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ABSTRACT Color correction and enhancement for underwater images is challenging due to attenuation and

scattering. The underwater images often have low visibility and suffer from color bias. This paper presents

a novel color correction method based on color filter array (CFA) and an enhancement method based on

Retinexwith dense pixels and adaptive linear histogram transformation for degraded color-biased underwater

images. For any digital image in the RGB space, which is captured by digital camera with CFA, their RGB

values are dependent and coupled because of the interpolation process. So we try to compensate red channel

attenuation of underwater degraded images from the green channel and blue channel. Retinex model has

been widely used to efficiently handle low brightness and blurred images. The McCann Retinex (MR)

method selects a spiral path for pixel comparison to estimate illumination. However, the simple path selection

doesn’t include global light dark relationship of the whole image. So we design a scheme to gain much

well-distributed and denser pixels to obtain more precise intensity of illumination. Besides, we design a

piecewise linear function for histogram transform, which is adaptive to the whole RGB value. Experiments

on a large number of underwater degraded images show that, the processed images by our method have

clearer details and uniform visual effect for all channels in RGB color space and our method can also obtain

good performance metrics.

INDEX TERMS Underwater image enhancement, underwater image color correction, color filter array

(CFA), Retinex, McCann Retinex, adaptive histogram transform.

I. INTRODUCTION

Underwater vision plays an important role in ocean

resources exploration and engineering [1], [2]. Due to

wavelength-dependent and selective light absorption, under-

water images always suffer from color castes and look bluish.

When the distance from the imaging scene to the camera is

being increased, the red channel will disappear first. The red

channel map is darkened, and the value of the pixels in the red

channel becomes small. In this regard, the color of such image

should be corrected. Moreover, the scattering of light makes

the contrast relatively low. Thus, the contrast of underwater

images is often unsatisfactory [3], [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Senthil Kumar.

The underwater imaging theory and underwater images

enhancement or restoration methods have been widely stud-

ied these years [5]–[7]. Retinex-based methods and his-

togram transform based algorithms are commonly used for

underwater image enhancement. Iqbal et al. [8] performed

contrast stretching in RGB color space and saturation and

intensity stretching in HSI color space to enhance under-

water images. They also proposed an unsupervised color

balance method to improve contrast in RGB color space

and in HIS color space [9]. However, their method failed

in turbid environment, for not considering the influence

of scattering. Ancuti et al. [10] fused a color compensated

image and white-balanced one from the original degraded

underwater image for enhancement. However, this method

is still unable to generate satisfactory results when the red
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channel is severely attenuated. Ancuti et al. [11] assumed

that green channel is the counterpart of red channel, and

they compensate the attenuation of red channel and blue

channel from that of the green channel. Fu et al. [12]

developed a three steps Retinex-based variational framework.

Ghani et al. [13] presented an integrated color model by forc-

ing the stretched images in RGB color model to follow

the Rayleigh distribution. Besides, they combined global

and local contrast stretching to increase underwater image

quality [14]. Huang et al. [15] proposed a simple strategy

for shallow-water image enhancement by adaptively obtain-

ing the parameters. Li et al. [16] corrected color distortion

by defining a color transfer function and using a gener-

ative adversarial network (GAN) to accomplish optimiza-

tion. Li et al. [17] proposed a color correction GAN, which

takes raw unlabeled underwater images as input, and outputs

restored ones. Emberton et al. [18] detected and segmented

regions without haze, and then estimate illumination by white

balancing approach. Gao et al. [19] proposed an underwater

image enhancement model inspired by the morphology and

function of the teleost fish retina. Serikawa et al. [20] pro-

posed a fast joint trigonometric filtering defogging algorithm.

Galdran et al. [21] made improvements from the point of

view of the dark channel prior [22], and proposed a suitable

model to highlight the red channel, and some other improved

methods based on the dark theory were also proposed

in [5], [23]–[27]. Zhao et al. [28] combined underwater opti-

cal models and the specific properties of background light.

