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parameters and more computations, and its use does not always 
result in significantly better restorations. A geometrical PSF which 
has approximately the same first spectral null as the physical PSF 
can be used without significant loss in the visual quality of the 
restoration when the SNR is at or below 30 dB. Aliasing in the 
discrete representation of the physical PSF can be minimized by 
utilizing a high frequency PSF representation, which may be used to 
obtain improved restorations when the SNR is very high (>40 dB). 
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Color Edge Detection Using Vector Order Statistics 

P. E. Trahanias and A. N. Venetsanopoulos 

Abstruct- Color edge detection based on vector order statistics is 
proposed in this work In this approach, a color image is treated as 
a vector field and the edge information carried directly by the vectors 
is exploited. A class of color edge detectors is defined as the minimum 
over the magnitudes of linear combinations of the sorted vector samples. 
From this class, a specific edge detector is obtained and its performance 
characteristics are studied. A quantitative evaluation and comparison to 
other color edge detectors, using Pratt’s figure of merit and an artificially 
generated test image, shows results which favor our approach. Moreover, 
edge detection results obtained from real color images demonstrate the 
efficiency of the proposed color edge detector. 

I. INTRODUCTION 

Traditionally, color edge detection has been treated as an extension 
of the monochrome edge detectors to color images. The use of 
the Hueckel edge operator in the luminance, chrominance color 
space has been proposed in [ l ]  and the application of compass 
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gradient edge detectors to color images has been studied in [2]. The 
gradient operators proposed for gray-level images can be extended 
to color images by taking the vector sum of the gradients of the 
individual components [3], [4]. However, this approach may be very 
unsatisfactory in certain cases where the image gradients show the 
same strength but in opposite directions [4]. Then, the vector sum 
of the gradients would provide a null gradient. Consequently, it is 
desirable to approach the problem of color edge detection in the 
vector space. This has been studied recently by using vector gradient 
operators [4], [ 5 ] .  In these approaches, color images are treated 
as vector fields, as has initially been suggested in [6]. In another 
approach, reported in [3], the entropy operator is employed as an 
edge detector for monochrome as well as for color images. 

A different approach to the problem of color edge detection is 
proposed in this work, which is based on vector order statistics 
[7]. This approach resembles the morphological edge detectors for 
monochrome images [8]. These detectors essentially operate by 
detecting local minima and maxima in the image function and 
combining them in a suitable way in order to produce a positive 
response for an edge pixel. Since there is no exact equivalent of 
the min-max scalar operators for multivariate (vector) variables, we 
rely on the vector ordering schemes that have been proposed in the 
statistics literature [7] .  Based on the R-ordering scheme [7] ,  a class 
of color edge detectors is defined using the magnitudes of linear 
combinations of the sorted vector samples. More specifically, it is 
defined as the minimum over these magnitudes. Different coefficients 
in the linear combinations result in different edge detectors that vary 
in simplicity and in efficiency. A set of coefficients is selected that 
results in a robust design, as it is experimentally verified. 

In what follows, a brief introduction to vector order statistics is 
first given and then our approach to color edge detection is described. 
Finally, evaluation results as well as edge detection results obtained 
from real images are presented. 

11. VECTOR ORDER STATISTICS 

Ordering of multivariate data can not be uniquely defined. There 
has been a number of ways proposed to perform multivariate data 
ordering that are generally classified into [7] :  marginal ordering 
(M-ordering), reduced or aggregate ordering (R-ordering), partial 
ordering (P-ordering), and conditional ordering (C-ordering). R- 
ordering is employed in this work and is further explained in the 
sequel. This ordering scheme is adopted since it gives a natural 
definition of the vector median as the first sample in the sorted vectors, 
and large values of the aggregate distance give an accurate description 
of the vector outliers. Moreover, the other ordering schemes suffer 
from certain drawbacks in the case of color image processing. M- 
ordering corresponds actually to a componentwise processing and 
P-ordering implies the construction of convex hulls which is very 
difficult in 3-D’s. C-ordering is simply an ordering according to a 
specific component and it does not utilize the information content of 
the other signal components. The reader interested in vector ordering 
schemes is referred to [7] for a thorough discussion of the subject. 

