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Abstract

The compass operator detects step edges without as-
suming that the regions on either side have constant color.
Using distributionsof pixel colorsrather thanthemean, the
operator findsthe orientation of a diameter that maximizes
the difference between two halves of a circular window.
Junctions can also be detected by exploiting their lack of
bilateral symmetry. This approach is superior to a multi-
dimensional gradient method in situationsthat often result
in false negatives, and it localizes edges better as scale
increases.

1 Introduction

With few exceptions, the fundamental assumption of all
step edge detectors is that the regions on either side of an
edge are constant in color or intensity. Much effort has
gone into making them robust to noise, but the noise is
assumed to have statistically simple properties.

Corvolution masks are idea for realizing this assump-
tion because the sign of the weight at a pixel tells us what
side of the edge it ishypothesized to be on. We can think of
aconvol ution as finding the weighted mean of each sideand
then computing the distance between thetwo means. Using
additional convolution masks, Wang and Binford [13] were
able to find edges when shading caused regions to match a
more general intensity surface.

While this assumption holds well enough for many ap-
plications, it does not hold in al cases. For instance, as
scale increases, it is more likely that the weighted mean
of each side will not be meaningful because an operator
will include image features unrelated to the edge. This
observation is even more true of color images. When only
intensitiesare involved, the average over alarge window is
still perceptually meaningful because intensitiesare totally
ordered. In color images, there is no such ordering, so the
“mean color” of alarge window may have little perceptual
similarity to any of the colorsinit.

Figure 1 shows two examples where the traditional as-
sumptionsdo not hold. In Figure 1(a) the curved helmet of
a statue occludes a complex background containing light
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Figurel: Most edge detectors make mistakeswhen (&) low-
contrast edges exist near high-contrast edges, or (b) aregion
contains strong internal edges.

and dark regions. Though the two dark regions have a no-
ticeable edge between them, the contrast issmaller than that
between the light and dark regions. At thetwo corners near
the center, the high-contrast edges’ responses will suppress
the low-contrast edge’s response, and the true boundary
will belost. Increasing the scale parameter will eventually
recover the edge, but other important edges will disappear.

Only two regions are present in Figure 1(b), but the
texture on theright contai ns both strong edges and the col or
of the region on the left. Though the boundary between
the two regions is salient over a wide range of scales, not
all edge detectors can distinguish it from the intra-texture
edges at al scales.

We propose an edge model that assumes that the two
distributions of pixel values on either side of an edge are
different. Distributions alow for more control over how
each region is represented and how the distance between
two regionsis computed than can be achieved by usingonly
the mean value.

Besides handling the two cases of Figure 1, this edge
model has other advantages. The first is a lack of fase
negatives compared to other models (e.g., Hueckel [4] and
Nalwa-Binford [6]). According to Nalwa [5], false nega-
tives result from afailure to “take into account all possible
intensity variations that might accompany a step edge in
practice” (p. 103). Since we use distributions, amost all of
these variations are modeled implicitly. Inhomogeneities



can be uncorrelated (dueto noise) or correlated (dueto tex-
ture) without affecting performance. The second benefit
isthat using distributionscreates a unifying framework for
edge detection in binary, greyscale, color, or multi-spectral
images, so long as ameaningful ground distance is defined.

To place this model and the resulting edge detector in
perspective with other color edge detectors, we briefly re-
view the literature, which we divide into three categories:
output fusion methods, multi-dimensional gradient meth-
ods, and vector methods.

Output fusion methods perform greyscal e edge detection
on each color channel and combinetheresultsinto asingle
edge map. Alberto Salinas et al. [1] typify this method,
using regularization to constrain the edge map to one that
matches the data well and has minimum curvature at all
points. Nevatia's extension of the Hueckel operator [8]
also falsinto this category.

Multi-dimensional gradient methods use al three chan-
nels to compute a single gradient. Di Zenzo [3] gives
formulas for computing the magnitude and direction of the
gradient (which, for color images, is a tensor) given the
directional derivativesin each channel.

There are two notable methods that process each pixel’s
color as a vector. Yang and Tsai [15] perform bi-level
thresholdingon 8 x 8 blocksto find the best 3-D projection
axis to convert each block to greyscale. Trahanias and
Venetsanopoul 0s[12] use vector order statisticsto compute
avariety of measures for edge detection.