Lu et al. [29] proposed an underwater imaging model to

tackle the attenuation error. Lu et al. proposed two methods

based on deep learning [30], [31]. These two methods both

achieved good results but their application are restricted more

or less by lack of training data. Li et al. [32] enhanced

underwater images by removing color cast and restoring

visibility. They also proposed an effective visibility recovery

algorithm based on the principle of the minimum information

loss of the three color channel and the inherent relationship

of the transmission graph [33] and a hybrid method to cor-

rect underwater images [34]. Peng et al. [35] estimated the

depth of the underwater scenes by utilizing image blurri-

ness and light absorption. Fu et al. [36] presented two-step

method: an effective color correction strategy by pixel-wise

linear transformation and an optimal contrast improvement

method. Wang et al. [37] utilized a non-locally adaptive

attenuation-curve prior and imposed some constraints on sat-

uration. Peng et al. [38] calculated the color change and the

difference between the observed intensity and the ambient

light to estimate the scene transmission. Halimi et al. [39]

presented two methods to jointly restore the depth map and

reflectivity image. Chang et al. [40] solved the consequences

of scattering and absorption by five major steps. Li et al. [41]

constructed an underwater image enhancement benchmark

and evaluated and the performance and limitations of state-

of-the-art algorithms.

Much progress has been made on the restoration and

enhancement for underwater images. However, little work has

focused on color-correction for underwater images. In this

paper, we present a novel color-correction method and an

enhancement method based on Retinex with dense pix-

els and adaptive linear histogram transformation for under-

water images. This paper introduces the following main

contributions:

1) We successfully make color-distortion correction for the

red channel from the other two channels, inspired the

fact that the pixels of RGB images captured by color

filter array (CFA) based digital camera are dependent

and coupled by the interpolation process.

2) We accurately estimate the illuminance component by

designing clockwise and counterclockwise paths from

four diagonal of a square for the McCann Retinex (MR)

method.

3) We also present a linear piecewise adaptive histogram

transform algorithm to improve the visual quality of

underwater images.

II. RETINEX THEORY

Retinex theory [42]–[48] provides an enhancement method

for low light images based on the theory of color constancy

of human eyes. Retinex theory mainly includes two aspects:

the color of the object is determined by the reflection ability

of the object to the long wave, medium wave and short wave

light, not by the absolute value of the reflected light intensity;

the color of the object is not affected by the non-uniformity

of light, and has consistency. The imaging model for Retinex

is:

S (x, y) = R (x, y)L (x, y) (1)

where (x, y) denotes the specific location of the pixel; S rep-

resents the captured image by the camera; L and R represent

the illumination component of the ambient light and the

reflection component of the target object carrying the image

detail information, respectively. L and R are considered as

independent, Retinex tries to estimate L from S to obtain R

which is of interest and desired. On both sides of Equation (1),

the logarithmic operation is taken to form a sum:

s (x, y) = r (x, y) + l (x, y) (2)

Finally, we have

r (x, y) = s (x, y) − l (x, y) (3)

Typical Retinex method includes two types: center/ sur-

round Retinex, for instance, Single-Scale Retinex (SSR) [42],

Multi-Scale Retinex (MSR) [43], Multi-Scale Retinex with

Color Restoration (MSRCR) [44] and path-selection-based

method, for example, McCann Retinex (MR) [49].

The enter/surroundRetinex estimates l by the convolution s

and some surround function f as follows:

l (x, y) = s (x, y)∗ f (x, y) (4)

The widespread used surround function is Gaussian kernel:

G (x, y) =
1

2πσ 2
e
−
x2+y2

2σ2 (5)
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SSR uses one Gaussian kernel, while MSR utilizes several

Gaussian kernels with different scales and the component l is

estimated by:

l (x, y) = s (x, y)∗
∑

i
Gi (x, y) (6)

The scale parameter of Gaussian kernel has a great effect on

enhancement and not easy to determine.MSRCR is expressed

as follows:

l (x, y) = c (x, y)
[

s (x, y)∗
∑

i
Gi (x, y)

]

(7)

where c (x, y) is a color restore function used to adjust the

percentage of three RGB color channels. It is also difficult to

design an appropriate color restore function.

MR selects a certain path to calculate the light and shade

change on the path shown in Fig. 1 [49]. The distance from

the target pixel is reduced by half during iterations. After the

corresponding point is selected, the values of the pixels on

the path are compared and updated. When the path covers the

whole image, the illuminance component is estimated when

through iteration. MR uses global illumination estimation

for local enhancement, so when there is uneven illumination

or high background brightness, the results are poor. Hence,

we will design a better path selection strategy to obtain more

precise results. Because in the HSV color space the hue

component and the saturation component remain unchanged

independent of the illuminance information of the image, it is

usual to enhance the value component by the MR method to

improve the uneven illumination of underwater images.

FIGURE 1. Path for MR.

