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Abstract

There is a growing trend in machine color constancy research
to use only image chromaticity information, ignoring the
magnitude of the image pixels. This is natural because the
main purpose is often to estimate only the chromaticity of
the illuminant. However, the magnitudes of the image
pixels also carry information about the chromaticity of the
illuminant. One such source of information is through
image specularities. As is well known in the computational
color constancy field, specularities from inhomogeneous
materials (such as plastics and painted surfaces) can be used
for color constancy. This assumes that the image contains
specularities, that they can be identified, and that they do not
saturate the camera sensors. These provisos make it
important that color constancy algorithms which make use
of specularities also perform well when the they are absent.
A further problem with using specularities is that the key
assumption, namely that the specular component is the
color of the illuminant, does not hold in the case of colored
metals.

In this paper we investigate a number of color
constancy algorithms in the context of specular and non-
specular reflection. We then propose extensions to several
variants of ForsythÔs CRULE algorithm [1-4] which make
use of specularities if they exist, but do not rely on their
presence. In addition, our approach is easily extended to
include colored metals, and is the first color constancy
algorithm to deal with such surfaces.  Finally, our method
provides an estimate of the overall brightness, which
chromaticity-based methods cannot do, and other RGB based
algorithms do poorly when specularities are present.

Introduction

The image recorded by a camera depends on three factors:
The physical content of the scene, the illumination incident
on the scene, and the characteristics of the camera. This leads
to a problem for many applications where the main interest
is in the physical content of the scene. Consider, for
example, a computer vision application which identifies
objects by color. If the colors of the objects in a database are

specified for tungsten illumination (reddish), then object
recognition can fail when the system is used under the very
blue illumination of a clear sky. This is because the change
in the illumination affects object colors far beyond the
tolerance required for reasonable object recognition. Thus the
illumination must be controlled, determined, or otherwise
taken into account.

The ability of a vision system to diminish, or in
the ideal case, remove, the effect of the illumination, and
therefore ÒseeÓ the physical scene more precisely, is called
color constancy. There is ample evidence that the human
vision system exhibits some degree of color constancy.
Interest in human vision, as well as robotics and image
reproduction applications, has led to much research into
computational methods to achieve color constancy. In this
paper we build on this body of work, and propose and
algorithm which combines the strengths of two different
approaches to color constancy. We combine the information
inherent in collections of matte surfaces and the information
inherent in specularities. Interestingly, our method is easily
extended to work with specularities from colored metals such
as copper, and is the only method we know of which does so
(but see [5-9] for related work).

The use of specularities for machine color
constancy has its origin in the  dichromatic model of
reflectance [10, 11]. This model separates the light reflected
from inhomogeneous materials such as plastics and paints
into a diffuse (body) component, and a specular (interface)
component. The body reflection blends the spectral
reflectance properties of the object with that of the
illumination, whereas the specular component has the same
spectral makeup as the illuminant. Reflections from different
parts of the same surface have varying amounts of the two
reflection components due to changes in geometry, and
various researchers have used this property to estimate the
illuminant color [10, 12-16]. Alternatively, since the
maximal specular reflection is typically much larger than the
body reflection, a bright specularity can be a good estimate
of the illuminant color as is, if it can be identified as a
specularity. Either way, using specular reflection for color
constancy typically requires an implicit physical



segmentation of the image pixels, and the difficulties in
doing this have, in part, inspired the present work.

In this paper we investigate a number of color
constancy algorithms in the context of specular and non-
specular reflection. We then propose extensions to several
variants of ForsythÔs CRULE algorithm [1-4] which make
use of specularities if they exist, but do not rely on their
presence. In addition, our approach is easily extended to
include colored metals, and is the first color constancy
algorithm to deal with such surfaces.  Finally, our method
provides an estimate of the overall brightness, which
chromaticity-based methods cannot do, and other RGB based
algorithms do poorly when specularities are present.

Approaches to Computational Color
Constancy

For the purposes of this study, we will assume that the goal
of the algorithms is to estimate the response of the vision
system to a perfect white patch. This response will loosely
be referred to as the color of the illuminant. It is most
natural for that response to be the same dimension as the
number of sensors in the vision system, and thus, for a
standard color camera, the response would be the (R,G,B) of
a white patch under that illuminant. However, it is often the
case that we are most interested in the chromaticity of the
illuminant, and an estimate of that chromaticity will suffice.
This being the case, a number of color constancy algorithms
have been developed which work entirely in some
chromaticity spaces [2, 4, 17-20], and much progress has
been made by taking advantage of the simplifications
afforded by this strategy.