Ingeneral, though, most color edge detectorsdo not treat
apixel’scolor as apoint in a color space, opting instead to
decompose it into three separate values and combine them
later. Thisisthe natural result of starting with a greyscale
edge detector, which usually makes explicit use of the fact
that an image is a function from R? to R to fit asurface to
thedata, and tryingto ‘ extend’ it to color. We do not believe
that feature extractionin human visual systems proceeds by
separately projecting colorsonto three axes. Therefore, the
whole notion of ‘extending’ a greyscale edge detector to
handle color images is suspect.

The operator we propose avoids this difficulty. Con-
sider placing an idealized, circular “compass’ at apointin
the image, and, as the “needle” spins, computing a scalar
measure of the difference between the distributionsof pixel
values on either side of the needle. The orientation produc-
ing the maximum differenceisthe edge’ s direction, and the
magnitude yields a measure of edge strength. Combined,
the two form a vector quantity similar to a gradient.

In the sense that it does not compute derivatives of the
image function, this “compass operator” is similar to the
SUSAN operator [11]. However, SUSAN assumes that the
two regions are constant, and it uses the spatial distribution
of pixels to determine edge strength and orientation. It

was designed for greyscale images, though creating a color
version would be straightforward.

The compass operator uses a more general model,
though, so it is able to compute a richer description of an
edge. For example, the orientation of an edge is often un-
certain because of curvature or other reasons; we can detect
this phenomenon and measure the amount of uncertainty.

More importantly, the compass operator assumes equal
color distributionsif we place the needle normal to anideal
step edge, which is true regardless of edge contrast or of
the smoothness of the transition between the two sides. By
measuring the minimum difference over al orientations,
we can determine how well the image window fits our edge
model. A high minimum value often indicates a junction
where three or more edges meet.

Therest of this paper is organized as follows: Section 2
describes the design of the compass operator, Section 3
compares it to a multi-dimensional gradient method, and
we conclude in Section 4.

2 The Compass Operator

In this section we develop the compass operator for
color images. We start with the creation of distributionsin
Section 2.1. Section 2.2 describes the perceptua distance
between two color points, followed by Section 2.3, which
doesthe samefor two color distributions. Section 2.4 shows
how edge information is extracted from our computation.
2.1 Creating Distributions

A distribution of pixel colors on one side of an edge is
represented as a color sighature, a set of point massesin a
color space[10]. The size of each point massisdetermined
by a weighting function that assigns a positive number to
each pixel, and the number of point masses is determined
by the complexity of the data. The pixelsthat comprisethe
two distributions used in each application of the operator
are specified by the length, orientation, and position of a
hypothesized edge; doing so creates a circle split into two
semicircles with the edge as the diameter.

There are two parts to the weighting function used to
define the mass contributed by each pixel to each region:
a“member” function whose value is equal to the area of a
pixel (modeled as a square of unit area) inside the region,
and a function that approaches zero as we move radialy
outward. The final weight isthe product of the two values
at each pixel.

We take for granted Canny’'s analysis of the one-
dimensional step edge that led to his optimal edge detector
[2] and that the derivative of a Gaussian is a close approx-
imation. In order to make all the mask weights positive,
however, we flip the negative side of the function (Fig-
ure 2(a)). Instead of adding one side to the other, asisdone
in convolution, we instead compute a distance between the
two signatures.



@ (b)

Figure 2: Weighting functions. (&) The Canny operator
in 1-D. The negative side has been “flipped” so that all
weights are positive. (b) Our weighting function, a surface
of revolution of (a).

Canny’sextension of hisoperator totwo dimensionswas
motivated by computational considerations, asis our exten-
sion. We create an isotropic weighting function by forming
asurface of revolution, asshownin Figure2(b). In polar co-
ordinates, itiswritten as f(r) = cr exp(—r?/20?), where
¢ isanormalizing constant and o is the scale parameter.
The radius of thecircleis 3o.

Using an isotropic weighting function makes it easier
to compute distance values for al orientations because the
mass that each pixel contributesremains constant. Further-
more, we sample the set of edge orientations uniformly,
breaking the circle into wedges and allowing efficient up-
dating of the signatures.

