method [8] can hard to achieve
this goal simply because accurate initialization for each linear piece is required,
which is not always available beforehand. Here, we properly set the mode num-
ber L=2 in Ada-GTV and initialize both render vectors d1 and d2 with three
different starting points. The convergent points are the same under these ini-
tializations, as is shown in table 2 (parameters are set to be η0 = 1.934 and
ρ0 = 0.5). The image results are shown in fig.2(d)∼ 2(f). fig.2(g) shows the color
compensation result by render vector d1 only, which obviously introduces very
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Fig. 3. Some other experimental results. From left to right: training image, test image
and color compensated image. (a)“Casia” image pairs, (b)“Comic” image pairs, (c)
and (d): “face” image pairs.

large compensation error, visually. Thus, we can see that the adopted piecewise
linear assumption greatly improves performance of color constancy.

We have also extensively evaluated our Ada-GTV method on some other real
scene image pairs, and selected results are given in fig.3.

4 Conclusion

We introduce in this paper a novel convex kernel based method for color con-
stancy computation with explicit illuminant parameter estimation. A convex
kernel sum function is defined to measure the illuminant compensation accuracy
in a new scene that contains some of the color surfaces seen in the training im-
age. Render vector parameters are estimated by sequentially locating the peak
modes of this objective function. The proposed method is fully data-driven and
initialization invariant. Nonlinear color constancy can also be approximately
solved in our framework with piecewise linear assumption. The experimental
results clearly show the advantage of the our method over local optimization
frameowrk, e.g. MAP formulation with EM solution stated in [8].
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