Let X represent a p-dimensional multivariate X = [XI, X L .  . . . , 
-I-,,]’ where -I-,. 1 = 1 .2 . .  . .  . p  are random variables and let 
X‘. i = 1.2. .  .. , 71 be an observation of X. Each X‘ is a p -  
dimensional vector X‘ = [X;. -Xi. . . . . Si]T. In R-ordering, each 
multivariate observation is reduced to a scalar value d, according to 
a distance criterion. If we employ as a distance metric the aggregate 
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Fig. 1. Response of MVD to noise contaminated edge. (a) Initial edge, (b) 
Response of MVD to (a), (c) edge (a) corrupted with gaussian noise, (d) 
response of MVD to (c), (e) edge (a) corrupted with double-exponential noise, 
(f) response of MVD to (e). 

distance of X' to the set of vectors X' . X 2 .  . . . . X" . then 
n 

d ,  = 11S' - 9'11 (1) 
k =  1 

where 1 I I represents an appropriate vector norm. An arrangement of 
the d,s in ascending order, d ( ' )  5 d ( 2 )  5 . . .  5 d ( n ) .  associates the 
same ordering to the multivariate X"s, X(') 5 X(') < - . . . X("). 
In the ordered sequence X(') is the vector median of the data 
samples [9]. It is defined as the vector contained in the given set 
whose distance to all other vectors is a minimum. Moreover, vectors 
appearing in high ranks in the ordered sequence are vectors that 
diverge mostly from the data population (outliers). 

111. COLOR EDGE DETECTION 
In this work, a color image is viewed as a vector field, represented 

by a discrete vector valued function f ( z ) : Z 2  + Zm. where Z 
represents the set of integers.' A notation will be used in the following 
concerning the image function f .  For T.I. C Z 2 . z ,  E M',z = 
1.2; . . .n ,n  is the size (number of pixels) of W7.f(zt) will be 
denoted as X'. X(') will denote the ith ordered vector in the window 

'Usually m = 3 but the results presented hold for 171 2 2 
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Fig. 2. PF versus t' (see text for explanation). 

11. according to the R-ordering method. Consequently, X(') is the 
vector median in the window Vi7 and X(") is the outlier in the highest 
rank. 

Based on the previous discussion on vector order statistics, a simple 
color edge detector can be defined as a vector range' (VR) edge 
detector 

\.'R = \I$") - X(')I1 (2) 

VR expresses in a quantitative way the deviation of the vector out- 
lier in the highest rank from the vector median in W. Consequently, 
in a uniform area, where all vectors will be close to each other, the 
output of VR will be small. However, its response on an edge will 
be large since X(") will be selected among the vectors from the 
one side of the edge (the smaller side) while X(') will be selected 
among the vectors from the other side of the edge (the larger side). 
By thresholding the output of VR the actual edges can be obtained. 
VR would, however, be very sensitive to impulsive type noise since 
the vectors placed in the higher ranks usually correspond to noisy 
samples. 

This disadvantage leads us to consider dispersion measures which 
are known as more robust estimates in the presence of noise [lo]. 
A general class of vector dispersion edge detectors (VDED) can be 
defined using linear combinations of the ordered vectors 

where OS0 denotes an order statistic operator. Specific color edge 
detectors can be obtained from (3 )  by proper selection of OS0 and 
a set a coefficients at3 .  Unfortunately, this task seems to be very 
difficult to approach in a strict mathematical sense. Consequently, we 
proceed by placing a number of requirements that an edge detector 
should fulfill and later we try to satisfy these requirements. The 
edge detector should at first be insensitive to long-tailed (impulsive 
or double-exponential) and short-tailed (gaussian) noise. It should 
also respond properly to ramp edges by giving a higher value (edge 
strength) to the true edge pixel than the value assigned to the 
neighboring pixels. 