Thenumber andlocation of the point massesmust still be
determined. In theory, every distinct triple of color values
could become a separate point mass, but thisisprohibitively
expensive, and for small radii the operator will suffer from
overfitting. Vector quantization reduces the number of col-
ors while retaining the modes of the distribution. Each
image window is quantized once.

We use the binary split algorithm of Orchard and
Bouman [9], because it was developed for color images
and allows control over the maximum codebook size. Itis
a greedy, tree-based algorithm that, at each step, takesthe
cluster whose covariance matrix contains the largest prin-
cipa eigenvalue and splitsit with a plane that is normal to
the corresponding eigenvector and runs through the clus-
ter's mean. We could ssimply use histograms, which are a
subset of signatures, but we do not wish to partition color
space independently of the data.

The maximum size of the codebook should be propor-
tional to the value of o. However, if an image window
contains only afew colors, the signature need not have the
maximum size. Therefore, our version of the binary split
algorithm terminates early if the largest eigenvalue over all
the clusters becomes too small.

2.2 A Perceptual Ground Distance

Before defining the distance between two color signa-

tures, we must first define the ground distance between two

colors. Because this distance should conform well to hu-
man perceptual distance as measured by psychophysicists,
we use the CIE-Lab color space, in which small Euclidean
distances are perceptually accurate [14].

If two colors are separated by along distance, however,
that distance is no longer quantitatively meaningful; the
most we can say about the colorsisthat they are different.
Using the Euclidean distance by itself presumes that an
edge with a contrast of 80 units is twice as sdient as an
edge with a constrast of 40 units, which need not be true.

We desire a distance measure that approaches but does
not exceed 1 once the colors are far enough apart. There
are many functions that satisfy this criterion, and we have
chosen

dij =1- exp(—Eij/'y),

where F;; is the Euclidean distance between color ¢ and
color j and v isa constant that determines the steepness of
our function. We have empirically chosen~y = 14.0 for our
experiments.

It could be argued that such a measure is unnecessary,
because edges are ultimately detected using a threshold,
and we can set it to alower value to detect edges of lower
contrast. However, itisvital that thisinformationregarding
contrast is incorporated before the direction and strength
of the edge are computed, not after. Otherwise, when
edges of high and low contrast appear in the same window,
the higher-contrast edge will suppress the response to the
lower-contrast edge.

2.3 TheEarth Mover’sDistance

By dividingthe circlein half, we have created two color
signatures of equal mass, whichwedenote.S; and S». Find-
ing the distance between them can be seen as an instance
of the transportation problem (see [7]), in which we wish
to find the minimum amount of physical work needed to
move the masses of S; into correspondence with those of
Sy incolor space. The Earth Mover’s Distance (EMD) [10]
isbased on a solutionto this problem. It has been provento
be more robust than other distance measures when compar-
ing the color signatures of entire images because it avoids
many quantization and discretization artifacts.

Given d;;, the ground distance between every pair (i, j)
of colors, where color i isin S; and color j isin S5, the
EMD finds a set of flows f;; that minimizes
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subject to constraints ensuring that al the mass is moved
from S; to S2. By normalizing the total mass of each
signatureto be 1 and choosing a ground distance that never
exceeds 1, the EMD will dwaysliein [0, 1], regardless of
scale.
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Figure 3: Plots of EMD vs. orientation for ideal and real
step edges.

The EMD has two useful properties besides its robust-
ness. First, itisatruemetric, becauseour ground distanceis
ametric and the total mass of the signaturesisequal. Also,
itisalinear programming problem, so efficient algorithms
are available.

24 Computing Edge Information

We can now summarize the algorithm. Having com-
puted the color signature of each wedge of the circle, the
compass operator computes the EMD between the color
signatures of every pair of semicirclesformed by aggregat-
ing half the wedges together. The resulting EMD’s can be
represented as a (periodic) function f(#), 0° < § < 180°.
The last step isto extract edge information from this func-
tion.

The top row of Figure 3 shows the compass operator
on an ideal step edge; f(#) is one period of a triangular
wave. We define the orientation at the center point to be
f = argmaxg f(6), 90° in the example, and the strength
tobe f(#), whichis 1 inthis case.

Note, however, that f(¢) is sampled. To find the orien-
tation and strength of an edge in general, we fit a parabola
to the maximum point and the points on either side of it;
the location of the vertex yields both values.

