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Abstract

Fluorescent surfaces are common  in the modern world, but
they present problems for machine color constancy because
fluorescent reflection typically violates the assumptions
needed by most algorithms. The complexity of fluorescent
reflection is likely one of the reasons why fluorescent
surfaces have escaped the attention of computational color
constancy researchers. In this paper we take some  initial
steps to rectify this omission. We begin by introducing a
simple method for characterizing fluorescent surfaces. It is
based on direct measurements, and thus has low error and
avoids the need to develop a comprehensive and accurate
physical model. We then modify and extend several modern
color constancy algorithms to address fluorescence. The
algorithms considered are CRULE and derivatives [1-4],
Color by Correlation [5], and neural net methods [6-8].
Adding fluorescence to Color by Correlation and neural net
methods is relatively straight forward, but CRULE requires
modification so that its complete reliance on diagonal
models can be relaxed. We present results for both synthetic
and real image data for fluorescent capable versions of
CRULE and Color by Correlation, and we compare the
results with the standard versions of these and other
algorithms.

Introduction

The image recorded by a camera depends on three factors:
The physical content of the scene, the illumination incident
on the scene, and the characteristics of the camera. It is the
goal of computational color constancy to identify, separate,
or mitigate the effects of these factors. Doing so has
applications in computer vision and image reproduction.
Here we address computational color constancy in the case
where fluorescent surfaces may be present in the scene. Such
surfaces are common because fluorescent inks are often used
to provide strong color. However, machine color constancy
research has not yet addressed the problem of fluorescent
reflection, likely due to the difficulties presented.
Nonetheless, we feel that it is necessary to investigate this
problem because some of the most effective color constancy

algorithms are sensitive to fluorescent surfaces, and can have
poor results when they are present.

Characterizing Fluorescent Surfaces

We begin by introducing a simple method for characterizing
fluorescent surfaces. It is based on direct measurements, and
thus has low error and avoids the need to develop, fit, and
test physical models. Such models are necessarily quite
complex and limited to the kinds of surfaces exhibiting the
processes being modeled (an elegant model for one case is
developed in [9]). We remind the reader that the key
characteristic of fluorescent surfaces is that some of the light
energy they absorb is re-emitted at longer wavelengths
(lower energy). If we represent the incident light spectra as a
vector of samples over wavelength , then reflectance can be
described by the multiplication of that input vector by a
triangular matrix. This is much more complex than the non-
fluorescent case where a diagonal matrix is sufficient.
Although it is possible to measure this matrix, doing this
effectively requires equipment which is not readily available.
Thus we introduce a more direct method for obtaining the
data required.

Given a fluorescent surface candidate, we measure
the spectra of the reflected light under a number of
i l luminants using a Photoresearch PR-650
spectraradiometer. We also measure the spectra of the
illuminants providing the input energy to the fluorescent
surface. Then, to simulate the surface under a new
illuminant spectra, we first compute the positive linear
combination of the test illuminants which is closest to the
new illuminant spectra using constrained least squares
optimization. The reflected energy of the fluorescent spectra
under the new  illuminant is then approximately that same
linear combination applied to the  measured test response
spectra set. A simple example should make this clear.
Assume that when the fluorescent surface is illuminated by a
spectra A, the result is spectra AÕ, and similarly, let BÕ be
the response to stimulus B. Then if a illuminant C is
roughly A+2B, then the response, CÕ, is roughly AÕ+2BÕ.
This procedure is used to simulate fluorescent reflection to
obtain the data sets required by color constancy algorithms.
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We now turn to the algorithms themselves. We feel that the
most effective computational color constancy methods
currently available are CRULE and derivatives [1-4], Color
by Correlation [5], and neural net methods [6-8]. Adding
fluorescence to Color by Correlation and neural net methods
is relatively straight forward. In either case, our
characterization of fluorescent surfaces is used to augment
the world used for training (neural nets) or building
correlation matrices (Color by Correlation).