Nonetheless, if we now consider the case where
specularities are present, we observe that certain RGB based
algorithms, such as the original CRULE algorithm,
estimate the illuminant chromaticity surprisingly wellÑ
even though they were not designed to optimize
chromaticity estimation [3, 21]. The success of these
algorithms when specularities are present is limited by the
dynamic range of the vision system. We expect more
dynamic range to become available to machine vision
systems (see [22] for information about one high dynamic
range camera), but currently, specularities tend to be clipped,
and such pixels must be excluded as unreliable. As clipping
becomes severe, these methods degrade, especially Retinex
[21]. We also note that using these algorithms for
illumination brightness estimation fails when strong
specularities are present.

Chromaticity-based approaches, on the other hand,
cannot use specular information on a pixel by pixel basis,
and cannot provide illuminant brightness estimation.
However, as noted above, we are often most interested in
illuminant chromaticity estimation, and these approaches
tend to be robust with respect to specularities. This is
because specularities in chromaticity space simply desaturate
colors, leading to colors which are perhaps less useful to the
algorithm, but are nonetheless plausible [2], and thus the

degradation is graceful. The essence of this observation also
applies in the case of colored metals.

In contrast to the above algorithms (and others),
which we analyze post hoc with respect to their abilities to
ignore or take advantage of specularities, several researchers
have developed computational color constancy methods
which explicitly use and rely on specularities [10, 12-16]. In
favorable situations, these methods can work well, but
strong specularities are not always present, and as noted
above, are often clipped. Furthermore, specularities from
colored metals are not the same color as the illuminant, and
these methods do not address this. These considerations lead
us to propose extensions to several of the variants of
ForsythÔs CRULE method which take advantage of
specularities if they exist, but continue to be strong
algorithms if there are no specularities present.

Extending CRULE for specularities

We will now provide some additional details of the
extension beginning with a brief review of ForsythÔs method
[1]. First we form the set of all possible RGB due to
surfaces in the world under a known, ÒcanonicalÓ illuminant.
The set is convex and is represented by its convex hull. We
will refer to this set as the canonical gamut. The set of all
possible RGB under the unknown illuminant is similarly
represented by its convex hull. Now, under the diagonal
assumption of illumination change, these two hulls are a
unique diagonal mapping (a simple 3D stretch) of each
other. To understand this assumption further, suppose that
the RGB of white under the unknown illuminant is (Wr,
Wg, Wb), and the RGB of white under the canonical
illuminant is (WrÕ, WgÕ, WbÕ). Then the RGB of white in
the unknown gamut is mapped to the corresponding RGB in
the canonical gamut by multiplication by the matrix
DIAG(WrÕ/Wr, WgÕ/Wg, WbÕ/Wb). To the extent that this
same mapping applies to other, non-white surfaces, we say
that we have a diagonal model of illumination change. The
efficacy of this model is partly a function of the vision
system sensors, and is a good approximation for our camera.

The gamut mapping strategy is to constrain the set
of possible diagonal maps, with each map corresponding to
an illuminant estimate. Figure 1 illustrates the situation
using triangles for the gamuts. The upper thicker triangle
represents the unknown gamut of the possible sensor
responses under the unknown illuminant, and the lower
thicker triangle represents the known gamut of sensor
responses under the canonical illuminant. We seek the
mapping between the sets, but since the one set is not
known, we estimate it by the observed sensor responses,
which form a subset, illustrated by the thinner triangle.
Because the observed set is normally a proper subset, the
mapping to the canonical is not unique, and Forsyth
provides a method for effectively computing the set of
possible diagonal maps. (See [1-4, 23] for more details on
gamut mapping algorithms). Another important
contribution was the observation that the set of maps could
further be constrained by restricting them to ones



corresponding to common or expected illuminants [2]. We
will make use of this extra constraint in this study, and we
will denote algorithms using them as "extended" CRULE, or
E-CRULE for short.

The convex hull of 
measured RGB is 
taken as an 
approximation of the 
entire gamut under the 
unknown illuminant

The unknown gamut of all possible 
RGB under the unknown illuminant.

The known gamut of 
all possible RGB 
under the known, 
canonical  illuminant. 

Possible maps

Figure 1: Illustration of the basic idea of gamut mapping color
constancy.