Since impulsive type noise appears in an ordered vector set as noisy 
samples in the higher ranks, the detector can be made insensitive to 

2The name is borrowed from the scalar case where - S(') is the 
range of the ordered random variables. 
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Fig. 3. Artificial image used for testing and comparison purposes (a) image, (b) red component, (c) green component, (d) blue component. 

this type of noise by employing k sets of differences instead of the 
single difference shown in (2) and a minimization operation 

J = 1 . 2 . . " . k . k  < n .  (4) 

The effect of the min operator is that fake impulses (up to k- 1) due to 
isolated noisy pixels are not detected. Such a minimum operator has 
also been used in [8] in order to derive an edge detector insensitive 
to noisy impulses. The choice of k in (4) depends on n .  the size 
of the window 11. used. For a 3 x 3 window, for example, k 5 3. 
Unfortunately, there is no general formula to obtain k and its value 
should be subjectively estimated. However, this is not a difficult task, 
since k can be interpreted as the number of pixels that belong to 
the smaller side of an edge, when t i 7  is centered on an edge pixel. 
Moreover, its value is not crucial in the overall performance of the 
detector. 

For obtaining insensitivity in the presence of short-tailed noise, a 
better signal estimate than the vector median X(') [See (2)] is needed. 
Consequently, we proceed by replacing X"' by the vector n-trimmed 

mean (VnTM) ( ~ ~ = l ( - Y " ) / l ) ) .  VoTM has been shown as a robust 
signal estimate in color images when the noise is modeled as short- 
tailed [ 111. The resulting edge detector, minimum vector dispersion 
(MVD), is given as 

( 5 )  J = 1 .2  :... k . k . 1  < 11. 

The value of the parameter 1 in ( 5 )  cannot be formally defined as it 
is the case for the parameter k mentioned above. However, a duality 
exists between these two parameters; 1 expresses the number of pixels 
that belong to the larger side of an edge when It7 is centered on 
an edge pixel. Therefore, proper values for the parameter 1 can be 
subjectively estimated for various sizes of TI.. 

MVD has improved noise performance since the minimum op- 
eration makes it insensitive to long-tailed noise and the averaging 
operation makes it insensitive to short-tailed noise. This is illustrated 
in Fig. 1. A color edge, plotted as a vector field, is shown in Fig. 
l(a) and the response of MVD to this edge is shown in Fig. l(b). The 
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Fig. 4. FOM plots for four color edge detectors: MVD, vector gradient (VC), 
entropy (EN), vector sum of gradients (VSG). 

same color edge is shown in Figs. l(c), (e) corrupted with gaussian 
and double-exponential noise, respectively. MVD responds to these 
two edges as shown in Figs. l(d), (9. As can be verified, the true edge 
is given a much larger response and consequently it is easily detected 
by thresholding. It is also interesting to note that MVD responds to 
ramp edges by assigning a higher value to the true edge pixel than the 
values assigned to the neighboring pixels. Thus, for an (1-D) ideal 
ramp edge of three pixels, the response of MVD will be 

2 2 “\ t 7 /” 1 (3-pixel ramp edge) 

. . I l l . .  (MVD response) 

where it is implied that a 3-pixel window is used. For ideal ramp 
edges of larger size more pixels will be given a high response. 
However, if the window size is increased the center pixel will again be 
given a larger response and by proper thresholding it can be detected. 