In general, the image datamay not beideal for anumber
of reasons: (1) the edge could be blurred, (2) the two sides
could share some color(s), (3) the center of the compass
might be near but not on the edge, (4) the edge might be
curved with respect to the chosen scale (including being
part of a corner), or (5) the center could be near ajunction
where three or more edges meet. Many of these reasons
areillustrated in the bottom example of Figure 3.

Reasons (1) and (2) affect the strength but not the orien-
tation. Blurring and overlap both cause partial correspon-

dence between the signatures, lowering the EMD.

The other three causes are more problematic in that the
edge orientationis uncertain. Many orientationsmay yield
either the same pair of color signatures or merely the same
EMD, and f(#) will contain a“maximum plateau” rather
than a single maximum.

There is no best way to determine the existence of a
plateau empiricaly; we find the largest interval [a, b] that
contains 0 (the orientation yielding the maximum EMD)
and in which all EMD’sfor orientationsin [, b] are above
athreshold. Thisthresholdisexpressed ascf () — d, where
¢ > 1andd > 0 are constants, so that it becomes tighter
for higher strengths.

If the width of thisinterval is no bigger than the orien-
tation sampling interval (i.e. one or two samples are above
threshold), fitting a parabolawill give accurate strength and
orientation information. If it islarger, we define the orien-
tation to be the midpoint of the plateau, the strength to be
the maximum EMD, and the uncertainty to be the width of
the plateau.

While the importance of the maximum is intuitive, the
minimum is equally important. Regardless of strength,
the minimum may still be zero if there is an orientation
that produces two equa color signatures. The minimum
measures the photometric symmetry of the data; wheniitis
high, our edge model isviolated. For thisreason, the value
ming f(6) iscalled the abnormality.

One cause of high abnormality isthe existence of ajunc-
tion. To illustrate this point, consider a pathological case
where the circle encompasses % equal-size wedges meet-
ing at the center, and each wedge is perceptually different
from al others. Simple geometry shows that if % is odd,
f(#) = (k—1)/k,andif k iseven, f(#) containsk /2 pei-
odsof atriangular wavethat variesbetween (k—2)/kand 1.
Itisinterestingto notethat if theimage datais odd symmet-
ric with respect to the center of the circle (a checkerboard
being the simplest case), then at the junctions, the EMD is
zero at al orientations.

Figure 4 shows three regions (white, blue, and black)
meeting in a T-junction, with the strength and abnormal-
ity of each point shown as an intensity. A small gap in
the strength occurs near the junction, which would likely
result in the two edges being disconnected. The peak in
the abnormality (the maximum value over al the minima)
indicates the junction’slocation.

The notion of abnormality isimportant conceptually be-
cause it supports Wang and Binford’s claim that the direc-
tion of an edgeis not always normal to the image gradient.
When abnormality is high, the difference between the gra-
dient direction and the edge normal islikely to be large.

However, we do not advocate using abnormality to de-
tect junctionsdirectly because localization is dependent on
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Figure 4: When an image contains a junction, the strength
of one of the edges invariably drops as it approaches, re-
sultingin agap. The abnormality (normalized for display)
peaks near the junction’slocation.

the colors found in the region. If, unlike in Figure 4, two
of the regions share some color, the junction will be dis-
placed, and it will move as scale increases. Single corners
cannot be detected because they have an axis of symmetry,
resulting in no abnormality.

3 EdgeDetection at Multiple Scales

There are three main advantages to the compass oper-
ator: the use of variable-length descriptions, which con-
tain more information about a region than the weighted
mean; the computation of EMD asafunction of orientation,
which ensures accurate orientation estimates while simul-
taneously providing uncertainty and abnormality informa-
tion; and a saturating distance function, which removes the
bias toward high-contrast edges.

We now show a set of examples making clear the ef-
fect of these advantages by comparing the compass opera-
tor to a multi-dimensional version of Canny’s method [2].
The gradient is computed in a manner similar to that of
Di Zenzo [3], by convolving each CIE-Lab color channel
with a Gaussian derivative and combining the components
into a single gradient vector.