Extending ForsythÕs CRULE method is more
involved. This method explicitly assumes that an
illumination change can be modeled by a diagonal transform.
For example, if a the camera response to a white surface
changes from (Wr, Wg, Wb) to (WrÕ, WgÕ, WbÕ) due to an
illumination change, then we assume that the illumination
change for the other (non-white) surfaces are modeled by
multiplication by the diagonal matrix formed from the
vector (WrÕ/Wr, WgÕ/Wg, WbÕ/Wb). The accuracy of this
assumption in the non-fluorescent case has been well studied
[10-13], and is known to be strongly dependent on the
camera sensors. The problem is that the very nature of
fluorescent reflection is contrary to this assumption. To deal
with this we first propose a modification to ForsythÕs
method which makes it more resilient to diagonal model
failure. Once we make this modification, incorporating
fluorescent surfaces is straightforward.

We will now provide some additional details of the
extension beginning with a brief review of ForsythÕs method
[1]. First we form the set of all possible RGB due to
surfaces in the world under a known, ÒcanonicalÓ illuminant.
This set is convex and is represented by its convex hull. The
set of all possible RGB under the unknown illuminant is
similarly represented by its convex hull. Under the diagonal
assumption of illumination change, these two hulls are a
unique diagonal mapping (a simple 3D stretch) of each
other.

Figure 1 illustrates the situation using triangles to
represent the gamuts. In the full RGB version of the
algorithm, the gamuts are actually three dimensional
polytopes. The upper thicker triangle represents the
unknown gamut of the possible sensor responses under the
unknown illuminant, and the lower thicker triangle
represents the known gamut of sensor responses under the
canonical illuminant. We seek the mapping between the
sets, but since the one set is not known, we estimate it by
the observed sensor responses, which form a subset,
illustrated by the thinner triangle. Because the observed set
is normally a proper subset, the mapping to the canonical is
not unique, and Forsyth provides a method for effectively
computing the set of  possible diagonal maps. (See [1-4, 12]
for more details on gamut mapping algorithms).

The convex hull of 
measured RGB is 
taken as an 
approximation of the 
entire gamut under the 
unknown illuminant

The unknown gamut of all possible 
RGB under the unknown illuminant.

The known gamut of 
all possible RGB 
under the known, 
canonical  illuminant. 

Possible maps

Figure 1: Illustration of the basic idea of gamut mapping color
constancy.

Once the set of possible maps has been computed,
an important second stage of the algorithm is to choose a
solution from the feasible set. Several different methods for
doing this lead to different variants of the algorithm [1, 3, 4,
14]. Another group of variants work in an appropriate
chromaticity space rather than RGB [2]. Finally, Finlayson
showed that it is possible to further constrain the solution
by restricting the solutions to those corresponding to
common or likely illuminants [2]. We will make use of this
extra constraint in this study, and we will denote algorithms
using them as "extended" CRULE, or E-CRULE for short.

We now consider the case where the diagonal model
is less appropriate. Here it may be possible that an observed
set of illuminants does not map into the canonical set with a
single diagonal transform. This corresponds to an empty
solution set. In earlier work we forced a solution by
assuming that such null intersections were due to
measurement error, and we thus increased various error
estimates until a solution was found. However, this method
does not give very good results in the case of extreme
diagonal failures, such as those due to fluorescent surfaces.

To deal with this problem, we propose the
following modification. Consider the gamut of possible
RGB under a single test illuminant. Call this the test
illuminant gamut. Now consider the diagonal map which
takes the RGB for white under the test illuminant to the
RGB for white under the canonical illuminant. If we apply
that diagonal map to our test illuminant gamut, then we



will get a convex set similar to the canonical gamut, the
degree of difference reflecting the failure of the diagonal
model. If we extend the canonical gamut to include this
mapping of the test set, then there will always be a diagonal
mapping from the observed RGB of scenes under the test
illuminant to the canonical gamut. We repeat this procedure
over a representative set of illuminants to produce a
canonical gamut which is applicable to those illuminants as
well as any convex combination of them. The basic idea is
illustrated in Figure 2. Note that the test illuminant gamuts
can include fluorescent surfaces modeled by the method
described in the preceding section.