III. PROPOSED METHOD

Considering the characteristics of underwater imaging and

the limitations of directly processing underwater images,

we propose an underwater image enhancement method based

on Retinex with dense pixels and histogram transformation.

Our method is focused on the following steps:

(1) Firstly, we make color-distortion correction for red chan-

nel from green channel and blue channel;

(2) Secondly, classical white balance algorithm is used to

further solve color cast of underwater images;

(3) Then the image is transformed from RGB space to

HSV space, the V component is processed by McCann

Retinex (MR) algorithm with dense pixels to make its

illumination become more uniform;

(4) Finally, after the image is transformed back to RGB color

space, it is adjusted by a piecewise linear function.

Fig. 2 shows the whole flowchart of our method.

FIGURE 2. Flowchart of our enhancement and color-correction method
for underwater images.

FIGURE 3. Bayer CFA.

A. RED CHANNEL COMPENSATION FROM GREEN

CHANNLE AND BLUE CHANNEL

Most RGB images are captured by digital camera with color

filter array (CFA) [50]. Fig. 3 shows Bayer CFA, from

which it can be seen that, for any specific pixel the image

sensor obtains the intensity information of only one RGB

color channel. The other two missing colors are calculated

by demosaicing algorithm. Therefore, their RGB values are

dependent and coupled because of the interpolation process.

The pixel value of the red channel is closely related to the

pixel value of the blue channel and the green channel in its

neighborhood. Inspired by this fact, we try to compensate the

worst red channel of underwater images from their relative

better channels, i.e., green channel and blue channel. The

compensation function for red channel is designed as follows:

ĨR (x, y) = IR (x, y) +

((

αĪG + (1 − α) ĪB
)

− IR (x, y)
)

×
αIG (x, y) + (1 − α) IB (x, y)

IR (x, y) + IG (x, y) + IB (x, y)
(8)

where ĨR is the pixel value of the red channel after compensa-

tion; IR, IG and IB are the pixel values of red channel, green

channel and blue channel of the original degraded underwater

image, respectively; α ∈ (0, 1) is a constant; ĪG and ĪB are the

average pixel value of green channel and blue channel within

the local window of the original imagewith (x, y) as its center.

The size of the window can be set 3 × 3 or 5 × 5.

Fig. 4 gives the color corrected underwater images and

their histograms by our method and that in Ref. [11]. From

Fig. 4, it can be seen that our compensated images have better

visual effects and more uniform histograms.

B. WHITE BALANCE

The process of removing color cast so that ‘‘white remains

white’’ under the capture and viewing illuminants is termed

white balancing. One means of performing white balance is

to assume that a white patch induces the maximal response

in one or more of the camera sensors in RGB channels.

Then, the RGB values of white-balanced image are given by

R/Rmax,G/Gmax,B/Bmax, respectively, where the subscript

‘‘max’’ means the maximal within the original whole image.
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FIGURE 4. Color corrected images and their histograms of RGB channels
by the method in Ref. [11] and our method. (a) raw images; (b) by
Ref. [11]; (c) by our method.

FIGURE 5. Restored underwater images after each step of our method.
(a) raw images; (b) after the first step: red channel compensation;
(c) after the second step: white balance.

FIGURE 6. Dense path for MR.

Here we utilize this simple white balance method to further

improve color visual effect.

Fig. 5 gives three raw underwater images and the com-

pensated images and the white-balanced images. As shown

FIGURE 7. Four clockwise directions and four counterclockwise
directions for our MR method with dense pixels. (a) clockwise; (b)
counterclockwise.

FIGURE 8. Restored underwater images by different Retinex methods.
(a) raw images; (b) SSR; (c) MSR; (d) MSRCR; (e) our MR with dense pixels.

FIGURE 9. Restored underwater images after the first three steps of our
method.

in Fig. 5(c), after the first two steps of our method,

the restored images are satisfactory.

C. ILLUMINAACE IMPROVEMENT BY RETINEX WITH

DENSE PIXELS

After the above two steps, the color deviation of under-

water images have been greatly improved. However, when
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FIGURE 10. Enhanced underwater images by gamma-correction with different values for γ and by our adaptive histogram transform.
(a) raw underwater degraded images; (b) by histogram stretching in Ref. [15]; (c), (d) and (e) by gamma-correction with
γ = 0.4545, 0.6, 0.8, respectively; (e) by our adaptive histogram transform.

underwater images are obtained especially in deep water

areas, artificial light sources are often needed as auxiliary

light sources for imaging, which usually results in uneven

illumination and blurred details of the images. However, they

cannot be solved by correcting color deviation. So we further

utilize MR method to enhance them.