Once the set of possible maps has been computed,
an important second stage of the algorithm is to choose a
solution from the feasible set. The original method was to
choose the mapping which maximized the volume of the
mapped set. Although it was not designed to do so, we have
observed that this method is a good choice for estimating the
illuminant chromaticity, especially in the presence of
specularities. (Note that the selected diagonal map implicitly
specifies an estimate of the illuminant color as defined
above). A second method for choosing a solution is to
average the possible maps. This method potentially gives a
better estimate of the illuminant RGB [3, 21], and can be
more robust under clipping.

In order to use Forsyth's method in the case of
specularities, we model specular reflection and extend the
canonical gamuts appropriately. The canonical gamuts are
polytopes in RGB space, having roughly the shape of two
multi-faceted pyramids which are joined together at their
identical bases. We normally include the origin as one of the
vertices (and thus it is the apex of one of the pyramids),
because, a priori, the observed RGB could all be due to
surfaces which are arbitrarily dark as a result of being
obliquely illuminated. At the other extreme (the apex of the

other pyramid) there is a vertex corresponding to the whitest
reflectance. To include specularities we take that vertex, and
move it away from the origin, along the line connecting to
the origin. Thus the hull facets adjacent to the origin remain
the same, but the ones adjacent to the RGB of white are
stretched away from the origin. In other words, we add a
single reflectance to our world which is a multiple of a
uniform reflectance. The multiple should be large enough to
accommodate a bright specularity taking the dynamic range
of the vision system into account, but the exact
specification of the value is not very important. (We have
experimented with factors of 2, 4, and 8). The concept is
illustrated using two dimensions in Figure 2.

Projection of observed gamut. The shaded part is the 
gamut due to diffuse surfaces. 

Projection of the  canonical gamut. The broken line 
shows the inclusion of specularities. The dotted line 
shows the gamut used by chromaticity methods. Here the 
gamuts are cones in RGB space. 

Mapping the observed 
gamut into the 
canonical makes more 
sense if we model the 
specularities.

Figure 2. Illustration of gamut extension used for specularities.
The gamuts are actually polytopes in 3 dimensional RGB space.

While very simple, the method naturally models
real specularities which are always a combination of the
specular reflection and the underlying body reflection. Both
the specular reflection and the body reflection are part of the
convex hull, and thus any convex combination of them is
also in the hull. Finally, to include the specular reflection of
colored metals (brass, copper, gold), we add multiples of the
reflections for these substances into the canonical gamut.
The color of specularities is still quite restricted, being
somewhere between white and the color of copper, but the
existence of metallic specularities will now work with,
instead of against, the information provided by the other
colors.



The new canonical gamut is then used as part of
standard RGB based gamut-mapping algorithms. As in [3]
and [21] we used Finlayson's  illumination constraint. We
investigate the two methods for choosing a solution from
the constraint set that were mentioned above, those being
the original maximum volume method and the average over
the feasible set. When the illumination constraint is used,
this set is not precisely convex, and we numerically
integrate to obtain the average.

This method works well even if there are no
specularities. The work of Finlayson and Hordley [4]
suggests that the most important facets in the non-specular
case are the ones adjacent to the origin; specifically the ones
not modified by our method. The arguments in that work
also imply that our method should be at least as strong as
any chromaticity-based gamut-mapping algorithm, regardless
of the presence of specularities. Of course, when
specularities are present, our algorithm should excel.
Finally, when there are strong un-clipped specularities, our
algorithm estimates the overall illuminant brightness better
than all other algorithms.

Experiments and Results

We have tested the above methods both on synthetic image
data, and on real image data. For the former, we generated
data without specularities, with non-metallic specularities,
and with a mixture of metallic and non-metallic
specularities. To model the metallic specularities we
measured the specular reflectance of a number of metallic
objects using a Photoresearch PR-650 spectraradiometer.
The metallic samples included several brass and copper
surfaces, as well as gray metallic surfaces such as aluminum
and stainless steel. We modeled non-specular reflectance
using a database of roughly 2000 reflectance spectra obtained
from a number of sources including some of our own
measurements. For each simulated "world" we ran all the
algorithms on 200 randomly selected groups of 4 surfaces
under randomly selected illuminants. Color constancy on
such a small number of surfaces is difficult on average, and
thus doing well requires specularities. For each set of
generated data we also simulated pixel clipping.

We provide the results of the algorithms using two
different error metrics. The first measures the ability of the
algorithms to estimate the chromaticity of the illuminant.
Here we consider the illuminant RGB and the corresponding
estimate thereof as vectors in RGB space, and compute the
angle between these two vectors in degrees. The second error
metric is simply the Euclidean distance between these two
vectors.