In the top left corner of Figure 5, the helmet of a statue
occludes a brick wall, with awindow sill casting a shadow.
The shadow and the helmet are different shades of dark
grey, but their contrast isminimal compared to the adjacent
bricksand window sill. The four middle columns show, for
o =1, 4, 8, and 16, the gradient magnitude and extracted
edges. The low-contrast boundary cannot be recovered
using Canny’s method unless we are willing to sacrifice
the outline of the window sill altogether. The compass
operator, however, detects al of the important boundaries,
as shown in the last column of Figure 5. In addition, the
two maximain the abnormality output (bottom |eft corner)
show approximate locations of the two junctionswhere the
shadow meets the helmet.

The boundary between the two regions in Figure 6 is
salient at a wide range of scales. As we track this edge
through scale space, however, we see that Canny’s method
makes a mistake at ¢ = 8 and connects an intra-texture

edge to the boundary. The mistake is eventually corrected,
but the edge at & = 16 has a curve and is, therefore, not
well localized. The compass operator’s output is stable
throughout.

Our final example showsedgesextracted by each method
over alarge 320 x 160 imagefromwhich Figure5wastaken.
Figure 7(c) shows the edges detected by Canny’s method,
whileFigure 7(d) showsthe compass operator’ sedges. The
difference between the two is very apparent, especially in
the figure's helmet, shield, right arm, and legs. The com-
pass operator produces smaller gaps between edges and
retains more of the actual boundary of the statue. Further-
more, the abnormality (Figure 7(b)), a quantity Canny’s
edge detector cannot produce, shows a number of places
where we might look to link edges together into junctions.

One area where the gradient magnitude is demonstrably
better than the compass operator strength isin computation
time. Canny’s edge detector can process an entire image
in seconds, while the compass operator’s time varies from
24,000 pixels per minute for ¢ = 2 to 5,000 pixels per
minute for o = 16 on an SGI Indigo 2.

To improve the running time, we suggest sampling the
image spatialy every o/2 pixels and interpolate the inter-
mediate values, which produces only minor degradation.
One could also use cruder vector quantization methods,
such as histogramming, and a cruder distance measure in-
stead of the EMD, but the quality of the resultsis likely to
suffer greatly.

4 Conclusion

The compass operator substitutes vector quantization
and the Earth Mover’s Distance for Gaussian smoothing
and taking derivatives. The resulting framework is appli-
cable to any image range, with the only changes being the
dimensionality of the dataand the ground distance between
two values. The model is powerful enough to detect edges
that Canny’s edge detector cannot, and it remains more
stable as scale varies. Uncertainty in the edge orientation
can also be computed, as well as a rough estimate of the
location of junctions.

We have identified the stability of a pixel’s representa-
tive after vector quantization as a key issue. Because all
windowsare treated independently, a pixel can conceivably
be mapped to different colors. This instability can cause
gaps or even the loss of entire edges.

An interesting observation is that the principles behind
the operator can be applied to any zero-mean convolution
mask. Potentially, the need for colorimagestorequirethree
times as many filters as a greyscale image could be elimi-
nated, as could the need for correlation functions between
different color channels.

Another intriguing extension of our work isto combine
the wedges of the circle asymmetrically, creating a corner
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Figure 5: The shadow cast by the window sill causes the helmet of a statue to have both high- and low-contrast edges. No
value of & alowsthe Canny operator to detect all the relevant edges that the compass operator does. The bright spotsin the
abnormality image indicate two junctionsin the vicinity. The gradient magnitude images are normalized.

Edges found using the Canny Edge Detector

c=41 c=28 oc=16

Edges found using the Compass Operator

Figure 6: The main edgeinthisimageissalient at alarge range of scales even though one sideis heavily textured. Canny’s
edge detector makes an error by o = &, and the lone edge at o = 16 is curved. The compass operator is stable throughout
scale space.
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Figure 8: (a) Anideal corner. (b) Compass operator strength. (c) Magnification of (b); the corner point (center) is not a
maximum in any direction. (d) 90° corner detector strength. (€) Magnification of (d); the corner point isalocal maximum.




(c) Canny

(d) Compass Operator

Figure 7: Comparison of edges on a 320 x 160 image.
Note the differences in the helmet, shield, right arm, and
legs. The peaks in the abnormality (b), normalized for
display, indicate potential junctions. Both algorithmswere
runusingo = 4.

detector that computes the EMD between color distribu-
tions of unequal mass. In Figure 8, we compare the edge
strength of the compass operator to the corner strength of
a 90° corner detector based on the same principles. Fu-
ture work will focus on these extensions, along with the
integration of edges, corners, and junctions.
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