It is obvious that the path of MRmethod mainly covers the

upper right area of the image and does not completely cover

the whole image. If the target object is in the lower left of the

image, the accuracy of the illuminance component estimated

by this path is poor. In order to overcome the shortcoming

of the above path selection strategy, we design a much better

path mode with dense pixels shown in Fig. 6. It can be seen

that our designed path covers most areas of the image and the

distribution of involving pixels is relatively uniform.

Although the above path has covered the whole image,

it does not take into account the influence of the illuminance

information of the pixels far from the starting point, so the

enhancement effect is still poor for those images with large

local pixel deviation. In order to overcome this deficiency,

a modified MRmethod with dense pixels is further proposed,

which is shown in Fig. 7. Our selected paths include both

clockwise direction and counterclockwise direction, and the

path can start at any diagonal of a square. In total, we have

eight different paths. Finally the average value of the illu-

minance information obtained by these eight paths is cal-

culated. Through this path selection method, the distribu-

tion of the pixels on the paths becomes uniform and dense,

and in result the estimated illuminance component is more

accurate.

Fig. 8 shows restored underwater images by different

Retinex methods: SSR, MSR, MSRCR and our MR method

with dense pixels. In order to make comparison fair, all

images are obtained directly from these methods, and neither

of pre-processing or post-processing are included here. From

Fig. 8, it can be seen that our MR method outperforms.

Fig. 9 shows restored underwater images after the first

three steps of our method from the same degraded images

shown in Fig. (5)(a). It can be seen that the restored images

by our MR method look much clearer.

FIGURE 11. Final restored and enhanced underwater images by our
method.

D. ADAPTIVE HISTOGRAM TRANSFORM

According to the Gray-World theory, the average value of

the normalized RGB three-channel pixel value of the perfect

color image is 0.5, so the average value of any channel

in RGB color space is about 128. Furthermore, based on

the statistics of 500 natural images, we have found that the

average pixel value of any RGB channel of natural images

is mainly distributed in the interval of [100, 140]. However,

it is not the case for underwater degraded images. Hence

we design a piecewise linear function for adaptive histogram

transform to adjust the pixel values in order to upgrade under-

water images’ visual effect. According to the main distribu-

tion interval of the mean pixel value of RGB channels for

natural images, we design a piecewise linear function for

adaptive histogram transform as follows:

Ĩ c =























100I c

Ī c − ε
, 0 ≤ I c < Ī c − ε

I c − Ī c + 120,
∣

∣I c − Ī c
∣

∣ ≤ ε

115
(

I c − Ī c − ε
)

235 − Ī c
+ 130, else

(9)

where I c and Ĩ c are the pixel value of any channel c ∈

{R,G,B} before and after histogram transformation, respec-

tively; Ī c is the average pixel value of the original image; and

ε is positive integer.

Gamma-correction [51] is a simple and effective enhance-

ment method which outputs image by Ĩ c = (I c)γ .

Fig. 10 shows the final restored and enhanced underwater

images by histogram stretching [15], gamma-correction with

different values for γ and our adaptive histogram transform
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FIGURE 12. Eleven degraded underwater images and final enhanced counterparts by different method. (a) raw images; (b) UIED [33];
(c) UBL [35]; (d) ULA [56]; (e) GHS [15]; (f) GLN [57] (g) our method.

method. It is easily seen that our method has satisfactory

visual effect.

Fig. 11 shows restored underwater images after all four

steps of our method from the same degraded images shown

in Fig. (5)(a).

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of our method, a large number of

raw underwater images mainly from Ref. [41] are used to

test. We compared the proposed method with several novel

underwater image enhancement and restoration methods pro-

posed in recent years, such as, global histogram stretching

method (GHS) [15], underwater image enhancement by

dehazing (UIED) [33], image blurriness and light absorption

(UBL) [35], underwater light attenuation prior for underwater

image (ULA) [56] global-local networks and compressed-

histogram equalization (GLN) [57]. The visual quality of the

results of those different methods is evaluated subjectively

and objectively. Besides, we use the swatch image to verify

the color correction effect.