In general, the results are very encouraging. We see
that the original CRULE algorithm (with Finlayson's
illumination constraint) and the Retinex method work well
when there are good specularities, but that these algorithms
are more sensitive than the others to clipping, and give poor
illuminant brightness results (Table 3). On the other hand,
the new algorithms, as exemplified by "SP-ECRULE-
AVE", do not have these problems. We also found, not

surprisingly, that if metallic specularities are present, then
modeling metallic specularities yields better results. On the
negative side, the error in the illuminant chromaticity
estimates increases somewhat when such surfaces are absent.
Further work is needed to characterize this tradeoff.

We also provide some results on real images from
two data sets (Table 4). The first data set consisted of scenes
with and without significant specularities, but with few
metallic specularities. In this data set there are 33 scenes
taken under 11 different illuminants. Several images were
culled due to problems, leaving 321 test images. For the
second set we used seven scenes with metallic specularities
under the same 11 illuminants. Again, some images were
culled, leaving 71. The images were taken at low enough
light to minimize clipping due to specularities, and the
dynamic range was extended by averaging multiple frames.
This allows us to investigate strong specularities, and the
possibilities afforded by higher dynamic range cameras.

The image data results generally confirm the results
found with synthetic data. Overall the gamut mapping
algorithms do well compared to the other algorithms on real
data.  However, part of their success may be due to the use
of images with extended dynamic range, and therefore future
work will look at the effect of artificially clipping such data.

Conclusions

We have considered computational color constancy in the
context of  scenes with both specular and non-specular
surfaces. We have also proposed an algorithm which is
explicitly designed to make use of both types of
information. This is in contrast to most current color
constancy algorithms which generally focus on using only
the matte surfaces or only the specularities. Unlike other
algorithms using specular information, our method does not
need to identify groups of pixels as corresponding to the
same surface under different geometry. Instead, the method
implicitly uses the information inherent in the brightness of
the image pixels. However, since the method extends the
already capable gamut mapping approach, the method can
give good results even when specularities are not present.  In
addition, our method is easily extended to deal with specular
reflection from colored metals, and is the first color
constancy algorithm to do so. The new algorithms yield
good results on both synthetic and real image data.
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Table 1: Key to algorithms
ECRULE CRULE with illumination constraint
MV Solution maximizes volume of mapped set
AVE Solution is the average of feasible set
Retinex Estimate illuminant color by the maximum of each channel.
Gray World Estimate illuminant color by image average

Table 2: Average angular error in RGB space of illuminant estimate (generated data)
No specularities Simulated

specularities
Simulated
specularities and
simulated
clipping

Simulated metallic
and non-metallic
specularities

Simulated metallic
and non-metallic
specularities and
clipping

ECRULE-MV 8.4 3.63 8.93  7.44  9.29
ECRULE-AVE 8.0 6.55 8.43  7.00  8.57
SP-ECRULE-MV 8.6 4.22 9.37  7.69  9.56
SP-ECRULE-AVE 7.6 3.84 8.03  6.46  8.59
MET-ECRULE-MV 9.4 5.88 10.49 7.41 10.17
MET-ECRULE-AVE 8.7 7.01 9.55 6.25  9.52
Retinex 13.2 5.12 12.88 10.30 12.80
Gray World 11.9 6.66 13.38  9.95 12.41
Color by correlation 8.0 5.12 9.24 6.81  9.08
Neural Net 7.3 6.12 8.13 6.59  8.52

Table 3: Average RMS error of illuminant RGB estimate (generated data)
No specularities Simulated

specularities
Simulated
specularities and
simulated
clipping

Simulated metallic
and non-metallic
specularities

Simulated metallic
and non-metallic
specularities and
clipping

ECRULE-MV 147 1103 159 4574 163
ECRULE-AVE 125 2020 149 7653 152
SP-ECRULE-MV 206  166 241 1944 237
SP-ECRULE-AVE 138  236 169 3327 176
MET-ECRULE-MV 227  204 261 478 257
MET-ECRULE-AVE 161  171 205  905 204
Retinex 201  884 198 3487 204
Gray World 141 1065 173 3046 162

Table 4: Average angular error in RGB space
of illuminant estimate (image data).

Images without
metallic surfaces

Images with
metallic surfaces

ECRULE-MV 5.3 12.0
ECRULE-AVE 6.6 11.2
SP-ECRULE-MV 6.3 10.9
SP-ECRULE-AVE 6.4 10.9
MET-ECRULE-MV 7.2 10.4
MET-ECRULE-AVE 7.5 10.6
Retinex 7.8 13.9
Gray World 12.0 16.4
Color by correlation 11.0 13.6
Neural Net 9.8 12.2
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