A. Statistical Analysis 
The statistical analysis of the proposed color edge detectors is, 

unfortunately, very difficult. The distribution functions of multivariate 
order statistics have not been adequately studied in the statistics liter- 
ature. Most results derived concern multivariate normal distributions 
and we will consider only these distributions in this section. For our 
ideal edge model we consider the sample vectors X, on the one side 
of the edge as instances of a random variable X which follows a 
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multivariate normal distribution ( p , .  I,, ). Similarly, the sample 
vectors on the other side of the edge, Y , ,  are instances of the random 
variable Y which is ( AVm ( p  I,, ). Then the error probability is the 
probability of detecting an edge when no edge is present plus the 
probability of missing an edge when it is present 

PE = P,{min IIY, - XI1 > t. llpv - pLll  5 t }  
+ Pr{niin lly, -XI[ < f .  llpv - pzl l  > t }  (6) 

where x stands for the mean of vectors X,. Let the random variable 
d. with instances d l . d 2 . . . .  . denote the distance ((Y - XI(. i.e., 
d ,  = I IY - x1I. Sorting the d, 5 will result in an ordered sequence 
d ( { ) .  Clearly, d ( l )  = inin llYz - Xll: if we also set llpy - pzl l  = T 

then (6) can be rewritten as 

PF = p, {d(i) > t .  T 5 t )  
+ Pr{d(l)  < t. T > t }  

= P,{d(,) - T > t’.t’ 2 O} 
+ Pr{d( l )  - T < t’.t’ < 0).  

= P, {&(I) > t’.t’ 2 0 )  

+ P,{dT(I )  < t’.t’ < 0) 

t’ = t - T 

(7) 

where d ~ ( ~ )  = d( , )  - T.  The two terms of (7) can be further rewritten 
as 

P, { d T ( l )  > t’.t‘ 2 0) =Pr{dT(, ,  > t’lt’ 2 0 ) .  Pr{t’ 2 0) 
= [l - P, { d T ( l )  5 t’lt’ 2 O}] . PT{t’ 2 0) 

and 

Therefore (7) becomes 

PF = pr{f‘ 2 0) 

- Fd7(lj(f’)u(t’) + FdT(,)(f‘)u(-t’) (10) 

where u ( s )  is the unit step function. We note also that Fdr(l)(t’) = 
F d (  ~ ~ ( t  ) since 

Fd7(,)(t’) = Pr(dT(1) 5 t’}  = Pr{d(l)  5 t> 

and Fci(lj can be obtained from Fd. the distribution function of d 
as [lo, p. 81: 

F d ( , ) ( X )  = 1 - [l - F d ( . r , ] P  (11) 

where p denotes the number of sample distances. In our case p = k 
[see (5)J The problem is now reduced to the estimation of F d .  If we 
- consider Euclidean distances, then d2 = llY-x112 = ( Y - X ) T ( Y -  
X )  which follows a noncentral chi-square distribution with m degrees 
of freedom and noncentrality parameter s = ( p y  - - p, )  
[12, p. 191. There is no closed form expression of the cumulative 
distribution function of the noncentral chi-square distribution. For 
the case, however, where 3 = n1/2 is an integer it can be expressed 
in terms of the generalized Q function [13] 

F ~ L ( . Y )  = 1 - Q:(s .  A). (12) 
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Fig. 5 .  Edge detection results. (a) Original image, (b) MVD, (c) vector gradient, (d) entropy, ( e )  vector sum of gradients. 
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Since the distances d are nonnegative, F d  can be obtained from (12) 
by a simple change in variables 

From (13), (11) can be computed and (10) can also be computed 
provided that P, {t’ > 0 )  is known. For our model, t’ = t-r. where t 
is the detector’s threshold (deterministic quantity) and T = lIpy - p z I )  
(constant). Therefore, t‘ is a deterministic quantity and P,{t’ 2 0) 
is unit or zero for t’ >_ 0 or t‘ < 0, respectively. 

PE is shown in Fig. 2 for m = 2 and two p values, p = 2 and 
p = 4. In the computation of PE. a value of T = 1 (edge height) has 
been used which is in accordance with the noise level assumed (unit 
covariance matrix-I,,). From (lo), (11) and Fig. 2 we can conclude 
that the probability of error PE is decreased with respect to p .  Since 
p increases with the window size n. PE decreases with respect to 
71. However, there is a tradeoff since a large window has a negative 
effect in accurate edge localization and, therefore, large n values 
should be avoided. 