A. SUBJECTIVE ASSESSMENT

Fig. 12 shows eleven raw underwater images from [41] which

were captured under different underwater scenes and the
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FIGURE 13. Color map board and final enhanced counterparts by different method. (a) original color map boards; (b) UIED [33]; (c)
UBL [35]; (d) ULA [56]; (e) GHS [15]; (f) GLN [57] (g) our method.

FIGURE 14. Color map boards and final enhanced counterparts by our method. (a) original color map boards taken by
different cameras; (b) restored images by our method.

processed counterparts by differentmethods. FromFig. 12(a),

it can be seen that these raw images have different back-

ground colors and some are turbid and the surface of objects

are obviously foggy. From Fig. 12(b), it can be seen that

the method in Ref. [33] can effectively improve the contrast

and improve the brightness, but the enhancement effect isn’t

effective and some processed images are still severely weak

in the red channel. From Fig. 12(c) and Fig. 12(d), it can

be seen that the method in Ref. [35] and Ref. [56] have

good performance, but they may cause color distortion. From

Fig. 12(e), it can be seen that themethod in Ref. [15] canmake

underwater images very clear, however, it cannot effectively

correct the color deviation, and the contrast is still poor.

From Fig. 12(f), it can be seen that the method in Ref. [57]

has great performance when dealing with various types of

underwater distorted images, and it can effectively correct

the color deviation, but the processed images looks a little

dark. On the contrary, our method can not only improve the

contrast and correct the color deviation, but also can make

the brightness distribution uniform so it can finally lead to a

better visual effect.

To further compare the results for color recovery, we use

three color-map board images which are captured underwater

shown in Fig. 13(a) and seven color map boards taken by

different cameras shown in Fig 14(a) fromRef. [58] for exper-

iments. The corresponding ground truth for these color-map

board images are shown in Fig. 15. Experimental results for

different methods are shown in Fig. 14(b)-(g) and Fig. 15(b)

FIGURE 15. Ground truth color map board.

shows restored images from seven original color map boards

taken by different cameras by our method. We can easily

find that our method can successfully and effectively recover

underwater images’ color and the restored images are clear

enough.

B. OBJECTIVE ASSESSMENT

To further assess the proposed method, we select Entropy,

NIQE [52] and IL-NIQE [53], UIQM [54], UCIQE [55] to

objectively evaluate the results of our method. In the follow-

ing, we will briefly explain these evaluation indicators one

by one. Entropy represents the richness of the information

contained in the measured image. It can be obtained by char-

acterizing the aggregation characteristics of the gray distribu-

tion of the image. Natural Image Quality Evaluator (NIQE)

defines a natural scene statistic model in space domain and

then collects all statistical features from it [52]. Integrated

Local NIQE (IL-NIQE) can completely gain local distortion

artifacts by integrating multiple features derived from a local
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TABLE 1. Average performance of 100 images.

multivariate Gaussian model [53]. Underwater Image Qual-

ity Measure (UIQM) is also a comprehensive underwater

image quality evaluation method, which combines chroma,

sharpness, and contrast to quantify degradation of underwater

images [54]. Underwater Color Image Quality Evaluation

(UCIQE) combines chroma, saturation, and contrast to quan-

tify degradation of underwater images [55].

To make the evaluation results more objective, we ran-

domly selected 100 underwater images from [41]. Table 1

shows five average performance indices obtained by the

methods in [15], [33], [35], [56], [57] and ours. Our method

has the best results measured by Entropy, NIQE, IL-NIQE

and UIQM and a good UCIQE result.

The results show that our enhancement method can greatly

improve underwater images’ visual effect and has excellent

performance indices. Our method can improve the clarity,

contrast and brightness of underwater images and it can also

reduce color cast.

V. CONCLUSION

In this paper, we propose an underwater image color correc-

tion method and an underwater image enhancement method.

For any RGB image captured by digital camera with color

filter array (CFA), its RGB values are dependent and cou-

pled because of the interpolation process. Inspired this fact,

we make color-distortion correction for the red channel from

the other two channels. We also design a scheme to gain well-

distributed and dense pixels to reform the McCann Retinex

(MR) method. Hence, we can obtain more precise illumina-

tion intensity. To further improving the visual quality of the

whole image, we also design a piecewise linear function for

adaptive histogram. We conduct sufficient experiments on a

large number of degraded underwater images. Our method

outperforms state-of-the-art methods in objective metrics.

We also estimate our method by subjective assessment. The

images processed by ourmethod have clearer details, uniform

visual effect, and better color-correction results comparing

with state-of-the-art methods.
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