The gamuts of all possible RGB under three 
training illuminants.

Canonical 
 gamut

Mapped sets to 
canonical based on 
white. The maps
are not exact due to 
diagonal model 
failure.

Extended canonical gamut is the union of mapped
sets based on white using representative training 
illuminants

Figure 2: Illustration of the modification to the gamut mapping
method to enable the handling of fluorescent surfaces.

If the diagonal model holds fairly well, as is the
case with non-fluorescent surfaces and our Sony DXC-930
video camera [3, 13], then the canonical hull is extended
slightly, and under some conditions several variants give
better results than the same algorithms without the
modification, especially as the number of available colors
increases. If we model fluorescent surfaces, then the
canonical gamut will be extended a fair amount. In this case,
the performance on data devoid of fluorescent surfaces is
slightly degraded, as the constraints on the solutions are less
strict, but when there are fluorescent surfaces the
performance can be substantially better.

Experimental Results

As an initial step in our investigation of fluorescence we
measured a number of candidate surfaces, and trimmed this
set down to 9 strongly fluorescent ones. These included 3
printed surfaces from a laundry detergent box, 2 surfaces
from a multi-colored child's cloth ball, 2 different colors of
flagging tape, and 2 different vividly colored pieces of paper.
As described above, our method of characterizing the
fluorescent surfaces required measuring their reflectance
spectra under a number of representative illuminants. For
non-fluorescent spectra we used a set of roughly 2000
spectra collected from several sources.

The illuminant set for algorithm calibration
(training) was carefully chosen in the following manner. We
started with 11 illuminants selected to cover, with relatively
uniformity, the region of common natural and man made
illuminants in the (R/(R+G+B), B/(R+G+B)) chromaticity
space. This set of 11 illuminants is also the one used for the
image data. We then added additional measured illuminants,
and linear combinations thereof, to complete the uniform
coverage with higher density. This second set of illuminants
included both additional common sources and the
illumination found in 90 random indoor and outdoor
locations. The resultant set was used for the construction of
gamuts and correlation matrices, and thus played the role of
a training set. The illuminant set used for testing in the case
of generated data was constructed in the same manner, but
the chromaticity space was filled 4 times more densely.

Our camera was calibrated as described in [15]. We
used the resultant camera model for synthetic scene
generation, as well as the computation of the various
"training" data sets mentioned above. Thus the same
algorithm calibrations were used for both synthetic and
image data experiments.

For the purposes of this study, we will assume that
the goal of the algorithms is to estimate the response of the
vision system to a perfect white patch. However, it is often
the case that we are most interested in the chromaticity of
the illuminant, and several of the algorithms of interest only
compute the illuminant chromaticity. Hence, we only report
chromaticity results. The specific error metric used considers
the illuminant RGB and the corresponding estimate thereof
as vectors in RGB space, and computes the angle between
these two vectors in degrees.

We first present some results using generated data.
The use of generated data eliminates calibration problems,
and simplifies analysis of the effects of statistical
assumptions. We present the results of the various
algorithms when subjected both to completely non-
fluorescent data, as well as a mix of fluorescent and non-
fluorescent data. In each case, 8 randomly chosen surfaces
was used. For the second case we arranged for the fluorescent
surfaces to be represented roughly 30% of the time.

The results for generated data are shown in Table 2.
The first conclusion is that the presence of fluorescent
surfaces does, as predicted, degrade every algorithm not



designed to deal with them. On the other hand, the
extensions to gamut mapping and Color by Correlation
work well to reduce this performance degradation. This
reduction is most extreme with the extended Color by
Correlation method, but this is likely due in part to an
unnatural advantage that it does not enjoy in the case of real
image data. Specifically, the second Color by Correlation
algorithm was trained on data statistically similar to the test
data. What is more promising is that the Color by
Correlation method trained with fluorescent surfaces works
well on data devoid of such surfaces, fairing better than the
gamut mapping algorithms in this regard. Finally, it should
also be noted that our gray world algorithm has access to the
actual average of our data base of non-fluorescent surfaces,
and thus has a unnatural advantage in the non-fluorescent
case.