IV. EXPERIMENTAL RESULTS 

The proposed color edge detector has been evaluated both quanti- 
tatively and qualitatively. For quantitative evaluation and comparison 
to other color edge detectors, Pratt’s figure of merit (FOM) [14] has 
been used as a performance measure. FOM is defined as 

(14) 
FOM = 1 2  1 

niax { I D .  I,} z=l 1 + o(d,  ) 2  

where In .  Ir are the number of detected and number of ideal edge 
points respectively, a( >0)  is a calibration constant, and d, is the edge 
deviation for the zth detected edge pixel. In all cases 0 < FOM 5 1: 
for a perfect match between the detected and the ideal edges FOM = 
1 whereas the detected edges deviate more and more from the ideal 
ones FOM goes to zero. The scaling constant o = 1/9 proposed in 
[ 141 has been adopted. 

An artificial image has been created and used as a benchmark for 
assessing the performance of MVD and for comparison purposes. It 
is shown in Fig. 3 along with its R, G, B components. A number of 
edge detection experiments have been conducted using various types 
of noise and various noise levels to contaminate this test image. In 
each case, FOM has been measured and used as the performance 
criterion. The noise types used were gaussian, double-exponential 
and impulsive. For each noise type two sets of experiments have been 
performed. In the first set, the noise process in each channel has been 
considered as an independent process. In the second set, the noise 
process has been considered as a correlated process (a correlation 
factor 0.5 has been used) since there is some indication that this 
type of correlation may exist in real color images. For comparison 
purposes, three other color edge detectors have been applied on the 
same image: The vector gradient operator [4]; the entropy operator 
[3]; and the vector sum of the gradients of the three color components. 
The last operator has been selected among the operators that result 
from combining componentwise edge detectors since it produces 
results that are generally better [HI .  

The performance measures obtained are shown in Fig. 4. As can 
be verified, all the operators have good performance for low noise 
levels, although the performance of MVD is slightly better. However, 
as the SNR decreases, the superiority of the proposed MVD becomes 
clear for all the noise types. The performance of the vector gradient 
operator is close enough to the performance of MVD for gaussian 
noise but is inferior for double-exponential and impulsive noise. 
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The other two operators have lower performance measures. The 
performance of the entropy operator is largely degraded as noise 
increases. 

In all the experiments described abovc, the values used for the 
parameters of the MVD operator were as follows: 5 x 5 window, k = 
8.1 = 12. It should be noted here that the selected values of k and 
1 have been experimentally obtained and, more importantly, they are 
not critical in the overall performance. Practically, the performance 
has been left unchanged for 7 5 k 5 10 and 10 5 1 5 15. Regarding 
the window size it is noted that even a 3 x 3 window has given very 
good results when the noise level is low. However, for higher noise 
levels the 5 x 5 window results in better performance since it involves 
more pixels in the edge detection process. 

Subjectively, the performance of MVD has been assessed using 
real color images. Experiments using many different kinds of images 
have been conducted; the edge detection results for a girl’s face are 
presented here. The original image is shown in Fig. 5(a) whereas the 
edge detection results are presented in Fig. 5(b). The results of the 
color edge detectors used for comparison are also shown in Figs. 5(c), 
(d), and (e), respectively. A visual evaluation gives the impression 
that the MVD and the vector gradient perform comparably. However, 
MVD appears less sensitive to small texture variations (see the cheek 
and the shoulder for example). This can be ascribed to the averaging 
operation which essentially smooths out small variations whereas the 
gradient-based operators are sensitive even to small changes. The 
entropy operator is totally insensitive to texture variations but on the 
other hand it leaves undetected many edges that correspond to fine 
image details (see the shoulder line or the lips, for example). The 
vector sum of the gradients operator, although sensitive to the image 
details, is faced with the problem that it cannot detect some very 
simple edges (see the frame, for example) when the gradients of the 
image components change in the opposite direction. 
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