We have also tested algorithms on real image data.
We constructed 7 scenes which all included known or
suspected fluorescent surfaces, and took images of these
under 11 different illuminants, resulting in 77 images.
Seven images were culled due to problems with the
experiment, leaving a total of 70 input images. Again, we
feel it necessary to look at the performance of the algorithms
when fluorescent surfaces are absent. Thus we also present
the results for 321 input images from 33 scenes which are
relatively free of fluorescent surfaces. The dynamic range of
all images was extended using reduced illumination levels
and averaging multiple frames. This gives us the
opportunity to explore color constancy in the context of a
high dynamic range vision system, as well as more standard
vision systems which can be simulated by truncating the
higher range data. The effect on the results is to give the
Retinex based algorithm, and the maximum volume
algorithms, an advantage. This is especially true when there
are specularities.

In general, results from this real image data
demonstrate that modeling fluorescence is again beneficial,
although the large improvement in the case of Color by
Correlation has been reduced to quite a modest increase. This
is likely due in part to the mismatch between the statistics
used for training and the somewhat arbitrary statistics in the
image data. We also note that Color by Correlation has
many possible implementations, and we are still working on
finding a robust set of parameters for that algorithm. In the
case of the gamut mapping algorithms, we see that the
performance on the real image data is excellent. As noted
above, the extended dynamic range of the data, enables the
maximum volume algorithms to use specularities, which are
often present in real image data, for illuminant chromaticity
estimation. However, it is interesting to note that the
Retinex algorithm, which does very well on the non-
fluorescent data for the same reason, is badly degraded when
used on the fluorescent data. The FL-ECRULE-MV
algorithm on the other hand, handles both cases well, and is
the overall top performer on our image database.

Table 1: Key to algorithms
ECRULE CRULE with illumination constraint

MV Solutions are chosen by max volume
heuristic

AVE Solutions are the average over the
feasible set

FL Algorithm is extended for fluorescence.

Retinex Estimate illuminant by the max RGB
in each channel.

Gray World Estimate illuminant color by image
average

C-by-C Color by Correlation [5], with a
Gaussian mask to smooth the
correlation matrix and maximum
likelihood estimate. For the FL-C-by-
C variant, an abundance of fluorescent
surfaces are included in the
construction of the correlation matrix

Neural Net Neural net trained to estimate
illuminant chromaticity based on the
observed image colors [6-8].

Table 2: Average angular error in RGB space of
illuminant estimate (generated data)

No Fluorescence With 30%
Fluorescence

ECRULE-MV 6.2 9.9
ECRULE-AVE 6.7 9.1
FL-ECRULE-MV 8.2 7.1
FL-ECRULE-HA 9.6 7.7
Retinex 9.7 13.1
Gray World 6.7 12.0
C-by-C 5.9 10.6
FL-C-by-C 6.3 4.1
Neural Net 5.5 6.9

Table 3: Average angular error in RGB space of
illuminant estimate (image data)

Scenes without
fluorescent
surfaces

Scenes with
fluorescent
surfaces

ECRULE-MV 5.3 13.2
ECRULE-HA 6.2 10.7
FL-ECRULE-MV 6.4 10.7
FL-ECRULE-AVE 9.0 10.3
Retinex 7.8 18.0
Gray World 12.0 17.5
C-by-C 10.2 12.0
FL-C-by-C 10.0 11.7
Neural Net 9.8 11.4



Conclusions

We have shown how to modify the three leading machine
color constancy methods to deal with fluorescent surfaces.
Dealing with such surfaces has been ignored until now, but
we argue that doing so is important, as such surfaces are
common in the modern world, and yet they dramatically
degrade the performance of existing algorithms. Although
further work is needed to estimate the frequency of
occurrence of such surfaces, we pass on to the reader the
following anecdotal datum. Our interest in exploring
fluorescent surfaces arose because such surfaces were present
in 20% of the randomly constructed scenes used to provide
preliminary data for research into color constancy
performance. Clearly we had to deal with fluorescence before
we could proceed towards our goal of having colour
constancy algorithms for real world applications.
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